WO2019187028A1 - 内燃機関の制御システム、および内燃機関の制御方法 - Google Patents

内燃機関の制御システム、および内燃機関の制御方法 Download PDF

Info

Publication number
WO2019187028A1
WO2019187028A1 PCT/JP2018/013680 JP2018013680W WO2019187028A1 WO 2019187028 A1 WO2019187028 A1 WO 2019187028A1 JP 2018013680 W JP2018013680 W JP 2018013680W WO 2019187028 A1 WO2019187028 A1 WO 2019187028A1
Authority
WO
WIPO (PCT)
Prior art keywords
internal combustion
combustion engine
fuel
injection unit
unit
Prior art date
Application number
PCT/JP2018/013680
Other languages
English (en)
French (fr)
Inventor
眞秀 倉田
崇 橋爪
久倫 金山
Original Assignee
本田技研工業株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 本田技研工業株式会社 filed Critical 本田技研工業株式会社
Priority to PCT/JP2018/013680 priority Critical patent/WO2019187028A1/ja
Publication of WO2019187028A1 publication Critical patent/WO2019187028A1/ja

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02DCONTROLLING COMBUSTION ENGINES
    • F02D41/00Electrical control of supply of combustible mixture or its constituents
    • F02D41/20Output circuits, e.g. for controlling currents in command coils
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02DCONTROLLING COMBUSTION ENGINES
    • F02D41/00Electrical control of supply of combustible mixture or its constituents
    • F02D41/30Controlling fuel injection
    • F02D41/32Controlling fuel injection of the low pressure type
    • F02D41/34Controlling fuel injection of the low pressure type with means for controlling injection timing or duration

Definitions

  • the present invention relates to an internal combustion engine control system and an internal combustion engine control method.
  • a control device for an internal combustion engine which includes a fuel injection valve capable of injecting fuel into a combustion chamber and an ignition device whose relative position with respect to the fuel injection valve is determined so that the spray can be directly ignited. It is disclosed (for example, see Patent Document 1).
  • the device performs main injection at a predetermined injection start timing after performing pre-injection performed at a predetermined pre-injection time during the compression stroke and ignition of the pre-spray by the pre-injection by the ignition device, Self-ignition is generated and at least a part of the main injection fuel is diffusely burned.
  • the present invention has been made in view of such circumstances, and an object of the present invention is to provide an internal combustion engine control system and an internal combustion engine control method capable of stably operating the internal combustion engine. To do.
  • a control system for an internal combustion engine is detecting and at the time of starting the internal combustion engine, before the rotation of the internal combustion engine starts until the rotation speed of the internal combustion engine reaches a set value.
  • (2) The control system for an internal combustion engine according to (1), wherein the detection unit detects a temperature, and the control unit decreases the temperature before the internal combustion engine starts rotating. The fuel to be injected into one injection unit is increased.
  • (3) The control system for an internal combustion engine according to (2), wherein the control unit repeatedly injects the first amount of the fuel into the first injection unit before the internal combustion engine starts rotating, The lower the temperature, the higher the frequency with which the first injection unit injects the first amount of the fuel.
  • the amount of fuel injected by the second injection unit per unit time is larger than the amount of fuel injected by the first injection unit per unit time.
  • (6) The control system for an internal combustion engine according to (5), comprising a heater for warming the fuel injected into the first injection unit, wherein the first injection unit injects the fuel warmed by the heater. Is.
  • the detection unit detects a temperature of cooling water for cooling the internal combustion engine.
  • the computer detects a state related to the internal combustion engine before the internal combustion engine starts rotating until the rotational speed of the internal combustion engine reaches a set value.
  • the fuel is injected into a first injection unit that injects fuel into the combustion chamber of the internal combustion engine in a control mode according to the detection result of the detection unit, the internal combustion engine starts rotating, and the rotational speed of the internal combustion engine is
  • This is a control method for an internal combustion engine in which the fuel is injected into a second injection unit that injects fuel into the fuel chamber of the internal combustion engine after reaching a set value.
  • the internal combustion engine can be operated stably.
  • FIG. 1 is a diagram illustrating an example of a functional configuration of the engine control system 1.
  • the engine control system 1 includes an engine unit 10 and a control device 50.
  • the engine unit 10 and the control device 50 communicate with each other via a communication line.
  • the engine unit 10 includes an engine 12, a sensor group 14, a first injection unit 16, a second injection unit 22, a temperature sensor 24, and a water temperature sensor 26.
  • the engine 12 is, for example, a general purpose engine.
  • the engine 12 is a uniflow two-stroke engine, for example.
  • the engine 12 includes, for example, an exhaust port provided at the upper end portion of the cylinder and a scavenging port provided at the lower side wall portion of the cylinder.
  • the scavenging port is opened and closed by a piston that reciprocates in the cylinder.
  • the piston of the engine 12 descends, the air-fuel mixture in the crank chamber is compressed, the exhaust port is opened, and the air-fuel mixture in the crank chamber passes through the scavenging port and flows into the cylinder.
  • the exhaust port is opened, and the exhaust gas in the cylinder is pushed out of the exhaust port by the inflowing air-fuel mixture.
  • the engine of the present embodiment may be another type of engine instead of the uniflow two-stroke engine.
  • the engine 12 employs, for example, a controlled automatic ignition (CAI) combustion method.
  • CAI controlled automatic ignition
  • the first injection unit 20 or the second injection unit 22 of the first injection unit 16 ignites by injecting fuel into the compressed air.
  • the fuel to be injected is, for example, light oil.
  • Sensor group 14 is a sensor that detects the state of engine 12.
  • a rotational speed sensor that detects the rotational speed of the engine 12
  • an intake pressure sensor that detects the pressure of air taken into the combustion chamber from the outside
  • a torque sensor and the like are included.
  • the first injection unit 16 includes a heater 18 and a first injection unit 20.
  • FIG. 2 is a diagram schematically showing the first injection unit 16.
  • the heater 18 warms the fuel injected by the first injection unit 20.
  • the heater 18 sends the warmed fuel to the first injection unit 20.
  • the first injection unit 20 injects the fuel warmed by the heater 18 into the combustion chamber based on the control of the control device 50. For example, the fuel injected by the first injection unit 20 per unit time is constant.
  • the second injection unit 22 injects fuel into the combustion chamber based on the control of the control device 50. For example, the fuel injected by the second injection unit 22 per unit time is constant.
  • the temperature sensor 24 detects the temperature around the engine 12 and transmits the detection result to the control device 50.
  • the water temperature sensor 26 detects the temperature of the cooling water that has flowed through the water jacket provided around the cylinder of the engine 12. For example, the water temperature sensor 26 is provided near the outlet of the water jet, and detects the temperature near the outlet (exit water temperature).
  • the control device 50 includes, for example, an information management unit 52, a control unit 54, and a storage unit 60.
  • the information management unit 52 and the control unit 54 are realized, for example, when a processor such as a CPU (Central Processing Unit) executes a program (software).
  • a processor such as a CPU (Central Processing Unit) executes a program (software).
  • Some or all of these components include hardware (circuitry) such as LSI (Large Scale Integration), ASIC (Application Specific Integrated Circuit), FPGA (Field-Programmable Gate Array), and GPU (Graphics Processing Unit). Part (including circuit)), or may be realized by cooperation of software and hardware.
  • the program may be stored in advance in the storage unit 60 of the control device 50, or stored in a removable storage medium such as a DVD or CD-ROM, and stored by attaching the storage medium to the drive device. It may be installed in the unit 60.
  • the storage unit 60 is realized by, for example, an HDD, a flash memory, an EEPROM (Electrically-Erasable-Programmable-Read-Only Memory), a ROM (Read-Only Memory), or a RAM (Random Access Memory).
  • the information management unit 52 acquires the detection result of the sensor group 14, the detection result of the temperature sensor 24, and the detection result of the water temperature sensor 26.
  • the control unit 54 controls the first injection unit 20 and the second injection unit 22. For example, the control unit 54 performs predetermined intake air from before the engine 12 is cranked (before rotation) to after cranking (after rotation) until the rotation speed of the engine 12 reaches a set value. The fuel is injected into the first injection unit 20 at the timing. Then, the control unit 54 causes the second injection unit 22 to inject fuel when the rotational speed of the engine 12 reaches a set value. In this case, for example, the control unit 54 causes the first injection unit 20 to stop injecting fuel, and then causes the second injection unit 22 to inject fuel at a predetermined intake timing.
  • the control unit 54 includes the first injection unit before cranking and after cranking until the rotational speed of the engine 12 reaches a set value. 20 sets a control mode for injecting fuel.
  • the control unit 54 refers to the first control table 62 and sets the control mode.
  • FIG. 3 is a diagram illustrating an example of the contents of the first control table 62.
  • the first control table 62 is applied, for example, when starting the engine 12 after a predetermined time has elapsed since the operation of the engine 12 was stopped.
  • the time when the operation of the engine 12 is stopped is stored in the storage unit 60, for example.
  • the range of the outside air temperature is “Tem1”> “Tem2”> “Tem3”.
  • the first control mode is a mode in which fuel is injected in “A mode” before cranking and fuel is injected for “(1st reference unit) X1 msec” after cranking.
  • the second control mode is a mode in which fuel is injected in “B mode” before cranking and fuel is injected for “X2 msec” after cranking.
  • the third control mode is a mode in which fuel is injected in “C mode” before cranking, and fuel is injected for “X2 msec” after cranking.
  • “C mode”, “B mode”, and “A mode” are modes in which the controller 54 causes the first injection unit 20 to inject fuel into the first injection unit 20 in a predetermined period.
  • the first reference unit is, for example, a unit in which the crankshaft of the engine 12 makes one revolution or a predetermined time.
  • the timing at which the fuel is injected is, for example, a predetermined intake timing.
  • a mode is a mode in which fuel is injected “N1 times” for “(per second reference unit) X3 msec”
  • B mode is fuel injected for “X3 msec”.
  • the “C mode” is a mode in which fuel is injected “N3 times” for “X3 msec”.
  • the first reference unit and the second reference unit may be different standards or the same reference unit.
  • FIG. 4 is a diagram illustrating the control state of the first injection unit 20, the control state of the second injection unit 22, and the tendency of changes in the throttle opening.
  • the upper diagram of FIG. 4 shows the control state of the first injection unit 20
  • the middle diagram of FIG. 4 shows the control status of the second injection unit 22
  • the lower diagram of FIG. 4 indicates the fuel injection time (TO)
  • the vertical axis in the lower diagram of FIG. 4 indicates the throttle opening (TH).
  • the horizontal axis of each figure in FIG. 4 indicates the rotational speed (NE) of the engine 12.
  • the outside air temperature is “Tem1”. Further, the throttle opening TH is controlled to be constant between the rotational speeds NE0 to NE1, and when the rotational speed NE1 is reached, governor control for adjusting the rotational speed is performed.
  • the first injection unit 20 controls the first injection unit 20 in the A mode.
  • the first injection unit 20 performs control to inject fuel for X1 msec per reference unit until the rotational speed reaches the rotational speed NE2.
  • the second injection unit 22 repeats the control of injecting fuel for “(per first reference unit) X0 msec”. Note that X0 msec ⁇ X1 msec.
  • control device 50 can stably operate the engine 12 by supplying the engine 12 with fuel corresponding to the ambient temperature before the engine 12 rotates.
  • the control unit 54 sets a control mode in which fuel is injected into the first injection unit 20 according to the detection result of the water temperature sensor 26.
  • the control unit 54 refers to the second control table 64 and sets the control mode.
  • FIG. 5 is a diagram showing an example of the contents of the second control table 64.
  • the second control table 64 is applied, for example, when the engine 12 is started before a predetermined time has elapsed since the operation of the engine 12 was stopped. Note that the second control table 64 may be applied instead of the first control table 62 even before a predetermined time has elapsed.
  • the eleventh control mode is applied when the water temperature is in the range of “Tem11”
  • the twelfth control mode is applied when the water temperature is in the range of “Tem12”
  • the thirteenth control mode is applied when the water temperature is in the range of “Tem13”.
  • the range of the water temperature is “Tem11” ⁇ “Tem12” ⁇ “Tem13”.
  • the eleventh control mode is a mode in which fuel is injected in “A mode” before cranking and fuel is injected for “(1st reference unit) X1 msec” after cranking.
  • the twelfth control mode is a mode in which fuel is injected in “D mode” before cranking and fuel is injected for “X1 msec” after cranking.
  • the thirteenth control mode is a mode in which fuel is injected in “E mode” before cranking and fuel is injected for “X1 msec” after cranking.
  • “A mode”, “D mode”, and “E mode” are modes in which the controller 54 causes the first injection unit 20 to inject fuel in a predetermined period.
  • “D mode” is a mode in which fuel is injected “N01 times” for “(per second reference unit) X3 msec”, and “E mode” is fuel injected for “X1 msec”. In this mode, “N02 times” is performed.
  • the second injection unit 22 repeats the control of injecting fuel for “(per first reference unit) X0 msec”. “N02” ⁇ “N01” ⁇ “N1”.
  • control device 50 can stably operate the engine 12 by supplying the engine 12 with fuel according to the outlet water temperature before the engine 12 rotates.
  • FIG. 6 is a diagram for explaining a temporal change in the fuel injected by the first injection unit 20 and the second injection unit 22.
  • the illustrated example schematically shows a scene in which a predetermined control mode is set according to temperature or water temperature, and processing is performed based on the set control mode.
  • the vertical axis in FIG. 6 indicates the amount of fuel injected, and the horizontal axis indicates time. Further, as described above, the first injection unit 20 and the second injection unit 22 are assumed to have a constant amount of fuel injected per unit time.
  • the control unit 54 repeatedly causes the first injection unit 20 to inject the first amount of fuel (Q1 in the figure) before the engine 12 starts rotating (before NE0).
  • the first amount is, for example, an amount that the first injection unit 20 injects during the first time (T1). In the illustrated example, the first amount is injected four times as an example. However, the lower the temperature or water temperature, the higher the frequency with which the first injection unit 20 injects the first amount of fuel. For example, the first injection unit 20 injects the first amount five times or more.
  • the control unit 54 uses a second amount (Q2 in the figure) of fuel that is smaller than the first amount until the engine 12 reaches the set value (NE2). Injected into the first injection unit 20 according to 12 rotations (R in the figure).
  • the second amount is, for example, an amount that the first injection unit 20 injects during a second time (T2) that is shorter than the first time.
  • the amount of fuel injected by the second injection unit 22 in a predetermined unit time (T1 in the figure) is smaller than the amount of fuel injected by the first injection unit 20 in the unit time (T1 in the figure).
  • control unit 54 controls the first injection unit 20 and the second injection unit 22 based on the state of the engine 12 to appropriately supply fuel so that the engine 12 operates more stably. can do.
  • control unit 54 causes the first injection unit 20 to inject fuel in the control mode according to the detection result of the temperature sensor 24 or the water temperature sensor 26 before the engine 12 rotates.
  • the engine 12 can be stably operated by injecting fuel into the second injection unit 22 after the engine 12 has been rotated and when the engine speed has reached the set value.
  • Second Embodiment A second embodiment will be described.
  • the engine control system 1 of the second embodiment uses the first control table 62 and the second control table 64 regardless of when starting or restarting.
  • the difference from the first embodiment will be mainly described.
  • the control unit 54 of the second embodiment refers to the second control table 64 and controls the first injection unit 20 in the control mode according to the detection result of the water temperature sensor 26.
  • the fuel is injected into the second injection unit 22.
  • the control unit 54 refers to the first control table 62, and controls the first injection unit 20 and the second injection unit in the control mode according to the detection result of the temperature sensor 24. 22 injects fuel.
  • FIG. 7 is a flowchart showing a flow of processing executed by the control device 50 of the second embodiment.
  • the information management part 52 acquires the detection result of the water temperature sensor 26 (step S100).
  • the control unit 54 determines whether or not the obtained detection result of the water temperature sensor 26 is within the range of the water temperatures Tem11 to Tem13 (step S102).
  • control unit 54 refers to the second control table 64 and determines a control mode according to the detection result of the water temperature sensor 26 (step). S104).
  • the control unit 54 acquires the detection result of the temperature sensor 24 (step S106).
  • the control part 54 determines the control mode according to the detection result of the temperature sensor 24 with reference to the 1st control table 62 (step S108). Thereby, the process of one routine of this flowchart is completed.
  • control unit 54 uses the first control table 62 and the second control table 64 to determine the control mode, and the first injection unit 20 and the second injection mode are determined in the determined control mode. By injecting fuel into the injection unit 22, the engine 12 can be stably operated.
  • the control system (1) for the internal combustion engine includes the internal combustion engine (12), the first injection unit (20) for injecting fuel into the combustion chamber of the internal combustion engine, and the fuel chamber of the internal combustion engine.
  • FIG. 8 is a diagram illustrating an example of a hardware configuration included in the control device 50 according to the embodiment.
  • the control device 50 includes a communication controller 50-1, a CPU 50-2, a RAM (Random Access Memory) 50-3 used as a working memory, and a ROM (Read Only Memory) 50- that stores a boot program and the like. 4.
  • a storage device 50-5 such as a flash memory or HDD (Hard Disk Drive), a drive device 50-6, and the like are connected to each other via an internal bus or a dedicated communication line.
  • the communication controller 50-1 communicates with components other than the control device 50.
  • the storage device 50-5 stores a program 50-5a executed by the CPU 50-2. This program is expanded in the RAM 50-3 by a DMA (Direct Memory Access) controller (not shown) or the like and executed by the CPU 50-2. Thereby, part or all of the information management unit 52 and the control unit 54 is realized.
  • DMA Direct Memory Access
  • a storage device storing the program
  • a hardware processor executes a program stored in the storage device,
  • the internal combustion engine is controlled in a control mode according to a detection result of a detection unit that detects a state related to the internal combustion engine from before the internal combustion engine starts rotating until the rotational speed of the internal combustion engine reaches a set value.
  • the control device is configured as follows.
  • SYMBOLS 1 ... Engine control system, 10 ... Engine unit, 12 ... Engine, 14 ... Sensor group, 16 ... 1st injection unit, 18 ... Heater, 20 ... 1st injection part, 22 ... 2nd injection part, 24 ... Temperature sensor, 26 ... Water temperature sensor, 50 ... Control device, 52 ... Information management section, 54 ... Control section, 60 ... Storage section, 62 ... First control table, 64 ... Second control table

Landscapes

  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Combustion & Propulsion (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Electrical Control Of Air Or Fuel Supplied To Internal-Combustion Engine (AREA)

Abstract

内燃機関の制御システムは、内燃機関と、前記内燃機関の燃焼室内に燃料を噴射する第1噴射部と、前記内燃機関の燃料室内に燃料を噴射する第2噴射部と、 前記内燃機関に関連する状態を検出する検出部と、前記内燃機関の始動時において、前記内燃機関が回転を開始する前から、前記内燃機関の回転数が設定値に到達するまでの間、前記検出部の検出結果に応じた制御モードで前記第1噴射部に前記燃料を噴射させ、前記内燃機関が回転を開始し且つ前記内燃機関の回転数が設定値に到達した後、前記第2噴射部に前記燃料を噴射させる制御部とを備える。

Description

内燃機関の制御システム、および内燃機関の制御方法
 本発明は、内燃機関の制御システム、および内燃機関の制御方法に関する。
 従来、燃焼室内に燃料を噴射可能な燃料噴射弁と、噴霧に直接に点火可能となるように、燃料噴射弁に対する相対位置が決定された点火装置と、を備える内燃機関の制御装置に関する技術が開示されている(例えば特許文献1参照)。当該装置は、圧縮行程中の所定プレ噴射時期に行われるプレ噴射と、点火装置による該プレ噴射によるプレ噴霧への点火とを行った後に、所定噴射開始時期にメイン噴射を実行することで、自着火を発生させるとともに少なくとも該メイン噴射燃料の一部を拡散燃焼させる。
特開2015-137586号公報
 しなしながら、従来の技術では、内燃機関を安定的に稼働させることができない場合があった。
 本発明は、このような事情を考慮してなされたものであり、内燃機関を安定的に稼働させることができる内燃機関の制御システム、および内燃機関の制御方法を提供することを目的の一つとする。
 (1):内燃機関と、前記内燃機関の燃焼室内に燃料を噴射する第1噴射部と、前記内燃機関の燃料室内に燃料を噴射する第2噴射部と、前記内燃機関に関連する状態を検出する検出部と、前記内燃機関の始動時において、前記内燃機関が回転を開始する前から、前記内燃機関の回転数が設定値に到達するまでの間、前記検出部の検出結果に応じた制御モードで前記第1噴射部に前記燃料を噴射させ、前記内燃機関が回転を開始し且つ前記内燃機関の回転数が設定値に到達した後、前記第2噴射部に前記燃料を噴射させる制御部とを備える内燃機関の制御システムである。
 (2):(1)の内燃機関の制御システムであって、前記検出部は、温度を検出し、前記制御部は、前記内燃機関が回転を開始する前に、前記温度が低いほど前記第1噴射部に噴射させる前記燃料を多くするものである。
 (3):(2)の内燃機関の制御システムであって、前記制御部は、前記内燃機関が回転を開始する前に、第1量の前記燃料を繰り返し前記第1噴射部に噴射させ、前記温度が低いほど、前記第1噴射部が前記第1量の前記燃料を噴射する頻度を高くするものである。
 (4):(3)の内燃機関の制御システムであって、前記制御部は、前記内燃機関が回転した後、前記内燃機関の回転数が設定値に到達するまでの間、前記第1量よりも少ない第2量の前記燃料を、前記内燃機関の回転に応じて前記第1噴射部に噴射させるものである。
 (5):(4)の内燃機関の制御システムであって、前記第2噴射部が単位時間において噴射する燃料の量は、前記第1噴射部が単位時間において噴射する燃料の量に比べて少ないものである。
 (6):(5)の内燃機関の制御システムであって、前記第1噴射部に噴射される燃料を温めるヒータを備え、前記第1噴射部は、前記ヒータにより温められた燃料を噴射するものである。
 (7):(6)の内燃機関の制御システムであって、前記制御部は、前記内燃機関が回転する前から前記第1噴射部に第1時間前記燃料を繰り返し噴射させ、前記内燃機関が回転を開始し且つ前記内燃機関の回転数が設定値に到達する前までの間、前記内燃機関の回転に応じて前記第1噴射部に前記第1時間よりも短い第2時間前記燃料を噴射させ、前記内燃機関が回転を開始し且つ前記内燃機関の回転数が設定値に到達した後、前記第2噴射部に前記第2時間よりも短い第3時間前記燃料を噴射させるものである。
 (8):(2)のの内燃機関の制御システムであって、前記検出部は、前記内燃機関の周辺の温度を検出する。
 (9):(2)のの内燃機関の制御システムであって、前記検出部は、前記内燃機関を冷却させる冷却水の温度を検出する。
 (10):コンピュータが、内燃機関の始動時において、前記内燃機関が回転を開始する前から、前記内燃機関の回転数が設定値に到達するまでの間、前記内燃機関に関連する状態を検出する検出部の検出結果に応じた制御モードで前記内燃機関の燃焼室内に燃料を噴射する第1噴射部に前記燃料を噴射させ、前記内燃機関が回転を開始し且つ前記内燃機関の回転数が設定値に到達した後、前記内燃機関の燃料室内に燃料を噴射する第2噴射部に前記燃料を噴射させる内燃機関の制御方法である。
 (1)~(10)によれば、内燃機関を安定的に稼働させることができる。
エンジン制御システム1の機能構成の一例を示す図である。 第1噴射ユニット16を模式的に示す図である。 第1制御テーブル62の内容の一例を示す図である。 第1噴射部20の制御状態、第2噴射部22の制御状態、スロットル開度の変化の傾向を示す図である。 第2制御テーブル64の内容の一例を示す図である。 第1噴射部20および第2噴射部22が噴射する燃料の時間的変化について説明するための図である。 第2実施形態の制御装置50により実行される処理の流れを示すフローチャートである。 実施形態の制御装置50が備えるハードウェア構成の一例を示す図である。
 以下、図面を参照し、本発明の内燃機関の内燃機関の制御システム、および内燃機関の制御方法の実施形態について説明する。
 <第1実施形態>
 図1は、エンジン制御システム1の機能構成の一例を示す図である。エンジン制御システム1は、エンジンユニット10と、制御装置50とを含む。エンジンユニット10と、制御装置50とは、通信線を介して互いに通信する。エンジンユニット10は、エンジン12と、センサ群14と、第1噴射ユニット16と、第2噴射部22と、温度センサ24と、水温センサ26とを備える。
 エンジン12は、例えば、汎用エンジンである。また、エンジン12は、例えば、ユニフロー2ストロークエンジンである。エンジン12は、例えば、シリンダの上端部に設けられた排気ポートと、シリンダの下部側壁部に設けられた掃気ポートとを有する。掃気ポートは、シリンダ内を往復動するピストンによって開閉される。エンジン12のピストンが下降すると、クランク室内の混合気が圧縮され、排気ポートが開き、クランク室内の混合気が掃気ポートを通過してシリンダ内に流入する。また、排気ポートが開き、シリンダ内の排気ガスは流入する混合気によって排気ポートから押し出される。なお、本実施形態のエンジンは、ユニフロー2ストロークエンジンに代えて、その他の種類のエンジンであってもよい。
 また、エンジン12は、例えば、制御自動着火(CAI;Controlled Auto Ignition)燃焼方法が採用されている。例えば、第1噴射ユニット16の第1噴射部20または第2噴射部22が、圧縮された空気に燃料を噴射することで着火する。噴射される燃料は、例えば軽油である。
 センサ群14は、エンジン12の状態を検出するセンサである。例えば、エンジン12の回転数を検出する回転数センサや、外部から燃焼室内に吸入された空気の圧力を検出する吸気圧センサ、トルクセンサ等を含む。
 第1噴射ユニット16は、ヒータ18と、第1噴射部20とを備える。図2は、第1噴射ユニット16を模式的に示す図である。ヒータ18内に燃料が吸入されると、ヒータ18は、第1噴射部20が噴射する燃料を温める。そして、ヒータ18は、温めた燃料を第1噴射部20に送る。第1噴射部20は、制御装置50の制御に基づいて、ヒータ18に温められた燃料を燃焼室内に噴射する。例えば、第1噴射部20が単位時間あたりに噴射する燃料は一定である。第2噴射部22は、制御装置50の制御に基づいて、燃料を燃焼室内に噴射する。例えば、第2噴射部22が単位時間あたりに噴射する燃料は一定である。
 温度センサ24は、エンジン12が置かれた周辺の温度を検出し、検出結果を制御装置50に送信する。水温センサ26は、エンジン12のシリンダの周囲に設けられたウォータージャケット内を流れた冷却水の温度を検出する。例えば、水温センサ26は、ウォータジェケットの出口付近に設けられ、出口付近の温度(出口水温)を検出する。
 制御装置50は、例えば、情報管理部52と、制御部54と、記憶部60とを備える。情報管理部52と、制御部54とは、例えば、CPU(Central Processing Unit)などのプロセッサがプログラム(ソフトウェア)を実行することにより実現される。また、これらの構成要素のうち一部または全部は、LSI(Large Scale Integration)やASIC(Application Specific Integrated Circuit)、FPGA(Field-Programmable Gate Array)、GPU(Graphics Processing Unit)などのハードウェア(回路部;circuitryを含む)によって実現されてもよいし、ソフトウェアとハードウェアの協働によって実現されてもよい。プログラムは、予め制御装置50の記憶部60に格納されていてもよいし、DVDやCD-ROMなどの着脱可能な記憶媒体に格納されており、記憶媒体がドライブ装置に装着されることで記憶部60にインストールされてもよい。
 記憶部60は、例えば、HDD、フラッシュメモリ、EEPROM(Electrically Erasable Programmable Read Only Memory)、ROM(Read Only Memory)、またはRAM(Random Access Memory)などにより実現される。
 情報管理部52は、センサ群14の検出結果、温度センサ24の検出結果、および水温センサ26の検出結果を取得する。
 制御部54は、第1噴射部20および第2噴射部22を制御する。例えば、制御部54は、エンジン12がクランキングする前(回転する前)から、クランキング後(回転した後)であってエンジン12の回転数が設定値に到達するまでの間、所定の吸気タイミングで第1噴射部20に燃料を噴射させる。そして、制御部54は、エンジン12の回転数が設定値に到達した場合に、第2噴射部22に燃料を噴射させる。この場合、例えば、制御部54は、第1噴射部20に燃料を噴射させることを停止させた後、所定の吸気タイミングで第2噴射部22に燃料を噴射させる。
 [始動時]
 制御部54は、温度センサ24の検出結果(外気温)に応じて、クランキングする前、およびクランキング後であってエンジン12の回転数が設定値に到達するまでの間に第1噴射部20に燃料を噴射させる制御モードを設定する。例えば、制御部54は、第1制御テーブル62を参照して、制御モードを設定する。
 図3は、第1制御テーブル62の内容の一例を示す図である。この第1制御テーブル62は、例えば、エンジン12の稼働が停止してから所定時間経過後にエンジン12を始動させる際に適用される。なお、エンジン12の稼働が停止した時刻は、例えば、記憶部60に記憶されている。
 外気温が「Tem1」の範囲である場合は第1制御モード、外気温が「Tem2」の範囲である場合は第2制御モード、外気温が「Tem3」の範囲である場合は第3制御モードが適用される。外気温の範囲は、「Tem1」>「Tem2」>「Tem3」である。第3制御モード、第2制御モード、第1制御モードの順で、制御部54が第1噴射部20に噴射させる燃料の量(または頻度)が多い制御モードである。
 第1制御モードは、クランキング前は「Aモード」で燃料を噴射し、クランキング後は「(第1基準単位あたり)X1msec」の間、燃料を噴射するモードである。第2制御モードは、クランキング前は「Bモード」で燃料を噴射し、クランキング後は「X2msec」の間、燃料を噴射するモードである。第3制御モードは、クランキング前は「Cモード」で燃料を噴射し、クランキング後は「X2msec」の間、燃料を噴射するモードである。「Cモード」、「Bモード」、「Aモード」の順で、所定期間において、制御部54が第1噴射部20に燃料を噴射させる回数(または頻度)が多いモードである。第1基準単位とは、例えば、エンジン12のクランクシャフトが1回転する単位や所定時間である。また、燃料が噴射されるタイミングは、例えば、所定の吸気タイミングである。
 「Aモード」は、燃料を「(第2基準単位あたり)X3msec」の間、噴射することを「N1回」行うモードであり、「Bモード」は、燃料を「X3msec」の間、噴射することを「N2回」行うモードであり、「Cモード」は、燃料を「X3msec」の間、噴射することを「N3回」行うモードである。「X1」<「X2」<「X3」である。「N1」<「N2」<「N3」である。なお、第1基準単位と第2基準単位とは異なる基準であってもよいし、同じ基準単位であってもよい。
 図4は、第1噴射部20の制御状態、第2噴射部22の制御状態、スロットル開度の変化の傾向を示す図である。図4の上図は第1噴射部20の制御状態を示し、図4の中図は第2噴射部22の制御状態を示し、図4の下図はスロットル開度の変化を示している。図4の上図および中図の縦軸は燃料の噴射時間(TO)を示し、図4の下図の縦軸はスロットル開度(TH)を示している。図4の各図の横軸はエンジン12の回転数(NE)を示している。
 以下、一例として、外気温が「Tem1」であるものとして説明する。また、スロットル開度THは、回転数NE0~NE1の間は一定に制御され、回転数NE1に到達した場合は、回転数を調整するためのガバナ制御が行われたものとする。
 回転数NE0の前(クランキング前)において、第1噴射部20は、Aモードで第1噴射部20を制御する。回転数NE0を超えると(クランキング後)において、第1噴射部20は、基準単位あたりX1msecの間、燃料を噴射する制御を、回転数が回転数NE2に到達するまで行う。回転数が回転数NE2に到達すると、第2噴射部22が、「(第1基準単位あたり)X0msec」の間、燃料を噴射する制御を、繰り返す。なお、X0msec<X1msecである。
 上述したように、制御装置50が、エンジン12が回転する前に、周辺の温度に応じた燃料をエンジン12に供給することにより、エンジン12を安定的に稼働させることができる。
 [再始動時]
 制御部54は、水温センサ26の検出結果に応じて、第1噴射部20に燃料を噴射させる制御モードを設定する。例えば、制御部54は、第2制御テーブル64を参照して、制御モードを設定する。
 図5は、第2制御テーブル64の内容の一例を示す図である。この第2制御テーブル64は、例えば、エンジン12の稼働が停止してから所定時間経過前にエンジン12を始動させる際に適用される。なお、第2制御テーブル64は、所定時間経過前であっても、第1制御テーブル62に代えて適用されてもよい。
 水温が「Tem11」の範囲である場合は第11制御モード、水温が「Tem12」の範囲である場合は第12制御モード、水温が「Tem13」の範囲である場合は第13制御モードが適用される。なお、水温の範囲は、「Tem11」<「Tem12」<「Tem13」である。第11制御モード、第12制御モード、第13制御モードの順で、制御部54が第1噴射部20に噴射させる燃料の量(または頻度)が多い制御モードである。
 第11制御モードは、クランキング前は「Aモード」で燃料を噴射し、クランキング後は「(第1基準単位あたり)X1msec」の間、燃料を噴射するモードである。第12制御モードは、クランキング前は「Dモード」で燃料を噴射し、クランキング後は「X1msec」の間、燃料を噴射するモードである。第13制御モードは、クランキング前は「Eモード」で燃料を噴射し、クランキング後は「X1msec」の間、燃料を噴射するモードである。「Aモード」、「Dモード」、「Eモード」の順で、所定期間において、制御部54が第1噴射部20に燃料を噴射させる回数が多いモードである。
 「Dモード」は、燃料を「(第2基準単位あたり)X3msec」の間、噴射することを「N01回」行うモードであり、「Eモード」は、燃料を「X1msec」の間、噴射することを「N02回」行うモードである。回転数が回転数NE2に到達すると、第2噴射部22が、「(第1基準単位あたり)X0msec」の間、燃料を噴射する制御を、繰り返す。「N02」<「N01」<「N1」である。
 上述したように、制御装置50が、エンジン12が回転する前に、出口水温に応じた燃料をエンジン12に供給することにより、エンジン12を安定的に稼働させることができる。
 図6は、第1噴射部20および第2噴射部22が噴射する燃料の時間的変化について説明するための図である。図示する例は、温度または水温に応じて所定の制御モードが設定され、設定された制御モードに基づいて処理が行われた場面を模式的に示している。図6の縦軸は噴射される燃料の量を示し、横軸は時間を示している。また、上述したように第1噴射部20および第2噴射部22は、単位時間あたりに噴射する燃料の量は一定であるものとする。
 制御部54は、エンジン12が回転を開始する前(NE0前)に、第1量(図中、Q1)の燃料を繰り返し第1噴射部20に噴射させる。第1量は、例えば、第1時間(T1)の間に第1噴射部20が噴射する量である。図示する例では、一例として第1量を4回噴射しているが、温度または水温が低いほど、第1噴射部20が第1量の前記燃料を噴射する頻度は高くなる。例えば、第1噴射部20は第1量を5回以上噴射する。
 制御部54は、エンジン12が回転した後、エンジン12の回転数が設定値(NE2)に到達するまでの間、第1量よりも少ない第2量(図中、Q2)の燃料を、エンジン12の回転(図中、R)に応じて第1噴射部20に噴射させる。第2量は、例えば、第1時間よりも短い第2時間(T2)の間に第1噴射部20が噴射する量である。第2噴射部22が所定の単位時間(図中、T1)において噴射する燃料の量は、第1噴射部20が単位時間(図中、T1)において噴射する燃料の量に比べて少ない。
 このように、制御部54が、エンジン12の状態に基づいて、第1噴射部20および第2噴射部22を制御することにより、より安定的にエンジン12が稼働するように燃料を適切に供給することができる。
 以上説明した第1実施形態によれば、制御部54が、エンジン12が回転する前に、温度センサ24または水温センサ26の検出結果に応じた制御モードで第1噴射部20に燃料を噴射させ、エンジン12が回転した後であり、且つエンジンの回転数が設定値に到達した場合に、第2噴射部22に燃料を噴射させることにより、エンジン12を安定的に稼働させることができる。
 <第2実施形態>
 第2実施形態について説明する。第2実施形態のエンジン制御システム1は、始動時および再始動時に関わらず、第1制御テーブル62および第2制御テーブル64を用いる。以下、第1実施形態との相違点を中心に説明する。
 第2実施形態の制御部54は、水温センサ26の検出結果が所定の範囲内の場合、第2制御テーブル64を参照し、水温センサ26の検出結果に応じた制御モードで第1噴射部20および第2噴射部22に燃料を噴射させる。水温センサ26の検出結果が所定の範囲外の場合、制御部54は、第1制御テーブル62を参照し、温度センサ24の検出結果に応じた制御モードで第1噴射部20および第2噴射部22に燃料を噴射させる。
 図7は、第2実施形態の制御装置50により実行される処理の流れを示すフローチャートである。まず、情報管理部52は、水温センサ26の検出結果を取得する(ステップS100)。次に、制御部54は、取得した水温センサ26の検出結果が水温Tem11~Tem13の範囲内であるか否かを判定する(ステップS102)。
 取得した水温センサ26の検出結果が水温Tem11~Tem13の範囲内である場合、制御部54は、第2制御テーブル64を参照し、水温センサ26の検出結果に応じた制御モードを決定する(ステップS104)。
 取得した水温センサ26の検出結果が水温Tem11~Tem13の範囲内でない場合、制御部54は、温度センサ24の検出結果を取得する(ステップS106)。次に、制御部54は、第1制御テーブル62を参照し、温度センサ24の検出結果に応じた制御モードを決定する(ステップS108)。これにより本フローチャートの1ルーチンの処理は終了する。
 以上説明した第2実施形態によれば、制御部54が、第1制御テーブル62および第2制御テーブル64を用いて、制御モードを決定し、決定した制御モードで第1噴射部20および第2噴射部22に燃料を噴射させることにより、エンジン12を安定的に稼働させることができる。
 以上説明した実施形態によれば、内燃機関の制御システム(1)が、内燃機関(12)と、内燃機関の燃焼室内に燃料を噴射する第1噴射部(20)と、内燃機関の燃料室内に燃料を噴射する第2噴射部(22)と、内燃機関に関連する状態を検出する検出部(24,26)と、内燃機関が回転する前に、検出部の検出結果に応じた制御モードで第1噴射部に燃料を噴射させ、内燃機関が回転した後であり、且つ内燃機関の回転数が設定値に到達した場合に、第2噴射部に燃料を噴射させる制御部(54)とを備えることにより、エンジンを安定的に稼働させることができる。
 [ハードウェア構成]
 図8は、実施形態の制御装置50が備えるハードウェア構成の一例を示す図である。図示するように、制御装置50は、通信コントローラ50-1、CPU50-2、ワーキングメモリとして使用されるRAM(Random Access Memory)50-3、ブートプログラムなどを格納するROM(Read Only Memory)50-4、フラッシュメモリやHDD(Hard Disk Drive)などの記憶装置50-5、ドライブ装置50-6などが、内部バスあるいは専用通信線によって相互に接続された構成となっている。通信コントローラ50-1は、制御装置50以外の構成要素との通信を行う。記憶装置50-5には、CPU50-2が実行するプログラム50-5aが格納されている。このプログラムは、DMA(Direct Memory Access)コントローラ(不図示)などによってRAM50-3に展開されて、CPU50-2によって実行される。これによって、情報管理部52、および制御部54のうち一部または全部が実現される。
 上記説明した実施形態は、以下のように表現することができる。
 プログラムを記憶した記憶装置と、
 ハードウェアプロセッサと、を備え、
 前記ハードウェアプロセッサは、前記記憶装置に記憶されたプログラムを実行することにより、
 内燃機関の始動時において、
  前記内燃機関が回転を開始する前から、前記内燃機関の回転数が設定値に到達するまでの間、前記内燃機関に関連する状態を検出する検出部の検出結果に応じた制御モードで前記内燃機関の燃焼室内に燃料を噴射する第1噴射部に前記燃料を噴射させ、
  前記内燃機関が回転を開始し且つ前記内燃機関の回転数が設定値に到達した後、前記内燃機関の燃料室内に燃料を噴射する第2噴射部に前記燃料を噴射させる、
 ように構成されている制御装置。
 以上、本発明を実施するための形態について実施形態を用いて説明したが、本発明はこうした実施形態に何等限定されるものではなく、本発明の要旨を逸脱しない範囲内において種々の変形及び置換を加えることができる。
1‥エンジン制御システム、10‥エンジンユニット、12‥エンジン、14‥センサ群、16‥第1噴射ユニット、18‥ヒータ、20‥第1噴射部、22‥第2噴射部、24‥温度センサ、26‥水温センサ、50‥制御装置、52‥情報管理部、54‥制御部、60‥記憶部、62‥第1制御テーブル、64‥第2制御テーブル

Claims (10)

  1.  内燃機関と、
     前記内燃機関の燃焼室内に燃料を噴射する第1噴射部と、
     前記内燃機関の燃料室内に燃料を噴射する第2噴射部と、
     前記内燃機関に関連する状態を検出する検出部と、
     前記内燃機関の始動時において、
      前記内燃機関が回転を開始する前から、前記内燃機関の回転数が設定値に到達するまでの間、前記検出部の検出結果に応じた制御モードで前記第1噴射部に前記燃料を噴射させ、
      前記内燃機関が回転を開始し且つ前記内燃機関の回転数が設定値に到達した後、前記第2噴射部に前記燃料を噴射させる制御部と、
     を備える内燃機関の制御システム。
  2.  前記検出部は、温度を検出し、
     前記制御部は、前記内燃機関が回転を開始する前に、前記温度が低いほど前記第1噴射部に噴射させる前記燃料を多くする、
     請求項1に記載の内燃機関の制御システム。
  3.  前記制御部は、
     前記内燃機関が回転を開始する前に、第1量の前記燃料を繰り返し前記第1噴射部に噴射させ、
     前記温度が低いほど、前記第1噴射部が前記第1量の前記燃料を噴射する頻度を高くする、
     請求項2に記載の内燃機関の制御システム。
  4.  前記制御部は、
     前記内燃機関が回転した後、前記内燃機関の回転数が設定値に到達するまでの間、前記第1量よりも少ない第2量の前記燃料を、前記内燃機関の回転に応じて前記第1噴射部に噴射させる、
     請求項3に記載の内燃機関の制御システム。
  5.  前記第2噴射部が単位時間において噴射する燃料の量は、前記第1噴射部が単位時間において噴射する燃料の量に比べて少ない、
     請求項4に記載の内燃機関の制御システム。
  6.  前記第1噴射部に噴射される燃料を温めるヒータを備え、
     前記第1噴射部は、前記ヒータにより温められた燃料を噴射する、
     請求項5に記載の内燃機関の制御システム。
  7.  前記制御部は、
      前記内燃機関が回転する前から前記第1噴射部に第1時間前記燃料を繰り返し噴射させ、
      前記内燃機関が回転を開始し且つ前記内燃機関の回転数が設定値に到達する前までの間、前記内燃機関の回転に応じて前記第1噴射部に前記第1時間よりも短い第2時間前記燃料を噴射させ、
      前記内燃機関が回転を開始し且つ前記内燃機関の回転数が設定値に到達した後、前記第2噴射部に前記第2時間よりも短い第3時間前記燃料を噴射させる、
     請求項1に記載の内燃機関の制御システム。
  8.  前記検出部は、前記内燃機関の周辺の温度を検出する、
     請求項2に記載の内燃機関の制御システム。
  9.  前記検出部は、前記内燃機関を冷却させる冷却水の温度を検出する、
     請求項2に記載の内燃機関の制御システム。
  10.  コンピュータが、
     内燃機関の始動時において、
      前記内燃機関が回転を開始する前から、前記内燃機関の回転数が設定値に到達するまでの間、前記内燃機関に関連する状態を検出する検出部の検出結果に応じた制御モードで前記内燃機関の燃焼室内に燃料を噴射する第1噴射部に前記燃料を噴射させ、
      前記内燃機関が回転を開始し且つ前記内燃機関の回転数が設定値に到達した後、前記内燃機関の燃料室内に燃料を噴射する第2噴射部に前記燃料を噴射させる、
     内燃機関の制御方法。
PCT/JP2018/013680 2018-03-30 2018-03-30 内燃機関の制御システム、および内燃機関の制御方法 WO2019187028A1 (ja)

Priority Applications (1)

Application Number Priority Date Filing Date Title
PCT/JP2018/013680 WO2019187028A1 (ja) 2018-03-30 2018-03-30 内燃機関の制御システム、および内燃機関の制御方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/JP2018/013680 WO2019187028A1 (ja) 2018-03-30 2018-03-30 内燃機関の制御システム、および内燃機関の制御方法

Publications (1)

Publication Number Publication Date
WO2019187028A1 true WO2019187028A1 (ja) 2019-10-03

Family

ID=68058691

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2018/013680 WO2019187028A1 (ja) 2018-03-30 2018-03-30 内燃機関の制御システム、および内燃機関の制御方法

Country Status (1)

Country Link
WO (1) WO2019187028A1 (ja)

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006144750A (ja) * 2004-11-24 2006-06-08 Toyota Motor Corp 圧縮着火内燃機関
JP2007205232A (ja) * 2006-02-01 2007-08-16 Toyota Motor Corp 内燃機関の燃焼制御装置
JP2008255950A (ja) * 2007-04-09 2008-10-23 Toyota Motor Corp 筒内噴射式火花点火内燃機関
JP2013072281A (ja) * 2011-09-26 2013-04-22 Mazda Motor Corp 圧縮自己着火式エンジンの始動制御装置
JP2015010522A (ja) * 2013-06-27 2015-01-19 三菱自動車工業株式会社 エンジンの制御装置
JP2016098796A (ja) * 2014-11-26 2016-05-30 いすゞ自動車株式会社 ディーゼルエンジンの始動制御方法

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006144750A (ja) * 2004-11-24 2006-06-08 Toyota Motor Corp 圧縮着火内燃機関
JP2007205232A (ja) * 2006-02-01 2007-08-16 Toyota Motor Corp 内燃機関の燃焼制御装置
JP2008255950A (ja) * 2007-04-09 2008-10-23 Toyota Motor Corp 筒内噴射式火花点火内燃機関
JP2013072281A (ja) * 2011-09-26 2013-04-22 Mazda Motor Corp 圧縮自己着火式エンジンの始動制御装置
JP2015010522A (ja) * 2013-06-27 2015-01-19 三菱自動車工業株式会社 エンジンの制御装置
JP2016098796A (ja) * 2014-11-26 2016-05-30 いすゞ自動車株式会社 ディーゼルエンジンの始動制御方法

Similar Documents

Publication Publication Date Title
JP5741352B2 (ja) 圧縮自己着火式エンジンの始動制御装置
JP4506527B2 (ja) 内燃機関の制御装置
JP5786679B2 (ja) 圧縮自己着火式エンジンの始動制御装置
US8181625B2 (en) Method for operating an internal combustion engine
JP2008057386A (ja) 混合燃料内燃機関の制御装置
US6935312B2 (en) Internal combustion engine and ignition control method
JP5041374B2 (ja) 内燃機関の始動制御装置
EP1496230A2 (en) Start-up control of in-cylinder fuel injection spark ignition internal combustion engine
JP2010203414A (ja) 内燃機関の制御装置
JP2004028046A (ja) 内燃機関の始動制御装置
JP5168065B2 (ja) ディーゼルエンジンの制御装置及びディーゼルエンジンの制御方法
JP5409538B2 (ja) 内燃機関の燃料噴射制御装置
JP2004525289A (ja) 内燃機関の制御方法および制御装置
WO2019187028A1 (ja) 内燃機関の制御システム、および内燃機関の制御方法
JP2005030236A (ja) 車両の制御装置
JP6643971B2 (ja) エンジン制御装置およびエンジン制御方法
JP6740588B2 (ja) 燃料噴射制御装置
JP2007113521A (ja) 可変動弁系の制御装置
JP5935275B2 (ja) 圧縮自己着火式エンジンの始動制御装置
WO2020044549A1 (ja) 内燃機関の制御システム、および内燃機関の制御方法
JP6260580B2 (ja) 内燃機関の制御装置
JP2004340135A (ja) 自動車の内燃機関を始動する方法
JP5012583B2 (ja) 内燃機関及び内燃機関の燃料供給制御装置
JP2005030237A (ja) 車両の制御装置
JP2005009357A (ja) 圧縮着火式内燃機関の制御装置

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 18913166

Country of ref document: EP

Kind code of ref document: A1

122 Ep: pct application non-entry in european phase

Ref document number: 18913166

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: JP