WO2020044549A1 - 内燃機関の制御システム、および内燃機関の制御方法 - Google Patents

内燃機関の制御システム、および内燃機関の制御方法 Download PDF

Info

Publication number
WO2020044549A1
WO2020044549A1 PCT/JP2018/032405 JP2018032405W WO2020044549A1 WO 2020044549 A1 WO2020044549 A1 WO 2020044549A1 JP 2018032405 W JP2018032405 W JP 2018032405W WO 2020044549 A1 WO2020044549 A1 WO 2020044549A1
Authority
WO
WIPO (PCT)
Prior art keywords
supply unit
state
unit
cylinder
control
Prior art date
Application number
PCT/JP2018/032405
Other languages
English (en)
French (fr)
Inventor
眞秀 倉田
崇 橋爪
久倫 金山
Original Assignee
本田技研工業株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 本田技研工業株式会社 filed Critical 本田技研工業株式会社
Priority to PCT/JP2018/032405 priority Critical patent/WO2020044549A1/ja
Publication of WO2020044549A1 publication Critical patent/WO2020044549A1/ja

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02DCONTROLLING COMBUSTION ENGINES
    • F02D17/00Controlling engines by cutting out individual cylinders; Rendering engines inoperative or idling
    • F02D17/02Cutting-out
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02DCONTROLLING COMBUSTION ENGINES
    • F02D41/00Electrical control of supply of combustible mixture or its constituents
    • F02D41/22Safety or indicating devices for abnormal conditions
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02DCONTROLLING COMBUSTION ENGINES
    • F02D41/00Electrical control of supply of combustible mixture or its constituents
    • F02D41/30Controlling fuel injection
    • F02D41/38Controlling fuel injection of the high pressure type
    • F02D41/40Controlling fuel injection of the high pressure type with means for controlling injection timing or duration
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02DCONTROLLING COMBUSTION ENGINES
    • F02D45/00Electrical control not provided for in groups F02D41/00 - F02D43/00

Definitions

  • the present invention relates to an internal combustion engine control system and an internal combustion engine control method.
  • a technology related to a control device for an internal combustion engine including a fuel injection valve capable of injecting fuel into a combustion chamber, and an ignition device whose relative position with respect to the fuel injection valve is determined so that the spray can be ignited directly is known. It is disclosed (for example, see Patent Document 1).
  • the device performs main injection at a predetermined injection start timing after performing pre-injection performed at a predetermined pre-injection timing during a compression stroke and igniting pre-spray by the pre-injection by an ignition device, Self-ignition is generated and at least a part of the main injection fuel is diffused and burned.
  • the present invention has been made in view of such circumstances, and has an object to provide a control system of an internal combustion engine that can stably operate an internal combustion engine, and a control method of the internal combustion engine. I do.
  • a control system for an internal combustion engine includes: an internal combustion engine including at least a first cylinder and a second cylinder; a first supply unit that supplies fuel into the first cylinder in an on state; A second supply unit for supplying fuel to one cylinder, a third supply unit for supplying fuel to the second cylinder in an on state, and a fourth supply unit for supplying fuel to the second cylinder in an on state A first detection unit that detects an internal state of the first cylinder; a first supply unit and a third supply unit that are turned on; and a second supply unit and a fourth supply unit that are turned off. And a control unit that controls the second supply unit to be in an on state when the detection value of the first detection unit reaches a threshold value or more in a state where the control is performed.
  • control unit turns off the first supply unit when a detection value of the first detection unit is equal to or greater than a threshold value.
  • control unit controls the first supply unit and the third supply unit to be in an on state, and In a state where the second supply unit and the fourth supply unit are controlled to be in the off state, when the detection value of the first detection unit reaches a threshold value or more, the first supply unit is controlled to be in the off state, After the piston received by one cylinder has reciprocated a predetermined number of times, the second supply unit is controlled to an ON state.
  • the control system for the internal combustion engine includes: an internal combustion engine including at least a first cylinder; a first supply unit that supplies fuel into the first cylinder in an on state; and a fuel supply in the first cylinder in an on state.
  • (6) The control system for an internal combustion engine according to (5), wherein the control unit controls the first supply unit to be in an on state and controls the second supply unit to be in an off state.
  • the detection value of the first detection unit reaches a threshold value or more, after the first supply unit is turned off at the first timing, the detection value of the first detection unit reaches less than a threshold value
  • a second process of controlling the second supply unit to be in the on state while the first supply unit is in the off state or the on state is executed.
  • the detection value of the second detection unit reaches a threshold value or more in a state where the unit is controlled to an on state and the second supply unit and the fourth supply unit are controlled to an off state, at a third timing, Performing a second process of controlling the fourth supply unit to be in an on state while the third supply unit is in an off state or an on state at a fourth timing after controlling the third supply unit to be in an off state. Is what you do.
  • (11) The control system for an internal combustion engine according to any one of (1) to (9), wherein the internal combustion engine is a two-stroke uniflow engine.
  • a first supply unit that supplies fuel into the first cylinder of the internal combustion engine including the first cylinder and the second cylinder in an on state, and supplies fuel into the second cylinder in an on state.
  • the third supply unit for supplying is controlled to an on state
  • the second supply unit for supplying fuel to the first cylinder in the on state and the fourth supply unit for supplying fuel to the second cylinder in the on state are turned off.
  • An internal combustion engine that controls the second supply unit to an on state when a detection value of a first detection unit that detects an internal state of the first cylinder reaches a threshold value or more in a state where the internal combustion engine is controlled to a state; It is a control method.
  • the internal combustion engine can be operated stably.
  • FIG. 1 is a diagram illustrating an example of a functional configuration of an engine control system 1.
  • FIG. 3 is a diagram schematically illustrating a second supply unit 32 and a heater 33.
  • 4 is a timing chart showing changes in various parts of the engine control system 1 in a normal state.
  • 5 is a timing chart showing changes in the state of each part of the engine control system 1 at the time of misfire.
  • 6 is another timing chart showing the state of each part of the engine control system 1 at the time of misfire.
  • 6 is another timing chart showing a change in the state of each part of the engine control system 1 at the time of misfire.
  • It is a figure showing an example of the functional composition of engine control system 1A.
  • FIG. 4 is a diagram showing an example of the contents of a first control table 122.
  • FIG. 4 is a diagram showing an example of the contents of a second control table 124.
  • FIG. 4 is a diagram for describing a temporal change of fuel supplied by a first supply unit 30 and a second supply unit 32. It is a flow chart which shows a flow of processing performed by control device 100 of a 3rd embodiment.
  • FIG. 2 is a diagram illustrating an example of a hardware configuration included in a control device 100 according to the embodiment.
  • FIG. 1 is a diagram illustrating an example of a functional configuration of the engine control system 1.
  • the engine control system 1 includes an engine unit 10 and a control device 100.
  • the engine 20 and the control device 100 communicate with each other via a communication line.
  • the engine unit 10 includes the engine 20, a first supply unit 30, a second supply unit 32, a first sensor 34, a third supply unit 40, a fourth supply unit 42, and a second sensor 44.
  • the first supply unit 30, the second supply unit 32, the third supply unit 40, and the fourth supply unit 42 are so-called injectors.
  • the engine 20 includes, for example, a first cylinder unit 22 and a second cylinder unit 24.
  • the engine 20 is a two-cylinder engine in which the crankshaft is arranged so as to be shared by the first cylinder unit 22 and the second cylinder unit 24.
  • Engine 20 may be an engine having three or more cylinders.
  • the engine 20 is, for example, a general-purpose engine.
  • the fuel of the engine 20 is light oil, gasoline, or the like.
  • the engine 20 employs, for example, a controlled automatic ignition (CAI) combustion method of igniting by compression.
  • CAI controlled automatic ignition
  • the engine 20 is, for example, a uniflow two-stroke engine.
  • the first cylinder unit 22 includes, for example, a first cylinder, a piston reciprocally received, an exhaust port provided at an upper end of the cylinder, a scavenging port provided at a lower side wall of the cylinder, a scavenging passage, and the like.
  • combustion occurs when the piston is near the top dead center, the exhaust port is opened in accordance with the lowering of the piston, and the expanded burned gas is discharged from the exhaust port.
  • the scavenging passage is a passage that is opened and closed by the reciprocating motion of the piston.
  • the scavenging passage is closed by raising the piston.
  • a predetermined intake valve opens, fresh air flows into the crank chamber, and the air-fuel mixture in the combustion chamber of the cylinder is compressed by the piston.
  • the piston is near top dead center, it ignites and fuel burns.
  • the piston lowers and the pressure in the crank chamber increases. As a result, the intake valve is closed, and the gas in the crank chamber is compressed. As the piston descends, the exhaust port is opened by a predetermined mechanism, and the exhaust gas in the combustion chamber is exhausted from the exhaust port. Thereafter, as the piston descends, the combustion chamber communicates with the scavenging passage. In this case, since the pressure of the burned gas in the combustion chamber is lower than the pressure in the crank chamber, the gas flows from the scavenging passage to the combustion chamber.
  • the first supply unit 30, the second supply unit 32, the first sensor 34, the third supply unit 40, or the fourth supply unit 42 supplies fuel to the gas flowing through the scavenging passage.
  • the engine 20 of the present embodiment may be another type of engine instead of the uniflow two-stroke engine.
  • the second cylinder unit 24 has the same functional configuration as the first cylinder unit 22.
  • the cylinder of the second cylinder unit 24 may be referred to as a second cylinder.
  • the first supply unit 30 supplies fuel to the first cylinder unit 22 based on the control of the control device 100.
  • the first supply unit 30 injects fuel, for example, into the first cylinder unit 22 (for example, into the first cylinder).
  • the first supply unit 30 may directly inject fuel into the combustion chamber of the first cylinder unit 22, for example.
  • the second supply unit 32 injects fuel, for example, into the first cylinder unit 22 (for example, into the first cylinder).
  • the second supply unit 32 may, for example, directly inject fuel into the combustion chamber of the first cylinder unit 22.
  • FIG. 2 is a diagram schematically showing the second supply unit 32 and the heater 33.
  • the heater 33 warms the fuel supplied by the second supply unit 32. Then, the heater 33 sends the heated fuel to the second supply unit 32.
  • the second supply unit 32 supplies the fuel heated by the heater 33 into the first cylinder based on the control of the control device 100.
  • the temperature of the fuel supplied by the second supply unit 32 into the first cylinder is higher than the temperature of the fuel supplied by the first supply unit 30 into the first cylinder.
  • the functional configuration of the third supply unit 40 and the fourth supply unit 42 of the second cylinder unit 24 is the same as the functional configuration of the first supply unit 30 and the second supply unit 32 of the first cylinder unit 22, respectively. Therefore, the description is omitted.
  • the temperature of the fuel supplied by the fourth supply unit 42 into the second cylinder is higher than the temperature of the fuel supplied by the third supply unit 40 into the second cylinder.
  • the first sensor 34 is, for example, a LAF sensor that detects an internal state of the first cylinder unit 22.
  • the internal state is a misfire state.
  • the first sensor 34 detects the fuel air heat ratio in the first cylinder unit 22 based on, for example, the oxygen concentration in the gas discharged from the first cylinder unit 22 and the unheated gas concentration.
  • the second sensor 44 is, for example, an LAF sensor that detects an internal state of the second cylinder unit 24.
  • the internal state is a misfire state.
  • the second sensor 44 detects the fuel air heat ratio in the second cylinder unit 24 based on, for example, the oxygen concentration in the gas discharged from the second cylinder unit 24 and the unheated gas concentration.
  • the first sensor 34 or the second sensor 44 may be another sensor instead of the LAF sensor.
  • the first sensor 34 or the second sensor 44 may be any sensor that can detect whether a misfire has occurred.
  • the first sensor 34 or the second sensor 44 may be a sensor that detects, for example, the internal pressure of the first cylinder unit 22 or the second cylinder unit 24 for detecting misfire.
  • the control device 100 includes, for example, an information management unit 102, a control unit 104, and a storage unit 120.
  • the information management unit 102 and the control unit 104 are realized by, for example, a processor such as a CPU (Central Processing Unit) executing a program (software).
  • a processor such as a CPU (Central Processing Unit) executing a program (software).
  • Some or all of these constituent elements are hardware (circuits) such as LSI (Large Scale Integration), ASIC (Application Specific Integrated Circuit), FPGA (Field-Programmable Gate Array), and GPU (Graphics Processing Unit). (Including a circuitry), or may be realized by cooperation of software and hardware.
  • the program may be stored in the storage unit 120 of the control device 100 in advance, or may be stored in a removable storage medium such as a DVD or a CD-ROM. It may be installed in the unit 120.
  • the storage unit 120 is realized by, for example, an HDD, a flash memory, an electrically erasable programmable read only memory (EEPROM), a read only memory (ROM), or a random access memory (RAM).
  • EEPROM electrically erasable programmable read only memory
  • ROM read only memory
  • RAM random access memory
  • the information management unit 102 acquires the detection result of the first sensor 34 or the second sensor 44.
  • the control unit 104 controls the first supply unit 30, the second supply unit 32, the third supply unit 40, or the fourth supply unit 42 based on the information acquired by the information management unit 102. Details of the processing of the control unit 104 will be described later.
  • FIG. 3 is a timing chart showing changes in each part of the engine control system 1 in a normal state.
  • FIG. 3 shows a change in the state of the first cylinder unit 22 and the state of the first cylinder unit 22 (CYL1), and a change in the state of the second cylinder unit 24 and the state of the second cylinder unit 24 (CYL2).
  • the detection value of the first sensor 34 and the detection value of the second sensor 44 are less than the threshold value Th.
  • the control unit 104 controls the second supply unit 32 to be in the off state, and refers to a predetermined control map to determine the fuel injection amount using the detected value of the first sensor 34, the engine speed, and the like.
  • the first supply unit 30 is determined based on the determination result.
  • the control unit 104 controls the fourth supply unit 42 to the off state, and determines the fuel injection amount using the detection value of the second sensor 44, the engine speed, and the like with reference to a predetermined control map.
  • the third supply unit 40 is controlled based on the determination result.
  • the threshold value Th is a detection value corresponding to the fuel air heat ratio at which it is estimated that the first cylinder or the second cylinder has misfired.
  • FIG. 4 is a timing chart showing changes in the state of each part of the engine control system 1 at the time of misfire. The description similar to that of FIG. 3 is omitted.
  • the control unit 104 determines that the second cylinder has misfired. In this case, at time t + 1, the control unit 104 controls the third supply unit 40 to be off.
  • the control unit 104 controls the fourth supply unit 42 to be in the ON state.
  • the control unit 104 controls the fourth supply unit 42 to supply a predetermined fuel supply amount per unit time.
  • the predetermined fuel supply amount per unit time is, for example, an amount larger than the fuel supply amount per unit time supplied by the third supply unit 40 before time t or time t + 1 (for example, time tx in the figure). is there.
  • the predetermined fuel supply amount per unit time increases, for example, as the detection value of the second sensor 44 increases.
  • the control unit 104 determines that the second cylinder has returned to the combustion state. In this case, at time t + 4, the control unit 104 controls the fourth supply unit 42 to be off and the third supply unit 40 to be on. The control unit 104 determines the fuel injection amount using the detection value of the second sensor 44, the engine speed, and the like, for example, with reference to a predetermined control map, and based on the determination result, the third supply unit. 40 is controlled. During a predetermined time from time t + 4, the control unit 104 controls the predetermined fuel supply amount per unit time equal to or more than the predetermined fuel supply amount per unit time supplied by the fourth supply unit 42 immediately before time t + 4. The fuel supply amount may be supplied into the second cylinder. During a predetermined period from time t + 4, the higher the detection value of the second sensor 44, the larger the fuel supply amount may be. Thereby, the fuel of the second cylinder is more reliably promoted.
  • control unit 104 controls the third supply unit 40 and the fourth supply unit 42 based on the detection result of the second sensor 44. By doing so, the internal combustion engine can be operated stably.
  • the third supply unit 40 is controlled to be in the off state between the time t + 1 and the time t + 2.
  • the burned gas in the combustion chamber of the second cylinder unit 24 is exhausted from the exhaust port, and the combustion chamber is in a clean state.
  • the cylinder can return to the combustion state more quickly.
  • the time between time t + 1 and time t + 2 is a time during which the piston of the second cylinder unit 24 reciprocates a predetermined number of times (for example, once), or a predetermined time.
  • control unit 104 determines the time for the piston to reciprocate a predetermined number of times (for example, once or several times) based on the rotation speed of the engine 20 before the second cylinder misfires, the detection result of the first sensor 34, and the like.
  • the predetermined time is a time derived based on the rotation speed of the engine 20 before the second cylinder misfires, a detection result of the first sensor 34, or the like, or a preset time.
  • FIG. 5 is another timing chart showing the state of each part of engine control system 1 at the time of misfire. The description similar to that of FIGS. 3 and 4 is omitted.
  • the control unit 104 controls the fourth supply unit 42 to the off state and controls the third supply unit 40 to the on state.
  • the control unit 104 controls the fourth supply unit 42 to the on state.
  • 104 controls the third supply unit 40 to the ON state.
  • the control unit 104 controls the fourth supply unit 42 to the ON state and controls the third supply unit 40 to the ON state as described with reference to FIG.
  • a predetermined fuel supply amount is supplied to the unit 24.
  • the fuel supply amount per unit time supplied by the third supply unit 40 is equal to or greater than the fuel supply amount per unit time supplied by the fourth supply unit 42 in the same period. Good. Further, instead of time t + 2, third supply unit 40 may be controlled to be on between time t + 2 and time t + 3.
  • control unit 104 controls the third supply unit 40 and the fourth supply unit 42 so as to sufficiently supply fuel to the misfired second cylinder unit 24, thereby stabilizing the internal combustion engine. Can be operated.
  • the second cylinder unit 24 may include a cylinder deactivation mechanism.
  • the cylinder deactivation mechanism stops the opening operation of the predetermined valve of the second cylinder unit 24 based on the instruction of the control unit 104, and deactivates the driving of the second cylinder unit 24.
  • the first cylinder unit 22 may also include a cylinder deactivation mechanism. In this case, at time t, the control unit 104 may output a cylinder deactivation signal to stop driving the second cylinder unit 24, and control the third supply unit 40 to be off at time t + 1.
  • control unit 104 outputs a cylinder return signal to release the suspension of the second cylinder unit 24, and the fourth supply unit 42 (or the third supply unit 40 and The fourth supply unit 42) may be controlled to be on.
  • FIG. 6 is another timing chart showing a change in the state of each part of the engine control system 1 at the time of misfire. The description similar to that of FIGS. 3 to 5 is omitted.
  • the control unit 104 determines that the second cylinder has misfired. In this case, at time t + 12, the control unit 104 controls the fourth supply unit 42 to be in the ON state.
  • the control unit 104 determines that the second cylinder has returned to the combustion state. In this case, at time t + 14, the control unit 104 controls the fourth supply unit 42 to the off state.
  • control unit 104 can stably operate the internal combustion engine.
  • CAI Controlled Auto-Ignition
  • the control device 100 detects a misfire of a cylinder based on a result of a detection value of a sensor provided for each cylinder, and performs control to return the cylinder to the misfire when the misfire is detected.
  • the control device 100 controls the second supply unit 32 to supply the fuel into the cylinder of the misfired cylinder, and causes the cylinder to return.
  • the control device 100 stops the supply of the fuel by the second supply unit 32 and causes the first supply unit 30 to supply the fuel.
  • control unit 104 controls the first supply unit 30 and the third supply unit 40 to be in the on state, and controls the second supply unit 32 and the fourth supply unit 42 to be in the off state.
  • the internal supply engine can be operated stably by controlling the second supply unit 32 to the ON state.
  • the engine 20 is described as including the first cylinder unit 22 and the second cylinder unit 24.
  • the engine 20 includes only one of the first cylinder unit 22 and the second cylinder unit 24. May be.
  • the control unit 104 controls the third supply unit 40 and the fourth supply unit 42 as described above. Thereby, the internal combustion engine can be operated stably.
  • the engine control system 1A includes a first supply unit 30, a second supply unit 32, a third supply unit 40 in a control mode based on the detection result of the temperature sensor or the water temperature sensor at the time of start and restart. And the fourth supply unit 42 is controlled.
  • the description will focus on the differences from the first embodiment.
  • the processing for the first cylinder unit 22 will be mainly described, but the same processing may be performed for the second cylinder unit 24. Further, the processing may be performed in the first cylinder unit 22 and the second cylinder unit 24 in parallel.
  • FIG. 7 is a diagram illustrating an example of a functional configuration of the engine control system 1A.
  • the engine control system 1A further includes a sensor group 50, a temperature sensor 60, and a water temperature sensor 62 in addition to the functional configuration of the first embodiment.
  • the sensor group 50 is a sensor that detects the state of the engine 20.
  • it includes a rotation speed sensor that detects the rotation speed of the engine 20, an intake pressure sensor that detects the pressure of air taken into the combustion chamber of the cylinder from the outside, a torque sensor, and the like.
  • the temperature sensor 60 detects the temperature around the engine 20 and transmits the detection result to the control device 100.
  • the water temperature sensor 62 detects the temperature of cooling water flowing in a water jacket provided around the cylinder of the engine 20. For example, the water temperature sensor 62 is provided near the outlet of the water jet and detects the temperature near the outlet (outlet water temperature).
  • the information management unit 102 acquires the detection result of the sensor group 50, the detection result of the temperature sensor 60, and the detection result of the water temperature sensor 62.
  • the control unit 104 performs a predetermined period from before the crankshaft of the engine 20 is cranked (before rotation) to after the cranking (after rotation) until the rotation speed of the engine 20 reaches a set value.
  • the fuel is supplied to the second supply unit 32 at the intake timing.
  • control unit 104 causes first supply unit 30 to supply the fuel.
  • the control unit 104 causes the first supply unit 30 to supply the fuel at a predetermined intake timing.
  • the control unit 104 controls the second supply unit before and after cranking and before the rotation speed of the engine 20 reaches the set value according to the detection result (outside air temperature) of the temperature sensor 60.
  • a control mode in which fuel is supplied to the fuel cell 32 is set.
  • the control unit 104 refers to the first control table 122 and sets a control mode.
  • FIG. 8 is a diagram showing an example of the contents of the first control table 122.
  • the first control table 122 is applied, for example, when starting the engine 20 after a lapse of a predetermined time after the operation of the engine 20 is stopped.
  • the time at which the operation of the engine 20 is stopped is stored in the storage unit 120, for example.
  • the range of the outside air temperature is “Tem1”> “Tem2”> “Tem3”.
  • the third control mode, the second control mode, and the first control mode are control modes in which the amount (or frequency) of fuel supplied by the control unit 104 to the second supply unit 32 is large.
  • the first control mode is a mode in which fuel is injected in the “A mode” before cranking and fuel is supplied for “(per first reference unit) X1 msec” after cranking.
  • the second control mode is a mode in which fuel is supplied in "B mode” before cranking, and fuel is supplied for “X2 msec” after cranking.
  • the third control mode is a mode in which fuel is injected in “C mode” before cranking, and fuel is injected for “X2 msec” after cranking.
  • the control unit 104 is a mode in which the control unit 104 supplies the fuel to the second supply unit 32 in a predetermined period (or frequency) is large.
  • the first reference unit is, for example, a unit of one rotation of the crankshaft of the engine 20 or a predetermined time.
  • the timing at which the fuel is supplied is, for example, a predetermined intake timing.
  • the “A mode” is a mode in which the fuel is supplied “N1 time” for “(per second reference unit) X3 msec”, and the “B mode” is the fuel is supplied for “X3 msec”.
  • the “C mode” is a mode in which the fuel is supplied "N3 times” for "X3 msec”. “X1” ⁇ “X2” ⁇ “X3”. “N1” ⁇ “N2” ⁇ “N3”.
  • the first reference unit and the second reference unit may be different references, or may be the same reference unit.
  • FIG. 9 is a diagram showing a control state of the first supply unit 30, a control state of the second supply unit 32, and a tendency of a change in the throttle opening.
  • 8 illustrates a control state of the second supply unit 32
  • a middle diagram of FIG. 9 illustrates a control state of the first supply unit 30, and
  • a lower diagram of FIG. 9 illustrates a change in the throttle opening.
  • the vertical axis in the upper and middle diagrams of FIG. 9 indicates the fuel supply time (TO), and the vertical axis in the lower diagram of FIG. 9 indicates the throttle opening (TH).
  • the horizontal axis of each drawing in FIG. 9 indicates the rotation speed (NE) of the engine 20.
  • the throttle opening TH is controlled to be constant during the rotation speeds NE0 to NE1, and when the rotation speed NE1 is reached, governor control for adjusting the rotation speed is performed.
  • the second supply unit 32 controls the second supply unit 32 in the A mode.
  • the second supply unit 32 controls the fuel supply for X1 msec per reference unit until the rotational speed reaches the rotational speed NE2.
  • the first supply unit 30 repeats the control of supplying the fuel for “(per first reference unit) X0 msec”. Note that X0 msec ⁇ X1 msec.
  • control device 100 supplies the fuel according to the surrounding temperature to the engine 20 before the engine 20 rotates, so that the engine 20 can be operated stably.
  • the control unit 104 sets a control mode in which the second supply unit 32 supplies fuel according to the detection result of the water temperature sensor 62.
  • the control unit 104 refers to the second control table 124 and sets a control mode.
  • FIG. 10 is a diagram showing an example of the contents of the second control table 124.
  • the second control table 124 is applied, for example, when the engine 20 is started before a predetermined time elapses after the operation of the engine 20 is stopped.
  • the second control table 124 may be applied before the lapse of the predetermined time or in place of the first control table 122.
  • the eleventh control mode is applied when the water temperature is in a range of "Tem11”
  • the twelfth control mode is applied when the water temperature is in a range of "Tem12”
  • the thirteenth control mode is applied when the water temperature is in a range of "Tem13”.
  • the range of the water temperature is “Tem11” ⁇ “Tem12” ⁇ “Tem13”. This is a control mode in which the amount (or frequency) of fuel supplied by the control unit 104 to the second supply unit 32 is large in the order of the eleventh control mode, the twelfth control mode, and the thirteenth control mode.
  • the eleventh control mode is a mode in which fuel is supplied in “A mode” before cranking and fuel is supplied for “(per first reference unit) X1 msec” after cranking.
  • the twelfth control mode is a mode in which fuel is supplied in "D mode” before cranking, and fuel is supplied for "X1 msec” after cranking.
  • the thirteenth control mode is a mode in which fuel is supplied in the “E mode” before cranking and fuel is supplied for “X1 msec” after cranking. This is a mode in which the control unit 104 frequently supplies the second supply unit 32 with fuel in a predetermined period in the order of “A mode”, “D mode”, and “E mode”.
  • the “D mode” is a mode in which the fuel is supplied “N01 times” for “(per second reference unit) X3 msec”, and the “E mode” is the fuel is supplied for “X1 msec”. This is a mode for performing “N02 times”.
  • the first supply unit 30 repeats the control of supplying the fuel for “(per first reference unit) X1 msec”. “N02” ⁇ “N01” ⁇ “N1”.
  • control device 100 supplies the fuel according to the outlet water temperature to the engine 20 before the engine 20 rotates, so that the engine 20 can be operated stably.
  • FIG. 11 is a diagram for describing a temporal change of the fuel supplied by the first supply unit 30 and the second supply unit 32.
  • the illustrated example schematically illustrates a scene in which a predetermined control mode is set according to the temperature or the water temperature, and processing is performed based on the set control mode.
  • the vertical axis in FIG. 11 indicates the amount of supplied fuel, and the horizontal axis indicates time.
  • the first supply unit 30 and the second supply unit 32 supply a constant amount of fuel per unit time.
  • the control unit 104 causes the second supply unit 32 to repeatedly supply a first amount (Q1 in the figure) of the fuel before the engine 20 starts rotating (before NE0).
  • the first amount is, for example, the amount supplied by the second supply unit 32 during the first time (T1). In the illustrated example, the first amount is supplied four times as an example, but the lower the temperature or the water temperature, the more frequently the second supply unit 32 supplies the first amount of the fuel. For example, the second supply unit 32 supplies the first amount five times or more.
  • the control unit 104 supplies a second amount (Q2 in the figure) of fuel that is smaller than the first amount until the rotation speed of the engine 20 reaches the set value (NE2). It is supplied to the second supply unit 32 according to the rotation of 20 (R in the figure).
  • the second amount is, for example, an amount supplied by the second supply unit 32 during a second time (T2) shorter than the first time.
  • the amount of fuel supplied by the first supply unit 30 in a predetermined unit time (T1 in the figure) is smaller than the amount of fuel supplied by the second supply unit 32 in the unit time (T1 in the figure).
  • control unit 104 appropriately supplies fuel so that the engine 20 operates more stably. can do.
  • the control unit 104 causes the second supply unit 32 to supply the fuel in the control mode according to the detection result of the temperature sensor 60 or the water temperature sensor 62 before the engine 20 rotates. After the rotation of the engine 20 and when the rotation speed of the engine 20 reaches the set value, the first supply unit 30 supplies the fuel, whereby the engine 20 can be operated stably.
  • a third embodiment will be described.
  • the engine control system 1A of the third embodiment uses the first control table 122 and the second control table 124 irrespective of starting and restarting.
  • the description will focus on the differences from the second embodiment.
  • the control unit 104 of the third embodiment refers to the second control table 124 and performs the first supply unit 30 in the control mode according to the detection result of the water temperature sensor 62. Then, the fuel is supplied to the second supply unit 32.
  • the control unit 104 refers to the first control table 122, and performs the first supply unit 30 and the second supply unit in a control mode corresponding to the detection result of the temperature sensor 60. 32 is supplied with fuel.
  • FIG. 12 is a flowchart showing the flow of processing executed by the control device 100 of the third embodiment.
  • the information management unit 102 acquires a detection result of the water temperature sensor 62 (Step S100).
  • the control unit 104 determines whether or not the obtained detection result of the water temperature sensor 62 is within the range of the water temperatures Tem11 to Tem13 (Step S102).
  • control unit 104 refers to the second control table 124 and determines a control mode according to the detection result of the water temperature sensor 62 (step S104).
  • the control unit 104 obtains the detection result of the temperature sensor 60 (Step S106). Next, the control unit 104 refers to the first control table 122 and determines a control mode according to the detection result of the temperature sensor 60 (Step S108). Thus, the processing of one routine of this flowchart ends.
  • control unit 104 determines the control mode using the first control table 122 and the second control table 124, and uses the determined control mode to determine whether the first supply unit 30 and the second By supplying the fuel to the supply unit 32, the engine 20 can be operated stably.
  • the processing of the first embodiment and the processing of the second or third embodiment may be performed in an integrated manner. At the time of starting or restarting, the processing of the second embodiment or the third embodiment may be performed, and the processing of the first embodiment may be performed at the time of misfire.
  • control system of the internal combustion engine is configured such that the control system (1) of the internal combustion engine (20) includes an engine including at least a first cylinder (22) and a second cylinder (24); A first supply unit (30) for supplying fuel into the first cylinder in a state, a second supply unit (32) for supplying fuel in the first cylinder in an on state, and the second cylinder in an on state. A third supply unit (40) for supplying fuel into the first cylinder, a fourth supply unit (42) for supplying fuel to the second cylinder in the on state, and a first unit for detecting an internal state of the first cylinder.
  • a detection unit configured to control the first supply unit and the third supply unit to be in an on state and to control the second supply unit and the fourth supply unit to be in an off state; When the detection value of a part reaches or exceeds the threshold , By providing a control unit for controlling the second feed unit to the ON state (100, 104), it is possible to stably operate the engine.
  • FIG. 13 is a diagram illustrating an example of a hardware configuration included in the control device 100 according to the embodiment.
  • the control device 100 includes a communication controller 100-1, a CPU 100-2, a RAM (Random Access Memory) 100-3 used as a working memory, and a ROM (Read Only Memory) 100- storing a boot program and the like. 4.
  • a storage device 100-5 such as a flash memory or an HDD (Hard Disk Drive) and a drive device 100-6 are connected to each other by an internal bus or a dedicated communication line.
  • the communication controller 100-1 communicates with components other than the control device 100.
  • the storage device 100-5 stores a program 100-5a executed by the CPU 100-2. This program is developed in the RAM 100-3 by a direct memory access (DMA) controller (not shown) or the like, and is executed by the CPU 100-2.
  • DMA direct memory access
  • a storage device storing the program
  • the hardware processor executes a program stored in the storage device
  • a first supply unit that supplies fuel into the first cylinder of the engine including at least the first cylinder and the second cylinder in an on state
  • a third supply unit that supplies fuel into the second cylinder in an on state.
  • Control to on state In a state in which a second supply unit that supplies fuel to the first cylinder in an on state and a fourth supply unit that supplies fuel to the second cylinder in an on state are controlled to an off state, the first cylinder
  • the detection value of the first detection unit that detects the internal state of the first supply unit reaches a threshold value or more
  • the second supply unit is controlled to an ON state.
  • Control device configured as follows.
  • 1, 1A engine control system 20 engine, 22 first cylinder unit, 24 second cylinder unit, 30 first supply unit, 32 second supply unit, 34 first sensor, 40 third Supply unit, 42 # 4 supply unit, 44 # second sensor, 50 # sensor group, 60 # temperature sensor, 62 # water temperature sensor, 100 # control device, 102 # information management unit, 104 # control unit, 120 # storage , 122 # first control table, 124 # second control table

Landscapes

  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Combustion & Propulsion (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Electrical Control Of Air Or Fuel Supplied To Internal-Combustion Engine (AREA)

Abstract

内燃機関の制御システムは、少なくとも第1シリンダ、および第2シリンダを含む内燃機関と、オン状態で前記第1シリンダ内に燃料を供給する第1供給部と、オン状態で前記第1シリンダ内に燃料を供給する第2供給部と、オン状態で前記第2シリンダ内に燃料を供給する第3供給部と、オン状態で前記第2シリンダ内に燃料を供給する第4供給部と、前記第1シリンダの内部の状態を検出する第1検出部と、前記第1供給部および前記第3供給部をオン状態に制御し、前記第2供給部および第4供給部をオフ状態に制御している状態において、前記第1検出部の検出値が閾値以上に到達した場合に、前記第2供給部をオン状態に制御する制御部と、を備える。

Description

内燃機関の制御システム、および内燃機関の制御方法
 本発明は、内燃機関の制御システム、および内燃機関の制御方法に関する。
 従来、燃焼室内に燃料を噴射可能な燃料噴射弁と、噴霧に直接に点火可能となるように、燃料噴射弁に対する相対位置が決定された点火装置と、を備える内燃機関の制御装置に関する技術が開示されている(例えば特許文献1参照)。当該装置は、圧縮行程中の所定プレ噴射時期に行われるプレ噴射と、点火装置による該プレ噴射によるプレ噴霧への点火とを行った後に、所定噴射開始時期にメイン噴射を実行することで、自着火を発生させるとともに少なくとも該メイン噴射燃料の一部を拡散燃焼させる。
特開2015-137586号公報 特開2016-35216号公報
 しなしながら、従来の技術では、内燃機関を安定的に稼働させることができない場合があった。
 本発明は、このような事情を考慮してなされたものであり、内燃機関を安定的に稼働させることができる内燃機関の制御システム、および内燃機関の制御方法を提供することを目的の一つとする。
 (1):内燃機関の制御システムは、少なくとも第1シリンダ、および第2シリンダを含む内燃機関と、オン状態で前記第1シリンダ内に燃料を供給する第1供給部と、オン状態で前記第1シリンダ内に燃料を供給する第2供給部と、オン状態で前記第2シリンダ内に燃料を供給する第3供給部と、オン状態で前記第2シリンダ内に燃料を供給する第4供給部と、前記第1シリンダの内部の状態を検出する第1検出部と、前記第1供給部および前記第3供給部をオン状態に制御し、前記第2供給部および第4供給部をオフ状態に制御している状態において、前記第1検出部の検出値が閾値以上に到達した場合に、前記第2供給部をオン状態に制御する制御部とを備える。
 (2):(1)の内燃機関の制御システムであって、前記制御部は、前記第1検出部の検出値が閾値未満に到達した場合に、前記第2供給部をオフ状態に制御するものである。
 (3):(1)または(2)の内燃機関の制御システムであって、前記制御部は、前記第1検出部の検出値が閾値以上である場合、前記第1供給部をオフ状態に制御するものである。
 (4):(1)から(3)のうちいずれかの内燃機関の制御システムであって、前記制御部は、前記第1供給部および前記第3供給部をオン状態に制御し、前記第2供給部および第4供給部をオフ状態に制御している状態において、前記第1検出部の検出値が閾値以上に到達した場合に、前記第1供給部をオフ状態に制御し、前記第1シリンダに受容されたピストンが所定回数往復した後に、前記第2供給部をオン状態に制御するものである。
 (5):内燃機関の制御システムは、少なくとも第1シリンダを含む内燃機関と、オン状態で前記第1シリンダ内に燃料を供給する第1供給部と、オン状態で前記第1シリンダ内に燃料を供給する第2供給部と、前記第1シリンダの内部の状態を検出する第1検出部と、前記第1供給部をオン状態に制御し、前記第2供給部をオフ状態に制御している状態において、前記第1検出部の検出値が閾値以上に到達した場合に、第1タイミングにおいて、前記第1供給部をオフ状態に制御した後、第2タイミングにおいて、前記第1供給部をオフ状態またはオン状態にした状態で前記第2供給部をオン状態に制御する第1処理を実行する制御部とを備える。
 (6):(5)の内燃機関の制御システムであって、前記制御部は、前記第1供給部をオン状態に制御し、前記第2供給部をオフ状態に制御している状態において、前記第1検出部の検出値が閾値以上に到達した場合に、前記第1タイミングにおいて、前記第1供給部をオフ状態に制御した後、前記第1検出部の検出値が閾値未満に到達するまでの間、前記第1供給部をオフ状態またはオン状態にした状態で前記第2供給部をオン状態に制御する第2処理を実行するものである。
 (7):(5)または(6)の内燃機関の制御システムであって、前記内燃機関は、更に第2シリンダを含み、オン状態で前記第2シリンダ内に燃料を供給する第3供給部と、オン状態で前記第2シリンダ内に燃料を供給する第4供給部と、を更に備え、前記第1供給部および前記第3供給部をオン状態に制御し、前記第2供給部および第4供給部をオフ状態に制御している状態において、前記第1検出部の検出値が閾値以上に到達した場合に、前記第1処理を実行するものである。
 (8):(7)の内燃機関の制御システムであって、前記第2シリンダの内部の状態を検出する第2検出部を備え、前記制御部は、前記第1供給部および前記第3供給部をオン状態に制御し、前記第2供給部および第4供給部をオフ状態に制御している状態において、前記第2検出部の検出値が閾値以上に到達した場合に、第3タイミングにおいて、前記第3供給部をオフ状態に制御した後、第4タイミングにおいて、前記第3供給部をオフ状態またはオン状態にした状態で前記第4供給部をオン状態に制御する第2処理を実行するものである。
 (9):(1)から(8)のいずれかの内燃機関の制御システムであって、前記第2供給部は、前記第1供給部が供給する燃料よりも温度が高い燃料を前記第1シリンダ内に供給するものである。
 (10):(1)から(9)のいずれかの内燃機関の制御システムであって、前記内部の状態とは、失火状態であるものである。
 (11):(1)から(9)のいずれかの内燃機関の制御システムであって、前記内燃機関は、2ストロークユニフローエンジンであるものである。
 (12):コンピュータが、オン状態で、第1シリンダおよび第2シリンダを含む内燃機関の前記第1シリンダ内に燃料を供給する第1供給部、およびオン状態で前記第2シリンダ内に燃料を供給する第3供給部をオン状態に制御し、オン状態で前記第1シリンダ内に燃料を供給する第2供給部およびオン状態で前記第2シリンダ内に燃料を供給する第4供給部をオフ状態に制御している状態において、前記第1シリンダの内部の状態を検出する第1検出部の検出値が閾値以上に到達した場合に、前記第2供給部をオン状態に制御する内燃機関の制御方法である。
 (1)~(12)によれば、内燃機関を安定的に稼働させることができる。
エンジン制御システム1の機能構成の一例を示す図である。 第2供給部32と、ヒータ33を模式的に示す図である。 通常時におけるエンジン制御システム1の各部の変化を示すタイミングチャートである。 失火時におけるエンジン制御システム1の各部の状態の変化を示すタイミングチャートである。 失火時におけるエンジン制御システム1の各部の状態を示す他のタイミングチャートである。 失火時におけるエンジン制御システム1の各部の状態の変化を示す他のタイミングチャートである。 エンジン制御システム1Aの機能構成の一例を示す図である。 第1制御テーブル122の内容の一例を示す図である。 第1供給部30の制御状態、第2供給部32の制御状態、スロットル開度の変化の傾向を示す図である。 第2制御テーブル124の内容の一例を示す図である。 第1供給部30および第2供給部32が供給する燃料の時間的変化について説明するための図である。 第3実施形態の制御装置100により実行される処理の流れを示すフローチャートである。 実施形態の制御装置100が備えるハードウェア構成の一例を示す図である。
 以下、図面を参照し、本発明の内燃機関の内燃機関の制御システム、および内燃機関の制御方法の実施形態について説明する。
 <第1実施形態>
 図1は、エンジン制御システム1の機能構成の一例を示す図である。エンジン制御システム1は、エンジンユニット10と、制御装置100とを含む。エンジン20と、制御装置100とは、通信線を介して互いに通信する。エンジンユニット10は、エンジン20と、第1供給部30と、第2供給部32と、第1センサ34と、第3供給部40と、第4供給部42と、第2センサ44とを備える。第1供給部30、第2供給部32、第3供給部40、および第4供給部42は、いわゆるインジェクターである。
 エンジン20は、例えば、第1シリンダユニット22と、第2シリンダユニット24とを含む。エンジン20は、クランクシャフトが第1シリンダユニット22と第2シリンダユニット24とにより共有されるように配置された、二気筒エンジンである。エンジン20は、三気筒以上のエンジンであってもよい。エンジン20は、例えば、汎用エンジンである。エンジン20の燃料は、軽油やガソリンなどである。エンジン20では、例えば、圧着により着火する制御自動着火(CAI;Controlled Auto Ignition)燃焼方法が採用されている。
 エンジン20は、例えば、ユニフロー2ストロークエンジンである。第1シリンダユニット22は、例えば、第1シリンダや、往復動可能に受容されたピストン、シリンダの上端部に設けられた排気ポート、シリンダの下部側壁部に設けられた掃気ポート、掃気通路等を有する。第1シリンダユニットは、ピストンが上死点付近に存在するときに燃焼が発生し、ピストンの下降に応じて排気ポートが開かれ、膨張した既燃焼ガスが排気ポートから排出される。掃気通路は、ピストンの往復運動により開閉される通路である。
 ピストンの上昇過程では、ピストンの上昇によって掃気通路が閉じられる。ピストンの上昇によってクランク室の圧力が低下すると、所定の吸気弁が開弁し、新気がクランク室に流入し、シリンダの燃焼室内の混合気がピストンによって圧縮される。ピストンが上死点近傍にあるとき、着火して燃料が燃焼する。
 ピストンの下降過程では、ピストンが下降してクランク室の圧力が上昇する。これにより、吸気弁が閉じられ、クランク室のガスが圧縮される。ピストンの下降が進むと、所定の機構により排気ポートが開き、燃焼室内の排気ガスは排気ポートから排出される。その後、ピストンの下降が進むと、燃焼室と掃気通路とが連通する。この場合、燃焼室の既燃焼ガスの圧力は、クランク室の圧力よりも低下しているため、掃気通路から燃焼室にガスが流れる。第1供給部30、第2供給部32、第1センサ34、第3供給部40、または第4供給部42は、掃気通路を流れるガスに燃料を供給する。
 なお、本実施形態のエンジン20は、ユニフロー2ストロークエンジンに代えて、その他の種類のエンジンであってもよい。第2シリンダユニット24は、第1シリンダユニット22と同様の機能構成を有する。第2シリンダユニット24のシリンダを第2シリンダと称する場合がある。
 第1供給部30は、制御装置100の制御に基づいて、第1シリンダユニット22に燃料を供給する。第1供給部30は、例えば、第1シリンダユニット22内(例えば第1シリンダ内)に燃料を噴射する。第1供給部30は、例えば、第1シリンダユニット22の燃焼室内に燃料を、直接、噴射してもよい。
 第2供給部32は、例えば、第1シリンダユニット22内(例えば第1シリンダ内)に燃料を噴射する。第2供給部32は、例えば、第1シリンダユニット22の燃焼室内に燃料を、直接、噴射してもよい。
 第2供給部32には、ヒータ33が備えられている。図2は、第2供給部32と、ヒータ33を模式的に示す図である。ヒータ33内に燃料が吸入されると、ヒータ33は、第2供給部32が供給する燃料を温める。そして、ヒータ33は、温めた燃料を第2供給部32に送る。第2供給部32は、制御装置100の制御に基づいて、ヒータ33に温められた燃料を第1シリンダ内に供給する。第2供給部32が第1シリンダ内に供給する燃料の温度は、第1供給部30が第1シリンダ内に供給する燃料の温度よりも高い。
 第2シリンダユニット24の第3供給部40と、第4供給部42との機能構成は、それぞれ、第1シリンダユニット22の第1供給部30と、第2供給部32との機能構成と同様の機能構成であるため、説明を省略する。第4供給部42が第2シリンダ内に供給する燃料の温度は、第3供給部40が第2シリンダ内に供給する燃料の温度よりも高い。
 第1センサ34は、例えば、第1シリンダユニット22の内部の状態を検出するLAFセンサである。内部の状態とは、失火状態である。第1センサ34は、例えば、第1シリンダユニット22が排出するガス中の酸素濃度と未熱ガス濃度とに基づいて、第1シリンダユニット22内の燃料空熱比を検出する。
 第2センサ44は、例えば、第2シリンダユニット24の内部の状態を検出するLAFセンサである。内部の状態とは、失火状態である。第2センサ44は、例えば、第2シリンダユニット24が排出するガス中の酸素濃度と未熱ガス濃度とに基づいて、第2シリンダユニット24内の燃料空熱比を検出する。なお、第1センサ34または第2センサ44とは、LAFセンサに代えて、他のセンサであってもよい。例えば、第1センサ34または第2センサ44は、失火しているかを検出することが可能なセンサであればよい。例えば、第1センサ34または第2センサ44は、例えば、失火を検出するための第1シリンダユニット22または第2シリンダユニット24の内部圧力等を検出するセンサであってもよい。
 制御装置100は、例えば、情報管理部102と、制御部104と、記憶部120とを備える。情報管理部102と、制御部104とは、例えば、CPU(Central Processing Unit)などのプロセッサがプログラム(ソフトウェア)を実行することにより実現される。また、これらの構成要素のうち一部または全部は、LSI(Large Scale Integration)やASIC(Application Specific Integrated Circuit)、FPGA(Field-Programmable Gate Array)、GPU(Graphics Processing Unit)などのハードウェア(回路部;circuitryを含む)によって実現されてもよいし、ソフトウェアとハードウェアの協働によって実現されてもよい。プログラムは、予め制御装置100の記憶部120に格納されていてもよいし、DVDやCD-ROMなどの着脱可能な記憶媒体に格納されており、記憶媒体がドライブ装置に装着されることで記憶部120にインストールされてもよい。
 記憶部120は、例えば、HDD、フラッシュメモリ、EEPROM(Electrically Erasable Programmable Read Only Memory)、ROM(Read Only Memory)、またはRAM(Random Access Memory)などにより実現される。
 情報管理部102は、第1センサ34または第2センサ44の検出結果を取得する。
 制御部104は、情報管理部102により取得された情報に基づいて、第1供給部30、第2供給部32、第3供給部40と、または第4供給部42を制御する。制御部104の処理の詳細については後述する。
 [通常時の処理]
 図3は、通常時におけるエンジン制御システム1の各部の変化を示すタイミングチャートである。図3は、第1シリンダユニット22および第1シリンダユニット22に関する状態の変化(CYL1)と、第2シリンダユニット24および第2シリンダユニット24に関する状態の変化(CYL2)との変化を示している。
 図3では、上から、第1シリンダの状態(燃焼または失火)、第1センサ34の検出値(電圧V)、第2供給部32の単位時間当たりの燃料供給量(例えば噴射時間に対応するパルス幅Ti)、第1供給部30の単位時間当たりの燃料供給量(例えば噴射時間に対応するパルス幅Ti)、第2シリンダの状態(燃焼または失火)、第2センサ44の検出値(電圧V)、第4供給部42の単位時間当たりの燃料供給量(例えば噴射時間に対応するパルス幅Ti)、第3供給部40の単位時間当たりの燃料供給量(例えば噴射時間に対応するパルス幅Ti)を示している。図3の横軸は時間を示している。
 図3の例では、第1センサ34の検出値および第2センサ44の検出値は閾値Th未満である。この場合、制御部104は、第2供給部32をオフ状態に制御し、予め定められた制御マップを参照して、第1センサ34検出値や、エンジン回転数等を用いて燃料噴射量を決定し、決定結果に基づいて第1供給部30を制御する。制御部104は、第4供給部42をオフ状態に制御し、予め定められた制御マップを参照して、第2センサ44の検出値や、エンジン回転数等を用いて燃料噴射量を決定し、決定結果に基づいて第3供給部40を制御する。閾値Thは、第1シリンダまたは第2シリンダが失火したと推定される燃料空熱比に対応する検出値である。
 [失火時の処理(その1)]
 図4は、失火時におけるエンジン制御システム1の各部の状態の変化を示すタイミングチャートである。図3と同様の説明については省略する。時刻tにおいて、第2センサ44の検出値が閾値以上に到達した場合、制御部104は、第2シリンダが失火したと判定する。この場合、時刻t+1において、制御部104は、第3供給部40をオフ状態に制御する。
 時刻t+2において、制御部104は、第4供給部42をオン状態に制御する。例えば、制御部104は、単位時間当たりに所定の燃料供給量を供給するように第4供給部42を制御する。単位時間当たりの所定の燃料供給量は、例えば、時刻tや時刻t+1以前(例えば図中、時刻tx)において第3供給部40が供給していた単位時間当たりの燃料供給量よりも多い量である。単位時間当たりの所定の燃料供給量は、例えば、第2センサ44の検出値が高いほど多くなる。
 時刻t+3において、第2センサ44の検出値が閾値未満に到達した場合、制御部104は、第2シリンダが燃焼状態に復帰したと判定する。この場合、時刻t+4において、制御部104は、第4供給部42をオフ状態し、第3供給部40をオン状態に制御する。制御部104は、例えば、予め定められた制御マップを参照して、第2センサ44の検出値や、エンジン回転数等を用いて燃料噴射量を決定し、決定結果に基づいて第3供給部40を制御する。時刻t+4から所定時間の間において、制御部104は、時刻t+4の直前に第4供給部42が供給していた単位時間当たりに所定の燃料供給量と同等またはそれ以上の単位時間当たりの所定の燃料供給量を第2シリンダ内に供給してもよい。時刻t+4から所定時間の間において、第2センサ44の検出値が高いほど、燃料供給量が多くてもよい。これにより、より確実に第2シリンダの燃料を促進される。
 上述した処理により、第2シリンダユニット24において失火が発生した場合であっても、制御部104が、第2センサ44の検出結果に基づいて、第3供給部40および第4供給部42を制御することにより、内燃機関を安定的に稼働させることができる。
 また、上述したように、時刻t+1から時刻t+2の間では、第3供給部40がオフ状態に制御される。これにより、第2シリンダユニット24の燃焼室内の既燃焼ガスが排気ポートから排出され、燃焼室内がクリーンな状態となる。クリーンな状態の燃焼室に燃料が供給されることにより、より迅速にシリンダは燃焼状態に復帰することができる。例えば、時刻t+1から時刻t+2の間の時間は、第2シリンダユニット24のピストンが所定回数(例えば1回)往復する時間、または所定時間である。例えば、制御部104は、第2シリンダが失火する前のエンジン20の回転数や、第1センサ34の検出結果等に基づいて、ピストンが所定回数(例えば1回、数回)往復する時間を推定する。また、上記の所定時間は、第2シリンダが失火する前のエンジン20の回転数や、第1センサ34の検出結果等に基づいて導出される時間、或いは予め設定された時間である。
 [失火時の処理(その2)]
 図5は、失火時におけるエンジン制御システム1の各部の状態を示す他のタイミングチャートである。図3および図4と同様の説明については省略する。図4の例では、時刻t+4において、制御部104は、第4供給部42をオフ状態し、第3供給部40をオン状態に制御したが、図5の例では、時刻t+2において、制御部104は、第3供給部40をオン状態に制御する。例えば、時刻t+2からt+4の間において、制御部104は、図3で説明したように第4供給部42をオン状態に制御すると共に、第3供給部40をオン状態に制御し、第2シリンダユニット24に所定の燃料供給量を供給する。
 時刻t+2において、第3供給部40が供給する単位時間あたりの燃料供給量は、同じ期間において第4供給部42が供給する単位時間あたりの燃料供給量と同等またはそれ以上の量であってもよい。また、時刻t+2に代えて、時刻t+2と時刻t+3との間において、第3供給部40がオン状態に制御されてもよい。
 上述したように、制御部104が、失火した第2シリンダユニット24に燃料を十分に供給するように、第3供給部40および第4供給部42を制御することにより、より内燃機関を安定的に稼働させることができる。
 第2シリンダユニット24は、気筒休止機構を備えてもよい。気筒休止機構は、制御部104の指示に基づいて、第2シリンダユニット24の所定の弁の開作動を停止させ、第2シリンダユニット24の駆動を休止させる。第1シリンダユニット22も、同様に気筒休止機構を備えてもよい。この場合、時刻tにおいて、制御部104は、気筒休止信号を出力して、第2シリンダユニット24の駆動を休止させ、時刻t+1において、第3供給部40をオフ状態に制御してもよい。また、時刻t+2(または時刻t+4)において、制御部104は、気筒復帰信号を出力して、第2シリンダユニット24の休止を解除し、第4供給部42(または第3供給部40および第4供給部42)をオン状態に制御してもよい。
 [失火時の処理(その3)]
 図6は、失火時におけるエンジン制御システム1の各部の状態の変化を示す他のタイミングチャートである。図3から図5と同様の説明については省略する。時刻t+11において、第2センサ44の検出値が閾値以上に到達した場合、制御部104は、第2シリンダが失火したと判定する。この場合、時刻t+12において、制御部104は、第4供給部42をオン状態に制御する。
 時刻t+13において、第2センサ44の検出値が閾値未満に到達した場合、制御部104は、第2シリンダが燃焼状態に復帰したと判定する。この場合、時刻t+14において、制御部104は、第4供給部42をオフ状態に制御する。
 上述した処理により、制御部104は、内燃機関を安定的に稼働させることができる。
 制御自動着火(CAI)燃焼方法が採用されたエンジンは、残留ガスの熱を利用して燃料を行っている。エンジンに失火が発生すると、残留ガスの熱量が減少し、燃焼の継続が困難になる。単気筒のエンジンにおいて失火が発生した場合、エンジンの回転数が下がることから、失火の検出は可能である。しかしながら、多気筒のエンジンで失火が起こっている気筒が存在する場合であっても、失火が起こっていない気筒が存在する場合は、エンジンの回転数は下がらないため、エンジンの回転数では失火した気筒の有無を検出することが困難である。
 本実施形態の制御装置100は、各気筒に設けられたセンサの検出値の結果に基づいて、気筒の失火を検出し、失火を検出した場合に気筒復帰させる制御を行う。例えば、制御装置100は、第2供給部32を制御して失火した気筒のシリンダ内に燃料を供給し、気筒復帰させる。制御装置100は、気筒復帰を検出した場合、第2供給部32による燃料の供給を停止し、第1供給部30に燃料を供給させる。
 以上説明した第1実施形態によれば、制御部104が、第1供給部30および第3供給部40をオン状態に制御し、第2供給部32および第4供給部42をオフ状態に制御している状態において、第1センサ34の検出値が閾値以上に到達した場合に、第2供給部32をオン状態に制御することにより、内燃機関を安定的に稼働させることができる。
 <変形例>
 第1実施形態では、エンジン20は、第1シリンダユニット22および第2シリンダユニット24を含むものとして説明したが、エンジン20は、第1シリンダユニット22または第2シリンダユニット24のうち一方のみを含んでもよい。例えば、エンジン20が第2シリンダユニット24を含む場合、第2シリンダが失火した場合、制御部104は、上述したように第3供給部40および第4供給部42を制御する。これにより、内燃機関を安定的に稼働させることができる。
 <第2実施形態>
 第2実施形態について説明する。第2実施形態のエンジン制御システム1Aは、始動時および再始動時に、温度センサまたは水温センサの検出結果に基づいた制御モードで第1供給部30、第2供給部32、第3供給部40、および第4供給部42を制御する。以下、第1実施形態との相違点を中心に説明する。
 以下の説明では、第1シリンダユニット22に対する処理を中心に説明を行うが、第2シリンダユニット24に対しても同様の処理が行われてもよい。また、第1シリンダユニット22と第2シリンダユニット24とにおいて処理が並列して行われてもよい。
 図7は、エンジン制御システム1Aの機能構成の一例を示す図である。エンジン制御システム1Aは、第1実施系の機能構成に加え、更に、センサ群50、温度センサ60、および水温センサ62を備える。
 センサ群50は、エンジン20の状態を検出するセンサである。例えば、エンジン20の回転数を検出する回転数センサや、外部からシリンダの燃焼室内に吸入された空気の圧力を検出する吸気圧センサ、トルクセンサ等を含む。
 温度センサ60は、エンジン20が置かれた周辺の温度を検出し、検出結果を制御装置100に送信する。水温センサ62は、エンジン20のシリンダの周囲に設けられたウォータージャケット内を流れた冷却水の温度を検出する。例えば、水温センサ62は、ウォータジェケットの出口付近に設けられ、出口付近の温度(出口水温)を検出する。
 情報管理部102は、センサ群50の検出結果、温度センサ60の検出結果、および水温センサ62の検出結果を取得する。
 制御部104は、エンジン20のクランクシャフトがクランキングする前(回転する前)から、クランキング後(回転した後)であってエンジン20の回転数が設定値に到達するまでの間、所定の吸気タイミングで第2供給部32に燃料を供給させる。そして、制御部104は、エンジン20の回転数が設定値に到達した場合に、第1供給部30に燃料を供給させる。この場合、例えば、制御部104は、第2供給部32に燃料を供給させることを停止させた後、所定の吸気タイミングで第1供給部30に燃料を供給させる。
 [始動時]
 制御部104は、温度センサ60の検出結果(外気温)に応じて、クランキングする前、およびクランキング後であってエンジン20の回転数が設定値に到達するまでの間に第2供給部32に燃料を供給させる制御モードを設定する。例えば、制御部104は、第1制御テーブル122を参照して、制御モードを設定する。
 図8は、第1制御テーブル122の内容の一例を示す図である。この第1制御テーブル122は、例えば、エンジン20の稼働が停止してから所定時間経過後にエンジン20を始動させる際に適用される。なお、エンジン20の稼働が停止した時刻は、例えば、記憶部120に記憶されている。
 外気温が「Tem1」の範囲である場合は第1制御モード、外気温が「Tem2」の範囲である場合は第2制御モード、外気温が「Tem3」の範囲である場合は第3制御モードが適用される。外気温の範囲は、「Tem1」>「Tem2」>「Tem3」である。第3制御モード、第2制御モード、第1制御モードの順で、制御部104が第2供給部32に供給させる燃料の量(または頻度)が多い制御モードである。
 第1制御モードは、クランキング前は「Aモード」で燃料を噴射し、クランキング後は「(第1基準単位あたり)X1msec」の間、燃料を供給するモードである。第2制御モードは、クランキング前は「Bモード」で燃料を供給し、クランキング後は「X2msec」の間、燃料を供給するモードである。第3制御モードは、クランキング前は「Cモード」で燃料を噴射し、クランキング後は「X2msec」の間、燃料を噴射するモードである。「Cモード」、「Bモード」、「Aモード」の順で、所定期間において、制御部104が第2供給部32に燃料を供給させる回数(または頻度)が多いモードである。第1基準単位とは、例えば、エンジン20のクランクシャフトが1回転する単位や所定時間である。また、燃料が供給されるタイミングは、例えば、所定の吸気タイミングである。
 「Aモード」は、燃料を「(第2基準単位あたり)X3msec」の間、供給することを「N1回」行うモードであり、「Bモード」は、燃料を「X3msec」の間、供給することを「N2回」行うモードであり、「Cモード」は、燃料を「X3msec」の間、供給することを「N3回」行うモードである。「X1」<「X2」<「X3」である。「N1」<「N2」<「N3」である。なお、第1基準単位と第2基準単位とは異なる基準であってもよいし、同じ基準単位であってもよい。
 図9は、第1供給部30の制御状態、第2供給部32の制御状態、スロットル開度の変化の傾向を示す図である。図8の上図は第2供給部32の制御状態を示し、図9の中図は第1供給部30の制御状態を示し、図9の下図はスロットル開度の変化を示している。図9の上図および中図の縦軸は燃料の供給時間(TO)を示し、図9の下図の縦軸はスロットル開度(TH)を示している。図9の各図の横軸はエンジン20の回転数(NE)を示している。
 以下、一例として、外気温が「Tem1」であるものとして説明する。また、スロットル開度THは、回転数NE0~NE1の間は一定に制御され、回転数NE1に到達した場合は、回転数を調整するためのガバナ制御が行われたものとする。
 回転数NE0の前(クランキング前)において、第2供給部32は、Aモードで第2供給部32を制御する。回転数NE0を超えると(クランキング後)において、第2供給部32は、基準単位あたりX1msecの間、燃料を供給する制御を、回転数が回転数NE2に到達するまで行う。回転数が回転数NE2に到達すると、第1供給部30が、「(第1基準単位あたり)X0msec」の間、燃料を供給する制御を、繰り返す。なお、X0msec<X1msecである。
 上述したように、制御装置100が、エンジン20が回転する前に、周辺の温度に応じた燃料をエンジン20に供給することにより、エンジン20を安定的に稼働させることができる。
 [再始動時]
 制御部104は、水温センサ62の検出結果に応じて、第2供給部32に燃料を供給させる制御モードを設定する。例えば、制御部104は、第2制御テーブル124を参照して、制御モードを設定する。
 図10は、第2制御テーブル124の内容の一例を示す図である。この第2制御テーブル124は、例えば、エンジン20の稼働が停止してから所定時間経過前にエンジン20を始動させる際に適用される。なお、第2制御テーブル124は、所定時間経過前であっても、第1制御テーブル122に代えて適用されてもよい。
 水温が「Tem11」の範囲である場合は第11制御モード、水温が「Tem12」の範囲である場合は第12制御モード、水温が「Tem13」の範囲である場合は第13制御モードが適用される。なお、水温の範囲は、「Tem11」<「Tem12」<「Tem13」である。第11制御モード、第12制御モード、第13制御モードの順で、制御部104が第2供給部32に供給させる燃料の量(または頻度)が多い制御モードである。
 第11制御モードは、クランキング前は「Aモード」で燃料を供給し、クランキング後は「(第1基準単位あたり)X1msec」の間、燃料を供給するモードである。第12制御モードは、クランキング前は「Dモード」で燃料を供給し、クランキング後は「X1msec」の間、燃料を供給するモードである。第13制御モードは、クランキング前は「Eモード」で燃料を供給し、クランキング後は「X1msec」の間、燃料を供給するモードである。「Aモード」、「Dモード」、「Eモード」の順で、所定期間において、制御部104が第2供給部32に燃料を供給させる回数が多いモードである。
 「Dモード」は、燃料を「(第2基準単位あたり)X3msec」の間、供給することを「N01回」行うモードであり、「Eモード」は、燃料を「X1msec」の間、供給することを「N02回」行うモードである。回転数が回転数NE2に到達すると、第1供給部30が、「(第1基準単位あたり)X1msec」の間、燃料を供給する制御を、繰り返す。「N02」<「N01」<「N1」である。
 上述したように、制御装置100が、エンジン20が回転する前に、出口水温に応じた燃料をエンジン20に供給することにより、エンジン20を安定的に稼働させることができる。
 図11は、第1供給部30および第2供給部32が供給する燃料の時間的変化について説明するための図である。図示する例は、温度または水温に応じて所定の制御モードが設定され、設定された制御モードに基づいて処理が行われた場面を模式的に示している。図11の縦軸は供給される燃料の量を示し、横軸は時間を示している。また、第1供給部30および第2供給部32は、単位時間あたりに供給する燃料の量は一定であるものとする。
 制御部104は、エンジン20が回転を開始する前(NE0前)に、第1量(図中、Q1)の燃料を繰り返し第2供給部32に供給させる。第1量は、例えば、第1時間(T1)の間に第2供給部32が供給する量である。図示する例では、一例として第1量を4回供給しているが、温度または水温が低いほど、第2供給部32が第1量の前記燃料を供給する頻度は高くなる。例えば、第2供給部32は第1量を5回以上供給する。
 制御部104は、エンジン20が回転した後、エンジン20の回転数が設定値(NE2)に到達するまでの間、第1量よりも少ない第2量(図中、Q2)の燃料を、エンジン20の回転(図中、R)に応じて第2供給部32に供給させる。第2量は、例えば、第1時間よりも短い第2時間(T2)の間に第2供給部32が供給する量である。第1供給部30が所定の単位時間(図中、T1)において供給する燃料の量は、第2供給部32が単位時間(図中、T1)において供給する燃料の量に比べて少ない。
 このように、制御部104が、エンジン20の状態に基づいて、第1供給部30および第2供給部32を制御することにより、より安定的にエンジン20が稼働するように燃料を適切に供給することができる。
 以上説明した第2実施形態によれば、制御部104が、エンジン20が回転する前に、温度センサ60または水温センサ62の検出結果に応じた制御モードで第2供給部32に燃料を供給させ、エンジン20が回転した後であり、且つエンジン20の回転数が設定値に到達した場合に、第1供給部30に燃料を供給させることにより、エンジン20を安定的に稼働させることができる。
 <第3実施形態>
 第3実施形態について説明する。第3実施形態のエンジン制御システム1Aは、始動時および再始動時に関わらず、第1制御テーブル122および第2制御テーブル124を用いる。以下、第2実施形態との相違点を中心に説明する。
 第3実施形態の制御部104は、水温センサ62の検出結果が所定の範囲内の場合、第2制御テーブル124を参照し、水温センサ62の検出結果に応じた制御モードで第1供給部30および第2供給部32に燃料を供給させる。水温センサ62の検出結果が所定の範囲外の場合、制御部104は、第1制御テーブル122を参照し、温度センサ60の検出結果に応じた制御モードで第1供給部30および第2供給部32に燃料を供給させる。
 図12は、第3実施形態の制御装置100により実行される処理の流れを示すフローチャートである。まず、情報管理部102は、水温センサ62の検出結果を取得する(ステップS100)。次に、制御部104は、取得した水温センサ62の検出結果が水温Tem11~Tem13の範囲内であるか否かを判定する(ステップS102)。
 取得した水温センサ62の検出結果が水温Tem11~Tem13の範囲内である場合、制御部104は、第2制御テーブル124を参照し、水温センサ62の検出結果に応じた制御モードを決定する(ステップS104)。
 取得した水温センサ62の検出結果が水温Tem11~Tem13の範囲内でない場合、制御部104は、温度センサ60の検出結果を取得する(ステップS106)。次に、制御部104は、第1制御テーブル122を参照し、温度センサ60の検出結果に応じた制御モードを決定する(ステップS108)。これにより本フローチャートの1ルーチンの処理は終了する。
 以上説明した第3実施形態によれば、制御部104が、第1制御テーブル122および第2制御テーブル124を用いて、制御モードを決定し、決定した制御モードで第1供給部30および第2供給部32に燃料を供給させることにより、エンジン20を安定的に稼働させることができる。
 第1実施形態の処理と、第2実施形態または第3実施形態との処理は、統合して行われてもよい。始動時、または再始動において、第2実施形態または第3実施形態の処理が行われ、失火時に第1実施形態の処理が行われてもよい。
 以上説明した実施形態によれば、内燃機関の制御システムが、内燃機関(20)の制御システム(1)は、少なくとも第1シリンダ(22)、および第2シリンダ(24)を含むエンジンと、オン状態で前記第1シリンダ内に燃料を供給する第1供給部(30)と、オン状態で前記第1シリンダ内に燃料を供給する第2供給部(32)と、オン状態で前記第2シリンダ内に燃料を供給する第3供給部(40)と、オン状態で前記第2シリンダ内に燃料を供給する第4供給部(42)と、前記第1シリンダの内部の状態を検出する第1検出部(34)と、前記第1供給部および前記第3供給部をオン状態に制御し、前記第2供給部および第4供給部をオフ状態に制御している状態において、前記第1検出部の検出値が閾値以上に到達した場合に、前記第2供給部をオン状態に制御する制御部(100、104)とを備えることにより、エンジンを安定的に稼働させることができる。
 [ハードウェア構成]
 図13は、実施形態の制御装置100が備えるハードウェア構成の一例を示す図である。図示するように、制御装置100は、通信コントローラ100-1、CPU100-2、ワーキングメモリとして使用されるRAM(Random Access Memory)100-3、ブートプログラムなどを格納するROM(Read Only Memory)100-4、フラッシュメモリやHDD(Hard Disk Drive)などの記憶装置100-5、ドライブ装置100-6などが、内部バスあるいは専用通信線によって相互に接続された構成となっている。通信コントローラ100-1は、制御装置100以外の構成要素との通信を行う。記憶装置100-5には、CPU100-2が実行するプログラム100-5aが格納されている。このプログラムは、DMA(Direct Memory Access)コントローラ(不図示)などによってRAM100-3に展開されて、CPU100-2によって実行される。これによって、情報管理部102、および制御部104のうち一部または全部が実現される。
 上記説明した実施形態は、以下のように表現することができる。
 プログラムを記憶した記憶装置と、
 ハードウェアプロセッサと、を備え、
 前記ハードウェアプロセッサは、前記記憶装置に記憶されたプログラムを実行することにより、
 オン状態で、少なくとも第1シリンダ、および第2シリンダを含むエンジンの前記第1シリンダ内に燃料を供給する第1供給部およびオン状態で前記第2シリンダ内に燃料を供給する第3供給部をオン状態に制御し、
 オン状態で前記第1シリンダ内に燃料を供給する第2供給部およびオン状態で前記第2シリンダ内に燃料を供給する第4供給部をオフ状態に制御している状態において、前記第1シリンダの内部の状態を検出する第1検出部の検出値が閾値以上に到達した場合に、前記第2供給部をオン状態に制御する、
 ように構成されている制御装置。
 以上、本発明を実施するための形態について実施形態を用いて説明したが、本発明はこうした実施形態に何等限定されるものではなく、本発明の要旨を逸脱しない範囲内において種々の変形及び置換を加えることができる。
1、1A‥エンジン制御システム、20‥エンジン、22‥第1シリンダユニット、24‥第2シリンダユニット、30‥第1供給部、32‥第2供給部、34‥第1センサ、40‥第3供給部、42‥第4供給部、44‥第2センサ、50‥センサ群、60‥温度センサ、62‥水温センサ、100‥制御装置、102‥情報管理部、104‥制御部、120‥記憶部、122‥第1制御テーブル、124‥第2制御テーブル

Claims (12)

  1.  少なくとも第1シリンダ、および第2シリンダを含む内燃機関と、
     オン状態で前記第1シリンダ内に燃料を供給する第1供給部と、
     オン状態で前記第1シリンダ内に燃料を供給する第2供給部と、
     オン状態で前記第2シリンダ内に燃料を供給する第3供給部と、
     オン状態で前記第2シリンダ内に燃料を供給する第4供給部と、
     前記第1シリンダの内部の状態を検出する第1検出部と、
     前記第1供給部および前記第3供給部をオン状態に制御し、前記第2供給部および第4供給部をオフ状態に制御している状態において、前記第1検出部の検出値が閾値以上に到達した場合に、前記第2供給部をオン状態に制御する制御部と、
     を備える内燃機関の制御システム。
  2.  前記制御部は、前記第1検出部の検出値が閾値未満に到達した場合に、前記第2供給部をオフ状態に制御する、
     請求項1に記載の内燃機関の制御システム。
  3.  前記制御部は、前記第1検出部の検出値が閾値以上である場合、前記第1供給部をオフ状態に制御する、
     請求項1または2に記載の内燃機関の制御システム。
  4.  前記制御部は、前記第1供給部および前記第3供給部をオン状態に制御し、前記第2供給部および第4供給部をオフ状態に制御している状態において、前記第1検出部の検出値が閾値以上に到達した場合に、前記第1供給部をオフ状態に制御し、前記第1シリンダに受容されたピストンが所定回数往復した後に、前記第2供給部をオン状態に制御する、
     請求項1から3のうちいずれか1項に記載の内燃機関の制御システム。
  5.  少なくとも第1シリンダを含む内燃機関と、
     オン状態で前記第1シリンダ内に燃料を供給する第1供給部と、
     オン状態で前記第1シリンダ内に燃料を供給する第2供給部と、
     前記第1シリンダの内部の状態を検出する第1検出部と、
     前記第1供給部をオン状態に制御し、前記第2供給部をオフ状態に制御している状態において、前記第1検出部の検出値が閾値以上に到達した場合に、
      第1タイミングにおいて、前記第1供給部をオフ状態に制御した後、
      第2タイミングにおいて、前記第1供給部をオフ状態またはオン状態にした状態で前記第2供給部をオン状態に制御する第1処理を実行する制御部と、
     を備える内燃機関の制御システム。
  6.  前記制御部は、
      前記第1供給部をオン状態に制御し、前記第2供給部をオフ状態に制御している状態において、前記第1検出部の検出値が閾値以上に到達した場合に、
       前記第1タイミングにおいて、前記第1供給部をオフ状態に制御した後、
       前記第1検出部の検出値が閾値未満に到達するまでの間、前記第1供給部をオフ状態またはオン状態にした状態で前記第2供給部をオン状態に制御する第2処理を実行する、
     請求項5に記載の内燃機関の制御システム。
  7.  前記内燃機関は、更に第2シリンダを含み、
     オン状態で前記第2シリンダ内に燃料を供給する第3供給部と、
     オン状態で前記第2シリンダ内に燃料を供給する第4供給部と、を更に備え、
     前記第1供給部および前記第3供給部をオン状態に制御し、前記第2供給部および第4供給部をオフ状態に制御している状態において、前記第1検出部の検出値が閾値以上に到達した場合に、前記第1処理を実行する、
     請求項5または6に記載の内燃機関の制御システム。
  8.  前記第2シリンダの内部の状態を検出する第2検出部を備え、
     前記制御部は、
     前記第1供給部および前記第3供給部をオン状態に制御し、前記第2供給部および第4供給部をオフ状態に制御している状態において、前記第2検出部の検出値が閾値以上に到達した場合に、
      第3タイミングにおいて、前記第3供給部をオフ状態に制御した後、
      第4タイミングにおいて、前記第3供給部をオフ状態またはオン状態にした状態で前記第4供給部をオン状態に制御する第2処理を実行する、
     請求項7に記載の内燃機関の制御システム。
  9.  前記第2供給部は、前記第1供給部が供給する燃料よりも温度が高い燃料を前記第1シリンダ内に供給する、
     請求項1から8のうちいずれか1項に記載の内燃機関の制御システム。
  10.  前記内部の状態とは、失火状態である、
     請求項1から9のうちいずれか1項に記載の内燃機関の制御システム。
  11.  前記内燃機関は、2ストロークユニフローエンジンである、
     請求項1から10のうちいずれか1項に記載の内燃機関の制御システム。
  12.  コンピュータが
     オン状態で第1シリンダおよび第2シリンダを含む内燃機関の前記第1シリンダ内に燃料を供給する第1供給部、およびオン状態で前記第2シリンダ内に燃料を供給する第3供給部を、オン状態に制御し、
     オン状態で前記第1シリンダ内に燃料を供給する第2供給部およびオン状態で前記第2シリンダ内に燃料を供給する第4供給部をオフ状態に制御している状態において、前記第1シリンダの内部の状態を検出する第1検出部の検出値が閾値以上に到達した場合に、前記第2供給部をオン状態に制御する、
     内燃機関の制御方法。
PCT/JP2018/032405 2018-08-31 2018-08-31 内燃機関の制御システム、および内燃機関の制御方法 WO2020044549A1 (ja)

Priority Applications (1)

Application Number Priority Date Filing Date Title
PCT/JP2018/032405 WO2020044549A1 (ja) 2018-08-31 2018-08-31 内燃機関の制御システム、および内燃機関の制御方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/JP2018/032405 WO2020044549A1 (ja) 2018-08-31 2018-08-31 内燃機関の制御システム、および内燃機関の制御方法

Publications (1)

Publication Number Publication Date
WO2020044549A1 true WO2020044549A1 (ja) 2020-03-05

Family

ID=69642883

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2018/032405 WO2020044549A1 (ja) 2018-08-31 2018-08-31 内燃機関の制御システム、および内燃機関の制御方法

Country Status (1)

Country Link
WO (1) WO2020044549A1 (ja)

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2005201063A (ja) * 2004-01-13 2005-07-28 Toyota Motor Corp 圧縮着火内燃機関の始動制御装置、及び始動制御方法
JP2007056776A (ja) * 2005-08-25 2007-03-08 Honda Motor Co Ltd 内燃機関の制御装置
JP2010163973A (ja) * 2009-01-15 2010-07-29 Toyota Motor Corp 燃料供給システム
JP2010223039A (ja) * 2009-03-23 2010-10-07 Daihatsu Motor Co Ltd 内燃機関の過渡時失火抑制制御方法
JP2015086839A (ja) * 2013-11-01 2015-05-07 スズキ株式会社 燃料噴射装置

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2005201063A (ja) * 2004-01-13 2005-07-28 Toyota Motor Corp 圧縮着火内燃機関の始動制御装置、及び始動制御方法
JP2007056776A (ja) * 2005-08-25 2007-03-08 Honda Motor Co Ltd 内燃機関の制御装置
JP2010163973A (ja) * 2009-01-15 2010-07-29 Toyota Motor Corp 燃料供給システム
JP2010223039A (ja) * 2009-03-23 2010-10-07 Daihatsu Motor Co Ltd 内燃機関の過渡時失火抑制制御方法
JP2015086839A (ja) * 2013-11-01 2015-05-07 スズキ株式会社 燃料噴射装置

Similar Documents

Publication Publication Date Title
JP5786679B2 (ja) 圧縮自己着火式エンジンの始動制御装置
JP4506527B2 (ja) 内燃機関の制御装置
JP5741352B2 (ja) 圧縮自己着火式エンジンの始動制御装置
JP5919697B2 (ja) ディーゼルエンジンの始動制御装置
JP4853439B2 (ja) 内燃機関の制御装置
US8181625B2 (en) Method for operating an internal combustion engine
JP2009062959A (ja) ディーゼルエンジンの制御装置
US6899077B2 (en) Method for operating a multiple injection internal combustion engine in the starting phase
JP2009041539A (ja) ガソリンエンジンの制御装置
JP5168065B2 (ja) ディーゼルエンジンの制御装置及びディーゼルエンジンの制御方法
JP2010203414A (ja) 内燃機関の制御装置
JP5409538B2 (ja) 内燃機関の燃料噴射制御装置
JP4983747B2 (ja) 内燃機関
JP2007327399A (ja) 内燃機関の制御装置
WO2020044549A1 (ja) 内燃機関の制御システム、および内燃機関の制御方法
JP5935275B2 (ja) 圧縮自己着火式エンジンの始動制御装置
JP5831168B2 (ja) 圧縮自己着火式エンジンの始動制御装置
JP2010048108A (ja) 内燃機関
JP5045600B2 (ja) 内燃機関
JP6260580B2 (ja) 内燃機関の制御装置
JP2007218088A (ja) 内燃機関の制御装置、及び内燃機関の始動方法
JP5948815B2 (ja) 圧縮自己着火式エンジンの始動制御装置
JP5834699B2 (ja) 圧縮自己着火式エンジンの始動制御装置
WO2019187028A1 (ja) 内燃機関の制御システム、および内燃機関の制御方法
JP2008291697A (ja) 直噴式内燃機関の燃料噴射制御装置

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 18931294

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 18931294

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: JP