WO2019187071A1 - 射出成形装置、射出成形方法、および射出成形用樹脂材料 - Google Patents

射出成形装置、射出成形方法、および射出成形用樹脂材料 Download PDF

Info

Publication number
WO2019187071A1
WO2019187071A1 PCT/JP2018/013814 JP2018013814W WO2019187071A1 WO 2019187071 A1 WO2019187071 A1 WO 2019187071A1 JP 2018013814 W JP2018013814 W JP 2018013814W WO 2019187071 A1 WO2019187071 A1 WO 2019187071A1
Authority
WO
WIPO (PCT)
Prior art keywords
resin material
injection molding
cavity
injection
frequency
Prior art date
Application number
PCT/JP2018/013814
Other languages
English (en)
French (fr)
Inventor
加藤 秀和
道尚 岩本
泰裕 冨永
高廣 田中
輝幸 浜田
Original Assignee
マツダ株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by マツダ株式会社 filed Critical マツダ株式会社
Priority to JP2020508843A priority Critical patent/JP7021698B2/ja
Priority to CN201880060434.7A priority patent/CN111886120B/zh
Priority to PCT/JP2018/013814 priority patent/WO2019187071A1/ja
Priority to EP18912358.1A priority patent/EP3674056A4/en
Priority to US16/648,426 priority patent/US11691324B2/en
Publication of WO2019187071A1 publication Critical patent/WO2019187071A1/ja

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C45/00Injection moulding, i.e. forcing the required volume of moulding material through a nozzle into a closed mould; Apparatus therefor
    • B29C45/17Component parts, details or accessories; Auxiliary operations
    • B29C45/76Measuring, controlling or regulating
    • B29C45/7646Measuring, controlling or regulating viscosity
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C33/00Moulds or cores; Details thereof or accessories therefor
    • B29C33/02Moulds or cores; Details thereof or accessories therefor with incorporated heating or cooling means
    • B29C33/08Moulds or cores; Details thereof or accessories therefor with incorporated heating or cooling means for dielectric heating
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C45/00Injection moulding, i.e. forcing the required volume of moulding material through a nozzle into a closed mould; Apparatus therefor
    • B29C45/0001Injection moulding, i.e. forcing the required volume of moulding material through a nozzle into a closed mould; Apparatus therefor characterised by the choice of material
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C45/00Injection moulding, i.e. forcing the required volume of moulding material through a nozzle into a closed mould; Apparatus therefor
    • B29C45/03Injection moulding apparatus
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C45/00Injection moulding, i.e. forcing the required volume of moulding material through a nozzle into a closed mould; Apparatus therefor
    • B29C45/17Component parts, details or accessories; Auxiliary operations
    • B29C45/72Heating or cooling
    • B29C45/73Heating or cooling of the mould
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C45/00Injection moulding, i.e. forcing the required volume of moulding material through a nozzle into a closed mould; Apparatus therefor
    • B29C45/17Component parts, details or accessories; Auxiliary operations
    • B29C45/76Measuring, controlling or regulating
    • B29C45/77Measuring, controlling or regulating of velocity or pressure of moulding material
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C45/00Injection moulding, i.e. forcing the required volume of moulding material through a nozzle into a closed mould; Apparatus therefor
    • B29C45/17Component parts, details or accessories; Auxiliary operations
    • B29C45/76Measuring, controlling or regulating
    • B29C45/78Measuring, controlling or regulating of temperature
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L23/00Compositions of homopolymers or copolymers of unsaturated aliphatic hydrocarbons having only one carbon-to-carbon double bond; Compositions of derivatives of such polymers
    • C08L23/02Compositions of homopolymers or copolymers of unsaturated aliphatic hydrocarbons having only one carbon-to-carbon double bond; Compositions of derivatives of such polymers not modified by chemical after-treatment
    • C08L23/04Homopolymers or copolymers of ethene
    • C08L23/06Polyethene
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L23/00Compositions of homopolymers or copolymers of unsaturated aliphatic hydrocarbons having only one carbon-to-carbon double bond; Compositions of derivatives of such polymers
    • C08L23/02Compositions of homopolymers or copolymers of unsaturated aliphatic hydrocarbons having only one carbon-to-carbon double bond; Compositions of derivatives of such polymers not modified by chemical after-treatment
    • C08L23/10Homopolymers or copolymers of propene
    • C08L23/12Polypropene
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L25/00Compositions of, homopolymers or copolymers of compounds having one or more unsaturated aliphatic radicals, each having only one carbon-to-carbon double bond, and at least one being terminated by an aromatic carbocyclic ring; Compositions of derivatives of such polymers
    • C08L25/02Homopolymers or copolymers of hydrocarbons
    • C08L25/04Homopolymers or copolymers of styrene
    • C08L25/06Polystyrene
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L33/00Compositions of homopolymers or copolymers of compounds having one or more unsaturated aliphatic radicals, each having only one carbon-to-carbon double bond, and only one being terminated by only one carboxyl radical, or of salts, anhydrides, esters, amides, imides or nitriles thereof; Compositions of derivatives of such polymers
    • C08L33/04Homopolymers or copolymers of esters
    • C08L33/06Homopolymers or copolymers of esters of esters containing only carbon, hydrogen and oxygen, which oxygen atoms are present only as part of the carboxyl radical
    • C08L33/10Homopolymers or copolymers of methacrylic acid esters
    • C08L33/12Homopolymers or copolymers of methyl methacrylate
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L77/00Compositions of polyamides obtained by reactions forming a carboxylic amide link in the main chain; Compositions of derivatives of such polymers
    • C08L77/06Polyamides derived from polyamines and polycarboxylic acids
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05BELECTRIC HEATING; ELECTRIC LIGHT SOURCES NOT OTHERWISE PROVIDED FOR; CIRCUIT ARRANGEMENTS FOR ELECTRIC LIGHT SOURCES, IN GENERAL
    • H05B6/00Heating by electric, magnetic or electromagnetic fields
    • H05B6/46Dielectric heating
    • H05B6/62Apparatus for specific applications
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C2945/00Indexing scheme relating to injection moulding, i.e. forcing the required volume of moulding material through a nozzle into a closed mould
    • B29C2945/76Measuring, controlling or regulating
    • B29C2945/76003Measured parameter
    • B29C2945/76006Pressure
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C2945/00Indexing scheme relating to injection moulding, i.e. forcing the required volume of moulding material through a nozzle into a closed mould
    • B29C2945/76Measuring, controlling or regulating
    • B29C2945/76003Measured parameter
    • B29C2945/76033Electric current or voltage
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C2945/00Indexing scheme relating to injection moulding, i.e. forcing the required volume of moulding material through a nozzle into a closed mould
    • B29C2945/76Measuring, controlling or regulating
    • B29C2945/76003Measured parameter
    • B29C2945/7604Temperature
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C2945/00Indexing scheme relating to injection moulding, i.e. forcing the required volume of moulding material through a nozzle into a closed mould
    • B29C2945/76Measuring, controlling or regulating
    • B29C2945/76344Phase or stage of measurement
    • B29C2945/76381Injection
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C2945/00Indexing scheme relating to injection moulding, i.e. forcing the required volume of moulding material through a nozzle into a closed mould
    • B29C2945/76Measuring, controlling or regulating
    • B29C2945/76344Phase or stage of measurement
    • B29C2945/76414Solidification, setting phase
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C2945/00Indexing scheme relating to injection moulding, i.e. forcing the required volume of moulding material through a nozzle into a closed mould
    • B29C2945/76Measuring, controlling or regulating
    • B29C2945/76494Controlled parameter
    • B29C2945/76498Pressure
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C2945/00Indexing scheme relating to injection moulding, i.e. forcing the required volume of moulding material through a nozzle into a closed mould
    • B29C2945/76Measuring, controlling or regulating
    • B29C2945/76494Controlled parameter
    • B29C2945/76531Temperature
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C2945/00Indexing scheme relating to injection moulding, i.e. forcing the required volume of moulding material through a nozzle into a closed mould
    • B29C2945/76Measuring, controlling or regulating
    • B29C2945/76494Controlled parameter
    • B29C2945/76538Viscosity
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C2945/00Indexing scheme relating to injection moulding, i.e. forcing the required volume of moulding material through a nozzle into a closed mould
    • B29C2945/76Measuring, controlling or regulating
    • B29C2945/76929Controlling method
    • B29C2945/76933The operating conditions are corrected immediately, during the same phase or cycle
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29KINDEXING SCHEME ASSOCIATED WITH SUBCLASSES B29B, B29C OR B29D, RELATING TO MOULDING MATERIALS OR TO MATERIALS FOR MOULDS, REINFORCEMENTS, FILLERS OR PREFORMED PARTS, e.g. INSERTS
    • B29K2077/00Use of PA, i.e. polyamides, e.g. polyesteramides or derivatives thereof, as moulding material
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29KINDEXING SCHEME ASSOCIATED WITH SUBCLASSES B29B, B29C OR B29D, RELATING TO MOULDING MATERIALS OR TO MATERIALS FOR MOULDS, REINFORCEMENTS, FILLERS OR PREFORMED PARTS, e.g. INSERTS
    • B29K2471/00Use of polyethers, e.g. PEEK, i.e. polyether-etherketone or PEK, i.e. polyetherketone or derivatives thereof, as filler
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29KINDEXING SCHEME ASSOCIATED WITH SUBCLASSES B29B, B29C OR B29D, RELATING TO MOULDING MATERIALS OR TO MATERIALS FOR MOULDS, REINFORCEMENTS, FILLERS OR PREFORMED PARTS, e.g. INSERTS
    • B29K2995/00Properties of moulding materials, reinforcements, fillers, preformed parts or moulds
    • B29K2995/0003Properties of moulding materials, reinforcements, fillers, preformed parts or moulds having particular electrical or magnetic properties, e.g. piezoelectric
    • B29K2995/0006Dielectric

Definitions

  • the present disclosure relates to an injection molding apparatus, an injection molding method, and a resin material for injection molding.
  • the injection molding apparatus is an apparatus for manufacturing a resin product by injecting a resin material having fluidity into a mold and solidifying the filled resin material. Such an injection molding apparatus has been widely used conventionally.
  • Patent Document 1 includes a resin melting device having a high-frequency oscillator, injecting a resin material having fluidity in the resin melting device into a mold, and reducing the temperature of the resin in the mold. Discloses an injection molding apparatus for producing resin products.
  • Patent Document 2 discloses a configuration in which a heater is attached to a mold and the fluidity of the resin material injected into the mold is ensured. Thereby, the fluidity
  • Patent Document 2 it is necessary to heat and cool the entire mold in order to solidify the resin material filled in the mold, resulting in a long tact time and low energy efficiency. Therefore, the technique disclosed in Patent Document 2 has room for improvement from the viewpoint of production efficiency.
  • the present disclosure is intended to solve the above-described problems, and can produce a high-quality resin product by ensuring high fluidity of the resin material in the mold, and can produce
  • An object of the present invention is to provide an injection molding apparatus, an injection molding method, and a resin material for injection molding capable of reducing cost.
  • An injection molding apparatus includes an injection machine that injects a resin material mixed with a dielectric heating material with fluidity through temperature control, and a cavity that is a flow path of the resin material. And a mold having a pair of electrodes each facing the cavity and sandwiching the resin material in a direction intersecting the flow direction, and applying a high-frequency AC voltage to the pair of electrodes A high-frequency oscillation device.
  • the injection molding apparatus 1 includes a molding die 10, an injection unit (injection machine) 20, a high-frequency oscillation unit (high-frequency oscillation apparatus) 30, and a control unit 60. .
  • the forming die 10 has a movable die 11 and a fixed die 12, and a cavity 10 a is formed between the movable die 11 and the fixed die 12.
  • the movable mold 11 can be clamped and separated from the fixed mold 12 by a drive mechanism (not shown).
  • the movable mold 11 includes a mold body 111 made of a metal material, an electrode 112 provided in a state facing the cavity 10a with respect to the mold body 111, and an insulator interposed between the mold body 111 and the electrode 112. 113.
  • a cooling pipe 114 through which a coolant (cooling medium) flows is embedded in the electrode 112.
  • the fixed mold 12 includes a mold body 121 made of a metal material, an electrode 122 provided in a state facing the cavity 10 a with respect to the mold body 121, and an insulator interposed between the mold body 121 and the electrode 122. 123.
  • a cooling pipe 124 through which a coolant (cooling medium) flows is embedded in the electrode 122.
  • the electrode 112 and the electrode 122 are disposed so as to face each other with the cavity 10a interposed therebetween.
  • the insulator 113 or the insulator 123 is sandwiched between the electrode 112 and the electrode 122.
  • Each of the insulator 113 and the insulator 123 is made of, for example, a silicate binder or ceramics.
  • the injection unit 20 includes a cylinder 21, a screw 22, an injection cylinder 23, a nozzle 24, and a cylinder heater 25.
  • the nozzle 24 communicates with the cavity 10 a of the mold 10.
  • the resin material supplied from a hopper (not shown) into the cylinder 21 is given fluidity by the heat from the cylinder heater 25, and is injected from the nozzle 24 into the cavity 10a by the advance of the screw 22 driven by the injection cylinder 23. It has come to be.
  • the high-frequency oscillation unit 30 is a unit that applies a high-frequency AC voltage between the electrode 112 and the electrode 122, and includes a power source 31, an oscillator 32, a matching unit 33, and feeder lines 34 and 35.
  • the frequency of the high-frequency alternating voltage generated at the electrodes 112 and 122 by the high-frequency oscillation unit 30 is set to 27 MHz as an example.
  • a leakage cutoff valve 41 is inserted in the middle of the power supply path, and in the power supply line 35, a leakage cutoff valve 42 is inserted in the middle of the power supply path. Moreover, the location closer to the electrode 112 than the location where the leakage blocking valve 42 is inserted in the power supply line 35 is grounded.
  • the control unit 60 performs drive control of the injection cylinder 23 and the cylinder heater 25, control of the high-frequency oscillation unit 30, and the like. Although details of the control unit 60 are not shown, for example, a CPU and various programs executed on the CPU (a basic control program such as an OS and various programs that are activated on the OS and execute specific functions) And a computer having a memory such as a ROM or a RAM for storing the program and various data.
  • a CPU and various programs executed on the CPU a basic control program such as an OS and various programs that are activated on the OS and execute specific functions
  • a computer having a memory such as a ROM or a RAM for storing the program and various data.
  • the injection molding apparatus 1 is connected to cooling liquid circulation units (cooling medium supply apparatuses) 51 and 52 for circulating a cooling liquid (cooling medium) to the cooling pipes 114 and 124.
  • cooling liquid circulation units cooling medium supply apparatuses
  • earth leakage cutoff valves 43 to 46 are interposed.
  • the injection molding apparatus 1 includes a temperature sensor 71 for detecting the temperature of the electrode 112, a temperature sensor 72 for detecting the temperature of the electrode 122, and a temperature of the resin material in the cylinder 21. And a temperature sensor 73.
  • the temperature sensors 71 to 73 sequentially send the detected temperature data to the control unit 60 while the injection molding apparatus 1 is being driven.
  • the control unit 60 that has received the temperature data performs feedback control of the cylinder heater 25 and the high-frequency oscillation unit 30 using the data.
  • FIG. 2 is a schematic cross-sectional view showing a part of the configuration of the mold 10 in an enlarged manner.
  • the resin material 70 used in the injection molding apparatus 1 according to the present embodiment is a resin material mixed with a dielectric heating material. Details of this will be described later.
  • the electrode 112 and the electrode 122 are provided to face the cavity 10a as described above. For this reason, the high frequency AC voltage E is applied to the resin material 70 introduced into the cavity 10a and flowing in the cavity 10a as shown by the arrows.
  • the resin material 70 Since the dielectric heating material is mixed in the resin material 70, the resin material 70 generates heat upon application of the high-frequency AC voltage E. For this reason, the resin material 70 maintains the fluidity in the cavity 10a in a state where the high-frequency AC voltage E is applied.
  • FIG. 3 is a schematic diagram illustrating the configuration of the cavity 10 a provided in the mold 10.
  • the shape of the cavity 10a of the mold 10 is taken as an example, and two bent portions 10d are provided between the flow base point portion 10b and the flow end point portion 10c. , 10e, which are substantially U-shaped in plan view.
  • the resin material 70 injected from the nozzle 24 of the injection unit 20 flows from the flow base point portion 10b to the flow end point portion 10c via the bent portions 10d and 10e.
  • the electrodes 112 and 122 are extended over the entire flow path of the resin material 70 from the flow base point portion 10b to the flow end point portion 10c. Yes. That is, the resin material 70 that flows through the cavity 10a of the mold 10 can apply a high-frequency AC voltage E from the flow base point portion 10b to the flow end point portion 10c.
  • FIG. 4 is a schematic diagram showing the heat generation principle of the resin material 70.
  • the resin material 70 used in the injection molding apparatus 1 is a resin material in which a dielectric heating material 702 is mixed with a base material 701.
  • a thermoplastic resin such as a polyolefin resin or a polyamide resin can be employed.
  • the dielectric heating material 702 As an example of the dielectric heating material 702, a resin material having a structure in which a polyolefin monomer or polyamide monomer and a polyether monomer are polymerized can be employed. The detailed structure of the resin material 70 will be described later.
  • the electromagnetic wave WR propagates through the resin material 70.
  • the mixed dielectric heating material 702 generates heat due to deformation (movement) of the molecular chain by the electromagnetic wave WR, and the heat is transmitted to the base material 701.
  • the resin material 70 in the cavity 10a generates heat when the high-frequency AC voltage E is applied.
  • FIG. 5 is a time chart showing the application timing and injection pressure of the high-frequency AC voltage executed by the control unit 60 in the injection molding using the injection molding apparatus 1 over time.
  • FIG. 6 is a characteristic diagram showing the temperature and pressure of the resin material 70 in the cavity 10a at the time of injection, and FIG. It is a characteristic view which shows temperature and pressure.
  • the control unit 60 instructs the high frequency oscillation unit 30 to apply a high frequency AC voltage E ⁇ b> 1 between the electrodes 112 and 122.
  • control unit 60 commands the injection unit 20 to increase the injection pressure LP toward P1 at the timing T1.
  • the injection pressure LP is increased so as to become the pressure P1 at the timing T2.
  • control unit 60 commands the cylinder heater 25 to be in an ON state and the resin material 70 in the cylinder 21 to be in a fluid state. To do.
  • control unit 60 maintains the high-frequency alternating voltage E at the same predetermined value LE as from the timing T1 to the timing T2. 30 and commands the injection unit 20 to apply a constant injection pressure P2 for a predetermined time until timing T3.
  • timing T2 to timing T3 shown in FIG. 5 is the pressure holding period.
  • the flow base point Pos1 (corresponding to the flow base point 10b) in the cavity 10a to the flow end point Pos2 (to the flow end point 10c).
  • the temperature LTp of the resin material 70 is maintained at a constant temperature Tp1 having fluidity by application of the high-frequency AC voltage E having a predetermined value LE.
  • the pressure LPr of the resin material 70 in the cavity 10a is the pressure P3 at the flow base point Pos1, and gradually decreases toward the flow end point Pos2.
  • the pressure holding period from timing T2 to timing T3 in the pressure holding period from timing T2 to timing T3, the application of the high-frequency AC voltage E at the predetermined value LE is continued for the temperature LTp of the resin material 70 in the cavity 10a. Therefore, the temperature is maintained at Tp1.
  • the pressure LPr of the resin material 70 in the cavity 10a is changed from the flow base point Pos1 to the flow end point Pos2 because the driving of the injection unit 20 is continued.
  • the pressure P2 is substantially constant throughout the entire cavity 10a.
  • A is a polyolefin monomer
  • B is a polyether monomer.
  • the first type employs a dielectric heating material 702 that is a resin material obtained by polymerizing a polyolefin-based monomer and a polyether monomer and that holds a cation in the polyether portion.
  • the second type employs a dielectric heating material 702 that is a resin material obtained by polymerizing a polyamide-based monomer and a polyether monomer, and holds a cation in the polyether portion.
  • FIG. 9A is a schematic diagram showing a state of the dielectric heating material 702 immediately after the application of the high-frequency AC voltage E is started, and FIG. 9B shows that the positive ions M + of the dielectric heating material 702 are moved by the application of the high-frequency AC voltage E. It is a schematic diagram which shows a back state.
  • the resin material 70 used for injection molding of the injection molding apparatus 1 according to the present embodiment is heated by the application of the high-frequency AC voltage E, and the fluidity is maintained.
  • thermoplastic resin material 70 is employed as an example of the resin material 70, but the technology according to the present disclosure is not limited thereto.
  • a thermosetting resin material may be used.
  • a high-frequency AC voltage may be applied when the resin material is cured.
  • the fluidity of the resin material 70 that flows in the cavity 10a is maintained by dielectric heating, one injection unit 20 is connected to the mold 10, but the present disclosure
  • the technology according to the present invention is not limited to this. Since the temperature of the resin material flowing in the cavity can be made substantially the same throughout the cavity, even when two or more injection units are connected, a hairline-like defect hardly occurs and the appearance quality is excellent. be able to.
  • the molding die 10 is configured by a combination of one fixed die 12 and one movable die 11.
  • the technology according to the present disclosure is not limited thereto. Absent.
  • a mold configured by combining three or more molds may be employed.
  • the pair of electrodes 112 and 122 are provided between the flow start point 10b and the flow end point 10c of the cavity 10a in the mold 10; however, the technology according to the present disclosure is limited to this. Not receive.
  • a plurality of electrode pairs may be provided in a state of being spaced from each other in the flow direction of the resin material in the cavity.
  • electrode pairs may not be provided at locations where air discharge is likely to occur due to the shape of the cavity.
  • An injection molding apparatus includes an injection machine that injects a resin material mixed with a dielectric heating material with fluidity through temperature control, and a cavity that is a flow path of the resin material.
  • a high-frequency AC voltage is applied between the pair of electrodes, and a mold having a pair of electrodes each facing the cavity and sandwiching the resin material in a direction intersecting the flow direction.
  • a high-frequency oscillation device is
  • a resin material mixed with a dielectric heating material is used as the resin material to be injected, a pair of electrodes facing the cavity are provided, and a high-frequency AC voltage is applied between the pair of electrodes. It is the composition to do. Therefore, in the injection molding apparatus according to the above aspect, the application control of the high-frequency AC voltage can be performed on the resin material injected from the injection machine and flowing in the cavity, and the resin material is controlled by the application control of the high-frequency AC voltage. High fluidity is ensured.
  • the dielectric heating material when the base material adopts a thermoplastic resin material as the resin material to be injected, the dielectric heating material generates heat by applying a high-frequency AC voltage to the resin material flowing through the cavity. The fluidity of the resin material can be ensured.
  • the dielectric heating material when the base material uses a thermosetting resin material as the resin material to be injected, the dielectric heating material generates heat by applying a high-frequency AC voltage with the resin material filled in the cavity. Thus, the resin material can be cured.
  • the temperature of the resin material flowing in the cavity is controlled not to heat the entire mold, but the fluidity is ensured, so that energy loss can be reduced.
  • the resin material can be solidified only by controlling the application of the high-frequency AC voltage after the resin material is filled in the cavity, the tact time can be shortened compared to the case where the temperature of the entire mold is controlled. it can.
  • An injection molding apparatus is the above aspect, wherein the molding die has a die body, and has a fixed die and a movable die that are fitted to each other, and the pair of electrodes One of the electrodes is attached to the fixed mold body with an insulator interposed therebetween, and the other electrode of the pair of electrodes is an insulator with respect to the movable mold body It is attached on both sides.
  • the electrode in both the fixed mold and the movable mold, the electrode is attached with the insulator sandwiched between the mold main body. The leakage of electromagnetic waves can be suppressed.
  • An injection molding device is the above aspect, wherein at least one of the pair of electrodes has a cooling passage through which a cooling medium flows, and supplies the cooling medium to the cooling passage.
  • a cooling medium supply device is further provided.
  • the electrode can be cooled by supplying the cooling medium even if the heat of the resin material due to the dielectric heat generation is transmitted to the electrode. For this reason, in the injection molding apparatus according to the above aspect, the temperature of the resin material flowing in the cavity can be adjusted more accurately, and the resin material is solidified by supplying the cooling medium when the resin material is solidified and taken out from the mold. In addition, the mold can be cooled, and the tact time can be shortened. Therefore, the injection molding apparatus according to the above aspect is superior in realizing higher productivity.
  • the injection molding apparatus is the above aspect, wherein the pair of electrodes are provided from the upstream end to the downstream end in the flow direction with respect to the cavity.
  • the pair of electrodes is provided from the upstream end to the downstream end in the flow direction of the resin material in the cavity, the temperature of the resin material is controlled over the entire area in the cavity. Can do.
  • An injection molding apparatus is the above aspect, and further includes a control unit that controls injection of the resin material from the injection machine and application of the high-frequency AC voltage by the high-frequency oscillation device.
  • the controller controls the injector so that the injection pressure is continuously applied to the cavity for a predetermined time after the resin material is filled in the entire cavity.
  • the pressure holding period (the predetermined time) is provided after the cavity is filled with the resin material, the resin material in the entire cavity is solidified until the resin material is solidified.
  • the pressure can be made uniform. Therefore, in the injection molding apparatus according to the above aspect, the shrinkage of the resin material at the time of solidification can be made uniform throughout the cavity, which is advantageous for producing a high-quality resin product.
  • An injection molding method includes an injection step of injecting a resin material mixed with a dielectric heating material with fluidity by temperature control, and the resin material injected in the injection step. And a flow step for flowing in a cavity formed in the mold, and a high-frequency AC voltage applying step for applying a high-frequency AC voltage to the resin material flowing in the cavity.
  • a resin material mixed with a dielectric heating material is used as the resin material to be injected, and a high frequency AC voltage can be applied to the resin material flowing in the cavity in the high frequency AC voltage application step. It has become a structure. Therefore, in the injection molding method according to the above aspect, the resin material flowing in the cavity is controlled by applying high-frequency AC voltage to the resin material injected from the injection machine and flowing in the cavity. High fluidity is ensured by voltage application control.
  • the dielectric heating material when the base material adopts a thermoplastic resin material as the resin material to be injected, the dielectric heating material generates heat by applying a high-frequency AC voltage to the resin material flowing through the cavity. Thus, the fluidity of the resin material can be ensured.
  • the dielectric heating material when the base material uses a thermosetting resin material as the resin material to be injected, the dielectric heating material generates heat by applying a high-frequency AC voltage with the resin material filled in the cavity. Thus, the resin material can be cured.
  • the fluidity of the resin material is ensured by controlling the temperature of the resin material flowing in the cavity in the step of applying the high-frequency alternating voltage instead of heating the entire mold.
  • energy loss can be reduced and the resin material can be solidified only by applying high-frequency AC voltage after the resin material is filled in the cavity.
  • the tact time can be shortened as compared with the case of performing.
  • the injection molding method according to another aspect of the present disclosure is the above aspect, wherein, in the high-frequency alternating voltage application step, the resin material that flows from an upstream end to a downstream end in the flow direction in the cavity, Apply high-frequency AC voltage.
  • the resin is spread over the entire area in the cavity in the high frequency alternating voltage application step.
  • the temperature of the material can be controlled.
  • the injection molding method according to another aspect of the present disclosure is the above-described aspect, wherein after the resin material is filled in the whole cavity in the injection step, the injection pressure is continuously applied to the cavity for a predetermined time.
  • the step further includes.
  • the pressure holding step since the pressure holding step is provided, the pressure of the resin material in the entire cavity is equalized after the resin material is filled in the cavity and until the resin material is solidified. be able to. Therefore, in the injection molding method according to the above aspect, the shrinkage of the resin material at the time of solidification can be made uniform throughout the cavity, which is advantageous for producing a high-quality resin product.
  • the injection molding method according to another aspect of the present disclosure is the above aspect, wherein after the pressure-holding step, the resin material filled in the cavity is cooled to a cooling passage provided in the mold. A cooling step for cooling by supplying the medium is further provided.
  • the cooling step since the cooling step is provided, even when the heat of the resin material due to the dielectric heat generation is transmitted to the electrode, the electrode can be cooled by executing the cooling step. Therefore, in the injection molding method according to the above aspect, the temperature of the resin material flowing in the cavity can be adjusted more accurately, and the resin material can be solidified by supplying the cooling medium when the resin material is solidified and taken out of the mold. In addition, the mold can be cooled, and the tact time can be shortened. Therefore, the injection molding method according to the above aspect is advantageous for realizing higher productivity.
  • the resin material for injection molding according to one aspect of the present disclosure is a resin material for injection molding to be injected into the injection molding apparatus according to any one of the above aspects, and a base material made of a polyolefin resin or a polyamide resin, And a dielectric heating material capable of moving cations by applying the high-frequency AC voltage.
  • the resin material according to the above aspect includes a dielectric heating material in which a cation moves (moves) by an electromagnetic wave propagated through the resin material by application of a high-frequency AC voltage. For this reason, when injection molding is performed using the resin material according to the above aspect, a high-frequency AC voltage is applied to the resin material filled in the cavity to move (movement) the cation of the dielectric heating material. To do.
  • the resin material according to the above aspect is superior in manufacturing a high-quality resin product because the fluidity of the substrate is controlled by the heat generated by the dielectric heating element.
  • the resin material according to the above aspect includes the dielectric heating material having the above-described configuration, so that the high-frequency alternating voltage can be simply applied to the resin material without heating the entire mold. It is possible to control fluidity. Therefore, the resin material according to the above aspect can be molded with excellent thermal efficiency during injection molding, and the tact time can be shortened.
  • a polyolefin resin selected from HIPS, PP, LDPE, HDPE, m-PPE, and PMMA is used as a specific example of the base material.
  • a resin material having a polyolefin monomer and a polyether monomer polymerized with each other, and a resin material in which a cation is held in the polyether portion can be employed.
  • a polyamide resin selected from ABS, PC / ABS, PC, POM, PA6, PA12, and PA66 is used as a specific example of the base material.
  • a resin material having a polyamide monomer and a polyether monomer polymerized with each other, and a resin material having a cation held in the polyether portion can be employed. .

Landscapes

  • Chemical & Material Sciences (AREA)
  • Mechanical Engineering (AREA)
  • Engineering & Computer Science (AREA)
  • Manufacturing & Machinery (AREA)
  • Health & Medical Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Medicinal Chemistry (AREA)
  • Polymers & Plastics (AREA)
  • Organic Chemistry (AREA)
  • Physics & Mathematics (AREA)
  • Electromagnetism (AREA)
  • Injection Moulding Of Plastics Or The Like (AREA)
  • Moulds For Moulding Plastics Or The Like (AREA)
  • Constitution Of High-Frequency Heating (AREA)

Abstract

射出成形装置は、射出機と、成形型と、高周波発振装置と、を備え、射出機は、誘電発熱材が混入されてなる樹脂材料を、温調により流動性をもたせて射出する。成形型は、樹脂材料の流動の経路であるキャビティを有するとともに、それぞれがキャビティに面し、樹脂材料の流動方向と交差する方向に樹脂材料を挟む状態で設けられた一対の電極を有する。高周波発振装置は、一対の電極の間に高周波交流電圧を印加する。

Description

射出成形装置、射出成形方法、および射出成形用樹脂材料
 本開示は、射出成形装置、射出成形方法、および射出成形用樹脂材料に関する。
 射出成形装置は、流動性をもたせた樹脂材料を成形型内に射出し、充填した樹脂材料を固化させることにより樹脂製品を製造する装置である。このような射出成形装置は、従来から広く用いられている。
 例えば、特許文献1には、高周波発振器を有する樹脂溶融装置を備え、当該樹脂溶融装置にて流動性をもたせた樹脂材料を成形型内に射出し、成形型内で樹脂の温度を低下させることで樹脂製品を製造する射出成形装置が開示されている。
 なお、特許文献1に開示の樹脂溶融装置では、成形型に繋がるノズルに対して、樹脂の流れ方向の直前の部分となる絞り部の樹脂材料だけを加熱溶融することとしている。
 また、特許文献2には、成形型に対してヒータを取り付け、成形型内に射出された樹脂材料の流動性を確保する構成が開示されている。これにより、成形型内における樹脂材料の流動性を確保することができ、樹脂製品の製品品質を優れたものとすることができる。
特開2014-113699号公報 特開2000-127175号公報
 しかしながら、上記特許文献2に開示の技術では、成形型内に充填された樹脂材料を固化させるために成形型全体を加熱・冷却する必要があり、タクトタイムが長くなり、またエネルギ効率が低い。よって、上記特許文献2に開示の技術では、生産効率の観点から改善の余地がある。
 本開示は、上記のような問題の解決を図ろうとなされたものであって、成形型内における樹脂材料の高い流動性を確保することで高品質な樹脂製品を製造することができるとともに、生産コストの低減を図ることができる射出成形装置、射出成形方法、および射出成形用樹脂材料を提供することを目的とする。
 本開示の一態様に係る射出成形装置は、誘電発熱材が混入されてなる樹脂材料を、温調により流動性をもたせて射出する射出機と、前記樹脂材料の流動の経路であるキャビティを有するとともに、それぞれが前記キャビティに面し、前記流動の方向と交差する方向に前記樹脂材料を挟む状態で設けられた一対の電極を有する成形型と、前記一対の電極に対して高周波交流電圧を印加する高周波発振装置と、を備える。
実施形態に係る射出成形装置の構成を示す模式図である。 成形型の構成の一部を示す模式断面図である。 成形型に形成されたキャビティの構成を示す模式図である。 樹脂材料の発熱原理を示す模式図である。 射出成形装置の制御部が実行する高周波電圧および射出圧力の制御形態を示すタイムチャートである。 射出時における成形型内の樹脂材料の温度と圧力とを示す模式図である。 保圧時における成形型内の樹脂材料の温度と圧力とを示す模式図である。 誘電発熱材の化学式である。 誘電発熱材における陽イオンの移動前の状態を示す模式図である。 誘電発熱材における陽イオンが移動した後に状態を示す模式図である。
 以下では、実施形態について、図面を参酌しながら説明する。なお、以下で説明の形態は、本発明の一態様であって、本発明は、その本質的な構成を除き何ら以下の形態に限定を受けるものではない。
 [実施形態]
 1.射出成形装置1の構成
 本実施形態に係る射出成形装置1の構成について、図1を用い説明する。
 図1に示すように、本実施形態に係る射出成形装置1は、成形型10と、射出ユニット(射出機)20と、高周波発振ユニット(高周波発振装置)30と、制御部60と、を備える。
 成形型10は、可動型11と固定型12とを有し、可動型11と固定型12との間にキャビティ10aが構成されている。可動型11は、図示を省略する駆動機構により、固定型12に対して型締めおよび離間が可能となっている。
 可動型11は、金属材料からなる型本体111と、型本体111に対してキャビティ10aに面する状態で設けられた電極112と、型本体111と電極112との間に介挿された絶縁体113と、を有する。電極112の内部には、冷却液(冷却媒体)が流通する冷却管114が埋設されている。
 固定型12は、金属材料からなる型本体121と、型本体121に対してキャビティ10aに面する状態で設けられた電極122と、型本体121と電極122との間に介挿された絶縁体123と、を有する。電極122の内部には、冷却液(冷却媒体)流通する冷却管124が埋設されている。
 電極112と電極122とは、キャビティ10aを挟んで対向するように配置されている。そして、可動型11が固定型12に対して型締めされた状態においては、電極112と電極122との間には絶縁体113または絶縁体123が挟まれるようになっている。
 なお、絶縁体113および絶縁体123のそれぞれは、例えば、ケイ酸系バインダまたはセラミックスからなる。
 射出ユニット20は、シリンダ21と、スクリュ22と、射出シリンダ23と、ノズル24と、シリンダヒータ25と、を有する。ノズル24は、成形型10のキャビティ10aに連通している。シリンダ21内にホッパー(図示を省略。)から供給された樹脂材料が、シリンダヒータ25からの熱で流動性が付与され、射出シリンダ23の駆動によるスクリュ22の前進によりノズル24からキャビティ10aに射出されるようになっている。
 なお、シリンダ21は、接地されている。
 高周波発振ユニット30は、高周波交流電圧を電極112と電極122との間に印加するユニットであり、電源31と、発振器32と、整合器33と、給電線34,35と、を有する。なお、本実施形態では、高周波発振ユニット30により電極112,122に発生する高周波交流電圧の周波数が、一例として、27MHzに設定されている。
 ここで、給電線34には、給電経路の途中に漏電遮断弁41が介挿されており、給電線35には、給電経路の途中に漏電遮断弁42が介挿されている。また、給電線35における漏電遮断弁42が介挿された箇所よりも電極112に近い側の箇所は、接地されている。
 制御部60は、射出シリンダ23およびシリンダヒータ25の駆動制御や、高周波発振ユニット30の制御などを実行する。制御ユニット60の詳細については図示を省略しているが、例えば、CPUと、当該CPU上で実行される各種のプログラム(OSなどの基本制御プログラムや、OS上で起動され特定機能を実行する各種のアプリケーションプログラムなどを含む。)と、プログラムや各種のデータを保存するROMやRAMなどのメモリなどを備えるコンピュータを含み構成されている。
 また、射出成形装置1には、冷却管114,124に対して冷却液(冷却媒体)を循環させるための冷却液循環ユニット(冷却媒体供給装置)51,52が接続されている。冷却液循環ユニット51,52と可動型11および固定型12との間の冷却液循環経路中には、漏電遮断弁43~46が介挿されている。
 さらに、射出成形装置1には、電極112の温度を検出するための温度センサ71と、電極122の温度を検出するための温度センサ72と、シリンダ21内の樹脂材料の温度を検出するための温度センサ73と、が備えられている。温度センサ71~73は、射出成形装置1の駆動中においては、検出した温度データを制御部60に逐次送出する。そして、温度データを受信した制御部60は、当該データを用い、シリンダヒータ25および高周波発振ユニット30をフィードバック制御する。
 2.キャビティ10a内に導入された樹脂材料70に対する高周波交流電圧Eの印加
 キャビティ10a内に導入された樹脂材料70に対する高周波交流電圧Eの印加について、図2を用い説明する。図2は、成形型10の構成の一部を拡大して示す模式断面図である。
 先ず、本実施形態に係る射出成形装置1で用いる樹脂材料70は、誘電発熱材が混入された樹脂材料である。これについての詳細は、後述する。
 電極112と電極122とは、上述のように、キャビティ10aに面するように設けられている。このため、キャビティ10aに導入され、キャビティ10a内を流動する樹脂材料70に対しては、矢印で示すように高周波交流電圧Eが印加されることとなる。
 樹脂材料70には、誘電発熱材が混入されているので、高周波交流電圧Eの印加を受けて発熱する。このため、樹脂材料70は、高周波交流電圧Eが印加されている状態において、キャビティ10a内での流動性が保持されている。
 3.キャビティ10aの構成
 成形型10に設けられたキャビティ10aの構成について、図3を用い説明する。図3は、成形型10に設けられたキャビティ10aの構成を示す模式図である。
 図3に示すように、本実施形態に係る射出成形装置1では、成形型10のキャビティ10aの形状を、一例として、流動基点部10bと流動終点部10cとの間に2箇所の曲折部10d,10eが設けられ、平面視で略U字形状としている。
 射出ユニット20のノズル24から射出された樹脂材料70は、流動基点部10bから曲折部10d,10eを経由して流動終点部10cまで流動する。
 ここで、詳細な図示を省略しているが、成形型10においては、流動基点部10bから流動終点部10cに至る樹脂材料70の流動経路の全域に亘って電極112,122が延設されている。即ち、成形型10のキャビティ10aを流動する樹脂材料70は、流動基点部10bから流動終点部10cに至るまで高周波交流電圧Eが印加できるようになっている。
 4.樹脂材料70への高周波交流電圧Eの印加と樹脂材料70の発熱原理
 樹脂材料70への高周波交流電圧Eの印加と樹脂材料70の発熱原理について、図4を用い説明する。図4は、樹脂材料70の発熱原理を示す模式図である。
 図4に示すように、本実施形態に係る射出成形装置1で用いる樹脂材料70は、基材701に対して誘電発熱材702が混入された樹脂材料である。基材701の一例としては、ポリオレフィン系樹脂、または、ポリアミド系樹脂の熱可塑性樹脂を採用することができる。
 誘電発熱材702の一例としては、ポリオレフィン系モノマーまたはポリアミド系モノマーと、ポリエーテルモノマーとが重合した構造を有する樹脂材料を採用することができる。樹脂材料70の詳細な構造については、後述する。
 図4に示すように、樹脂材料70に対して高周波発振30により高周波交流電圧Eが印加された場合には、樹脂材料70中を電磁波WRが伝播する。樹脂材料70中を電磁波WRが伝播した場合には、混入されている誘電発熱材702が、電磁波WRによる分子鎖の変形(運動)により発熱し、当該熱が基材701に伝達される。
 以上のような原理により、キャビティ10a中の樹脂材料70は高周波交流電圧Eの印加により発熱する。
 5.射出成形方法
 射出成形装置1を用いた射出成形方法について、図5から図7を用い説明する。図5は、射出成形装置1を用いた射出成形において、制御部60が実行する高周波交流電圧の印加タイミングおよび射出圧力を時間経過毎に示すタイムチャートである。図6は、射出時におけるキャビティ10a内での樹脂材料70の温度と圧力とを示す特性図であり、図7は、キャビティ10aに樹脂材料70が充填された後の保圧時における樹脂材料70の温度と圧力を示す特性図である。
 図5に示すように、射出成形装置1の電源がONされたタイミングT1において、制御部60は、高周波発振ユニット30に対して電極112,122間に高周波交流電圧E1を印加するよう指令する。
 また、制御部60は、タイミングT1において、射出ユニット20に対して射出圧力LPをP1に向けて増圧するように指令する。これにより、射出圧力LPがタイミングT2に圧力P1となるように増圧されてゆく。
 なお、図示を省略しているが、射出成形装置1を用いた射出成形時においては、制御部60はシリンダヒータ25をON状態として、シリンダ21内の樹脂材料70が流動状態となるように指令する。
 次に、キャビティ10a内が樹脂材料70で満たされたタイミングT2以降において、制御部60は、高周波交流電圧EをタイミングT1からタイミングT2までの間と同じ所定値LEで保持するように高周波発振ユニット30に指令するとともに、射出ユニット20に対しては、タイミングT3に至るまでの所定時間だけ一定の射出圧力P2を加えるように指令する。
 図5に示すタイミングT2からタイミングT3に至る期間が保圧期間ということになる。
 次に、図6に示すように、タイミングT1からタイミングT2に至る射出時では、キャビティ10a内における流動基点部Pos1(上記流動基点部10bに相当)から流動終点部Pos2(上記流動終点部10cに相当)までの全域において、樹脂材料70の温度LTpは所定値LEの高周波交流電圧Eの印加により流動性を有する一定温度Tp1に保持される。
 一方、タイミングT1からタイミングT2に至る射出時では、キャビティ10a内における樹脂材料70の圧力LPrは、流動基点部Pos1で圧力P3であり、流動終点部Pos2に向けて漸減してゆく。
 次に、図7に示すように、タイミングT2からタイミングT3に至る保圧期間においては、キャビティ10a内における樹脂材料70の温度LTpは所定値LEでの高周波交流電圧Eの印加が継続されていることから温度Tp1で保持される。また、タイミングT2からタイミングT3に至る保圧期間においては、キャビティ10a内における樹脂材料70の圧力LPrは、射出ユニット20の駆動が継続されていることにより、流動基点部Pos1から流動終点部Pos2に至るキャビティ10a内の全域で略一定の圧力P2となる。
 6.樹脂材料70の構成
 上述のように、本実施形態に係る射出成形装置1においては、基材701と誘電発熱材702とからなる樹脂材料70を用いることとしている。樹脂材料70の組成について、図8を用い説明する。図8は、誘電発熱材702の化学式である。
 先ず、樹脂材料70としては、次の2種類を想定している。
 (1)第1の種類
 〈基材701〉 HIPS(耐衝撃性ポリスチレン)、PP(ポリプロピレン)、LDPE(低密度ポリエチレン)、HDPE(高密度ポリエチレン)、m-PPE(変性ポリフェニレンエーテル)、PMMA(アクリル)の中から選択されるポリオレフィン系樹脂
 〈誘電発熱材702〉 図10に示す化学式において、Aがポリオレフィン系モノマーであり、Bがポリエーテルモノマーである。第1の種類では、ポリオレフィン系モノマーとポリエーテルモノマーとが重合してなる樹脂材料であり、ポリエーテル部分に陽イオンを保持してなる、誘電発熱材702を採用する。
 (2)第2の種類
 〈基材701〉 ABS(アクリロニトリル・ブタジエン・スチレン共重合合成樹脂)、PC/ABS(ポリカーボネート・アクリロニトリル・ブタジエン・スチレン混合樹脂)、PC(ポリカーボネート)、POM(ポリアセタール)、PA6(ポリアミド6)、PA12(ポリアミド12)、PA66(ポリアミド66)の中から選択されるポリアミド系樹脂
 〈誘電発熱材702〉 図10に示す化学式において、Aがポリアミド系モノマーであり、Bがポリエーテルモノマーである。第2の種類では、ポリアミド系モノマーとポリエーテルモノマーとが重合してなる樹脂材料であり、ポリエーテル部分に陽イオンを保持してなる、誘電発熱材702を採用する。
 7.高周波交流電圧Eの印加による誘電発熱材702の発熱
 高周波交流電圧Eの印加による樹脂材料70の発熱メカニズムについて、図9Aおよび図9Bを用い説明する。図9Aは、高周波交流電圧Eの印加を開始した直後における誘電発熱材702の状態を示す模式図であり、図9Bは、高周波交流電圧Eの印加により誘電発熱材702の陽イオンM+が移動した後の状態を示す模式図である。
 誘電発熱材702を含む樹脂材料70に対して高周波交流電圧Eが印加されると、誘電発熱材702にも電磁波WRが伝搬され(図4を参照)、図9Aに示す位置に存在した陽イオンM+が、図9Bに示すように移動する。
 図9Aに示す位置から図9Bに示す位置に陽イオンM+が移動する際には、誘電発熱材702の分子鎖が変形(運動)する。このため、誘電発熱材702が発熱し、その熱が基材701に伝達される。
 本実施形態に係る射出成形装置1の射出成形に用いる樹脂材料70は、高周波交流電圧Eの印加を受けて温度上昇し、流動性が保持される。
 [変形例]
 上記実施形態では、樹脂材料70の一例として熱可塑性の樹脂材料を採用することとしたが、本開示に係る技術は、これに限定を受けるものではない。熱硬化性の樹脂材料を対象としてもよい。熱硬化性の樹脂材料を射出する場合には、当該樹脂材料を硬化させる際に高周波交流電圧を印加すればよい。
 また、上記実施形態では、誘電加熱によりキャビティ10a内を流動する樹脂材料70の流動性を保持することとしたため、成形型10に対して1つの射出ユニット20を接続することとしたが、本開示に係る技術は、これに限定を受けるものではない。キャビティ内を流動する樹脂材料の温度をキャビティ内全域で略同一とすることができるので、2つ以上の射出ユニットを接続することとしても、ヘアライン状の不良が生じ難く、優れた外観品質とすることができる。
 また、上記実施形態では、1つの固定型12と1つの可動型11との組み合わせを以って成形型10を構成することとしたが、本開示に係る技術は、これに限定を受けるものではない。例えば、3つ以上の型の組み合わせを以って構成された成形型を採用することもできる。
 また、上記実施形態では、成形型10におけるキャビティ10aの流動起点部10bから流動終点部10cまでの間で一対の電極112,122を設けることとしたが、本開示に係る技術は、これに限定を受けるものではない。例えば、キャビティにおける樹脂材料の流動方向において、互いに間隔を空けた状態で複数の電極対を設けることとしてもよい。
 また、キャビティの形状などから空気放電が発生しやすいと考えられる箇所には、電極対を設けないこととしてもよい。
 [本開示のまとめ]
 本開示の一態様に係る射出成形装置は、誘電発熱材が混入されてなる樹脂材料を、温調により流動性をもたせて射出する射出機と、前記樹脂材料の流動の経路であるキャビティを有するとともに、それぞれが前記キャビティに面し、前記流動の方向と交差する方向に前記樹脂材料を挟む状態で設けられた一対の電極を有する成形型と、前記一対の電極の間に高周波交流電圧を印加する高周波発振装置と、を備える。
 上記態様に係る射出成形装置では、射出する樹脂材料として誘電発熱材が混入された樹脂材料を用いるとともに、キャビティに面する一対の電極を設けて、当該一対の電極の間に高周波交流電圧を印加する構成となっている。よって、上記態様に係る射出成形装置では、射出機から射出されてキャビティ内を流動する樹脂材料に対して高周波交流電圧の印加制御することができ、該樹脂材料は、高周波交流電圧の印加制御によって高い流動性が確保される。
 ここで、射出する樹脂材料として、基材が熱可塑性の樹脂材料を採用する場合には、キャビティを流動する樹脂材料に対して高周波交流電圧を印加することで誘電発熱材が発熱し、これにより樹脂材料の流動性を確保することができる。
 一方、射出する樹脂材料として、基材が熱硬化性の樹脂材料を採用する場合には、キャビティに対して樹脂材料が充填された状態で高周波交流電圧を印加することで、誘電発熱材の発熱を以って樹脂材料を硬化させることができる。
 また、上記態様に係る射出成形装置では、成形型全体を加熱するのではなく、キャビティ内を流動する樹脂材料の温度制御を行って流動性を確保するので、エネルギロスの低減を図ることができるとともに、樹脂材料がキャビティ内に充填された後に高周波交流電圧の印加制御だけで樹脂材料を固化させることができるので、成形型全体の温度制御をする場合に比べてタクトタイムの短縮を図ることもできる。
 従って、上記態様に係る射出成形装置では、成形型内における樹脂材料の高い流動性を確保することで高品質な樹脂製品を製造することができるとともに、生産コストの低減を図ることができる。
 本開示の別態様に係る射出成形装置は、上記態様であって、前記成形型は、それぞれが型本体を有し、且つ、互いに嵌合する固定型および可動型を有し、前記一対の電極のうちの一方の電極は、前記固定型の前記型本体に対して絶縁体を挟んで取り付けられ、前記一対の電極のうちの他方の電極は、前記可動型の前記型本体に対して絶縁体を挟んで取り付けられている。
 上記態様に係る射出成形装置では、固定型および可動型の両型において、電極が型本体に対して絶縁体を挟んだ状態で取り付けられているので、高周波交流電圧の印加時において型外部への電磁波の漏洩を抑制することができる。
 本開示の別態様に係る射出成形装置は、上記態様であって、前記一対の電極の少なくとも一方には、冷却媒体が流通する冷却通路を有し、前記冷却通路に対して冷却媒体を供給する冷却媒体供給装置を更に備える。
 上記態様に係る射出成形装置では、電極に冷却通路を設けているので、誘電発熱による樹脂材料の熱が電極に伝達されたとしても、冷却媒体の供給により電極の冷却が可能である。このため、上記態様に係る射出成形装置では、キャビティ内を流動する樹脂材料の温度調整をより正確に行うことができるとともに、樹脂材料を固化させ成形型から取り出す際に冷却媒体の供給により樹脂材料および成形型の冷却が可能であり、タクトタイムの短縮が可能である。よって、上記態様に係る射出成形装置では、より高い生産性を実現するのに優位である。
 本開示の別態様に係る射出成形装置は、上記態様であって、前記一対の電極は、前記キャビティに対して前記流動の方向における上流端から下流端まで設けられている。
 上記態様に係る射出成形装置では、一対の電極がキャビティにおける樹脂材料の流動方向における上流端から下流端まで設けられた構成としているので、キャビティ内の全域に亘って樹脂材料の温度を制御することができる。
 本開示の別態様に係る射出成形装置は、上記態様であって、前記射出機からの前記樹脂材料の射出と、前記高周波発振装置による前記高周波交流電圧の印加と、を制御する制御部を更に備え、前記制御部は、前記キャビティの全体に前記樹脂材料が充填された後、所定時間だけ前記キャビティ内に射出圧力を加え続けるように前記射出機を制御する。
 上記態様に係る射出成形装置では、キャビティ内に樹脂材料が充填された後に、保圧期間(上記所定時間)を設けているので、樹脂材料が固化するまでの間、キャビティの全域における樹脂材料の圧力を均一化することができる。よって、上記態様に係る射出成形装置では、固化時における樹脂材料の収縮をキャビティ全域で均一化することができ、高品質な樹脂製品を製造するのに優位である。
 本開示の一態様に係る射出成形方法は、誘電発熱材が混入されてなる樹脂材料を、温調により流動性を持たせて射出する射出ステップと、前記射出ステップで射出された前記樹脂材料を、成形型内に形成されたキャビティ内を流動させる流動ステップと、前記キャビティ内を流動する前記樹脂材料に対して、高周波交流電圧を印加する高周波交流電圧印加ステップと、を備える。
 上記態様に係る射出成形方法では、射出する樹脂材料として誘電発熱材が混入された樹脂材料を用いるとともに、高周波交流電圧印加ステップにおいて、キャビティ内を流動する樹脂材料に対して高周波交流電圧を印加可能な構成となっている。よって、上記態様に係る射出成形方法では、射出機から射出されてキャビティ内を流動する樹脂材料に対して高周波交流電圧の印加制御を実行することにより、キャビティ内を流動する樹脂材料は、高周波交流電圧の印加制御によって高い流動性が確保される。
 ここで、上記同様に、射出する樹脂材料として、基材が熱可塑性の樹脂材料を採用する場合には、キャビティを流動する樹脂材料に対して高周波交流電圧を印加することで誘電発熱材が発熱し、これにより樹脂材料の流動性を確保することができる。
 一方、射出する樹脂材料として、基材が熱硬化性の樹脂材料を採用する場合には、キャビティに対して樹脂材料が充填された状態で高周波交流電圧を印加することで、誘電発熱材の発熱を以って樹脂材料を硬化させることができる。
 また、上記態様に係る射出成形方法では、成形型全体を加熱するのではなく、高周波交流電圧印加ステップにおいて、キャビティ内を流動する樹脂材料の温度制御を行って当該樹脂材料の流動性を確保することができるので、エネルギロスの低減を図ることができるとともに、樹脂材料がキャビティ内に充填された後に高周波交流電圧の印加制御だけで樹脂材料を固化させることができるので、成形型全体の温度制御をする場合に比べてタクトタイムの短縮を図ることもできる。
 従って、上記態様に係る射出成形方法では、成形型内における樹脂材料の高い流動性を確保することで高品質な樹脂製品を製造することができるとともに、生産コストの低減を図ることができる。
 本開示の別態様に係る射出成形方法は、上記態様であって、前記高周波交流電圧印加ステップでは、前記キャビティにおける前記流動の方向における上流端から下流端まで流動する前記樹脂材料に対して、前記高周波交流電圧を印加する。
 上記態様に係る射出成形方法では、一対の電極がキャビティにおける樹脂材料の流動方向における上流端から下流端まで設けられた構成としているので、高周波交流電圧印加ステップにおいて、キャビティ内の全域に亘って樹脂材料の温度を制御することができる。
 本開示の別態様に係る射出成形方法は、上記態様であって、前記射出ステップで前記キャビティの全体に前記樹脂材料が充填された後、所定時間だけ前記キャビティ内に射出圧力を加え続ける保圧ステップを、更に備える。
 上記態様に係る射出成形方法では、保圧ステップを設けているので、キャビティ内に樹脂材料が充填されて後、樹脂材料が固化するまでの間、キャビティの全域における樹脂材料の圧力を均一化することができる。よって、上記態様に係る射出成形方法では、固化時における樹脂材料の収縮をキャビティ全域で均一化することができ、高品質な樹脂製品を製造するのに優位である。
 本開示の別態様に係る射出成形方法は、上記態様であって、前記保圧ステップの実行後に、前記キャビティに充填された前記樹脂材料を、前記成形型内に設けられた冷却通路への冷却媒体の供給により冷却する冷却ステップを、更に備える。
 上記態様に係る射出成形方法では、冷却ステップを設けているので、誘電発熱による樹脂材料の熱が電極に伝達されたとしても、冷却ステップの実行により電極の冷却が可能である。このため、上記態様に係る射出成形方法では、キャビティ内を流動する樹脂材料の温度調整をより正確に行うことができるとともに、樹脂材料を固化させ成形型から取り出す際に冷却媒体の供給により樹脂材料および成形型の冷却が可能であり、タクトタイムの短縮が可能である。よって、上記態様に係る射出成形方法では、より高い生産性を実現するのに優位である。
 本開示の一態様に係る射出成形用樹脂材料は、上記の何れかの態様に係る射出成形装置に投入する射出成形用樹脂材料において、ポリオレフィン系樹脂、または、ポリアミド系樹脂からなる基材と、前記高周波交流電圧の印加により陽イオンの移動が可能な誘電発熱材と、を有する。
 上記態様に係る樹脂材料では、高周波交流電圧の印加により樹脂材料を伝播される電磁波により陽イオンが移動(運動)する誘電発熱材を含んでいる。このため、上記態様に係る樹脂材料を用いて射出成形を行う場合に、キャビティ内に充填された樹脂材料に対して高周波交流電圧が印加されることで誘電発熱材の陽イオンが移動(運動)する。これより、上記態様に係る樹脂材料では、誘電発熱体が発した熱により基材の流動性が制御され、高品質な樹脂製品を製造するのに優位である。
 また、上記態様に係る樹脂材料では、上記のような構成の誘電発熱材を含むことにより、成形型全体を加熱しなくても、高周波交流電圧を樹脂材料に対して印加するだけで樹脂材料の流動性を制御することが可能である。よって、上記態様に係る樹脂材料は、射出成形に際して、優れた熱効率での成形を可能とし、タクトタイムの短縮も可能とすることができる。
 本開示の別態様に係る射出成形用樹脂材料では、前記基材の具体例として、HIPS、PP、LDPE、HDPE、m-PPE、およびPMMAの中から選択されるポリオレフィン系樹脂を採用し、前記誘電発熱材の具体例として、互いに重合したポリオレフィン系モノマーとポリエーテルモノマーとを有する樹脂材料であり、前記ポリエーテル部分に陽イオンを保持してなる樹脂材料を採用することができる。
 また、本開示の別態様に係る射出成形用樹脂材料では、前記基材の具体例として、ABS、PC/ABS、PC、POM、PA6、PA12、およびPA66の中から選択されるポリアミド系樹脂を採用し、前記誘電発熱材の具体例として、互いに重合したポリアミド系モノマーとポリエーテルモノマーとを有する樹脂材料であり、前記ポリエーテル部分に陽イオンを保持してなる樹脂材料を採用することができる。
 以上のように、本開示の技術では、成形型内における樹脂材料の高い流動性を確保することで高品質な樹脂製品を製造することができるとともに、生産コストの低減を図ることができる。

Claims (12)

  1.  誘電発熱材が混入されてなる樹脂材料を、温調により流動性をもたせて射出する射出機と、
     前記樹脂材料の流動の経路であるキャビティを有するとともに、それぞれが前記キャビティに面し、前記流動の方向と交差する方向に前記樹脂材料を挟む状態で設けられた一対の電極を有する成形型と、
     前記一対の電極に対して高周波交流電圧を印加する高周波発振装置と、
    を備える、
     射出成形装置。
  2.  請求項1に記載の射出成形装置であって、
     前記成形型は、それぞれが型本体を有し、且つ、互いに嵌合する固定型および可動型を有し、
     前記一対の電極のうちの一方の電極は、前記固定型の前記型本体に対して絶縁体を挟んで取り付けられ、前記一対の電極のうちの他方の電極は、前記可動型の前記型本体に対して絶縁体を挟んで取り付けられている、
     射出成形装置。
  3.  請求項1または請求項2に記載の射出成形装置であって、
     前記一対の電極の少なくとも一方には、冷却媒体が流通する冷却通路を有し、
     前記冷却通路に対して冷却媒体を供給する冷却媒体供給装置を更に備える、
     射出成形装置。
  4.  請求項1から請求項3の何れかに記載の射出成形装置であって、
     前記一対の電極は、前記キャビティに対して前記流動の方向における上流端から下流端まで設けられている、
     射出成形装置。
  5.  請求項1から請求項4の何れかに記載の射出成形装置であって、
     前記射出機からの前記樹脂材料の射出と、前記高周波発振装置による前記高周波交流電圧の印加と、を制御する制御部を更に備え、
     前記制御部は、前記キャビティの全体に前記樹脂材料が充填された後、所定時間だけ前記キャビティ内に射出圧力を加え続けるように前記射出機を制御する、
     射出成形装置。
  6.  誘電発熱材が混入されてなる樹脂材料を、温調により流動性を持たせて射出する射出ステップと、
     前記射出ステップで射出された前記樹脂材料を、成形型内に形成されたキャビティ内を流動させる流動ステップと、
     前記キャビティ内を流動する前記樹脂材料に対して、高周波交流電圧を印加する高周波交流電圧印加ステップと、
    を備える、
     射出成形方法。
  7.  請求項6に記載の射出成形方法であって、
     前記高周波交流電圧印加ステップでは、前記キャビティにおける前記流動の方向における上流端から下流端まで流動する前記樹脂材料に対して、前記高周波交流電圧を印加する、
     射出成形方法。
  8.  請求項6または請求項7に記載の射出成形方法であって、
     前記射出ステップで前記キャビティの全体に前記樹脂材料が充填された後、所定時間だけ前記キャビティ内に射出圧力を加え続ける保圧ステップを、更に備える、
     射出成形方法。
  9.  請求項8に記載の射出成形方法であって、
     前記保圧ステップの実行後に、前記キャビティに充填された前記樹脂材料を、前記成形型内に設けられた冷却通路への冷却媒体の供給により冷却する冷却ステップを、更に備える、
     射出成形方法。
  10.  請求項1から請求項5の何れかの射出成形装置に投入する射出成形用樹脂材料において、
     ポリオレフィン系樹脂、または、ポリアミド系樹脂からなる基材と、
     前記高周波交流電圧の印加により陽イオンの移動が可能な誘電発熱材と、
    を有する、
     射出成形用樹脂材料。
  11.  請求項10に記載の射出成形用樹脂材料であって、
     前記基材は、HIPS、PP、LDPE、HDPE、m-PPE、およびPMMAの中から選択されるポリオレフィン系樹脂であり、
     前記誘電発熱材は、互いに重合したポリオレフィン系モノマーとポリエーテルモノマーとを有する樹脂材料であり、前記ポリエーテル部分に陽イオンを保持してなる、
     射出成形用樹脂材料。
  12.  請求項10に記載の射出成形用樹脂材料であって、
     前記基材は、ABS、PC/ABS、PC、POM、PA6、PA12、およびPA66の中から選択されるポリアミド系樹脂であり、
     前記誘電発熱材は、互いに重合したポリアミド系モノマーとポリエーテルモノマーとを有する樹脂材料であり、前記ポリエーテル部分に陽イオンを保持してなる、
     射出成形用樹脂材料。
PCT/JP2018/013814 2018-03-30 2018-03-30 射出成形装置、射出成形方法、および射出成形用樹脂材料 WO2019187071A1 (ja)

Priority Applications (5)

Application Number Priority Date Filing Date Title
JP2020508843A JP7021698B2 (ja) 2018-03-30 2018-03-30 射出成形用樹脂材料
CN201880060434.7A CN111886120B (zh) 2018-03-30 2018-03-30 射出成型用树脂材料
PCT/JP2018/013814 WO2019187071A1 (ja) 2018-03-30 2018-03-30 射出成形装置、射出成形方法、および射出成形用樹脂材料
EP18912358.1A EP3674056A4 (en) 2018-03-30 2018-03-30 INJECTION MOLDING DEVICE, INJECTION MOLDING PROCESS AND INJECTION MOLDING RESIN
US16/648,426 US11691324B2 (en) 2018-03-30 2018-03-30 Injection molding device, injection molding method, and injection molding resin material

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/JP2018/013814 WO2019187071A1 (ja) 2018-03-30 2018-03-30 射出成形装置、射出成形方法、および射出成形用樹脂材料

Publications (1)

Publication Number Publication Date
WO2019187071A1 true WO2019187071A1 (ja) 2019-10-03

Family

ID=68061254

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2018/013814 WO2019187071A1 (ja) 2018-03-30 2018-03-30 射出成形装置、射出成形方法、および射出成形用樹脂材料

Country Status (5)

Country Link
US (1) US11691324B2 (ja)
EP (1) EP3674056A4 (ja)
JP (1) JP7021698B2 (ja)
CN (1) CN111886120B (ja)
WO (1) WO2019187071A1 (ja)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN113690041A (zh) * 2021-07-08 2021-11-23 华南理工大学 一种磁性复合材料热压成型固化系统及方法

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2000127175A (ja) 1998-10-28 2000-05-09 Canon Inc 成形装置
JP2003311799A (ja) * 2002-04-22 2003-11-05 Ricoh Co Ltd プラスチック薄型成形品の成形方法及び成形装置
JP2003311800A (ja) * 2002-04-24 2003-11-05 Ricoh Co Ltd プラスチック薄型成形品の成形方法及び成形金型
JP2009101602A (ja) * 2007-10-23 2009-05-14 Yamamoto Vinita Co Ltd 樹脂成形機および押出成形方法
JP2014113699A (ja) 2012-12-06 2014-06-26 Denso Corp 樹脂加熱溶融装置

Family Cites Families (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5791226A (en) * 1980-11-28 1982-06-07 Sony Corp Press forming method of synthetic resin
JPS63297010A (ja) * 1987-05-29 1988-12-05 Hashimoto Forming Co Ltd 車両用ウインドウの製造方法
US5395870A (en) * 1988-12-28 1995-03-07 Asahi Kasei Kogyo Kabushiki Kaisha Vinyl resin composition
JP2826553B2 (ja) * 1989-06-09 1998-11-18 旭化成工業株式会社 加飾成形方法及びその装置
KR100199837B1 (ko) * 1995-03-22 1999-06-15 전주범 사출성형 몰드 시스템
JPH11105076A (ja) * 1997-10-03 1999-04-20 Suzuka Fuji Xerox Co Ltd インサート射出成形用金型、インサート射出成形用金型構造、インサート成形品の製造方法、およびインサート成形品
AU4502399A (en) * 1998-05-29 1999-12-20 Nokia Mobile Phones Limited Composite injection mouldable material
JP4342911B2 (ja) * 2003-10-31 2009-10-14 住友ゴム工業株式会社 積層シームレスベルトの製造方法および積層シームレスベルト
EP2407295B1 (en) * 2009-03-12 2019-06-12 The Doshisha Resin molding apparatus and resin molding method
WO2016111321A1 (ja) 2015-01-09 2016-07-14 マツダ株式会社 射出成形装置及び射出成形方法

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2000127175A (ja) 1998-10-28 2000-05-09 Canon Inc 成形装置
JP2003311799A (ja) * 2002-04-22 2003-11-05 Ricoh Co Ltd プラスチック薄型成形品の成形方法及び成形装置
JP2003311800A (ja) * 2002-04-24 2003-11-05 Ricoh Co Ltd プラスチック薄型成形品の成形方法及び成形金型
JP2009101602A (ja) * 2007-10-23 2009-05-14 Yamamoto Vinita Co Ltd 樹脂成形機および押出成形方法
JP2014113699A (ja) 2012-12-06 2014-06-26 Denso Corp 樹脂加熱溶融装置

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP3674056A4

Also Published As

Publication number Publication date
JP7021698B2 (ja) 2022-02-17
EP3674056A4 (en) 2020-07-15
US11691324B2 (en) 2023-07-04
US20200238585A1 (en) 2020-07-30
CN111886120A (zh) 2020-11-03
CN111886120B (zh) 2022-05-31
JPWO2019187071A1 (ja) 2020-12-03
EP3674056A1 (en) 2020-07-01

Similar Documents

Publication Publication Date Title
US20090014439A1 (en) Non-Contact High-Frequency Induction Heating Apparatus for Plastic Mold and Injection Nozzle Thereof
US8328548B2 (en) Ultrasonic device for moulding micro plastic parts
US20180001529A1 (en) Injection molding with targeted heating of mold cavities in a non-molding position
CN104334354B (zh) 排出体积流的方法
WO2019187071A1 (ja) 射出成形装置、射出成形方法、および射出成形用樹脂材料
TW201831304A (zh) 薄壁光學組件的超音波模製
JPH091611A (ja) 成形方法
JP2854459B2 (ja) 射出成形等における可塑化流動体の間歇的加熱装置
KR100844069B1 (ko) 고주파 유도 용융 수지 사출장치
JP2019177625A (ja) 射出成形装置、射出成形方法、および射出成形用樹脂材料
JPH03159713A (ja) 精密部品の射出成形方法と射出成形用金型
Kazmer et al. Towards controllability of injection molding
JP6488120B2 (ja) 射出成型機
JPH058265A (ja) 射出成形機等における流体の射出方法
KR101996342B1 (ko) 수지사출 금형의 온도조절 장치
TW202110608A (zh) 用於控制個別流動波前層之間的共射出塑膠壓力比率之方法
JP2001315163A (ja) 成形方法
JP2009090558A (ja) 射出成形金型、射出成形品の製造方法、および射出成形品
KR100734949B1 (ko) 비접촉 고주파 유도 용융 수지 사출장치
JP3188008B2 (ja) 合成樹脂の射出成形方法および射出成形装置
JP5771912B2 (ja) 射出成形方法、及び射出成形型
JP2010179574A (ja) 射出成形機
CN107351326A (zh) 塑件的注塑方法
JP2014240150A (ja) 樹脂製品製造装置及び樹脂製品の製造方法
KR20150106679A (ko) 금형장치

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 18912358

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2020508843

Country of ref document: JP

Kind code of ref document: A

ENP Entry into the national phase

Ref document number: 2018912358

Country of ref document: EP

Effective date: 20200326