WO2019181253A1 - 純水製造装置 - Google Patents

純水製造装置 Download PDF

Info

Publication number
WO2019181253A1
WO2019181253A1 PCT/JP2019/004178 JP2019004178W WO2019181253A1 WO 2019181253 A1 WO2019181253 A1 WO 2019181253A1 JP 2019004178 W JP2019004178 W JP 2019004178W WO 2019181253 A1 WO2019181253 A1 WO 2019181253A1
Authority
WO
WIPO (PCT)
Prior art keywords
water
pure water
series
fresh water
pipe
Prior art date
Application number
PCT/JP2019/004178
Other languages
English (en)
French (fr)
Inventor
章吾 高松
和巳 塚本
Original Assignee
栗田工業株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 栗田工業株式会社 filed Critical 栗田工業株式会社
Publication of WO2019181253A1 publication Critical patent/WO2019181253A1/ja

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D61/00Processes of separation using semi-permeable membranes, e.g. dialysis, osmosis or ultrafiltration; Apparatus, accessories or auxiliary operations specially adapted therefor
    • B01D61/42Electrodialysis; Electro-osmosis ; Electro-ultrafiltration; Membrane capacitive deionization
    • B01D61/44Ion-selective electrodialysis
    • B01D61/46Apparatus therefor
    • B01D61/48Apparatus therefor having one or more compartments filled with ion-exchange material, e.g. electrodeionisation
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D61/00Processes of separation using semi-permeable membranes, e.g. dialysis, osmosis or ultrafiltration; Apparatus, accessories or auxiliary operations specially adapted therefor
    • B01D61/58Multistep processes
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B63SHIPS OR OTHER WATERBORNE VESSELS; RELATED EQUIPMENT
    • B63HMARINE PROPULSION OR STEERING
    • B63H21/00Use of propulsion power plant or units on vessels
    • B63H21/38Apparatus or methods specially adapted for use on marine vessels, for handling power plant or unit liquids, e.g. lubricants, coolants, fuels or the like
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B63SHIPS OR OTHER WATERBORNE VESSELS; RELATED EQUIPMENT
    • B63JAUXILIARIES ON VESSELS
    • B63J2/00Arrangements of ventilation, heating, cooling, or air-conditioning
    • B63J2/12Heating; Cooling
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F1/00Treatment of water, waste water, or sewage
    • C02F1/42Treatment of water, waste water, or sewage by ion-exchange
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F1/00Treatment of water, waste water, or sewage
    • C02F1/44Treatment of water, waste water, or sewage by dialysis, osmosis or reverse osmosis
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F1/00Treatment of water, waste water, or sewage
    • C02F1/46Treatment of water, waste water, or sewage by electrochemical methods
    • C02F1/469Treatment of water, waste water, or sewage by electrochemical methods by electrochemical separation, e.g. by electro-osmosis, electrodialysis, electrophoresis

Definitions

  • the present invention relates to a pure water production apparatus, and more particularly to a pure water production apparatus suitable for a pure water production apparatus in a ship.
  • Boilers in ships are used for the following purposes, for example.
  • a main boiler is installed as a steam generator for supplying superheated steam to the turbine.
  • Diesel ships need a large amount of steam for heating, cooking, hot water supply, heating, etc. for fuel, lubricating oil, cooling fresh water, and install an auxiliary boiler that supplies saturated steam to supplement the diesel engine .
  • a boiler for supplying boiler exhaust (non-combustible) with an oxygen concentration ⁇ 5% is installed as an inert gas for pushing out the volatile gas in the cargo tank.
  • low-pressure / medium-pressure boilers are mainly used as inboard boilers in any application.
  • the quality of the fresh water rarely leads to poor operation.
  • Turbine ships need to produce steam for operating steam turbines mainly in boilers, which greatly affects the number of boilers operating on fuel efficiency. Therefore, in recent years, an approach for reducing fuel consumption by reducing the number of operating boilers by using a high-pressure boiler as a boiler and operating a plurality of steam turbines with one high-pressure boiler has been studied.
  • Patent Document 2 As a pure water production apparatus for boilers, an apparatus in which a UF membrane device, an RO device, and electric membrane ions are installed in series is known (Patent Document 2).
  • An object of the present invention is to provide a pure water production apparatus capable of producing pure water with high quality stably.
  • the deionized water production apparatus of the present invention is a deionized water production apparatus having a main series for producing pure water by treating water to be treated, and is capable of accepting pure water from the main series, and is a preliminary series for producing pure water. It is characterized by having installed.
  • the pure water production apparatus is for ship use.
  • the preliminary series includes an ion exchange resin device.
  • the main series includes an RO device and an electrodeionization device that processes permeated water of the RO device.
  • the pure water production apparatus of the present invention includes a preliminary series that can accept pure water from the main series, so that when the function of the main series deteriorates, finishing can be performed in the preliminary series.
  • pure water can be produced even by the spare series alone, and therefore, the production of pure water can be continued using the spare series as a backup immediately when the main series degrades or breaks down.
  • a ship equipped with the pure water production apparatus of the present invention can navigate to the next port of call without repairing the failure of this series even if the main series of the pure water production equipment breaks down.
  • FIG. 1 is a configuration diagram of a pure water production apparatus according to an embodiment.
  • FIG. 2 is a control flowchart of the pure water manufacturing apparatus according to the embodiment.
  • FIG. 1 shows a pure water production apparatus according to an embodiment.
  • Fresh water obtained by distilling seawater is introduced into the fresh water tank 1.
  • a part of the fresh water in the fresh water tank 1 is used as water supply for a low pressure boiler or an intermediate pressure boiler.
  • Fresh water in the fresh water tank 1 is supplied to an RO (reverse osmosis) device 6 via a pipe 2, a valve 3, a feed water pump 4 and an MF (microfiltration) membrane device 5 constituting the main series 10.
  • the concentrated water of the RO device 6 is returned to the fresh water tank 1 through the pipe 7, and a part thereof is discharged out of the system through the blow pipe 8 and the blow valve 9 branched from the pipe 7.
  • the electrodeionization apparatus 11 includes a cathode and an anode, a plurality of cation exchange membranes and anion exchange membranes arranged between the cathode and anode, and a concentration formed between these membranes.
  • the RO permeated water is deionized while passing through the desalting chamber to become pure water.
  • a part of this pure water is taken out through the pipe 30, the valve 31, the pipe 12 and the valve 13, and used as water supply for a high-pressure boiler or the like.
  • the remaining pure water is returned to the fresh water tank 1 via the pipe 15.
  • the concentrated water of the electrodeionization apparatus 11 is returned to the fresh water tank 1 through the pipe 16.
  • the quality of pure water (such as specific resistance or electrical conductivity) from the electrodeionization device 11 is measured by a sensor such as a resistivity meter or an electric conductivity meter, and the flow rate of pure water from the electrodeionization device 11 is a flow rate. Measurement is performed by sensors, and detection signals from these sensors are input to a controller (not shown). The controller monitors the quality and quantity of pure water during the operation of the main series 10 as described above, and as shown in FIG.
  • At least one of the quality and quantity of water is below a set value for a predetermined period or longer (water quality If the water quality is poor or the amount of water is small), it is determined that some abnormality has occurred in the main series 10, and the management department of the pure water production apparatus is notified of the abnormality using a satellite communication system or the like, and the spare series 20 Start the operation.
  • pure water from the electrodeionization apparatus 11 is passed through the MF membrane device 25 by the pipe 33 branched from the pipe 30, the valve 34, the pipes 35 and 23, and the water supply pump 24, and the MF filtered water is ionized. Pure water is produced by passing water through the exchange resin device 26 and performing deionization treatment. Pure water from the preliminary line 20 is returned from the pipe 27 to the fresh water tank 1 through the valve 29A and the pipes 12 and 15, and when used, the valve 13 is opened and a part is taken out through the valve 13.
  • the fresh water from the fresh water tank 1 can be directly introduced into the standby system 20 by the pipe 21 and the valve 22.
  • the amount of pure water from the main series 10 is sufficient, but when the water quality is poor (less than the set value), the main series 10 and the standby series 20 in series (step S4 in FIG. 2).
  • the valves 31, 22, 29B are closed, the valves 3, 34, 29A are opened, the valve 13 is opened only during use, and the pump 24 is operated. Pure water from the electrodeionization apparatus 11 is returned to the fresh water tank 1 via the flow pipe 15 in the order of the pipes 30, 35, 23, the pump 24, the MF membrane apparatus 25, the ion exchange resin apparatus 26, the pipes 27, 12. In use, a part is taken out through the valve 13.
  • the water quality deterioration of the pure water from the main series 10 can be compensated by the finishing process in the preliminary series 20.
  • the main series 10 and the spare series 20 are as shown in steps S5 and S6 of FIG. Are operated in parallel.
  • the valves 3, 31, 22, 29A are opened, the valves 34, 29B are closed, the valve 13 is opened only during use, and the pump 24 is operated.
  • the fresh water from the fresh water tank 1 is processed in both the main series 10 and the standby series 20 to produce pure water, and the pure water from each series merges in the pipe 12 and passes through the pipe 15 to the fresh water tank. 1 and is partially removed via the valve 13 when in use.
  • the main series 10 and the standby series 20 are installed so that they can flow both in series and in parallel, so that even if a trouble occurs in the main series 10, pure water is stably produced. be able to.
  • pure water is stably supplied to the high-pressure boiler, the ship can be navigated to the next port of call.
  • the pipe 21 for supplying the fresh water in the fresh water tank 1 to the standby system 20 is directly connected to the fresh water tank 1, but the pipe 21 may be branched from the pipe 2.
  • the MF membrane device 5 is used, but a UF membrane device may be used. These membrane devices may be omitted.
  • FIG. 1 only one stage of the RO device 6 is shown, but it may be installed in two or more stages.
  • the ion-exchange resin device 26 is space-saving; has a fast start-up; can withstand fluctuations in the quality of raw water; and has features such as simple and unnecessary maintenance work.
  • the ion exchange resin apparatus has a shorter life until breakthrough compared to an electrodeionization apparatus or the like, but it is only necessary to stably demineralize for a short period until the next port of call. Can be used.
  • the ion exchange resin apparatus only one tower or two towers may be arranged in series. In the case of two towers, various combinations such as cation exchange ⁇ anion exchange, anion exchange ⁇ cation exchange, anion / cation mixture ⁇ anion / cation mixture can be employed.
  • the cation exchange resin and anion exchange resin are packed in the tower in a layered state, and the pipe is divided into the upper and lower chambers with horizontal water shielding plates in the tower and drained from the upper chamber and introduced into the lower chamber A two-stage treatment of cation exchange / anion exchange may be performed in one tower, such as a method of providing a cation.
  • the preliminary line 20 is basically not used for desalination and may be stopped in the immersed state. It is preferable that water is circulated in the standby system 20 by using the pipe 28 so that the water can be collected in standby (valves 22, 29 A, 34 are closed, valves 3, 31, 29 B are opened, valve 13 is closed). Is open only during use.) In this case, since there is a concern about an increase in the water temperature (over 50 ° C.) in the preliminary system and accumulation of organic substances eluted from the ion exchange resin, the water temperature and water quality are kept within a predetermined range by, for example, periodically blowing out of the system. It is preferable to control so that it becomes. In addition, when the return water from the pipe 28 is returned to the fresh water tank 1, it takes in water in which atmospheric CO 2 is dissolved, and a load is applied to the ion exchange resin. Therefore, it is preferably returned to the pipe 23.
  • the flow path may be switched with a three-way valve.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Water Supply & Treatment (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Environmental & Geological Engineering (AREA)
  • Hydrology & Water Resources (AREA)
  • Organic Chemistry (AREA)
  • Combustion & Propulsion (AREA)
  • Mechanical Engineering (AREA)
  • Ocean & Marine Engineering (AREA)
  • Health & Medical Sciences (AREA)
  • Analytical Chemistry (AREA)
  • Molecular Biology (AREA)
  • Electrochemistry (AREA)
  • General Chemical & Material Sciences (AREA)
  • Urology & Nephrology (AREA)
  • Separation Using Semi-Permeable Membranes (AREA)
  • Water Treatment By Electricity Or Magnetism (AREA)
  • Treatment Of Water By Ion Exchange (AREA)

Abstract

淡水タンク1内の淡水の一部は、低圧ボイラ又は中圧ボイラの給水として用いられる。淡水タンク1内の淡水は、主系列10を構成する配管2、バルブ3、給水ポンプ4及びMF膜装置5を介してRO装置6へ供給される。RO装置6の透過水は、電気脱イオン装置11に供給される。主系列10からの純水の水量又は水質に応じて予備系列20を作動させ、電気脱イオン装置11からの純水又は淡水タンク1からの淡水をMF膜装置25及びイオン交換樹脂装置26に通水する。

Description

純水製造装置
 本発明は、純水製造装置に係り、特に船舶内の純水製造装置に好適な純水製造装置に関する。
 海洋を航行する船舶では、飲料水や生活用水等の水を確保することが重要となる。そこで船舶には、海水から蒸留等により淡水を造水する造水装置が搭載されていることが多い。造水装置で製造した淡水は飲料水等のほかボイラ給水としても使用されることがある(特許文献1)。
 船内におけるボイラは例えば以下のような用途で用いられている。
(1) タービン船では過熱蒸気をタービンに供給する蒸気発生装置として主ボイラを設置する。
(2) ディーゼル船では、燃料、潤滑油、冷却清水の加熱、調理、給湯、暖房などのために大量の蒸気が必要であり、ディーゼル機関を補うために飽和蒸気を供給する補助ボイラを設置する。
(3) タンカー船では、カーゴタンク内の揮発性ガスを押し出すためのイナートガスとして酸素濃度≦5%のボイラ排気(不燃性)を供給するためのボイラを設置する。
 従来はいずれの用途においても船内ボイラとして低圧・中圧ボイラが主に用いられている。この場合は、ボイラ給水として淡水を用いたときに淡水の水質が運転不良につながることは少ない。
 タービン船は蒸気タービンを稼働するための蒸気を主にボイラで製造する必要があり燃費へのボイラ稼働台数の影響が大きい。そこで近年、ボイラとして高圧ボイラを使用して1台の高圧ボイラで複数の蒸気タービンを稼働することで、ボイラ稼働台数を削減して燃費の改善を図る取組みが検討されている。
 船内ボイラとして高圧ボイラを使用する場合は、ボイラ給水が高温であるため水質の悪さ(例えば腐食性)がボイラの運転不良に繋がりやすい。ボイラが運転不良となったときの影響が甚大であることから、ボイラ給水の水質を淡水からさらに高度化し、脱塩処理した純水をボイラ給水として使用することが望ましい。
 ボイラ用純水製造装置として、UF膜装置とRO装置と電気膜イオンとを直列に設置したものが知られている(特許文献2)。
特開2007-132227号公報 特開2003-136065号公報
 通常の場合、船内には交換部品が保管されていないので、航行中に純水製造装置が部品の劣化、損傷、閉塞等によって運転不良になっても、部品を交換できず、運転不良を解消できない。
 本発明は、安定して高い水質の純水を製造することができる純水製造装置を提供することを目的とする。
 本発明の純水製造装置は、被処理水を処理して純水を製造する主系列を有する純水製造装置において、該主系列からの純水を受け入れ可能に、純水製造用の予備系列を設置したことを特徴とする。
 本発明の一態様では、前被処理水を、前記主系列を経ることなく前記予備系列に導入する手段を備える。
 本発明の一態様の純水製造装置は、船舶搭載用である。
 本発明の一態様では、前記予備系列はイオン交換樹脂装置を有する。
 本発明の一態様では、前記主系列は、RO装置及び該RO装置の透過水を処理する電気脱イオン装置を有する。
 本発明の純水製造装置は、主系列からの純水を受け入れ可能な予備系列を備えるので、主系列が機能低下したときには、予備系列で仕上げ処理することができる。
 本発明の一態様では、予備系列単独でも純水製造可能であるので、主系列が機能低下したり故障したときに直ちにバックアップとして予備系列により純水製造を続行することができる。
 本発明の純水製造装置を搭載した船舶は、純水製造装置の主系列が故障したときでも、本系列の故障を修理することなく、次の寄港地まで航行できる。
図1は実施の形態に係る純水製造装置の構成図である。 図2は実施の形態に係る純水製造装置の制御フローチャートである。
 図1は実施の形態に係る純水製造装置を示すものである。
 海水を蒸留して得られた淡水が淡水タンク1内に導入される。淡水タンク1内の淡水の一部は、低圧ボイラ又は中圧ボイラの給水として用いられる。淡水タンク1内の淡水は、主系列10を構成する配管2、バルブ3、給水ポンプ4及びMF(精密濾過)膜装置5を介してRO(逆浸透)装置6へ供給される。RO装置6の濃縮水は、配管7を介して淡水タンク1に返送され、その一部は配管7から分岐したブロー配管8及びブロー弁9を介して系外に排出される。
 RO装置6の透過水は、電気脱イオン装置11に供給される。電気脱イオン装置11は、特許文献2の通り、陰極及び陽極と、該陰極と陽極の間に配列された複数のカチオン交換膜及びアニオン交換膜と、これらの膜同士の間に形成された濃縮室及び脱塩室と、該脱塩室に充填されたイオン交換体と、該陽極と陰極との間に電圧を印加する電源装置とを有する。RO透過水は、該脱塩室を通過する間に脱イオン処理され、純水となる。この純水は、配管30、バルブ31、配管12及びバルブ13を介して一部が取り出され、高圧ボイラ等の給水として使用される。純水の残部は、配管15を介して淡水タンク1へ返送される。電気脱イオン装置11の濃縮水は配管16を介して淡水タンク1へ返送される。
 以上が主系列10である。
 電気脱イオン装置11からの純水の水質(比抵抗又は電気伝導度など)が比抵抗計、電気伝導度計などのセンサで計測されると共に、電気脱イオン装置11からの純水流量が流量センサで計測され、これらのセンサの検出信号が制御器(図示略)に入力される。該制御器は、以上の主系列10の運転の間中、純水の水質及び水量を監視しており、図2の通り、水質及び水量の少なくとも一方が所定期間以上、設定値を下回る(水質が悪い又は水量が少ない)場合には、主系列10に何らかの異常が生じたものと判断し、純水製造装置の管理部門に衛星通信システム等を利用して異常を通知すると共に、予備系列20の作動を開始させる。
 予備系列20は、電気脱イオン装置11からの純水を、配管30から分岐した配管33、バルブ34、配管35,23及び給水ポンプ24によってMF膜装置25に通水し、MF濾過水をイオン交換樹脂装置26に通水して脱イオン処理して純水を製造するよう構成されている。予備系列20からの純水は配管27からバルブ29A、前記配管12,15を介して淡水タンク1へ返送され、使用時はバルブ13を開きバルブ13を介して一部が取り出される。
 この実施の形態では、淡水タンク1からの淡水を配管21及びバルブ22によって直接に予備系列20へ導入可能としている。
 主系列10からの純水の水量及び水質が設定値以上(水量が多く、水質が良好)である場合には、主系列10のみによって純水を製造する(図2のステップS1,S2,S3)。この場合、バルブ3,31,29Bは開、バルブ34,22,29Aは閉、バルブ13は使用時のみ開とされる。
 RO膜装置6や電気脱イオン装置11の劣化等に起因して、主系列10からの純水の水量は十分であるが、水質が悪い(設定値未満)場合は、主系列10と予備系列20とを直列運転する(図2のステップS4)。この場合、バルブ31,22,29Bは閉、バルブ3,34,29Aは開、バルブ13は使用時のみ開とされ、ポンプ24が作動される。電気脱イオン装置11からの純水は、配管30,35,23、ポンプ24、MF膜装置25、イオン交換樹脂装置26、配管27,12の順に流れ配管15を介して淡水タンク1へ返送され、使用時はバルブ13を介して一部が取り出される。
 このように、主系列10からの純水の水質低下を予備系列20での仕上げ処理により補うことができる。
 主系列10からの純水の水量が不足するが、該純水の水質が良好(設定値以上)である場合には、図2のステップS5,S6の通り、主系列10と予備系列20とを並列運転する。この場合、バルブ3,31,22,29Aは開、バルブ34,29Bは閉、バルブ13は使用時のみ開とされ、ポンプ24が作動される。これにより、淡水タンク1からの淡水は主系列10及び予備系列20の双方で処理されてそれぞれ純水が製造され、各系列からの純水は配管12で合流して配管15を介して淡水タンク1へ返送され、使用時はバルブ13を介して一部が取り出される。
 このように、主系列10からの純水の不足量を予備系列20によって補うことができる。
 主系列10からの純水の水量及び水質のいずれもが設定値未満であるときには、図2のステップS7の通り、予備系列20によってのみ純水を製造する。この場合、バルブ3,31,34,29Bは閉、ポンプ4は停止、バルブ22,29Aは開、ポンプ24は作動される。これにより、淡水タンク1内の淡水は、予備系列20によってのみ処理され、得られた純水が配管27,12の順に流れ配管15を介して淡水タンク1へ返送され、使用時はバルブ13を介して一部が取り出される。
 このように、主系列10と予備系列20とを設置し、直列にも並列にも流すことができるようにしているので、主系列10にトラブルが生じた場合でも純水を安定して製造することができる。また、高圧ボイラに純水が安定して供給されるので、船舶を次の寄港地まで航行させることができる。
 上記実施の形態では、淡水タンク1内の淡水を予備系列20へ供給する配管21は淡水タンク1に直接に接続されているが、該配管21は配管2から分岐されてもよい。
 上記実施の形態ではMF膜装置5が用いられているが、UF膜装置が用いられてもよい。これらの膜装置は省略されてもよい。図1では、RO装置6は1段だけ図示されているが、2段以上に設置されてもよい。
 イオン交換樹脂装置26は、省スペースである;立ち上がりが早い;原水水質の変動に耐えられる;メンテナンス作業が簡易または不要である等の特徴を有している。イオン交換樹脂装置は、電気脱イオン装置等に比べて、破過までの寿命が短いが、次の寄港地まで短期間だけ安定して脱塩処理できればよいので、予備系列20にイオン交換樹脂装置を用いることができる。特に装置の単純化による省スペース化を図るため非再生型のイオン交換樹脂装置とすることが好ましい。
 イオン交換樹脂装置としては1塔のみ、または2塔直列で配置すればよい。2塔の場合、カチオン交換→アニオン交換、アニオン交換→カチオン交換、アニオン・カチオン混合→アニオン・カチオン混合など各種の組み合わせを採用することができる。また、塔内に層状態でカチオン交換樹脂とアニオン交換樹脂を充填する方式や、塔内に水平遮水板で上室・下室に区分すると共に上室から排水して下室に導入する配管を設ける方式など1塔でカチオン交換・アニオン交換の2段処理を行うようにしてもよい。
 より安定処理が求められる場合には、図1の通り予備系列においてMF膜装置25やUF膜装置などにより膜濾過処理を行うことが好ましい。
 主系列10とは異なる除去メカニズムの予備系列20を設置することにより、主系列と同じ原因でのトラブルを回避できるというメリットもある。
 主系列10が正常運転している間は、予備系列20は基本的に脱塩には使用せず、浸漬状態で通水停止してもよいが、菌の発生を抑制して、切替え後にすぐに採水できるように、配管28を用いて予備系列20内で水を循環させてスタンバイしておくことが好ましい(バルブ22,29A,34を閉、バルブ3,31,29Bを開、バルブ13は使用時のみ開とする。)。この場合、予備系列内の水温の上昇(50℃超)やイオン交換樹脂からの溶出有機物の蓄積が懸念されるため、定期的に系外にブローするなどして水温や水質が所定範囲内になるよう制御するのが好ましい。また、配管28からの戻り水を淡水タンク1に戻すと、大気中のCOが溶解した水を取込むことになりイオン交換樹脂に負荷がかかるので、配管23に返送するのが好ましい。
 なお、流路の切り替えは三方弁で行うようにしてもよい。
 本発明を特定の態様を用いて詳細に説明したが、本発明の意図と範囲を離れることなく様々な変更が可能であることは当業者に明らかである。
 本出願は、2018年3月23日付で出願された日本特許出願2018-056366に基づいており、その全体が引用により援用される。
 1 淡水タンク
 6 RO装置
 10 主系列
 11 電気脱イオン装置
 20 予備系列
 26 イオン交換樹脂装置

Claims (5)

  1.  被処理水を処理して純水を製造する主系列を有する純水製造装置において、該主系列からの純水を受け入れ可能に、純水製造用の予備系列を設置したことを特徴とする純水製造装置。
  2.  前記被処理水を、前記主系列を経ることなく前記予備系列に導入する手段を備えることを特徴とする純水製造装置。
  3.  船舶搭載用である請求項1又は2の純水製造装置。
  4.  前記予備系列はイオン交換樹脂装置を有する請求項1~3のいずれかの純水製造装置。
  5.  前記主系列は、RO装置及び該RO装置の透過水を処理する電気脱イオン装置を有する請求項1~4のいずれかの純水製造装置。
PCT/JP2019/004178 2018-03-23 2019-02-06 純水製造装置 WO2019181253A1 (ja)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2018056366A JP6575626B1 (ja) 2018-03-23 2018-03-23 純水製造装置
JP2018-056366 2018-03-23

Publications (1)

Publication Number Publication Date
WO2019181253A1 true WO2019181253A1 (ja) 2019-09-26

Family

ID=67982819

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2019/004178 WO2019181253A1 (ja) 2018-03-23 2019-02-06 純水製造装置

Country Status (3)

Country Link
JP (1) JP6575626B1 (ja)
TW (1) TW201940221A (ja)
WO (1) WO2019181253A1 (ja)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP7354756B2 (ja) * 2019-10-17 2023-10-03 栗田工業株式会社 水処理方法

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS60187383A (ja) * 1984-03-05 1985-09-24 Kansai Electric Power Co Inc:The 生物付着防止方法
JP2000167593A (ja) * 1998-12-03 2000-06-20 Kurita Water Ind Ltd 超純水製造装置の運転方法及び超純水製造装置
JP2003312588A (ja) * 2002-04-26 2003-11-06 Kawasaki Heavy Ind Ltd 純水製造装置を備えた舶用ガスタービンシステム
JP2005288410A (ja) * 2004-04-05 2005-10-20 Japan Organo Co Ltd 電子部品部材類製造装置用水処理システム
JP2006502049A (ja) * 2002-10-08 2006-01-19 ウォーター スタンダード カンパニー エルエルシー 移動可能な淡水化設備及びシステム並びに淡水化水の製造方法
JP2006187719A (ja) * 2005-01-06 2006-07-20 Toray Ind Inc 淡水製造装置の運転方法および淡水製造装置
JP2016087500A (ja) * 2014-10-30 2016-05-23 株式会社日立製作所 逆浸透処理システムおよび逆浸透処理方法

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS60187383A (ja) * 1984-03-05 1985-09-24 Kansai Electric Power Co Inc:The 生物付着防止方法
JP2000167593A (ja) * 1998-12-03 2000-06-20 Kurita Water Ind Ltd 超純水製造装置の運転方法及び超純水製造装置
JP2003312588A (ja) * 2002-04-26 2003-11-06 Kawasaki Heavy Ind Ltd 純水製造装置を備えた舶用ガスタービンシステム
JP2006502049A (ja) * 2002-10-08 2006-01-19 ウォーター スタンダード カンパニー エルエルシー 移動可能な淡水化設備及びシステム並びに淡水化水の製造方法
JP2005288410A (ja) * 2004-04-05 2005-10-20 Japan Organo Co Ltd 電子部品部材類製造装置用水処理システム
JP2006187719A (ja) * 2005-01-06 2006-07-20 Toray Ind Inc 淡水製造装置の運転方法および淡水製造装置
JP2016087500A (ja) * 2014-10-30 2016-05-23 株式会社日立製作所 逆浸透処理システムおよび逆浸透処理方法

Also Published As

Publication number Publication date
JP6575626B1 (ja) 2019-09-18
JP2019166472A (ja) 2019-10-03
TW201940221A (zh) 2019-10-16

Similar Documents

Publication Publication Date Title
WO2019181252A1 (ja) 水処理装置
DK2623640T3 (en) Method of operation of an electrolyzer
JP4449204B2 (ja) ボイラ給水処理装置及びボイラ給水の処理方法
WO2019181253A1 (ja) 純水製造装置
Helal Hybridization—a new trend in desalination
JP6562105B1 (ja) 純水製造装置
JP5738722B2 (ja) プラント水処理装置、電気脱塩装置の制御方法および蒸気タービンプラント
CN113015702B (zh) 纯水制造装置及其运转方法
JP4970064B2 (ja) 水処理装置
WO2019181254A1 (ja) 純水製造装置
JP7263730B2 (ja) ボイラ水処理装置および処理方法
JP5039569B2 (ja) 加圧水型原子力発電所の補給水供給設備
JP2009162514A (ja) 加圧水型原子力発電所の2次系系統水浄化システム
JP6021739B2 (ja) ボイラ給水系統システム
JP5013062B2 (ja) ボイラ給水用補給水の供給方法
JP5969355B2 (ja) 核燃料冷却方法及び核燃料冷却装置
JP2005296944A (ja) 水質改質システム
JP3707940B2 (ja) 復水処理システムおよび復水処理方法
JP4692930B2 (ja) 台数制御システム
TW201901084A (zh) 鍋爐水處理裝置及處理方法
KR20180011903A (ko) 오프쇼어용 다단 청수 제조 장치
CN220582406U (zh) 扩容器排水回收系统
JP6720428B1 (ja) 純水製造装置およびその運転方法
EP4339337A1 (en) Hydrogen production system and hydrogen production method
KR20160051115A (ko) 복수 탈염 시스템 및 방법

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 19772049

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 19772049

Country of ref document: EP

Kind code of ref document: A1