WO2019180854A1 - 多接合型太陽電池モジュール及び太陽光発電システム - Google Patents

多接合型太陽電池モジュール及び太陽光発電システム Download PDF

Info

Publication number
WO2019180854A1
WO2019180854A1 PCT/JP2018/011220 JP2018011220W WO2019180854A1 WO 2019180854 A1 WO2019180854 A1 WO 2019180854A1 JP 2018011220 W JP2018011220 W JP 2018011220W WO 2019180854 A1 WO2019180854 A1 WO 2019180854A1
Authority
WO
WIPO (PCT)
Prior art keywords
solar cell
cell module
adhesive layer
insulating film
junction
Prior art date
Application number
PCT/JP2018/011220
Other languages
English (en)
French (fr)
Inventor
祐弥 保西
山崎 六月
聡一郎 芝崎
紗良 吉尾
中川 直之
山本 和重
Original Assignee
株式会社 東芝
東芝エネルギーシステムズ株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 株式会社 東芝, 東芝エネルギーシステムズ株式会社 filed Critical 株式会社 東芝
Priority to JP2019537012A priority Critical patent/JP6759464B2/ja
Priority to PCT/JP2018/011220 priority patent/WO2019180854A1/ja
Priority to US16/563,993 priority patent/US11430903B2/en
Publication of WO2019180854A1 publication Critical patent/WO2019180854A1/ja

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/04Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof adapted as photovoltaic [PV] conversion devices
    • H01L31/06Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof adapted as photovoltaic [PV] conversion devices characterised by at least one potential-jump barrier or surface barrier
    • H01L31/072Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof adapted as photovoltaic [PV] conversion devices characterised by at least one potential-jump barrier or surface barrier the potential barriers being only of the PN heterojunction type
    • H01L31/0725Multiple junction or tandem solar cells
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L25/00Assemblies consisting of a plurality of individual semiconductor or other solid state devices ; Multistep manufacturing processes thereof
    • H01L25/03Assemblies consisting of a plurality of individual semiconductor or other solid state devices ; Multistep manufacturing processes thereof all the devices being of a type provided for in the same subgroup of groups H01L27/00 - H01L33/00, or in a single subclass of H10K, H10N, e.g. assemblies of rectifier diodes
    • H01L25/04Assemblies consisting of a plurality of individual semiconductor or other solid state devices ; Multistep manufacturing processes thereof all the devices being of a type provided for in the same subgroup of groups H01L27/00 - H01L33/00, or in a single subclass of H10K, H10N, e.g. assemblies of rectifier diodes the devices not having separate containers
    • H01L25/041Assemblies consisting of a plurality of individual semiconductor or other solid state devices ; Multistep manufacturing processes thereof all the devices being of a type provided for in the same subgroup of groups H01L27/00 - H01L33/00, or in a single subclass of H10K, H10N, e.g. assemblies of rectifier diodes the devices not having separate containers the devices being of a type provided for in group H01L31/00
    • H01L25/043Stacked arrangements of devices
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/02Details
    • H01L31/0224Electrodes
    • H01L31/022408Electrodes for devices characterised by at least one potential jump barrier or surface barrier
    • H01L31/022425Electrodes for devices characterised by at least one potential jump barrier or surface barrier for solar cells
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/02Details
    • H01L31/0224Electrodes
    • H01L31/022466Electrodes made of transparent conductive layers, e.g. TCO, ITO layers
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/04Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof adapted as photovoltaic [PV] conversion devices
    • H01L31/042PV modules or arrays of single PV cells
    • H01L31/048Encapsulation of modules
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/04Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof adapted as photovoltaic [PV] conversion devices
    • H01L31/06Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof adapted as photovoltaic [PV] conversion devices characterised by at least one potential-jump barrier or surface barrier
    • H01L31/072Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof adapted as photovoltaic [PV] conversion devices characterised by at least one potential-jump barrier or surface barrier the potential barriers being only of the PN heterojunction type
    • H01L31/074Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof adapted as photovoltaic [PV] conversion devices characterised by at least one potential-jump barrier or surface barrier the potential barriers being only of the PN heterojunction type comprising a heterojunction with an element of Group IV of the Periodic System, e.g. ITO/Si, GaAs/Si or CdTe/Si solar cells
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/04Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof adapted as photovoltaic [PV] conversion devices
    • H01L31/06Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof adapted as photovoltaic [PV] conversion devices characterised by at least one potential-jump barrier or surface barrier
    • H01L31/072Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof adapted as photovoltaic [PV] conversion devices characterised by at least one potential-jump barrier or surface barrier the potential barriers being only of the PN heterojunction type
    • H01L31/0745Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof adapted as photovoltaic [PV] conversion devices characterised by at least one potential-jump barrier or surface barrier the potential barriers being only of the PN heterojunction type comprising a AIVBIV heterojunction, e.g. Si/Ge, SiGe/Si or Si/SiC solar cells
    • H01L31/0747Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof adapted as photovoltaic [PV] conversion devices characterised by at least one potential-jump barrier or surface barrier the potential barriers being only of the PN heterojunction type comprising a AIVBIV heterojunction, e.g. Si/Ge, SiGe/Si or Si/SiC solar cells comprising a heterojunction of crystalline and amorphous materials, e.g. heterojunction with intrinsic thin layer or HIT® solar cells; solar cells

Definitions

  • Embodiments of the present invention relate to a multi-junction solar cell module and a solar power generation system.
  • protective glass is used to protect the power generation element of the solar cell module.
  • the protective glass and the power generation element are bonded by an adhesive, but the adhesive deteriorates with long-term use. The deterioration of the adhesive may cause corrosion of the wiring of the solar cell module. Deterioration of the adhesive is significant under high temperature and high humidity conditions, but in a solar cell module that is not a multi-junction type, it leads to a gradual decrease in power generation.
  • a multi-junction solar cell module a plurality of solar cell modules are bonded together. If the surface of the solar cell module to be bonded is a substrate such as glass, both modules will not short-circuit even if the bonding layer to be bonded deteriorates. However, a reduction in weight is required for the solar cell module.
  • a solar cell module having a solar cell using a compound layer having a chalcopyrite structure as a light absorption layer is used as a top cell, and Si is used as a light absorption layer.
  • the top cell substrate is two. As the substrate, a glass substrate is used.
  • the weight of the solar cell module increases.
  • the top cell is a superstrate type
  • the number of substrates can be reduced by arranging the substrate used in manufacturing the top cell on the light incident side.
  • one of the electrodes of the top cell faces the bottom cell side, and the top cell and the bottom cell are likely to be short-circuited only by bonding with the adhesive layer due to aging of the adhesive layer.
  • the output of the module is greatly reduced, which may cause a trouble of the entire apparatus.
  • Embodiments of the present invention provide a multi-junction solar cell module having excellent durability and a solar power generation system using the multi-junction solar cell module.
  • the multi-junction solar cell of the embodiment is disposed on the light incident side, and includes a plurality of first solar cells and a first solar cell module that electrically connects the plurality of first solar cells.
  • An insulating film is provided on the surface of the second connection wiring facing the adhesive layer so as to be in direct contact with the surface of the adhesive layer facing the second solar cell module.
  • the first solar cell module includes a substrate on the light incident side. The substrate is a single substrate of the first solar cell module.
  • the second connection wiring is not in contact with the adhesive layer.
  • the junction type solar cell module of the embodiment includes a first solar cell module and a second solar cell module.
  • FIG. 1 shows a cross-sectional view of the multi-junction solar cell module of the embodiment.
  • a multi-junction solar cell module 100 shown in FIG. 1 includes a first solar cell module 10, a second solar cell module 20, an adhesive layer 30, and an insulating film 40. In FIG. 1, it is a multi-junction solar cell module in which two solar cell modules are joined.
  • a multi-junction solar cell module in which three or more solar cell modules are joined is also included in the embodiment.
  • the first solar cell module 10 includes a plurality of first solar cells 11.
  • the first solar cell module 10 is disposed on the light incident side in the multi-junction solar cell module 100.
  • the first solar cell module 10 generates a power by absorbing a part of the incident light.
  • a single substrate in the first solar cell module 10 is disposed on the light incident side of the first solar cell module 10, and a substrate of the first solar cell module 10 is disposed on the second solar cell module 40 side.
  • first solar cell 11 of the first solar cell module 10 a substrate, a first electrode, a light absorption layer, and a second electrode are arranged in order from the light incident side. There may be an intermediate layer that is not specified between these layers.
  • the plurality of first solar cells 11 are physically arranged in parallel with the same electrical polarity.
  • the plurality of first solar cells 11 are electrically connected by the first connection wiring.
  • the plurality of first solar cells 11 are electrically connected in series, in parallel, or in series and in parallel.
  • the first electrode and the second electrode of the adjacent first solar cells 11 are connected and the first solar cells 11 are electrically connected in series
  • the electrode can constitute the first connection wiring.
  • the second electrode and the second electrode of the adjacent first solar cells 11 are connected and the first solar cells 11 are electrically connected in parallel
  • the second electrode constitutes the first connection wiring. can do.
  • this conductive layer can comprise a 1st connection wiring.
  • the first connection wiring is a conductive member included in the outermost periphery of the conductive members included in the first solar battery cell 11.
  • the first connection wiring of the first solar battery cell 11 is arranged at a position closest to the second connection wiring of the second solar battery cell 21.
  • Another conductive layer is, for example, a bus bar.
  • the band gap of the light absorption layer of the first solar battery cell 11 is preferably wider than the band gap of the light absorption layer of the second solar battery cell 21.
  • the light absorption layer of the first solar cell 11 is preferably a wide band gap.
  • the band gap of the first solar cell 11 is preferably 1.4 eV or more and 3.0 eV or less.
  • the light absorption layer of the first solar cell 11 includes a cuprous oxide thin film, a semiconductor film having a chalcopyrite structure, a semiconductor film having a stannite structure, a semiconductor film having a kesterite structure, an organic thin film, and a perovskite thin film. 1 type chosen from the group which consists of.
  • Cu (In, Ga) (Se, S) 2 Cu (In, Ga) Se 2 , Cu (In, Ga) S 2 , CuGa (Se, S) 2 , CuGaSe 2 , CuGaS 2 or the like.
  • the light absorption layer of the first solar cell 11 includes a p-type layer and an n-type layer. Further, the first solar cell 11 may be a homojunction solar cell or a heterojunction solar cell.
  • the first electrode and the second electrode, which are the electrodes of the first solar cell, are preferably light transmissive electrodes.
  • the light transmissive electrode include indium tin oxide (ITO), aluminum-doped zinc oxide (AZO), boron-doped zinc oxide (BZO), and gallium-doped.
  • Zinc oxide Gaallium-doped Zinc Oxide: GZO
  • AGO Aluminum Gallium Oxide
  • An electrode in which a tin oxide film or the like is laminated on the transparent conductive film is also preferable as the electrode of the first solar battery cell 11.
  • the second solar cell module 20 includes a plurality of second solar cells 21.
  • the second solar cell module 20 receives the light that has passed through the first solar cell module 10 and generates power.
  • the plurality of second solar cells 21 are electrically connected by the second connection wiring.
  • the plurality of second solar cells 11 are electrically connected in series, in parallel, or in series and in parallel.
  • the 1st electrode and 2nd electrode of the adjacent 2nd photovoltaic cell 21 are electrically connected, and the 2nd photovoltaic cell 21 is electrically connected in series.
  • the first electrode and the second electrode, or the first electrode can constitute the second connection wiring.
  • a 1st electrode comprises 2nd connection wiring. can do.
  • this another conductive layer may comprise a 2nd connection wiring.
  • the second connection wiring is a conductive member included in the outermost periphery of the conductive members included in the second solar cell 21.
  • the second connection wiring of the second solar battery cell 11 is arranged at a position closest to the first connection wiring of the first solar battery cell 21.
  • Another conductive layer is, for example, a bus bar.
  • the band gap of the light absorption layer of the second solar cell 21 is preferably narrower than the band gap of the light absorption layer of the first solar cell 11.
  • the light absorption layer of the second solar cell 21 is preferably a narrow band gap.
  • the band of the second solar battery cell 21 is preferably 1.0 eV or more and 1.4 eV or less.
  • the light absorption layer of the second solar cell 21 includes one selected from the group consisting of a crystalline Si layer, a semiconductor film having a chalcopyrite structure, and a CdTe film.
  • the semiconductor film having a chalcopyrite structure is Cu (In, Ga) (Se , S) 2, Cu (In, Ga) Se 2, Cu (In, Ga) such S 2, CuInTe 2.
  • the n-type layer of the second solar battery cell 11 includes a p-type layer and an n-type layer. Further, the first solar cell 11 may be a homojunction solar cell or a heterojunction solar cell.
  • Examples of the first electrode of the second solar cell 21 include a light transmissive electrode, a line-shaped electrode, a ladder-shaped electrode, a chain-shaped electrode, and a metal foil or a metal ribbon serving as a bus bar. Is used.
  • the second electrode of the second solar cell 21 is preferably a light transmissive electrode.
  • Examples of the light transmissive electrode include indium tin oxide (ITO), aluminum-doped zinc oxide (AZO), boron-doped zinc oxide (BZO), and gallium-doped.
  • the adhesive layer 30 bonds the first solar cell module 10 and the second solar cell module 20 together.
  • the adhesive layer 30 is disposed between the first solar cell module 10 and the insulating film 40.
  • the surface of the adhesive layer 30 facing the first solar cell module 10 is in direct contact with the surface of the first solar cell module 10 facing the adhesive layer 30.
  • the entire surface of the adhesive layer 30 facing the first solar cell module 10 is preferably in direct contact with the entire surface of the first solar cell module 10 facing the adhesive layer 30.
  • the surface of the adhesive layer 30 facing the insulating film 40 (the surface facing the second solar cell module 20) is in direct contact with the surface of the insulating film 40 facing the adhesive layer 30.
  • a resin layer having a relatively low melting point is preferable. If the melting point is too high, the temperature applied when the first solar cell module 10 and the second solar cell module 20 are bonded after being melted becomes too high, and the solar cell tends to be damaged, which is not preferable.
  • the melting point of the adhesive layer 30 is preferably 150 ° C. or higher. When the melting point of the adhesive layer 30 is less than 150 ° C., the adhesive layer is easily melted during the operation of the solar cell module 100.
  • the melting point of the adhesive layer 30 is preferably 300 ° C. or lower. When the melting point of the adhesive layer 30 is higher than 300 ° C., the adhesive layer 30 needs to be heated to a high temperature when the first solar cell module 10 and the second solar cell module 20 are bonded to each other, and the solar cell is damaged. Since it becomes easy, it is not preferable.
  • a resin sheet is preferable.
  • 1 or more types chosen from the group which consists of an ethylene vinyl acetate copolymer resin sheet (EVA sheet), a polyvinyl butyral resin sheet (PVB sheet), and a polyolefin resin sheet is preferable.
  • the insulating film 40 is disposed between the adhesive layer 30 and the second solar cell module 20 and is provided on the surface of the second connection wiring that faces the adhesive layer 30.
  • One surface of the insulating film 40 is in direct contact with the surface of the adhesive layer 30 facing the second solar cell module 20, and the surface opposite to one surface of the insulating film 40 is the second connection wiring. It is preferable to be in direct contact with the surface facing the adhesive layer 30.
  • the insulating film 40 is an insulating member disposed so that the second connection wiring and the adhesive layer 30 are not in contact with each other.
  • the material used for the adhesive layer 30 is easily decomposed when used in an environment such as long-term sunlight irradiation, high temperature, and high humidity.
  • the first connection wiring and the second connection wiring are easily short-circuited.
  • the first solar cell 11 and the second solar cell 21 are not easily short-circuited even if the adhesive layer 30 is decomposed.
  • the insulating film 40 is further in direct contact with at least a part of the side surface of the second connection wiring facing the adhesive layer 30.
  • the melting point of the insulating film 40 is preferably 200 ° C. or higher. If the melting point of the insulating film 40 is low, it is not preferable because the insulating film 40 is easily melted during bonding by the adhesive layer 30. From the same viewpoint, the melting point of the insulating film 40 is preferably higher than the melting point of the adhesive layer 30 by 50 ° C. or more.
  • the insulating film 40 is made of one or more films selected from the group consisting of polyimide film, glass tape, quartz tape, polyamide film, epoxy resin sheet, and polyester sheet, or made of Si, Al, Ca, Mg, Ga, and Ge.
  • a metal oxide or metal nitride film containing one or more metals selected from the group is preferred.
  • Specific examples of the metal oxide or metal nitride film containing one or more metals selected from the group consisting of Si, Al, Ca, Mg, Ga, and Ge include SiO x , SiN x , AlO x , One or more selected from the group consisting of CaO X , MgO X , GaO X and GeO X are preferred.
  • One or more kinds of films selected from the group consisting of a polyimide film, a glass tape, a quartz tape, a polyamide film, an epoxy resin sheet, and a polyester sheet are disposed on the second solar cell module 20.
  • a metal oxide or metal nitride film containing one or more metals selected from the group consisting of Si, Al, Ca, Mg, Ga and Ge is formed on the second connection wiring by sputtering or vapor deposition. Is preferred.
  • FIG. 2 shows the output reduction rate of the second solar cell module 20 in a module with a polyimide film and without a polyimide film.
  • a Cu bus bar that corrodes with acetic acid generated when the EVA sheet is hydrolyzed is used for the second connection wiring.
  • the hydrolysis effect of the EVA sheet can be evaluated from the corrosion of the Cu bus bar.
  • the decrease in conversion efficiency is small, but in the example where the polyimide film is not used, the conversion efficiency is greatly decreased.
  • the EL (electroluminescence) inspection was performed, in the example in which the polyimide film was not used, the Cu bus bar as the second connection wiring was corroded from the middle, and the EVA sheet used for the adhesive layer 30 was hydrolyzed. I understand that. Further, as time elapses, corrosion of the Cu bus bar proceeds. On the other hand, in the example using the polyimide film, since the Cu bus bar is protected by the polyimide film, the Cu bus bar is not corroded, and the first solar cell 11 and the second solar cell 21 are not short-circuited. .
  • a multi-junction solar cell using a compound semiconductor layer having a chalcopyrite structure such as CuGaSe 2 as the light absorption layer of the first solar cell module 10 and using crystalline Si as the light absorption layer of the second solar cell module 20.
  • the module 101 will be exemplified to specifically describe the multi-junction solar cell module.
  • FIG. 3 shows a cross-sectional view of the multi-junction solar cell module 101.
  • a multi-junction solar cell module 101 shown in FIG. 3 includes a first solar cell module 10 (top cell), a second solar cell module 20 (bottom cell), an adhesive layer 30 and an insulating film 40.
  • the gap between the first solar cell module 10 and the second solar cell module 20 is preferably filled with fillers 51 and 52 such as epoxy resin, for example.
  • the insulating film 40 is a strip-shaped sheet and is disposed along the bus bar 22.
  • the protective layer 23 is a so-called back sheet layer, for example, an EVA sheet.
  • the first solar cell module 10 and the second solar cell module 20 sandwich the adhesive layer 30 and the insulating film 40 therebetween.
  • the surface of the adhesive layer 30 facing the second solar cell module 20 is in direct contact with the insulating film 40 and the portion of the second solar cell module 20 excluding the second connection wiring, and the surface facing the first solar cell module 10 is the first.
  • One solar cell module 10 is in direct contact.
  • a part of the insulating film 40 and the bus bar 22 is embedded in the adhesive layer 30.
  • FIG. 4 shows a process of overlaying the insulating film 40 on the second solar cell module 20. Since the set of three bus bars 22 has three rows, there are three portions of the insulating film 40. The insulating film 40 and the second solar cell module 20 are overlapped so that the insulating film 40 covers the bus bar 22. 4 to 5, the filler is not shown.
  • FIG. 5 shows a step of bonding the second solar cell module 20 and the first solar cell module 10 on which the insulating film 40 is overlapped with the adhesive layer 30.
  • the adhesive layer 30 is melted by heating according to the melting point of the adhesive layer 30.
  • a multi-junction solar cell module 101 in which the first solar cell module 10 and the second solar cell module 20 are joined by the adhesive layer 30 and the insulating film 40 is obtained.
  • the second solar cell module 20 side of the adhesive layer 30 is in direct contact with both the second solar cell module 20 and the bus bar 22.
  • the insulating film 40 Without the insulating film 40, only the adhesive layer 30 exists between the first connection wiring and the second connection wiring. Therefore, when the adhesive layer 30 deteriorates as described above, the first connection wiring and the second connection wiring are provided. However, the provision of the insulating film 40 can reduce the possibility of short-circuiting between wirings. Even if a Cu bus bar is used for the bus bar 22 of the second solar cell module 20 and EVA is used for the adhesive layer 30, the insulating film 40 protects the Cu bus bar, so that the possibility of corrosion of the bus bar 22 can be reduced. Even if another metal material such as aluminum or aluminum alloy is used in addition to Cu, corrosion of the metal can be prevented by using the adhesive layer 30 and the insulating film 40 in combination.
  • a compound semiconductor layer having a chalcopyrite structure such as CuGaSe 2 is used as the light absorption layer of the first solar cell module 10, and Cu (In, Ga) Se 2 or the like is used as the light absorption layer of the second solar cell module 20.
  • the multi-junction solar cell module 102 using a compound semiconductor layer having a chalcopyrite structure will be described as an example to specifically describe the multi-junction solar cell module.
  • FIG. 7 shows a cross-sectional view of the multi-junction solar cell module 102.
  • a multi-junction solar cell module 102 in FIG. 7 is a modification of the multi-junction solar cell module 101 in FIG.
  • a multi-junction solar cell module 102 illustrated in FIG. 7 includes a first solar cell module 10, a second solar cell module 20, an adhesive layer 30, and an insulating film 40.
  • the gap between the first solar cell module 10 and the second solar cell module 20 is preferably filled with fillers 51 and 52 such as epoxy resin, for example.
  • the first solar cell module 10 that is the top cell of the multijunction solar cell module 102 is the same as the first solar cell module 10 of the multijunction solar cell module 101.
  • the insulating film 40 is a belt-like sheet and corresponds to the shape of the second electrode 28 of the second solar cell 21.
  • the second solar battery cell 21 includes a substrate 24, a first electrode 25, a light absorption layer 26, an n-type layer 27, and a second electrode 28.
  • the second solar cells 21 are electrically connected in series by the second electrode 28. Accordingly, in the multi-junction solar cell module 102, the second electrode 28 of the second solar cell 11 serves as the second connection wiring.
  • the second solar cells 21 at both ends are connected to the bus bar 29.
  • the electric power generated by the second solar cell module 20 is output via the bus bar 29.
  • the second solar cell module 20 is scribed P4, P5, and P6, and the adjacent second solar cells 21 are connected to the first electrode 25 on the upper side and the second electrode 28 on the lower side.
  • the first solar cell module 10 and the second solar cell module 20 sandwich the adhesive layer 30 and the insulating film 40 therebetween.
  • the surface of the adhesive layer 30 facing the second solar cell module 20 is in direct contact with the insulating film 40 and the portion of the second solar cell module 20 excluding the second connection wiring, and the surface facing the first solar cell module 10 is the first.
  • One solar cell module 10 is in direct contact.
  • An insulating film 40 is embedded in the adhesive layer 30.
  • FIG. 8 shows a process of overlaying the insulating film 40 on the second solar cell module 20. Since there are three rows of the second solar cells, there are three parts of the insulating film 40.
  • the insulating film 40 may be a single sheet.
  • the insulating film 40 and the second solar cell module 20 are overlapped so that the insulating film 40 covers the bus bar 22.
  • FIG. 11 is a perspective development view of the multi-junction solar cell module 103.
  • a multi-junction solar cell module 103 in FIG. 11 is a modification of the multi-junction solar cell module 101 in FIG.
  • the multi-junction solar cell module 101 in FIG. 4 differs from the multi-junction solar cell module 103 in FIG. 11 in that the insulating film 40 is not a sheet but a metal oxide or metal nitride film formed by sputtering or vapor deposition. It is.
  • the storage battery 203 or the load 204 may be omitted.
  • the load 204 may be configured to be able to use electrical energy stored in the storage battery 203.
  • the converter 202 is a device including a circuit or element that performs power conversion such as transformation or DC / AC conversion, such as a DC-DC converter, a DC-AC converter, or an AC-AC converter.
  • a suitable configuration may be adopted according to the generated voltage, the configuration of the storage battery 203 and the load 204.
  • Each solar cell receives light and generates power, and the electric energy is converted by the converter 202 and stored in the storage battery 203 or consumed by the load 204.
  • the solar cell module 201 is provided with a solar light tracking drive device for always directing the solar cell module 201 toward the sun, a condensing body for condensing sunlight, a device for improving power generation efficiency, and the like. It is preferable to add.
  • the solar power generation system 200 is preferably used for real estate such as a residence, a commercial facility, a factory, or used for movable property such as a vehicle, an aircraft, or an electronic device.
  • Use of the multi-junction solar cell module of the embodiment for the solar cell module 201 is expected to improve durability.
  • Example 1 Using CuGaSe 2 for the light absorption layer of the first solar cell module 10, using an EVA sheet for the adhesive layer 30, using a polyimide film for the insulating film 40, and using crystalline silicon for the light absorption layer of the second solar cell module 20. A multi-junction solar cell module is produced.
  • Example 3 Using CuGaSe 2 for the light absorption layer of the first solar cell module 10, using a PVB sheet for the adhesive layer 30, using a glass tape for the insulating film 40, and using crystalline silicon for the light absorption layer of the second solar cell module 20. A multi-junction solar cell module is produced.
  • Example 4 An organic thin film is used for the light absorption layer of the first solar cell module 10, an EVA sheet is used for the adhesive layer 30, and an oxide film containing Si formed on the bus bar on the second solar cell by sputtering on the insulating film 40.
  • a multi-junction solar cell module is produced using crystalline silicon for the light absorption layer of the second solar cell module 20.
  • Example 5 A perovskite thin film is used for the light absorption layer of the first solar cell module 10, an EVA sheet is used for the adhesive layer 30, and an oxide film containing Al formed on the bus bar on the second solar cell by sputtering on the insulating film 40 Is used to produce a multi-junction solar cell module using crystalline silicon for the light absorption layer of the second solar cell module 20.
  • the light absorption layer of the first solar cell module 10 is made of Cu (In, Ga) (Se, S) 2 having a low In ratio
  • the adhesive layer 30 is made of an EVA sheet
  • the insulating film 40 is sputtered to form the second solar cell.
  • a nitride film containing Si formed on the upper second electrode and using Cu (In, Ga) (Se, S) 2 having a low In ratio for the light absorption layer of the second solar cell module 20 is produced.
  • Example 7 CuGaSe 2 is used for the light absorption layer of the first solar cell module 10, EVA sheet is used for the adhesive layer 30, quartz tape is used for the insulating film 40, and crystalline silicon is used for the light absorption layer of the second solar cell module 20.
  • a multi-junction solar cell module is produced.
  • Example 1--7 A multi-junction solar cell module is manufactured in the same manner as in Example 1-7 without using the insulating film 40.
  • the performance deterioration of the example is the performance of the comparative example by operating for a long time at a temperature of 85 ° C. and a humidity of 85%. Less than deterioration.
  • a first solar cell module that is disposed on the light incident side and includes a plurality of first solar cells and a first connection wiring that electrically connects the plurality of first solar cells;
  • a second solar cell module including a plurality of second solar cells and a second connection wiring for electrically connecting the plurality of second solar cells;
  • An adhesive layer between the first solar cell module and the second solar cell module;
  • An insulating film is provided on the surface of the second connection wiring facing the adhesive layer so as to be in direct contact with the surface of the adhesive layer facing the second solar cell module;
  • the first solar cell module includes a substrate on a light incident side, and the substrate is a single substrate of the first solar cell module,
  • the second connection wiring is a multi-junction solar cell module that is not in contact with the adhesive layer.
  • Technical plan 2 The multi-junction solar cell module according to Technical Solution 1, wherein a melting point of the adhesive layer is higher than a melting point of the insulating film.
  • Technical plan 3 The multi-junction solar cell module according to Technical Solution 1 or 2, wherein the adhesive layer has a melting point of 150 ° C or higher.
  • Technical plan 4 4.
  • Technical plan 5 5.
  • the multijunction solar cell module according to any one of the technical solutions 1 to 4 wherein a melting point of the insulating film is 50 ° C. or more higher than a melting point of the adhesive layer.
  • Technical plan 6 The multijunction according to any one of the technical solutions 1 to 5, wherein a band gap of the light absorption layer of the plurality of first solar cells is wider than a band gap of the light absorption layer of the plurality of second solar cells.
  • Type solar cell module Type solar cell module.
  • Technical plan 7 The multi-junction solar cell module according to any one of the technical solutions 1 to 6, wherein the insulating film includes at least one selected from the group consisting of a resin, a metal oxide, and a metal nitride.
  • Technical plan 8 The multi-junction solar cell module according to any one of the technical solutions 1 to 7, wherein the adhesive layer is a resin sheet.
  • the insulating film is made of one or more films selected from the group consisting of polyimide film, glass tape, quartz tape, polyamide film, epoxy resin sheet and polyester sheet, or made of Si, Al, Ca, Mg, Ga and Ge.
  • Technical plan 10 The multi-joint according to any one of the technical solutions 1 to 9, wherein the adhesive layer is one or more layers selected from the group consisting of an ethylene vinyl acetate copolymer resin sheet, a polyvinyl butyral resin sheet, and a polyolefin resin sheet.
  • Technical plan 11 A solar power generation system using the multijunction solar cell module according to any one of the technical solutions 1 to 10. In the specification, some elements are represented only by element symbols.

Abstract

【課題】 本発明の実施形態は、耐久性に優れた多接合型太陽電池モジュール及び多接合型太陽電池モジュールを用いた太陽光発電システムを提供する。 【解決手段】 実施形態の多接合型太陽電池は、光入射側に配置され、複数の第1太陽電池セルと、複数の第1太陽電池セルを電気的に接続する第1接続配線を含む第1太陽電池モジュールと、複数の第2太陽電池セルと、複数の第2太陽電池セルを電気的に接続する第2接続配線を含む第2太陽電池モジュールと、第1太陽電池モジュールと第2太陽電池モジュールの間に接着層と、を有する。第2接続配線の接着層を向く面に、接着層の第2太陽電池モジュールを向く面と直接的に接するように絶縁膜が設けられ、第1太陽電池モジュールは、光入射側に基板を含み、基板は、第1太陽電池モジュールの単一基板である。第2接続配線は、接着層と非接触である。

Description

多接合型太陽電池モジュール及び太陽光発電システム
 本発明の実施形態は、多接合型太陽電池モジュール及び太陽光発電システムに関する。
 多接合型ではない太陽電池モジュールにおいて、太陽電池モジュールの発電素子を保護するために、保護ガラスを用いる。例えば、保護ガラスと発電素子は接着剤によって接着されるが、長期間の使用に伴い、接着剤が劣化する。接着剤の劣化は、太陽電池モジュールの配線の腐食の原因となり得る。接着剤の劣化は、高温、多湿条件下で顕著ではあるが、多接合型ではない太陽電池モジュールにおいては、緩やかな発電量低下につながる。
 多接合型の太陽電池モジュールの場合、複数の太陽電池モジュールを貼り合わせる。貼り合わせる太陽電池モジュールの面がガラスなどの基板であれば、貼り合わせる接着層が劣化しても両モジュールがショートしない。しかし、太陽電池モジュールには、軽量化が求められており、例えば、カルコパイライト構造を有する化合物層を光吸収層として用いた太陽電池セルを有する太陽電池モジュールをトップセルとし、Siを光吸収層として用いた太陽電池セルを有する太陽電池モジュールをボトムセルとして用いた多接合型太陽電池において、トップセルがサブストレート型であると、トップセルの基板が2枚となる。基板には、ガラス基板が用いられ、トップセルだけで基板を2枚も用いると太陽電池モジュールの重さが増加してしまう。一方、トップセルがスーパーストレート型であると、トップセルを製造する際に用いられる基板を光入射側に配置することにより、基板の数を減らすことができる。しかし、トップセルの電極の一方は、ボトムセル側を向いており、接着層で接合しただけでは、接着層の経年劣化により、トップセルとボトムセルがショートしやすい。トップセルとボトムセルがショートすると、モジュールの出力が大きく低下し、装置全体のトラブルの原因になりうる。
特許第3619099号
 本発明の実施形態は、耐久性に優れた多接合型太陽電池モジュール及び多接合型太陽電池モジュールを用いた太陽光発電システムを提供する。
課題を解決する手段
実施形態の多接合型太陽電池は、光入射側に配置され、複数の第1太陽電池セルと、複数の第1太陽電池セルを電気的に接続する第1接続配線を含む第1太陽電池モジュールと、複数の第2太陽電池セルと、複数の第2太陽電池セルを電気的に接続する第2接続配線を含む第2太陽電池モジュールと、第1太陽電池モジュールと第2太陽電池モジュールの間に接着層と、を有する。第2接続配線の接着層を向く面に、接着層の第2太陽電池モジュールを向く面と直接的に接するように絶縁膜が設けられ、第1太陽電池モジュールは、光入射側に基板を含み、基板は、第1太陽電池モジュールの単一基板である。第2接続配線は、接着層と非接触である。
多接合型太陽電池モジュールの断面図 太陽電池モジュールの評価結果 多接合型太陽電池モジュールの断面図 多接合型太陽電池モジュールの斜視工程図 多接合型太陽電池モジュールの斜視工程図 多接合型太陽電池モジュールの斜視工程図 多接合型太陽電池モジュールの断面図 多接合型太陽電池モジュールの斜視工程図 多接合型太陽電池モジュールの斜視工程図 多接合型太陽電池モジュールの斜視工程図 多接合型太陽電池モジュールの斜視展開図 太陽光発電システムの構成概念図
(多接合型太陽電池モジュール)
 実施形態の接合型太陽電池モジュールは、第1太陽電池モジュールと第2太陽電池モジュールを有する。図1に実施形態の多接合型太陽電池モジュールの断面図を示す。図1に示す多接合型太陽電池モジュール100は、第1太陽電池モジュール10と、第2太陽電池モジュール20と接着層30と、絶縁膜40と、を有する。図1では、2つの太陽電池モジュールが接合した多接合型の太陽電池モジュールである。3つ以上の太陽電池モジュールが接合した多接合型太陽電池モジュールも実施形態に含まれる。
(第1太陽電池モジュール)
 第1太陽電池モジュール10は、複数の第1太陽電池セル11を含む。第1太陽電池モジュール10は、多接合型太陽電池モジュール100において、光入射側に配置されている。第1太陽電池モジュール10は、入射した光の一部を吸収して発電する。第1太陽電池モジュール10の光入射側には、第1太陽電池モジュール10における単一基板が配置されており、第2太陽電池モジュール40側には、第1太陽電池モジュール10の基板は配置されていない。
 第1太陽電池モジュール10の第1太陽電池セル11は、光入射側から順に、基板、第1電極、光吸収層と第2電極が並んでいる。これらの層間には、明記しない中間層が含まれている場合がある。複数の第1太陽電池セル11は、電気極性がそろって物理的に並列に配置されている。
 複数の第1太陽電池セル11は、第1接続配線によって、電気的に接続している。複数の第1太陽電池セル11は、電気的に直列、並列、又は、直列及び並列に接続している。例えば、隣り合う第1太陽電池セル11の第1電極と第2電極が接続して第1太陽電池セル11が電気的に直列に接続している場合、第1電極及び第2電極又は第2電極が第1接続配線を構成することができる。例えば、隣り合う第1太陽電池セル11の第2電極と第2電極が接続して第1太陽電池セル11が電気的に並列に接続している場合、第2電極が第1接続配線を構成することができる。また、隣り合う第1太陽電池セル11が第1電極及び第2電極とは別の導電層によって電気的に接続している場合、この導電層が第1接続配線を構成することができる。なお、実施形態では、第1接続配線が第1太陽電池セル11に含まれる導電性部材のうちの最外周に含まれる導電性部材である。第1太陽電池セル11の第1接続配線が第2太陽電池セル21の第2接続配線に最も距離が近い位置に配置されている。別の導電層として、例えば、バスバーが挙げられる。
 第1太陽電池セル11の光吸収層のバンドギャップは、第2太陽電池セル21の光吸収層バンドギャップよりも広いことが好ましい。第1太陽電池セル11の光吸収層は、ワイドバンドギャップであることが好ましい。具体的には、第1太陽電池セル11のバンドギャップは、1.4eV以上3.0eV以下が好ましい。
 第1太陽電池セル11の光吸収層としては、上記バンドギャップを満たすものであれば特に限定されない。第1太陽電池セル11の光吸収層は、具体的には、亜酸化銅薄膜、カルコパイライト構造を有する半導体膜、スタナイト構造を有する半導体膜、ケステライト構造を有する半導体膜、有機薄膜及びペロブスカイト系薄膜からなる群から選ばれる1種を含む。カルコパイライト構造を有する半導体膜としては、Cu(In、Ga)(Se、S)、Cu(In、Ga)Se、Cu(In、Ga)S、CuGa(Se、S)、CuGaSe、CuGaSなどである。
 第1太陽電池セル11の光吸収層は、p型層及びn型層を含む。また、第1太陽電池セル11は、ホモ接合型の太陽電池でもよいし、ヘテロ接合型の太陽電池でもよい。
 第1太陽電池セルの電極である、第1電極及び第2電極は、光透過性のある電極が好ましい。光透過性のある電極としては、酸化インジウムスズ((Indium Tin Oxide:ITO)、アルミニウムドープ酸化亜鉛(Al-doped Zinc Oxide:AZO)、ボロンドープ酸化亜鉛(Boron-doped Zinc Oxide:BZO)、ガリウムドープ酸化亜鉛(Gallium-doped Zinc Oxide:GZO)、インジウムドープ酸化亜鉛(Indium-doped Zinc Oxide:IZO)、アルミニウムガリウム酸化物(Aluminium Gallium Oxide:AGO)、チタンドープ酸化インジウム(Titanium-doped Indium Oxide:ITiO)、酸化インジウムガリウム亜鉛(Indium Gallium Zinc Oxide:IGZO)及び水素ドープ酸化インジウム(Hydrogen-doped Indium Oxide:In)からなる群より選ばれる1種以上の透明導電膜含むものが好ましい。これらの透明導電膜に酸化スズ膜などを積層させた電極も第1太陽電池セル11の電極として好ましい。
(第2太陽電池モジュール)
 第2太陽電池モジュール20は、複数の第2太陽電池セル21を含む。第2太陽電池モジュール20は、第1太陽電池モジュール10を通過した光を受光して発電する。
 第2太陽電池モジュール20の第2太陽電池セル21は、光入射側から順に、第1電極、光吸収層と第2電極が並んでいる。これらの層間には、明記しない中間層が含まれている場合がある。複数の第2太陽電池セル21は、電気極性がそろって物理的に並列に配置されている。
 複数の第2太陽電池セル21は、第2接続配線によって、電気的に接続している。複数の第2太陽電池セル11は、電気的に直列、並列、又は、直列及び並列に接続している。例えば、第2太陽電池セル11では、隣り合う第2太陽電池セル21の第1電極及び第2電極が電気的に接続して、第2太陽電池セル21が電気的に直列に接続している場合、第1電極及び第2電極、又は、第1電極が第2接続配線を構成することができる。また、隣り合う第2太陽電池セル21の第1電極が電気的に接続して、第2太陽電池セル21が電気的に並列に接続している場合、第1電極が第2接続配線を構成することができる。また、隣ある第2太陽電池セル21が第1電極と第2電極とは別の導電層によって電気的に接続している場合は、この別の導電層が第2接続配線を構成することができる。なお、実施形態では、第2接続配線が第2太陽電池セル21に含まれる導電性部材のうちの最外周に含まれる導電性部材である。第2太陽電池セル11の第2接続配線が第1太陽電池セル21の第1接続配線に最も近い位置に配置されている。別の導電層として、例えば、バスバーが挙げられる。
 第2太陽電池セル21の光吸収層のバンドギャップは、第1太陽電池セル11の光吸収層バンドギャップよりも狭いことが好ましい。第2太陽電池セル21の光吸収層は、ナローバンドギャップであることが好ましい。具体的には、第2太陽電池セル21のバンドは、1.0eV以上1.4eV以下が好ましい。
 第2太陽電池セル21の光吸収層としては、上記バンドギャップを満たすものであれば特に限定されない。第2太陽電池セル21の光吸収層は、具体的には、結晶Si層、カルコパイライト構造を有する半導体膜及びCdTe膜からなる群から選ばれる1種を含む。カルコパイライト構造を有する半導体膜としては、Cu(In、Ga)(Se、S)、Cu(In、Ga)Se、Cu(In、Ga)S、CuInTeなどである。
 第2太陽電池セル11のn型層は、p型層及びn型層を含む。また、第1太陽電池セル11は、ホモ接合型の太陽電池でもよいし、ヘテロ接合型の太陽電池でもよい。
 第2太陽電池セル21の第1電極としては、例えば、光透過性のある電極又はライン状の電極や、はしご状の電極や鎖状の電極にバスバーとなる金属箔や金属リボンを重ねた電極が用いられる。第2太陽電池セル21の第2電極としては、光透過性のある電極が好ましい。光透過性のある電極としては、酸化インジウムスズ((Indium Tin Oxide:ITO)、アルミニウムドープ酸化亜鉛(Al-doped Zinc Oxide:AZO)、ボロンドープ酸化亜鉛(Boron-doped Zinc Oxide:BZO)、ガリウムドープ酸化亜鉛(Gallium-doped Zinc Oxide:GZO)、インジウムドープ酸化亜鉛(Indium-doped Zinc Oxide:IZO)、アルミニウムガリウム酸化物(Aluminium Gallium Oxide:AGO)、チタンドープ酸化インジウム(Titanium-doped Indium Oxide:ITiO)、酸化インジウムガリウム亜鉛(Indium Gallium Zinc Oxide:IGZO)及び水素ドープ酸化インジウム(Hydrogen-doped Indium Oxide:In)からなる群より選ばれる1種以上の透明導電膜含むものが好ましい。これらの透明導電膜に酸化スズ膜などを積層させた電極も第1太陽電池セル11の電極として好ましい。
(接着層)
 接着層30は、第1太陽電池モジュール10と第2太陽電池モジュール20を接着させる。接着層30は、第1太陽電池モジュール10と絶縁膜40の間に配置される。接着層30の第1太陽電池モジュール10を向く面は、第1太陽電池モジュール10の接着層30を向く面と直接的に接している。接着層30の第1太陽電池モジュール10を向く面の全面は、第1太陽電池モジュール10の接着層30を向く面の全面と直接的に接していることが好ましい。接着層30の絶縁膜40を向く面(第2太陽電池モジュール20を向く面)は、絶縁膜40の接着層30を向く面と直接的に接している。
 接着層30としては、比較的融点の低い樹脂層が好ましい。あまり融点が高いと、溶融させてから第1太陽電池モジュール10と第2太陽電池モジュール20を接着させる際に加える温度が高くなりすぎて、太陽電池が破損しやすくなるため好ましくない。
 接着層30の融点は、150℃以上であることが好ましい。接着層30の融点が150℃未満であると、太陽電池モジュール100の運転中に接着層が溶融しやすくなってしまう。なお、接着層30の融点は300℃以下が好ましい。接着層30の融点が300℃より高いと、接着層30によって、第1太陽電池モジュール10と第2太陽電池モジュール20を貼り合わせる際に、高温に加熱する必要があり、太陽電池セルが破損しやすくなるため好ましくない。
 接着層30としては、樹脂シートが好ましい。接着層30に用いられる具体的なものとしては、エチレン酢酸ビニル共重合体樹脂シート(EVAシート)、ポリビニルブチラール樹脂シート(PVBシート)及びポリオレフィン樹脂シートからなる群より選ばれる1種以上が好ましい。
(絶縁膜)
 絶縁膜40は、接着層30と第2太陽電池モジュール20の間に配置され、第2接続配線の接着層30を向く面に設けられている。絶縁膜40の一方の面は、接着層30の第2太陽電池モジュール20を向く面と直接的に接し、かつ、絶縁膜40の一方の面とは反対側の面は、第2接続配線の接着層30を向く面と直接的に接していることが好ましい。絶縁膜40は、第2接続配線と接着層30が非接触になるように配置された絶縁部材である。接着層30に用いられる材料は、長期間の日光照射、高温、多湿等の環境下で使用されると分解されやすい。絶縁膜40を用いない場合、接着層30が分解してしまうと、第1接続配線と第2接続配線がショートしやすくなってしまう。絶縁膜40に分解しにくい材料を用いることで、接着層30が分解してしまっても、第1太陽電池セル11と第2太陽電池セル21がショートし難くなる。
 第2接続配線を保護する観点から、絶縁膜40は、さらに、第2接続配線の接着層30を向く面の側面の少なくとも一部と直接的に接していることが好ましい。
 絶縁膜40の融点は、200℃以上であることが好ましい。絶縁膜40の融点が低いと接着層30による接着の際に絶縁膜40が溶融しやすいため好ましくない。同観点から、絶縁膜40の融点は、接着層30の融点よりも50℃以上高いことが好ましい。
 絶縁膜40は、樹脂、金属酸化物及び金属窒化物からなる群より選ばれる1種以上を含むことが好ましい。これらの物質は、上記絶縁膜40の要件を満たすため好ましい。絶縁膜40は、第2接続配線を覆えばよいため、第2太陽電池モジュール20の全面を覆わなくてもよい。
 絶縁膜40は、ポリイミドフィルム、ガラステープ、石英テープ、ポリアミドフィルム、エポキシ樹脂シート及びポリエステルシートからなる群より選ばれる1種以上の膜、若しくは、Si、Al、Ca、Mg、Ga及びGeからなる群より選ばれる1種以上の金属を含む金属酸化物又は金属窒化物の膜であることが好ましい。Si、Al、Ca、Mg、Ga及びGeからなる群より選ばれる1種以上の金属を含む金属酸化物又は金属窒化物の膜としては、具体的には、SiO、SiN、AlO,CaO,MgO、GaO及びGeOからなる群より選ばれる1種以上が好ましい。なお、金属酸化物及び金属窒化物において、0.0<X≦2.5を満たすことが好ましい。
 ポリイミドフィルム、ガラステープ、石英テープ、ポリアミドフィルム、エポキシ樹脂シート及びポリエステルシートからなる群より選ばれる1種以上の膜は、第2太陽電池モジュール20の上に配置される。Si、Al、Ca、Mg、Ga及びGeからなる群より選ばれる1種以上の金属を含む金属酸化物又は金属窒化物の膜は、第2接続配線上にスパッタ若しく蒸着によって形成されることが好ましい。
 ここで、絶縁膜40の有無による太陽電池モジュールの評価結果を示す。第1太陽電池モジュール10と第2太陽電池モジュール20の間に、接着層30としてEVAシートと、絶縁膜40としてポリイミドフィルムを設けた多接合型太陽電池モジュールを評価した。絶縁膜40の評価のために絶縁膜40を使用しないモジュールについても評価した。温度85℃、湿度85%で数千時間、太陽電池モジュールによる発電を行い、出力の低下率を測定した。図2にポリイミドフィルム有りと、ポリイミドフィルム無しのモジュールにおける、第2太陽電池モジュール20の出力低下率を示す。なお、第2接続配線には、EVAシートが加水分解する際に発生する酢酸によって腐食するCuバスバーを用いた。EVAシートとCu配線を組み合わせることにより、EVAシートの加水分解の影響をCuバスバーの腐食から評価することができる。
 ポリイミドフィルムを使用した例では、変換効率の低下が少ないが、ポリイミドフィルムを用いていない例では、変換効率の低下が大きい。EL(エレクトロルミネッセンス)検査を行ったところ、ポリイミドフィルムを用いていない例では、途中から第2接続配線であるCuバスバーに腐食がみられ、接着層30に用いたEVAシートが加水分解していることがわかる。さらに、時間が経過すると、Cuバスバーの腐食が進む。一方、ポリイミドフィルムを用いた例では、Cuバスバーがポリイミドフィルムによって保護されているため、Cuバスバーが腐食しないだけでなく、第1太陽電池セル11と第2太陽電池セル21がショートすることもない。
 次に、第1太陽電池モジュール10の光吸収層としてCuGaSe等のカルコパイライト構造を有する化合物半導体層を用い、第2太陽電池モジュール20の光吸収層に結晶Siを用いた多接合型太陽電池モジュール101を例示して、多接合型太陽電池モジュールについて、具体的に説明する。
 図3に多接合型太陽電池モジュール101の断面図を示す。図3に示す多接合型太陽電池モジュール101は、第1太陽電池モジュール10(トップセル)、第2太陽電池モジュール20(ボトムセル)、接着層30と絶縁膜40を有する。第1太陽電池モジュール10と第2太陽電池モジュール20の空隙には、例えば、エポキシ樹脂などの充填剤51、52が充填されていることが好ましい。絶縁膜40は、帯状のシートでバスバー22に沿って配置される。
 第1太陽電池セル11は、基板12、第1電極13、n型層14、光吸収層15と、第2電極16を有する。なお、光吸収層15は、n型層14よりも光入射側に配置されていてもよい。第1太陽電池モジュール10において、第2電極16によって、各第1太陽電池セル11が電気的に直列に接続している。従って、多接合型太陽電池モジュール101では、第1太陽電池セル11の第2電極11が第1接続配線となる。両端の第1太陽電池セル11は、バスバー17と接続している。バスバー17を介して、第1太陽電池モジュール10で発電した電力が出力される。第1太陽電池モジュール10は、スクライブP1、P2、P3されていて、隣り合う第1太陽電池セル11は、上部側の第1電極13と下部側の第2電極16が接続している。
 第2太陽電池モジュール20は、第2太陽電池セル21、バスバー22と保護層23とを有する。各第2太陽電池セル21は、3本のバスバー22で電気的に直列に接続している。バスバー22は、隣り合う第2太陽電池セル21の一方の第2太陽電池セル21の表側(第1太陽電池モジュール10側)と接続し、他方の第2太陽電池セル21の裏側(第1太陽電池モジュール10とは反対側)と接続している。従って、バスバー22が第2接続配線となる。両端のバスバー22を介して、第2太陽電池モジュール20で発電した電力が出力される。図3に示すように、バスバー22は、絶縁膜40に一部埋め込まれていてもよい。バスバー22が絶縁膜40に埋め込まれていると、バスバー22の側面も絶縁膜40と直接的に接しているため、バスバー22と第1太陽電池セル11との絶縁性がより向上する。保護層23は、いわゆるバックシートと呼ばれる層であり、例えばEVAシートである。
 第1太陽電池モジュール10と第2太陽電池モジュール20は、接着層30と絶縁膜40を間に挟んでいる。接着層30の第2太陽電池モジュール20を向く面は、絶縁膜40及び第2太陽電池モジュール20の第2接続配線を除く部分と直接的に接し、第1太陽電池モジュール10を向く面は第1太陽電池モジュール10と直接的に接している。接着層30には、絶縁膜40とバスバー22の一部が埋め込まれている。
 図4から5の斜視工程図を参照して、多接合型太陽電池モジュール101についてより詳細に説明する。図4は、第2太陽電池モジュール20に絶縁膜40を重ね合わせる工程を示している。3本一組のバスバー22が3列あるため、絶縁膜40は3部存在する。絶縁膜40が、バスバー22を覆い隠すように絶縁膜40と第2太陽電池モジュール20を重ね合わせる。図4から5では、充填剤は図示していない。
 図5は、絶縁膜40を重ね合わせた第2太陽電池モジュール20と第1太陽電池モジュール10を接着層30で貼り合わせる工程を示している。絶縁膜40を重ね合わせた第2太陽電池モジュール20と第1太陽電池モジュール10を接着層30で貼り合わせる際に、接着層30の融点に応じて加熱して接着層30を溶融させる。そして、図6の斜視図に示すように、接着層30及び絶縁膜40で第1太陽電池モジュール10と第2太陽電池モジュール20が接合された多接合型太陽電池モジュール101が得られる。接着層30の第2太陽電池モジュール20側は、第2太陽電池モジュール20とバスバー22の両方と直接的に接している。
 絶縁膜40が無いと、第1接続配線と第2接続配線の間に、接着層30だけが存在するため、上述のとおり接着層30が劣化した際に、第1接続配線と第2接続配線がショートする可能性が有るが、絶縁膜40を設けることで、配線同士のショートの可能性を減らすことができる。第2太陽電池モジュール20のバスバー22にCuのバスバーを用い、接着層30にEVAを用いたとしても絶縁膜40がCuのバスバーを保護するため、バスバー22の腐食の可能性も低くできる。Cu以外にアルミやアルミ合金などの他の金属材料を使用しても、接着層30と絶縁膜40を併用することで、金属の腐食を防ぐことができる。
 次に、第1太陽電池モジュール10の光吸収層としてCuGaSe等のカルコパイライト構造を有する化合物半導体層を用い、第2太陽電池モジュール20の光吸収層としてCu(In、Ga)Se等のカルコパイライト構造を有する化合物半導体層を用いた多接合型太陽電池モジュール102を例示して、多接合型太陽電池モジュールについて、具体的に説明する。
 図7に多接合型太陽電池モジュール102の断面図を示す。図7の多接合型太陽電池モジュール102は、図4の多接合型太陽電池モジュール101の変形例である。図7に示す多接合型太陽電池モジュール102は、第1太陽電池モジュール10、第2太陽電池モジュール20、接着層30と絶縁膜40を有する。第1太陽電池モジュール10と第2太陽電池モジュール20の空隙には、例えば、エポキシ樹脂などの充填剤51、52が充填されていることが好ましい。多接合型太陽電池モジュール102のトップセルである第1太陽電池モジュール10は、多接合型太陽電池モジュール101の第1太陽電池モジュール10と同じにしている。絶縁膜40は、帯状のシートで、第2太陽セル21の第2電極28の形状に対応している。
 第2太陽電池セル21は、基板24、第1電極25、光吸収層26、n型層27、と、第2電極28を有する。第2太陽電池モジュール20において、第2電極28によって、各第2太陽電池セル21が電気的に直列に接続している。従って、多接合型太陽電池モジュール102では、第2太陽電池セル11の第2電極28が第2接続配線となる。両端の第2太陽電池セル21は、バスバー29と接続している。バスバー29を介して、第2太陽電池モジュール20で発電した電力が出力される。第2太陽電池モジュール20は、スクライブP4、P5、P6されていて、隣り合う第2太陽電池セル21は、上部側の第1電極25と下部側の第2電極28が接続している。
 第1太陽電池モジュール10と第2太陽電池モジュール20は、接着層30と絶縁膜40を間に挟んでいる。接着層30の第2太陽電池モジュール20を向く面は、絶縁膜40及び第2太陽電池モジュール20の第2接続配線を除く部分と直接的に接し、第1太陽電池モジュール10を向く面は第1太陽電池モジュール10と直接的に接している。接着層30には、絶縁膜40が埋め込まれている。
 図8から9の斜視工程図を参照して、多接合型太陽電池モジュール102についてより詳細に説明する。図8は、第2太陽電池モジュール20に絶縁膜40を重ね合わせる工程を示している。第2太陽電池セルが3列あるため、絶縁膜40は3部存在する。なお、絶縁膜40は、1枚のシートでもよい。絶縁膜40が、バスバー22を覆い隠すように絶縁膜40と第2太陽電池モジュール20を重ね合わせる。
 図9は、絶縁膜40を重ね合わせた第2太陽電池モジュール20と第1太陽電池モジュール10を接着層30で貼り合わせる工程を示している。絶縁膜40を重ね合わせた第2太陽電池モジュール20と第1太陽電池モジュール10を接着層30で貼り合わせる際に、接着層30の融点に応じて加熱して接着層30を溶融させる。そして、図10の斜視図に示すように、接着層30及び絶縁膜40で第1太陽電池モジュール10と第2太陽電池モジュール20が接合された多接合型太陽電池モジュール101が得られる。接着層30の第2太陽電池モジュール20側は、第2太陽電池モジュール20とバスバー22の両方と直接的に接している。
 図11に多接合型太陽電池モジュール103の斜視展開図を示す。図11の多接合型太陽電池モジュール103は、図4の多接合型太陽電池モジュール101の変形例である。図4の多接合型太陽電池モジュール101と図11の多接合型太陽電池モジュール103で異なる点は、絶縁膜40がシートではなく、スパッタ又は蒸着によって形成された金属酸化物又は金属窒化物の膜である。
(太陽光発電システム)
 実施形態の太陽光発電システムは、実施形態の多接合型太陽電池モジュールを用いている。実施形態の多接合型太陽電池モジュールは、太陽光発電システムにおいて、発電を行う発電機として用いることができる。実施形態の太陽光発電システムは、太陽電池モジュールを用いて発電を行うものであって、具体的には、発電を行う太陽電池モジュールと、発電した電気を電力変換する手段と、発電した電気をためる蓄電手段又は発電した電気を消費する負荷とを有する。図12に実施形態の太陽光発電システム200の構成概念図を示す。図12の太陽光発電システムは、太陽電池モジュール201と、コンバーター202と、蓄電池203と、負荷204とを有する。蓄電池203と負荷204は、どちらか一方を省略しても良い。負荷204は、蓄電池203に蓄えられた電気エネルギーを利用することもできる構成にしてもよい。コンバーター202は、DC-DCコンバーター、DC-ACコンバーター、AC-ACコンバーターなど変圧や直流交流変換などの電力変換を行う回路又は素子を含む装置である。コンバーター202の構成は、発電電圧、蓄電池203や負荷204の構成に応じて好適な構成を採用すればよい。
各太陽電池セルで受光して発電し、その電気エネルギーは、コンバーター202で変換され、蓄電池203で蓄えられるか、負荷204で消費される。太陽電池モジュール201には、太陽電池モジュール201を常に太陽に向けるための太陽光追尾駆動装置を設けたり、太陽光を集光する集光体を設けたり、発電効率を向上させるための装置等を付加することが好ましい。
太陽光発電システム200は、住居、商業施設や工場などの不動産に用いられたり、車両、航空機や電子機器などの動産に用いられたりすることが好ましい。実施形態の多接合型太陽電池モジュールを太陽電池モジュール201に用いることで、耐久性の向上が期待される。
 以下、実施例に基づき本発明をより具体的に説明するが、本発明は以下の実施例に限定されるものではない。
(実施例1)
 第1太陽電池モジュール10の光吸収層にCuGaSeを用い、接着層30にEVAシートを用い、絶縁膜40にポリイミドフィルムを用い、第2太陽電池モジュール20の光吸収層に結晶シリコンを用いて多接合型太陽電池モジュールを作製する。
(実施例2)
 第1太陽電池モジュール10の光吸収層に亜酸化銅薄膜を用い、接着層30にEVAシートを用い、絶縁膜40にポリイミドフィルムを用い、第2太陽電池モジュール20の光吸収層に結晶シリコンを用いて多接合型太陽電池モジュールを作製する。
(実施例3)
 第1太陽電池モジュール10の光吸収層にCuGaSeを用い、接着層30にPVBシートを用い、絶縁膜40にガラステープを用い、第2太陽電池モジュール20の光吸収層に結晶シリコンを用いて多接合型太陽電池モジュールを作製する。
(実施例4)
 第1太陽電池モジュール10の光吸収層に有機薄膜を用い、接着層30にEVAシートを用い、絶縁膜40にスパッタで第2太陽電池セル上のバスバー上に形成したSiを含む酸化物膜を用い、第2太陽電池モジュール20の光吸収層に結晶シリコンを用いて多接合型太陽電池モジュールを作製する。
(実施例5)
 第1太陽電池モジュール10の光吸収層にペロブスカイト系薄膜を用い、接着層30にEVAシートを用い、絶縁膜40にスパッタで第2太陽電池セル上のバスバー上に形成したAlを含む酸化物膜を用い、第2太陽電池モジュール20の光吸収層に結晶シリコンを用いて多接合型太陽電池モジュールを作製する。
(実施例6)
 第1太陽電池モジュール10の光吸収層にIn比率の低いCu(In、Ga)(Se、S)を用い、接着層30にEVAシートを用い、絶縁膜40にスパッタで第2太陽電池セル上の第2電極上に形成したSiを含む窒化物膜を用い、第2太陽電池モジュール20の光吸収層にIn比率の低いCu(In、Ga)(Se、S)を用いを用いて多接合型太陽電池モジュールを作製する。
(実施例7)
 第1太陽電池モジュール10の光吸収層にCuGaSeを用い、接着層30にEVAシートを用い、絶縁膜40に石英テープを用い、第2太陽電池モジュール20の光吸収層に結晶シリコンを用いて多接合型太陽電池モジュールを作製する。
(比較例1-7)
 絶縁膜40を用いないで実施例1-7と同様に多接合型太陽電池モジュールを作製する。
 実施例と対応する比較例の多接合型太陽電池モジュールでは、初期の性能に差は無いが、温度85℃、湿度85%で長時間運転することで、実施例の性能劣化が比較例の性能劣化よりも少ない。
 以下、実施形態の技術案を付記する。
技術案1
 光入射側に配置され、複数の第1太陽電池セルと、前記複数の第1太陽電池セルを電気的に接続する第1接続配線を含む第1太陽電池モジュールと、
 複数の第2太陽電池セルと、前記複数の第2太陽電池セルを電気的に接続する第2接続配線を含む第2太陽電池モジュールと、
 前記第1太陽電池モジュールと第2太陽電池モジュールの間に接着層と、を有し、
 前記第2接続配線の接着層を向く面に、前記接着層の第2太陽電池モジュールを向く面と直接的に接するように絶縁膜が設けられ、
 前記第1太陽電池モジュールは、光入射側に基板を含み、前記基板は、前記第1太陽電池モジュールの単一基板であり、
 前記第2接続配線は、前記接着層と非接触である多接合型太陽電池モジュール。
技術案2
 前記接着層の融点は、前記絶縁膜の融点よりも高い技術案1に記載の多接合型太陽電池モジュール。
技術案3
 前記接着層の融点は、150℃以上である技術案1又は2に記載の多接合型太陽電池モジュール。
技術案4
 前記絶縁膜の融点は、200℃以上である技術案1ないし3のいずれか1案に記載の多接合型太陽電池モジュール。
技術案5
 前記絶縁膜の融点は、前記接着層の融点よりも50℃以上高い技術案1ないし4のいずれか1案に記載の多接合型太陽電池モジュール。
技術案6
 前記複数の第1太陽電池セルの光吸収層のバンドギャップは、前記複数の第2太陽電池セルの光吸収層のバンドギャップよりも広い技術案1ないし5のいずれか1案に記載の多接合型太陽電池モジュール。
技術案7
 前記絶縁膜は、樹脂、金属酸化物及び金属窒化物からなる群より選ばれる1種以上を含む技術案1ないし6のいずれか1案に記載の多接合型太陽電池モジュール。
技術案8
 前記接着層は、樹脂シートである技術案1ないし7のいずれか1案に記載の多接合型太陽電池モジュール。
技術案9
 前記絶縁膜は、ポリイミドフィルム、ガラステープ、石英テープ、ポリアミドフィルム、エポキシ樹脂シート及びポリエステルシートからなる群より選ばれる1種以上の膜、若しくは、Si、Al、Ca、Mg、Ga及びGeからなる群より選ばれる1種以上の金属を含む金属酸化物又は金属窒化物の膜である技術案1ないし8のいずれか1案に記載の多接合型太陽電池モジュール。
技術案10
 前記接着層は、エチレン酢酸ビニル共重合体樹脂シート、ポリビニルブチラール樹脂シート及びポリオレフィン樹脂シートからなる群より選ばれる1種以上の層である技術案1ないし9のいずれか1案に記載の多接合型太陽電池モジュール。
技術案11
 前記技術案1ないし10のいずれか1案に記載の多接合型太陽電池モジュールを用いた太陽光発電システム。
 明細書中、一部の元素は元素記号のみで表している。
 以上、本発明の実施形態を説明したが、本発明は上記実施形態そのままに限定解釈されるものではなく、実施段階ではその要旨を逸脱しない範囲で構成要素を変形して具体化できる。また、上記実施形態に開示されている複数の構成要素の適宜な組み合わせにより種々の発明を形成することができる。例えば、変形例の様に異なる実施形態にわたる構成要素を適宜組み合わせても良い。
100~103…多接合型太陽電池モジュール、
10…第1太陽電池モジュール、11…第1太陽電池セル、12…基板、13…、第1電極、14…n型層、15…光吸収層、16…第2電極、17…バスバー、P1~P3…スクライブ、
20…、第2太陽電池モジュール、21…第2太陽電池セル、22…バスバー、23…保護層、24…基板、25…第1電極、26…光吸収層、27…n型層、28…第2電極、29…バスバー、P4~P6…スクライブ
30…接着層、
40…絶縁膜、
51…充填剤、52…充填剤

 

Claims (11)

  1.  光入射側に配置され、複数の第1太陽電池セルと、前記複数の第1太陽電池セルを電気的に接続する第1接続配線を含む第1太陽電池モジュールと、
     複数の第2太陽電池セルと、前記複数の第2太陽電池セルを電気的に接続する第2接続配線を含む第2太陽電池モジュールと、
     前記第1太陽電池モジュールと第2太陽電池モジュールの間に接着層と、を有し、
     前記第2接続配線の接着層を向く面に、前記接着層の第2太陽電池モジュールを向く面と直接的に接するように絶縁膜が設けられ、
     前記第1太陽電池モジュールは、光入射側に基板を含み、前記基板は、前記第1太陽電池モジュールの単一基板であり、
     前記第2接続配線は、前記接着層と非接触である多接合型太陽電池モジュール。
  2.  前記接着層の融点は、前記絶縁膜の融点よりも高い請求項1に記載の多接合型太陽電池モジュール。
  3.  前記接着層の融点は、150℃以上である請求項1又は2に記載の多接合型太陽電池モジュール。
  4.  前記絶縁膜の融点は、200℃以上である請求項1ないし3のいずれか1項に記載の多接合型太陽電池モジュール。
  5.  前記絶縁膜の融点は、前記接着層の融点よりも50℃以上高い請求項1ないし4のいずれか1項に記載の多接合型太陽電池モジュール。
  6.  前記複数の第1太陽電池セルの光吸収層のバンドギャップは、前記複数の第2太陽電池セルの光吸収層のバンドギャップよりも広い請求項1ないし5のいずれか1項に記載の多接合型太陽電池モジュール。
  7.  前記絶縁膜は、樹脂、金属酸化物及び金属窒化物からなる群より選ばれる1種以上を含む請求項1ないし6のいずれか1項に記載の多接合型太陽電池モジュール。
  8.  前記接着層は、樹脂シートである請求項1ないし7のいずれか1項に記載の多接合型太陽電池モジュール。
  9.  前記絶縁膜は、ポリイミドフィルム、ガラステープ、石英テープ、ポリアミドフィルム、エポキシ樹脂シート及びポリエステルシートからなる群より選ばれる1種以上の膜、若しくは、Si、Al、Ca、Mg、Ga及びGeからなる群より選ばれる1種以上の金属を含む金属酸化物又は金属窒化物の膜である請求項1ないし8のいずれか1項に記載の多接合型太陽電池モジュール。
  10.  前記接着層は、エチレン酢酸ビニル共重合体樹脂シート、ポリビニルブチラール樹脂シート及びポリオレフィン樹脂シートからなる群より選ばれる1種以上の層である請求項1ないし9のいずれか1項に記載の多接合型太陽電池モジュール。
  11.  前記請求項1ないし10のいずれか1項に記載の多接合型太陽電池モジュールを用いた太陽光発電システム。

     
PCT/JP2018/011220 2018-03-20 2018-03-20 多接合型太陽電池モジュール及び太陽光発電システム WO2019180854A1 (ja)

Priority Applications (3)

Application Number Priority Date Filing Date Title
JP2019537012A JP6759464B2 (ja) 2018-03-20 2018-03-20 多接合型太陽電池モジュール及び太陽光発電システム
PCT/JP2018/011220 WO2019180854A1 (ja) 2018-03-20 2018-03-20 多接合型太陽電池モジュール及び太陽光発電システム
US16/563,993 US11430903B2 (en) 2018-03-20 2019-09-09 Multi-junction solar cell module and photovoltaic system

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/JP2018/011220 WO2019180854A1 (ja) 2018-03-20 2018-03-20 多接合型太陽電池モジュール及び太陽光発電システム

Related Child Applications (1)

Application Number Title Priority Date Filing Date
US16/563,993 Continuation US11430903B2 (en) 2018-03-20 2019-09-09 Multi-junction solar cell module and photovoltaic system

Publications (1)

Publication Number Publication Date
WO2019180854A1 true WO2019180854A1 (ja) 2019-09-26

Family

ID=67986845

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2018/011220 WO2019180854A1 (ja) 2018-03-20 2018-03-20 多接合型太陽電池モジュール及び太陽光発電システム

Country Status (3)

Country Link
US (1) US11430903B2 (ja)
JP (1) JP6759464B2 (ja)
WO (1) WO2019180854A1 (ja)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2022259461A1 (ja) * 2021-06-10 2022-12-15 株式会社東芝 タンデム太陽電池
US11810993B2 (en) 2018-09-19 2023-11-07 Kabushiki Kaisha Toshiba Solar cell, multi-junction solar cell, solar cell module, and photovoltaic power generation system
WO2024071284A1 (ja) * 2022-09-28 2024-04-04 株式会社カネカ 太陽電池モジュールの製造方法、および、太陽電池モジュール

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
AT526267A1 (de) * 2022-07-01 2024-01-15 Wakonig Martin Anlage zur Stromerzeugung

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2000277779A (ja) * 1999-03-26 2000-10-06 Nagoya Kogyo Univ 半導体間接着方法、この方法を使用して製造した半導体および半導体装置
CN103715182A (zh) * 2013-12-20 2014-04-09 北京汉能创昱科技有限公司 薄膜太阳能电池组件及其制备方法
JP2015065249A (ja) * 2013-09-24 2015-04-09 株式会社東芝 多接合型太陽電池
JP2017534184A (ja) * 2014-10-28 2017-11-16 ソル ヴォルタイクス アーベー 2層光発電デバイス

Family Cites Families (36)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4016589A (en) * 1971-11-10 1977-04-05 Omron Tateisi Electronics Co., Ltd. Semiconductor device
US4400868A (en) * 1980-12-29 1983-08-30 Varian Associates, Inc. Method of making a transparent and electrically conductive bond
JPS619099A (ja) 1984-06-23 1986-01-16 Yoshiro Nakamatsu 流体支持振動装置
AU622617B2 (en) * 1987-07-21 1992-04-16 Canon Kabushiki Kaisha Photovoltaic element with a semiconductor layer comprising non-single crystal material containing at least Zn, Se and in an amount of 1 to 40 atomic per cent
JP2895213B2 (ja) 1990-11-26 1999-05-24 キヤノン株式会社 光起電力素子
KR940002173B1 (ko) 1991-01-31 1994-03-18 삼성전자 주식회사 공업용 로보트
JP3070790B2 (ja) 1992-03-06 2000-07-31 キヤノン株式会社 太陽電池モジュール
JP3619099B2 (ja) 1992-06-26 2005-02-09 キヤノン株式会社 太陽電池モジュール
JPH06196732A (ja) 1992-12-24 1994-07-15 Canon Inc 太陽電池
US6264684B1 (en) * 1995-03-10 2001-07-24 Impra, Inc., A Subsidiary Of C.R. Bard, Inc. Helically supported graft
JPH09246236A (ja) * 1996-03-11 1997-09-19 Toshiba Corp 半導体薄膜の製造方法および太陽電池の製造方法
JP3301722B2 (ja) 1997-11-06 2002-07-15 ティーディーケイ株式会社 薄膜型電子デバイス
US6660930B1 (en) * 2002-06-12 2003-12-09 Rwe Schott Solar, Inc. Solar cell modules with improved backskin
US7498923B2 (en) * 2004-09-08 2009-03-03 Iversen Arthur H Fast acting, low cost, high power transfer switch
SG130066A1 (en) * 2005-08-26 2007-03-20 Micron Technology Inc Microelectronic device packages, stacked microelectronic device packages, and methods for manufacturing microelectronic devices
SG143098A1 (en) * 2006-12-04 2008-06-27 Micron Technology Inc Packaged microelectronic devices and methods for manufacturing packaged microelectronic devices
TW200919758A (en) * 2007-10-22 2009-05-01 Univ Nat Taiwan An organic light emitting diode display device with energy-recycling capability
JP2011526737A (ja) * 2008-07-03 2011-10-13 アイメック 多重接合太陽電池モジュールおよびそのプロセス
JP2010062186A (ja) 2008-09-01 2010-03-18 Mitsubishi Electric Corp 光電変換装置およびその製造方法
JP2010109349A (ja) 2008-10-03 2010-05-13 Techno Polymer Co Ltd 太陽電池用裏面保護フィルム及びそれを備える太陽電池モジュール
US20110174356A1 (en) 2008-10-03 2011-07-21 Techno Polymer Co., Ltd. Solar cell back surface protective film, and solar cell module provided with same
JP5098957B2 (ja) 2008-10-31 2012-12-12 コニカミノルタホールディングス株式会社 有機光電変換素子
US20100252103A1 (en) * 2009-04-03 2010-10-07 Chiu-Lin Yao Photoelectronic element having a transparent adhesion structure and the manufacturing method thereof
EP2278249A1 (en) * 2009-07-24 2011-01-26 JB Group ApS Heat storage system
US20120285726A1 (en) * 2010-01-20 2012-11-15 Fujifilm Corporation Electrically conductive element, photosensitive material for formation of electrically conductive element, and electrode
JP5769037B2 (ja) 2010-12-29 2015-08-26 エルジー・ケム・リミテッド 多層フィルム及びこれを含む光電池モジュール
US8823256B2 (en) * 2011-01-25 2014-09-02 Idemitsu Kosan Co., Ltd. Organic electroluminescent element and illumination device
JP2012238789A (ja) 2011-05-13 2012-12-06 Fujifilm Corp 半導体装置、太陽電池モジュール、太陽電池ストリングおよび太陽電池アレイ
EP2721644A2 (en) * 2011-06-16 2014-04-23 3M Innovative Properties Company Booster films for solar photovoltaic systems
JP2013179297A (ja) 2012-02-10 2013-09-09 Tokyo Institute Of Technology 光学制御層を有する太陽電池セル
US20140014169A1 (en) * 2012-07-13 2014-01-16 Triton Systems, Inc. Nanostring mats, multi-junction devices, and methods for making same
MY172608A (en) 2013-05-17 2019-12-05 Kaneka Corp Solar cell, production method therefor, and solar cell module
JP2015154050A (ja) 2014-02-19 2015-08-24 三菱化学株式会社 薄膜太陽電池モジュール
DE102014112430A1 (de) * 2014-08-29 2016-03-03 Ev Group E. Thallner Gmbh Verfahren zur Herstellung eines leitenden Mehrfachsubstratstapels
JP2016119401A (ja) 2014-12-22 2016-06-30 日東電工株式会社 光電変換素子およびそれを用いた光電変換装置
US11552228B2 (en) * 2018-08-17 2023-01-10 Osram Opto Semiconductors Gmbh Optoelectronic component and method for producing an optoelectronic component

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2000277779A (ja) * 1999-03-26 2000-10-06 Nagoya Kogyo Univ 半導体間接着方法、この方法を使用して製造した半導体および半導体装置
JP2015065249A (ja) * 2013-09-24 2015-04-09 株式会社東芝 多接合型太陽電池
CN103715182A (zh) * 2013-12-20 2014-04-09 北京汉能创昱科技有限公司 薄膜太阳能电池组件及其制备方法
JP2017534184A (ja) * 2014-10-28 2017-11-16 ソル ヴォルタイクス アーベー 2層光発電デバイス

Non-Patent Citations (3)

* Cited by examiner, † Cited by third party
Title
ESSIG, S. ET AL.: "Realization of GaInP/Si dual- junction solar cells with 29.8% 1-sun efficiency", IEEE JOURNAL OF PHOTOVOLTAICS, vol. 6, no. 4, 2016, pages 1012 - 1019, XP011614501 *
GEE, J. M. ET AL.: "The potential performance of GaAs-based mechanically stacked, multijunction solar conentraor cells, Photovoltaic Specialists Conference", CONFERENCE RECORD OF THE TWENTY FIRST IEEE, 1990, pages 41 - 46, XP010003148 *
TODOROV, T. K. ET AL.: "Materials perspectives for next-generation low-cost tandem solar cells", SOLAR ENERGY MATERIALS AND SOLAR CELLS, vol. 180, 2017, pages 350 - 357, XP055636837 *

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US11810993B2 (en) 2018-09-19 2023-11-07 Kabushiki Kaisha Toshiba Solar cell, multi-junction solar cell, solar cell module, and photovoltaic power generation system
WO2022259461A1 (ja) * 2021-06-10 2022-12-15 株式会社東芝 タンデム太陽電池
WO2024071284A1 (ja) * 2022-09-28 2024-04-04 株式会社カネカ 太陽電池モジュールの製造方法、および、太陽電池モジュール

Also Published As

Publication number Publication date
JPWO2019180854A1 (ja) 2020-04-23
US20200035849A1 (en) 2020-01-30
JP6759464B2 (ja) 2020-09-23
US11430903B2 (en) 2022-08-30

Similar Documents

Publication Publication Date Title
US11430903B2 (en) Multi-junction solar cell module and photovoltaic system
US9018513B2 (en) Solar-cell module with in-laminate diodes and external-connection mechanisms mounted to respective edge regions
US9184309B2 (en) Solar module
AU2016429622B2 (en) Photovoltaic lamination assembly with bypass diodes
US20150194552A1 (en) Solar cell module and method for manufacturing the solar cell module
US20080216885A1 (en) Spectrally adaptive multijunction photovoltaic thin film device and method of producing same
JP2008135655A (ja) 太陽電池モジュール、太陽電池モジュールの製造方法、及び太陽電池セル
US20210376174A1 (en) Solar cell module and photovoltaic power generation system
EP2761674B1 (en) Photovoltaic cell interconnect
JP7094668B2 (ja) 太陽電池モジュール及び太陽光発電システム
US20140246070A1 (en) Thin film solar module having series connection and method for the series connection of thin film solar cells
JP2014531774A (ja) 光起電力セル相互接続
JP2011181966A (ja) 太陽電池セル及び太陽電池モジュール
JP3219129U (ja) ソーラーモジュール
JP2010239167A (ja) 太陽電池モジュール
CN103681913A (zh) 太阳能电池模块及其制造方法
US20120118356A1 (en) Multi-layer solar module backsheet
US20140069479A1 (en) Photoelectric Device Module and Manufacturing Method Thereof
KR101550927B1 (ko) 태양전지 및 이의 제조방법
EP2869462A1 (en) Junction box and photovoltaic module including the same
US20100288335A1 (en) Degradation-resistant photovoltaic devices
US20140246074A1 (en) Solar module with ribbon cable, and a method for the manufacture of same
WO2014050193A1 (ja) 光電変換モジュール
KR102543008B1 (ko) 페로브스카이트 태양전지를 포함하는 태양전지 모듈 및 그 제조 방법
KR20120051972A (ko) 태양 전지 모듈

Legal Events

Date Code Title Description
ENP Entry into the national phase

Ref document number: 2019537012

Country of ref document: JP

Kind code of ref document: A

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 18911152

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 18911152

Country of ref document: EP

Kind code of ref document: A1