WO2019178920A1 - 微发光元件、微发光二极管及其转印方法 - Google Patents

微发光元件、微发光二极管及其转印方法 Download PDF

Info

Publication number
WO2019178920A1
WO2019178920A1 PCT/CN2018/085133 CN2018085133W WO2019178920A1 WO 2019178920 A1 WO2019178920 A1 WO 2019178920A1 CN 2018085133 W CN2018085133 W CN 2018085133W WO 2019178920 A1 WO2019178920 A1 WO 2019178920A1
Authority
WO
WIPO (PCT)
Prior art keywords
micro
light
emitting diode
emitting element
emitting
Prior art date
Application number
PCT/CN2018/085133
Other languages
English (en)
French (fr)
Inventor
丁绍滢
范俊峰
李佳恩
徐宸科
Original Assignee
厦门三安光电有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 厦门三安光电有限公司 filed Critical 厦门三安光电有限公司
Priority to KR1020207015212A priority Critical patent/KR102517964B1/ko
Priority to JP2020526218A priority patent/JP7194183B2/ja
Priority to KR1020237011041A priority patent/KR102586192B1/ko
Publication of WO2019178920A1 publication Critical patent/WO2019178920A1/zh
Priority to US17/024,391 priority patent/US11424385B2/en
Priority to US17/819,406 priority patent/US20220384678A1/en
Priority to JP2022196999A priority patent/JP7493019B2/ja

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L33/00Semiconductor devices having potential barriers specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L33/02Semiconductor devices having potential barriers specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by the semiconductor bodies
    • H01L33/20Semiconductor devices having potential barriers specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by the semiconductor bodies with a particular shape, e.g. curved or truncated substrate
    • H01L33/22Roughened surfaces, e.g. at the interface between epitaxial layers
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L33/00Semiconductor devices having potential barriers specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L33/48Semiconductor devices having potential barriers specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by the semiconductor body packages
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L27/00Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate
    • H01L27/15Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components having potential barriers, specially adapted for light emission
    • H01L27/153Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components having potential barriers, specially adapted for light emission in a repetitive configuration, e.g. LED bars
    • H01L27/156Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components having potential barriers, specially adapted for light emission in a repetitive configuration, e.g. LED bars two-dimensional arrays
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L33/00Semiconductor devices having potential barriers specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L33/005Processes
    • H01L33/0095Post-treatment of devices, e.g. annealing, recrystallisation or short-circuit elimination
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L24/00Arrangements for connecting or disconnecting semiconductor or solid-state bodies; Methods or apparatus related thereto
    • H01L24/93Batch processes
    • H01L24/95Batch processes at chip-level, i.e. with connecting carried out on a plurality of singulated devices, i.e. on diced chips
    • H01L24/97Batch processes at chip-level, i.e. with connecting carried out on a plurality of singulated devices, i.e. on diced chips the devices being connected to a common substrate, e.g. interposer, said common substrate being separable into individual assemblies after connecting
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L33/00Semiconductor devices having potential barriers specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L33/005Processes
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L33/00Semiconductor devices having potential barriers specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L33/02Semiconductor devices having potential barriers specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by the semiconductor bodies
    • H01L33/20Semiconductor devices having potential barriers specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by the semiconductor bodies with a particular shape, e.g. curved or truncated substrate
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L33/00Semiconductor devices having potential barriers specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L33/48Semiconductor devices having potential barriers specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by the semiconductor body packages
    • H01L33/50Wavelength conversion elements
    • H01L33/501Wavelength conversion elements characterised by the materials, e.g. binder
    • H01L33/502Wavelength conversion materials
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L33/00Semiconductor devices having potential barriers specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L33/48Semiconductor devices having potential barriers specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by the semiconductor body packages
    • H01L33/62Arrangements for conducting electric current to or from the semiconductor body, e.g. lead-frames, wire-bonds or solder balls
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/80Methods for connecting semiconductor or other solid state bodies using means for bonding being attached to, or being formed on, the surface to be connected
    • H01L2224/80001Methods for connecting semiconductor or other solid state bodies using means for bonding being attached to, or being formed on, the surface to be connected by connecting a bonding area directly to another bonding area, i.e. connectorless bonding, e.g. bumpless bonding
    • H01L2224/80007Methods for connecting semiconductor or other solid state bodies using means for bonding being attached to, or being formed on, the surface to be connected by connecting a bonding area directly to another bonding area, i.e. connectorless bonding, e.g. bumpless bonding involving a permanent auxiliary member being left in the finished device, e.g. aids for protecting the bonding area during or after the bonding process
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L25/00Assemblies consisting of a plurality of individual semiconductor or other solid state devices ; Multistep manufacturing processes thereof
    • H01L25/03Assemblies consisting of a plurality of individual semiconductor or other solid state devices ; Multistep manufacturing processes thereof all the devices being of a type provided for in the same subgroup of groups H01L27/00 - H01L33/00, or in a single subclass of H10K, H10N, e.g. assemblies of rectifier diodes
    • H01L25/04Assemblies consisting of a plurality of individual semiconductor or other solid state devices ; Multistep manufacturing processes thereof all the devices being of a type provided for in the same subgroup of groups H01L27/00 - H01L33/00, or in a single subclass of H10K, H10N, e.g. assemblies of rectifier diodes the devices not having separate containers
    • H01L25/075Assemblies consisting of a plurality of individual semiconductor or other solid state devices ; Multistep manufacturing processes thereof all the devices being of a type provided for in the same subgroup of groups H01L27/00 - H01L33/00, or in a single subclass of H10K, H10N, e.g. assemblies of rectifier diodes the devices not having separate containers the devices being of a type provided for in group H01L33/00
    • H01L25/0753Assemblies consisting of a plurality of individual semiconductor or other solid state devices ; Multistep manufacturing processes thereof all the devices being of a type provided for in the same subgroup of groups H01L27/00 - H01L33/00, or in a single subclass of H10K, H10N, e.g. assemblies of rectifier diodes the devices not having separate containers the devices being of a type provided for in group H01L33/00 the devices being arranged next to each other
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/10Details of semiconductor or other solid state devices to be connected
    • H01L2924/11Device type
    • H01L2924/12Passive devices, e.g. 2 terminal devices
    • H01L2924/1204Optical Diode
    • H01L2924/12044OLED

Definitions

  • the present invention relates to the field of semiconductor fabrication, and in particular to micro-light-emitting elements, micro-light-emitting diodes, and transfer methods thereof.
  • Micro LEDs are the next generation of display sources currently in hot research. It has the advantages of low power consumption, high brightness, ultra high resolution and color saturation, fast response, low power consumption and long life. In addition, its power consumption is about 10% of LCD and 50% of OLED. Compared to the same self-illuminating OLED, the brightness is 30 times higher and the resolution can reach 1500 PPI (pixel density). These obvious advantages of mLED make it possible to replace the current OLED and LCD and become the light source of the next generation display. mLED is currently not in mass production because there are still many technical problems that need to be overcome. One of the important technical problems is how to improve the transfer yield.
  • the micro-light-emitting element in a process in which a conventional micro-light-emitting element transfers a micro-light-emitting diode, generally has a micro-light-emitting diode 110, a recess 120, and a substrate 131 and a bonding layer 132.
  • the base frame 130, the bridge arm 140, and the micro light emitting diode comprise a first electrode 111, a second electrode 112 and a semiconductor epitaxial layer 113.
  • the micro light emitting diode 110 has a high precision on the printing stamp 200 because of the small size, for example, during the transfer process.
  • the printing stamp 200 Due to the pressure depression of the printing stamp 200, the poor precision of the printing stamp 200, etc., the printing stamp 200 is likely to be pressed onto the bridge arm 140 of the micro-light emitting element, resulting in, for example, the bridge arm 140 shown in the broken line frame in the figure. Damage or breakage causes the micro-light emitting diode 110 to exhibit an abnormality such as falling into the groove 120 of the pedestal 130, resulting in a decrease in transfer yield.
  • the present invention proposes a feasible solution to the problem of the background art, by which transfer of a high-yield micro-light-emitting element can be achieved.
  • the present invention provides a micro-light-emitting element comprising a plurality of micro-light-emitting diodes, a pedestal having a recess for accommodating the micro-light-emitting diodes, a bridge arm for connecting the micro-light-emitting diodes and the pedestal, wherein the bridge arm is located
  • the upper surface of the micro light-emitting diode several or more, has a protrusion higher than the bridge arm on the upper surface of the micro light-emitting diode, that is, the horizontal plane of the convex top is higher than the horizontal plane of the highest point of the bridge arm, or with the micro-lighting
  • the upper surface of the diode-connected bridge arm has a protrusion.
  • the height of the protrusion is 0.5 [im to l [im, 1 [1111 to 3 [1111 or 3 [1111 to 5 [1111]
  • the micro-light emitting diode comprises a semiconductor epitaxial layer, the raised material being at least the same as one of the components of the semiconductor epitaxial layer.
  • the raised material comprises a semiconductor epitaxial layer, a wavelength converting material, a transparent insulating material, or any combination thereof.
  • the raised material comprises an N-type semiconductor, a multiple quantum well, a P-type semiconductor, silicon dioxide, silicon nitride, a silica gel, a resin, an ultraviolet glue, Ti0 2 or any combination thereof.
  • the micro-light-emitting elements have micro-light emitting diodes arranged in a matrix.
  • the micro light emitting diode has from 2 [im to 5 [im, from 5 [im to 10 [im, from 10]
  • the micro light emitting diode has from 2 [i m to 5 [i m, from 5 [i m to 10 [i m, from 10 [ i m to 20 [i m, from 20 [ i m to 50 [i m or from 50 [i m to 100 [i m length].
  • the micro light emitting diode has from 2 [im to 5 [im, from 5 [im to 10 [im, from 10 [ i m to 20 [i m], from 20 [i m to 50] [i m or from 50 [i m to 100 [i m height].
  • the pedestal comprises a substrate and a bonding layer.
  • the material of the bonding layer is BCB glue, silica gel, ultraviolet glue or resin.
  • the material of the bridge arm is a dielectric, metal or semiconductor material.
  • the lower surface of the micro light emitting diode has a first electrode and a second electrode.
  • the micro light emitting diode is a flip chip structure.
  • the micro-light emitting diode is separated from the pedestal by a transfer stamp transfer.
  • the printing impression material is PDMS polydimethylsiloxane, silica gel, pyrolytic gel or UV glue.
  • the microluminescent elements have protrusions of different heights.
  • different heights of the bumps are under different light emitting diodes.
  • different light emitting diodes have different sizes, different shapes, different wavelengths, different brightnesses or different color temperatures.
  • the removal efficiency of the sacrificial material is higher than that of the micro-light-emitting diode, and the specific case includes chemical decomposition or physical decomposition.
  • the shape of the projections is a square, a cylinder, a truncated cone, a cylinder or a cone.
  • the present invention also provides a micro-light-emitting diode which is a core particle which is transferred and separated from the above-mentioned micro-light-emitting element.
  • the present invention specifically provides a micro light emitting diode having at least a semiconductor epitaxial layer and a bridge arm, the bridge arm being located on an upper surface of the micro light emitting diode, having a protrusion higher than the bridge arm on the upper surface of the micro light emitting diode, or The upper surface of the bridge arm connected to the micro light emitting diode has a protrusion.
  • the height of the bumps is from 0.5 pm to 1 pm, from 1 pm to 3 pm or from 3 pm to 5 pm.
  • the raised material is at least the same as one of the components of the semiconductor epitaxial layer
  • the raised material comprises a semiconductor epitaxial layer, a wavelength converting material, a transparent insulating material or any combination thereof.
  • the raised material comprises an N-type semiconductor, a multiple quantum well, a P-type semiconductor, silicon dioxide, silicon nitride, a silica gel, a resin, an ultraviolet glue, Ti0 2 or any combination thereof.
  • the shape of the protrusion is a square, a cylinder, a truncated cone, a cylinder or a cone.
  • the micro light emitting diode is a flip chip structure.
  • the micro light emitting diode has from 2 [i m to 5 [i m, from 5 [i m to 10 [i m, from 10 [ i m to 20 [i m], from 20 [ i m to 50 [i m or from 50 [i m to 100 [i m width].
  • the micro light emitting diode has from 2 [im to 5 [im, from 5 [im to 10 [im, from 10 [ i m to 20 [i m], from 20 [i m to 50] [i m or from 50 [i m to 100 [i m length.
  • the micro light emitting diode has from 2 [im to 5 [im, from 5 [im to 10 [im, from 10 [ i m to 20 [i m], from 20 [i m to 50] [i m or from 50 [i m to 100 [i m height].
  • the present invention also provides a micro light emitting diode transfer method, comprising the steps of: [0038] Step (1) providing a micro-light-emitting element, the micro-light-emitting element comprising a plurality of micro-light-emitting diodes, a pedestal having a recess for accommodating the micro-light-emitting diodes, a bridge arm for connecting the micro-light-emitting diodes and the pedestal, wherein One or more than one, the upper surface of the micro light-emitting diode on one side of the bridge arm has a protrusion higher than the bridge arm, or the upper surface of the bridge arm connected to the micro light-emitting diode has a protrusion;
  • Step (2) imprinting the micro-light-emitting diode on the micro-light-emitting element by printing the stamp, in the process of imprinting, the printing stamp contacts the protrusion, and transmits pressure to the protrusion, and after receiving the pressure, the micro-lighting The diode is detached from the micro luminescent element.
  • the micro-luminescent elements have protrusions of different heights.
  • the beneficial effects of the present invention include at least:
  • the material of the bump is the same as one of the components of the semiconductor epitaxial layer, for example, directly forming a bump through the semiconductor epitaxial layer, thereby reducing the light effect loss caused by the light absorption of the bump;
  • FIG. 1 is a schematic view showing a transfer process of a micro light emitting diode of the prior art
  • Embodiment 2 is a schematic view of a micro light-emitting element in Embodiment 1;
  • Embodiment 3 is a schematic view showing the micro-light-emitting element of Embodiment 1 transferring a micro-light emitting diode through a printing stamp;
  • Embodiment 5 is a schematic view of a micro light-emitting element in Embodiment 2;
  • FIG. 6 is a schematic view of a micro-light emitting device having a wing-shaped micro-light emitting diode in some embodiments of Embodiment 2.
  • FIG. 7 is a schematic view of the micro-light-emitting element of Embodiment 4 selectively transferring a micro-light-emitting diode through a printing stamp;
  • FIG. 8 is a schematic view of the micro-light-emitting diode of Embodiment 5;
  • Embodiment 9 is a schematic view of a micro light emitting diode in Embodiment 6;
  • FIG. 10 is a schematic view of a micro light emitting diode in some embodiments of Embodiment 6; [0057] FIG.
  • FIG. 11 is a schematic view showing the transfer of the micro light-emitting diode of Embodiment 8.
  • micro light emitting diode 111
  • first electrode 112
  • second electrode 113
  • semiconductor epitaxial layer 120
  • groove 130
  • pedestal 131
  • substrate 132
  • bonding Layer 140
  • bridge arm 15
  • sacrificial material 160 ⁇ 163, raised
  • 200 printed impression
  • braces represents the inclusion relationship of the part.
  • the present invention provides a first embodiment, a micro-light-emitting element, including a plurality of micro-light-emitting diodes 110, a pedestal 130 having a recess 120 for accommodating the micro-light-emitting diodes 110, a bridge arm 140 for connecting the micro-light-emitting diode 110 and the pedestal 130, wherein the bridge arm 140 is located on the upper surface of the micro-light-emitting diode 110 in the opening direction of the recess 120, and the number of the bridge arms 140 is one or more,
  • the base frame 130 includes a substrate 131 and a bonding layer 132.
  • the material of the bonding layer 132 is BCB glue, silica gel, UV ultraviolet glue or resin, and the material of the bridge arm 140 comprises a dielectric, metal or semiconductor material, and the micro light emitting diode 110 is separated from the pedestal 130 by transfer of the printing stamp 200.
  • the material of the printing stamp 200 is PDMS, silica gel, pyrolytic gel or UV ray adhesive.
  • a plurality of micro light emitting diodes 110 can be accommodated in the micro light emitting device, and the micro light emitting diodes 110 are arranged in a matrix, for example.
  • the micro-light-emitting diode 110 refers to the micro-light-emitting diode 110 having from 2 [im to 5 [im, from 5 [i m to 10 [i m, from 10 [i m to 20 [i m, from 20 [ i m to 50 [i m or from 50 [i m to 100 [i m width, from 2 [i m to 5 [i m, from 5 [i m to 10 [i m, from 10 [i m to 20 [i m, from 20 [i m to 50 [i m or from 50 [i m to 10 0 [i m length, with from 2 [i m to 5 [i m, from 5 [i m to 10 [ i m, from 10 [i m to 20 [i m, from 20 [i m length
  • the lower surface of the micro-light-emitting diode 110 of the embodiment has a first electrode 111 and a second electrode 112. It is recommended to adopt a flip-chip structure, adopt a flip-chip structure, has a brightness advantage, and can directly perform package bonding after transfer, and the process is relatively simple. .
  • the upper surface of the micro light emitting diode 110 on the side of the bridge arm 140 has a protrusion 160 higher than the bridge arm 140.
  • the height of the protrusion 160 can be designed to be 0.5 pm to 1 pm, 1 pm to 3 pm or 3 pm to m.
  • the material of the bumps 160 may be selected as a transparent insulating material such as silicon dioxide or silicon nitride.
  • the shape of the protrusion 160 may be a square, a cylinder, a truncated cone, a cylinder or a cone. As can also be seen from FIG.
  • the micro-light-emitting element has a lower requirement for the production of the printing stamp 200, and the flat-type printing stamp 200 can complete the printing work, thereby eliminating the technical limitation of the surface quality of the printing stamp 200.
  • the distance from the printing stamp to the bridge arm is also guaranteed compared to the prior art.
  • the material of the bump 160 may further include silica gel, resin, ultraviolet glue, Ti0 2 , for example, a wavelength conversion material such as phosphor is doped with silica gel, resin or ultraviolet glue. Or a reflective material such as TiO 2 to change the optical path.
  • the upper surface of the first embodiment has a higher elevation than the protrusion 160 of the bridge arm 140, and the bridge arm of the embodiment is connected to the micro-light-emitting diode 110.
  • the upper surface of 140 has a projection 160.
  • the micro-light emitting diode 110 includes a semiconductor epitaxial layer 113, such as an N-type semiconductor, a multiple quantum well, a P-type semiconductor, or adds some, for example, buffering, blocking.
  • the functional layer is expanded, stressed, and the like, and the material of the bump 160 is at least the same as one of the components of the semiconductor epitaxial layer 113.
  • the N-type semiconductor or the P-type semiconductor is fabricated into a wing-like structure, which serves as the connecting bridge 140 of the micro-light-emitting diode 110 and the pedestal 130.
  • the difference from the first embodiment and the second embodiment is that the protrusion 160 of the embodiment adopts a wavelength conversion material, and the transfer yield is improved in the above embodiment.
  • a free combination of wavelengths is also achieved to meet, for example, the color requirements of the display.
  • the bump 160 material may be an N-type semiconductor or a multiple quantum well.
  • the micro luminescent elements have protrusions of different heights.
  • the bumps of different heights correspond to micro-light emitting diodes 110 of different specifications, for example, having different sizes, different shapes, different wavelengths, different brightnesses or different color temperatures.
  • the present invention further provides a micro-light-emitting diode 110 which is separated from the above-mentioned micro-light-emitting element. Core particles.
  • the present invention specifically provides a micro light emitting diode 110 having a semiconductor epitaxial layer 1 13 and a bridge arm 140 for coupling light emission, the bridge arm 140 remaining on the micro light emitting diode 110 when detached from the above micro light emitting element.
  • the bridge arm 140 is located on the upper surface of the micro light emitting diode 110, the number of the bridge arms 140 is one or more, the material of the bridge arm 140 is dielectric, metal or semiconductor material, and the micro light emitting diode 110 tube is rotated by the printing stamp 200. The print is separated from the base frame 130.
  • the micro light emitting diode 110 refers to the micro light emitting diode 110 having from 2 pm to 5 pm, from 5 pm to 10 ⁇ , from 10 [i m to 20 [i m, from 20 [i m to 50 [i m or from 50] [i m to 100 [i m width, from 2 [i m to 5 [i m , from 5 [i m to 10 [i m], from 10 [i m to 20 [i m], from 20 [i m To 50 [i m or from 50 [i m to 100 [ xm length, from 2 [i m to 5 [i m, from 5 [i m to 10 [i m, from 10 [i m to 20 [i m, from 20 [i m to 50 [i m or from 50 [i m to 10 (Vm height).
  • the lower surface of the micro-light emitting diode 110 of the embodiment has the first electrode 111 and the second electrode 112, and it is recommended to use flip-chip structure,
  • the upper surface of the micro light emitting diode 110 on the side of the bridge arm 140 has a protrusion 160 higher than the bridge arm 140, and the height of the protrusion 160 is 0.5 pm to 1 pm, 1 pm to 3 pm or 3 pm to 5 pm.
  • the material of the bumps 160 may be selected as a transparent insulating material such as silicon dioxide or silicon nitride.
  • the shape of the projections 160 may be a square, a cylinder, a truncated cone, a cylinder or a cone.
  • the material of the bump 160 may further include silica gel, resin, ultraviolet glue, Ti0 2 , for example, a wavelength conversion material such as phosphor is doped with silica gel, resin or ultraviolet glue. Or a reflective material such as TiO 2 to change the optical path.
  • the upper surface of the fifth embodiment has a higher elevation than the protrusion 160 of the bridge arm 140, and the bridge arm of the embodiment is connected to the micro-light-emitting diode 110.
  • the upper surface of 140 has a protrusion 160 which remains or partially remains on the surface of the core of the micro-light-emitting diode 110 after transfer.
  • the micro-light emitting diode 110 includes a semiconductor epitaxial layer 113, such as an N-type semiconductor, a multiple quantum well, a P-type semiconductor, or adds some, for example, buffering, blocking
  • the functional layer is expanded, stressed, and the like, and the material of the bump 160 is at least the same as one of the components of the semiconductor epitaxial layer 113.
  • the N-type semiconductor or the P-type semiconductor is fabricated into a wing-like structure, and the wing-shaped structure includes a plurality of protrusions or protruding rings, which can be used as the connection micro-light emitting diode 110.
  • Bridge arm 140 is fabricated into a wing-like structure, and the wing-shaped structure includes a plurality of protrusions or protruding rings, which can be used as the connection micro-light emitting diode 110.
  • Bridge arm 140 is fabricated into a wing-like structure, and the wing-shaped structure includes a plurality of protrusions or protruding rings, which can be used as the connection micro-light emitting diode 110.
  • the difference from the fifth embodiment and the sixth embodiment is that the protrusion 160 of the embodiment adopts a wavelength conversion material, and the transfer yield is improved in the above embodiment.
  • a free combination of wavelengths is also achieved to meet, for example, the color requirements of the display.
  • the bump 160 material may be an N-type semiconductor, a multiple quantum well, a p-type semiconductor, silicon dioxide, silicon nitride, or any combination thereof.
  • the present invention further provides a micro-light-emitting diode transfer method, comprising the steps of:
  • Step (1) provides a micro-light-emitting element
  • the micro-light-emitting element includes a plurality of micro-light-emitting diodes 110, a pedestal 130 having a recess for accommodating the micro-light-emitting diodes 110, and a micro-light-emitting diode 110 and a pedestal 130.
  • the bridge arms 140 some of which are greater than or equal to 1, have a protrusion 160 higher than the bridge arm 140 on the upper surface of the micro-light-emitting diode 110 on the side of the bridge arm 140, or have an upper surface of the bridge arm 140 connected to the micro-light-emitting diode 110. Bump 160;
  • Step (2) The micro-light emitting diode 110 on the micro-light-emitting element is imprinted by the printing stamp 200.
  • the printing stamp 200 is in contact with the protrusion 160, and transmits pressure to the protrusion 160, and is subjected to pressure. After the pressure, the micro-light emitting diode 110 is detached from the micro-light emitting element.
  • the detachment of the step includes: the detachment of the micro luminescent diode 110 from the micro luminescent element caused by the breakage of the bridge arm 140, the detachment of the micro luminescent diode 110 from the micro luminescent element caused by the detachment of the bridge arm 140 from the pedestal 130, and the micro luminescent diode 110.
  • Step (3) The micro-light-emitting diode 110 is lifted and transferred to the package substrate or used for other purposes by using van der Waals force, deformation clamping force or other adsorption force between the printing stamp 200 and the micro-light-emitting diode 110.
  • the micro-core particles are selectively transferred in large quantities by using protrusions of different heights which the micro-light-emitting elements have.
  • the light emitting wavelength of the micro light emitting diode 110 is a blue light segment, for example, the wavelength is 400 nm to 800 nm, and the blue light emitting diode is divided into three parts.
  • An insulating material protrusion 161 is formed on the upper surface of the first portion of the blue micro light emitting diode, and a second portion of the blue light emitting diode is selected, and a green fluorescent layer (for example, a blue light emitting layer is converted on the upper surface of the second portion of the blue micro light emitting diode) a protrusion 162 of the wavelength conversion material, the protrusion 162 is higher than the above-mentioned insulating material protrusion 161, and a wavelength such as a red fluorescent layer (converting blue light into red light) is formed on the upper surface of the third portion of the blue micro-light emitting diode 110
  • the protrusion 163 is higher than the above-described insulating material protrusion 161 and green light-emitting layer protrusion 162.
  • the printing stamp 200 first performs a micro-light emitting diode with a red fluorescent layer. Transfer, and then transfer the micro light-emitting diode with the green fluorescent layer, and finally transfer the blue micro-light emitting diode with the insulating material protrusion 161 to realize the simple transfer of the micro light-emitting diode. .

Landscapes

  • Engineering & Computer Science (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Power Engineering (AREA)
  • Computer Hardware Design (AREA)
  • Manufacturing & Machinery (AREA)
  • Physics & Mathematics (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • General Physics & Mathematics (AREA)
  • Led Device Packages (AREA)
  • Led Devices (AREA)

Abstract

本发明公开的微发光元件、微发光二极管及其转印方法,其中微发光元件包括若干个微发光二极管、具有容置微发光二极管的凹槽的基架、用于连接微发光二极管和基架的桥臂,若干个大于等于1,在微发光二极管位于桥臂一侧的上表面具有高于桥臂的凸起,或者与微发光二极管连接的桥臂上表面具有凸起,以解决转印过程中印刷印模易压断桥臂转印微发光二极管的问题,提高微发光二极管的转印良率。

Description

说明书 发明名称:微发光元件、 微发光二极管及其转印方法 技术领域
[0001] 本发明属于半导体制造领域, 具体涉及微发光元件、 微发光二极管及其转印方 法。
背景技术
[0002] 微型 LED (mLED) 是目前热门研究的下一代显示器光源。 它具有低功耗、 高 亮度、 超高分辨率与色彩饱和度、 响应速度快、 能耗低、 寿命长灯优点。 此外 , 它的功率消耗量约为 LCD的 10%, OLED的 50%。 而与同样是自发光的 OLED 相比较, 亮度高了 30倍, 且分辨率可以达到 1500PPI (像素密度) 。 mLED这些 明显的优势, 使得它有望取代现在的 OLED和 LCD, 成为下一代显示器的光源。 mLED目前还无法量产, 是因为目前还有许多技术难题需要攻克, 其中一个重要 的技术难题就是如何提高转印良率。
[0003] 参看图 1, 在现有的微发光元件对微发光二极管进行转印的过程中, 微发光元 件通常具有微发光二极管 110、 凹槽 120、 由衬底 131和键合层 132构成的基架 130 、 桥臂 140, 微发光二极管包括第一电极 111、 第二电极 112和半导体外延层 113 , 微发光二极管 110因为尺寸微小, 对印刷印模 200精度要求较高, 例如转印过 程中, 可能由于印刷印模 200受压凹陷、 印刷印模 200精度不良等原因, 容易出 现印刷印模 200压到微发光元件的桥臂 140上, 造成例如图中虚线框内所示的桥 臂 140损坏或断裂, 而导致微发光二极管 110出现诸如脱落到基架 130的凹槽 120 内的异常情况而导致转印良率下降。
发明概述
技术问题
问题的解决方案
技术解决方案
[0004] 本发明就是针对背景技术的问题提出一种可行的解决方案, 通过此方案可以实 现高良率的微发光元件的转印。 [0005] 本发明提供了一种微发光元件, 包括若干个微发光二极管、 具有容置微发光二 极管的凹槽的基架、 用于连接微发光二极管和基架的桥臂, 其中桥臂位于微发 光二极管的上表面, 若干个大于等于 1, 在微发光二极管的上表面具有高于桥臂 的凸起, 即凸起顶部所处水平面高于桥臂最高点所处水平面, 或者与微发光二 极管连接的桥臂上表面具有凸起。
[0006] 根据本发明, 优选的, 凸起的高度为 0.5[im到 l[im、 1[1111到3[1111或3[1111到5[1111
[0007] 根据本发明, 优选的, 微发光二极管包括半导体外延层, 凸起的材料至少与半 导体外延层的其中一种成分的相同。
[0008] 根据本发明, 优选的, 凸起的材料包括半导体外延层、 波长转换材料、 透明绝 缘材料或其中任意种组合。
[0009] 根据本发明, 优选的, 凸起的材料包括 N型半导体、 多量子阱、 P型半导体、 二氧化硅、 氮化硅、 硅胶、 树脂、 紫外胶、 Ti0 2或其中任意种组合。
[0010] 根据本发明, 优选的, 微发光元件中具有矩阵排布的微发光二极管。
[0011] 根据本发明, 优选的, 微发光二极管具有从 2[im到 5[im、 从 5[im到 10[im、 从 10
[im到 20[im、 从 20[im到 50[im或从 50[im到 100[im的宽度。
[0012] 根据本发明, 优选的, 微发光二极管具有从 2[im到 5[im、 从 5[im到 10[im、 从 10 [im到 20[im、 从 20[im到 50[im或从 50[im到 100[im的长度。
[0013] 根据本发明, 优选的, 微发光二极管具有从 2[im到 5[im、 从 5[im到 10[im、 从 10 [im到 20[im、 从 20[im到 50[im或从 50[im到 100[im的高度。
[0014] 根据本发明, 优选的, 基架包括衬底及键合层。
[0015] 根据本发明, 优选的, 键合层的材料为 BCB胶、 硅胶、 紫外胶或者树脂。
[0016] 根据本发明, 优选的, 桥臂的材料为介电质、 金属或者半导体材料。
[0017] 根据本发明, 优选的, 微发光二极管下表面具有第一电极和第二电极。
[0018] 根据本发明, 优选的, 微发光二极管为倒装结构。
[0019] 根据本发明, 优选的, 微发光二极管通过印刷印模转印与基架分离。
[0020] 根据本发明, 优选的, 印刷印模材料为 PDMS聚二甲基硅氧烷、 硅胶、 热解胶 或紫外胶。
[0021] 在一些实施例中, 优选的, 微发光元件具有不同高度的凸起。 [0022] 根据这些实施例, 优选的, 不同高度的凸起下方为不同的发光二极管。
[0023] 根据这些实施例, 优选的, 不同的发光二极管具有不同的尺寸、 不同的形状、 不同的波长、 不同的亮度或者不同的色温。
[0024] 在一些实施例中, 优选的, 微发光二极管与凹槽之间具有牺牲材料, 至少在特 定情况下牺牲材料的移除效率高于微发光二极管, 特定情况包括化学分解或物 理分解。
[0025] 根据本发明优选的, 凸起的形状为方台、 筒状、 圆台、 圆柱或锥体。
[0026] 通过本发明提供的微发光元件, 本发明还提供了一种微发光二极管, 该发光二 极管是从上述微发光元件中转印分离出来的芯粒。
[0027] 本发明具体提供了一种微发光二极管, 至少具有半导体外延层和桥臂, 桥臂位 于微发光二极管的上表面, 在微发光二极管的上表面具有高于桥臂的凸起, 或 者与微发光二极管连接的桥臂上表面具有凸起。
[0028] 根据本发明, 优选的, 凸起的高度为 0.5pm到 lpm、 1pm到 3 pm或 3 pm到 5 pm。
[0029] 根据本发明, 优选的, 凸起的材料至少与半导体外延层的其中一种成分的相同
[0030] 根据本发明, 优选的, 凸起的材料包括半导体外延层、 波长转换材料、 透明绝 缘材料或其中任意种组合。
[0031] 根据本发明, 优选的, 凸起的材料包括 N型半导体、 多量子阱、 P型半导体、 二氧化硅、 氮化硅、 硅胶、 树脂、 紫外胶、 Ti0 2或其中任意种组合。
[0032] 根据本发明, 优选的, 凸起的形状为方台、 筒状、 圆台、 圆柱或锥体。
[0033] 根据本发明, 优选的, 微发光二极管为倒装结构。
[0034] 根据本发明, 优选的, 微发光二极管具有从 2[im到 5[im、 从 5[im到 10[im、 从 10 [im到 20[im、 从 20[im到 50[im或从 50[im到 100[im的宽度。
[0035] 根据本发明, 优选的, 微发光二极管具有从 2[im到 5[im、 从 5[im到 10[im、 从 10 [im到 20[im、 从 20[im到 50[im或从 50[im到 100[im的长度。
[0036] 根据本发明, 优选的, 微发光二极管具有从 2[im到 5[im、 从 5[im到 10[im、 从 10 [im到 20[im、 从 20[im到 50[im或从 50[im到 100[im的高度。
[0037] 本发明还提供了一种微发光二极管转印方法, 包括步骤: [0038] 步骤 ( 1) 提供微发光元件, 微发光元件包括若干个微发光二极管、 具有容置 微发光二极管的凹槽的基架、 用于连接微发光二极管和基架的桥臂, 其中若干 个大于等于 1, 在微发光二极管位于桥臂一侧的上表面具有高于桥臂的凸起, 或 者与微发光二极管连接的桥臂上表面具有凸起;
[0039] 步骤 (2) 通过印刷印模对微发光元件上的微发光二极管进行压印, 压印过程 中, 印刷印模与凸起接触, 并向凸起传递压力, 受到压力后, 微发光二极管与 微发光元件脱离。
[0040] 在本方法的一些实施例中, 优选的, 微发光元件具有不同高度的凸起。
发明的有益效果
有益效果
[0041] 本发明的有益效果, 至少包括:
[0042] ( 1) 由于在微发光二极管位于桥臂一侧的上表面具有高于桥臂的凸起, 或者 与微发光二极管连接的桥臂上表面具有凸起, 避免了转印过程中印刷印模在下 压时接触挤压到桥臂而造成的桥臂损坏;
[0043] (2) 凸起的材料与半导体外延层的其中一种成分的相同, 例如通过半导体外 延层直接形成凸起, 降低凸起吸光造成的光效损失;
[0044] (3) 在微发光二极管上表面上制作用于波长转换的凸起, 既可满足显示器对 各波长出光的需求, 又可以起到上述凸起的效用, 简化了工艺流程;
[0045] (4) 不同高度的凸起下方为不同的发光二极管, 实现了选择性转印的可能性
[0046] 本发明的其它特征和优点将在随后的说明书中阐述, 并且, 部分地从说明书中 变得显而易见, 或者通过实施本发明而了解。 本发明的目的和其他优点可通过 在说明书、 权利要求书以及附图中所特别指出的结构来实现和获得。
对附图的简要说明
附图说明
[0047] 附图用来提供对本发明的进一步理解, 并且构成说明书的一部分, 与本发明的 实施例一起用于解释本发明, 并不构成对本发明的限制。 此外, 附图数据是描 述概要, 不是按比例绘制。 [0048] 图 1为现有技术的微发光二极管转印过程示意图;
[0049] 图 2为实施例 1中微发光元件示意图;
[0050] 图 3为实施例 1中微发光元件通过印刷印模转印微发光二极管的示意图;
[0051] 图 4为实施例 1中微发光元件的微发光二极管矩阵;
[0052] 图 5为实施例 2中微发光元件示意图;
[0053] 图 6为实施例 2的一些实施例中具有翼状结构微发光二极管的微发光元件示意图
[0054] 图 7为实施例 4中微发光元件通过印刷印模选择性转印微发光二极管的示意图; [0055] 图 8为实施例 5中的微发光二极管示意图;
[0056] 图 9为实施例 6中的微发光二极管示意图;
[0057] 图 10为实施例 6的一些实施方式中微发光二极管示意图;
[0058] 图 11为实施例 8的微发光二极管转印示意图。
[0059] 图中标示: 110、 微发光二极管, 111、 第一电极, 112、 第二电极, 113、 半导 体外延层, 120、 凹槽, 130、 基架, 131、 衬底, 132、 键合层, 140、 桥臂, 15 0、 牺牲材料, 160~163、 凸起, 200、 印刷印模, 箭头: 表示印刷印模移动方向 , 大括号: 代表部件的包含关系。
发明实施例
本发明的实施方式
[0060] 以下将结合附图及实施例来详细说明本发明的实施方式, 借此对本发明如何应 用技术手段来解决技术问题, 并达成技术效果的实现过程能充分理解并据以实 施。 需要说明的是, 只要不构成冲突, 本发明中的各个实施例以及各实施例中 的各个特征可以相互结合, 所形成的技术方案均在本发明的保护范围之内。
[0061] 应当理解, 本发明所使用的术语仅出于描述具体实施方式的目的, 而不是旨在 限制本发明。 进一步理解, 当在本发明中使用术语“包含”、 ”包括’’时, 用于表明 陈述的特征、 整体、 步骤、 元件、 和 /或的存在, 而不排除一个或多个其他特征 、 整体、 步骤、 元件、 和 /或它们的组合的存在或增加。
[0062] 除另有定义之外, 本发明所使用的所有术语 (包括技术术语和科学术语) 具有 与本发明所属领域的普通技术人员通常所理解的含义相同的含义。 应进一步理 解, 本发明所使用的术语应被理解为具有与这些术语在本说明书的上下文和相 关领域中的含义一致的含义, 并且不应以理想化或过于正式的意义来理解, 除 本发明中明确如此定义之外。
[0063] 参看图 2到图 4, 本发明提供了第一个实施例, 一种微发光元件, 包括若干个微 发光二极管 110、 具有容置微发光二极管 110的凹槽 120的基架 130、 用于连接微 发光二极管 110和基架 130的桥臂 140, 其中桥臂 140位于凹槽 120开口方向的微发 光二极管 110上表面, 若干个大于等于 1, 桥臂 140数量为一个或者多个, 基架 13 0包括衬底 131及键合层 132, 键合层 132的材料为 BCB胶、 硅胶、 UV紫外胶或者 树脂, 桥臂 140的材料包含介电质、 金属或者半导体材料, 微发光二极管 110通 过印刷印模 200转印与基架 130分离, 印刷印模 200材料为 PDMS、 硅胶、 热解胶 或 UV紫外胶。 在一些情况下, 微发光二极管 110与凹槽 120之间具有牺牲材料 150 , 至少在特定情况下牺牲材料 150的移除效率高于微发光二极管 110, 特定情况 包括化学分解或物理分解, 例如紫外光分解、 蚀刻移除或者冲击移除等。
[0064] 微发光元件内可容置大量微发光二极管 110, 微发光二极管 110例如采用矩阵排 布。 通常来说, 微发光二极管 110指的是微发光二极管 110具有从 2[im到 5[im、 从 5[im到 10[im、 从 10[im到 20[im、 从 20[im到 50[im或从 50[im到 100[im的宽度, 具有 从 2[im到 5[im、 从 5[im到 10[im、 从 10[im到 20[im、 从 20[im到 50[im或从 50[im到 10 0[im的长度, 具有从 2[im到 5[im、 从 5[im到 10[im、 从 10[im到 20[im、 从 20[im到 50 pm或从 50pm到 lOOpm的高度。 本实施例的微发光二极管 110下表面具有第一电极 111和第二电极 112, 推荐采用倒装结构, 采用倒装结构, 具有亮度优势, 转印 后也可以直接进行封装键合, 工艺较为简洁。
[0065] 在微发光二极管 110位于桥臂 140—侧的上表面具有高于桥臂 140的凸起 160, 在 本实施例中, 凸起 160的高度可以设计为为 0.5pm到 lpm、 1pm到 3 pm或 3 pm到 m。 凸起 160的材料可以选择为例如二氧化硅、 氮化硅等透明绝缘材料。 凸起 160 的形状可以为方台、 筒状、 圆台、 圆柱或锥体。 从图 3中也可以看出, 该微发光 元件对印刷印模 200的制作要求较低, 平面型印刷印模 200即可完成印刷工作, 摆脱了印刷印模 200表面质量造成工艺上的限制, 相较于现有技术也保证印刷印 模到桥臂的距离。 [0066] 在第一个实施例的一些实施方式中, 凸块 160的材料还可以包括硅胶、 树脂、 紫外胶、 Ti0 2, 例如用硅胶、 树脂或紫外胶掺入例如荧光粉的波长转换材料, 或者为诸如 TiO 2的反射材料来改变光路。
[0067] 参看图 5, 在第二个实施例中, 和第一个实施例的上表面具有高于桥臂 140的凸 起 160的区别在于, 本实施例与微发光二极管 110连接的桥臂 140的上表面具有凸 起 160。
[0068] 在第二个实施例的一些实施方式中, 微发光二极管 110包括半导体外延层 113, 半导体外延层 113例如 N型半导体、 多量子阱、 P型半导体, 又或者增加一些例如 缓冲、 阻挡、 扩展、 应力调变等功能层, 而凸起 160的材料至少与半导体外延层 113的其中一种成分的相同。
[0069] 参看图 6, 在这些实施方式中, 将 N型半导体或者 P型半导体制作成翼状结构, 该翼状结构即可作为微发光二极管 110与基架 130的连接桥臂 140。
[0070] 在第三个实施例中, 和第一个实施例及第二个实施例的区别在于, 本实施例的 凸起 160采用波长转换材料, 在兼具上述实施例提升转印良率的功能外, 也实现 了各波长的自由组合, 以满足例如显示器的色彩需求。
[0071] 在第一个实施例到第三个实施例中, 凸起 160材料可以为 N型半导体、 多量子阱
、 p型半导体、 二氧化硅、 氮化硅或其中任意种组合。
[0072] 参看图 7 , 在第四个实施例中, 跟其他实施例的主要区别在于微发光元件具有 不同高度的凸起。 不同高度的凸起下方对应为不同规格的微发光二极管 110, 例 如具有不同的尺寸、 不同的形状、 不同的波长、 不同的亮度或者不同的色温。
[0073] 参看图 8 , 在第五个实施例中, 通过本发明提供的微发光元件, 本发明还提供 了一种微发光二极管 110, 该微发光二极管 110是从上述微发光元件中分离出来 的芯粒。
[0074] 本发明具体提供了一种微发光二极管 110, 具有用于耦合发光的半导体外延层 1 13和桥臂 140, 该桥臂 140是从上述微发光元件脱离时残留在微发光二极管 110上 的, 桥臂 140位于微发光二极管 110上表面, 桥臂 140数量为一个或者多个, 桥臂 140的材料为介电质、 金属或者半导体材料, 微发光二极 110管通过印刷印模 200 转印与基架 130分离。 [0075] 微发光二极管 110指的是微发光二极管 110具有从 2pm到 5pm、 从 5pm到 10—、 从 10[im到 20[im、 从 20[im到 50[im或从 50[im到 100[im的宽度, 具有从 2[im到 5[im 、 从 5[im到 10[im、 从 10[im到 20[im、 从 20[im到 50[im或从 50[im到 100[xm的长度, 具有从 2[im到 5[im、 从 5[im到 10[im、 从 10[im到 20[im、 从 20[im到 50[im或从 50[im 到 10(Vm的高度。 本实施例的微发光二极管 110下表面具有第一电极 111和第二电 极 112, 推荐采用倒装结构,
[0076] 在微发光二极管 110位于桥臂 140—侧的上表面具有高于桥臂 140的凸起 160, 凸 起 160的高度为 0.5pm到 lpm、 1pm到 3 pm或 3 pm到 5 pm。 凸起 160的材料可以选择 为例如二氧化硅、 氮化硅等透明绝缘材料。 凸起 160的形状可以为方台、 筒状、 圆台、 圆柱或锥体。
[0077] 在第五个实施例的一些实施方式中, 凸块 160的材料还可以包括硅胶、 树脂、 紫外胶、 Ti0 2, 例如用硅胶、 树脂或紫外胶掺入例如荧光粉的波长转换材料, 或者为诸如 TiO 2的反射材料来改变光路。
[0078] 参看图 9, 在第六个实施例中, 和第五个实施例的上表面具有高于桥臂 140的凸 起 160的区别在于, 本实施例与微发光二极管 110连接的桥臂 140的上表面具有凸 起 160, 该桥臂 140全部或者部分在转印后残留于微发光二极管 110芯粒表面。
[0079] 在第六个实施例的一些实施方式中, 微发光二极管 110包括半导体外延层 113, 半导体外延层 113例如 N型半导体、 多量子阱、 P型半导体, 又或者增加一些例如 缓冲、 阻挡、 扩展、 应力调变等功能层, 而凸起 160的材料至少与半导体外延层 113的其中一种成分的相同。
[0080] 参看图 10, 在这些实施方式中, 将 N型半导体或者 P型半导体制作成翼状结构 , 翼状结构包括数个突出部或者突出圆环, 该翼状结构即可作为连接微发光二 极管 110的桥臂 140。
[0081] 在第七个实施例中, 和第五个实施例及第六个实施例的区别在于, 本实施例的 凸起 160采用波长转换材料, 在兼具上述实施例提升转印良率的功能外, 也实现 了各波长的自由组合, 以满足例如显示器的色彩需求。
[0082] 根据第五个实施例到第七个实施例, 凸起 160材料可以为 N型半导体、 多量子阱 、 p型半导体、 二氧化硅、 氮化硅或其中任意种组合。 [0083] 参看图 11, 在第八个实施例中, 在上述微发光元件和微发光二极管的基础上, 本发明还提供了一种微发光二极管转印方法, 包括步骤:
[0084] 步骤 (1) 提供微发光元件, 微发光元件包括若干个微发光二极管 110、 具有容 置微发光二极管 110的凹槽的基架 130、 用于连接微发光二极管 110和基架 130的 桥臂 140, 其中若干个大于等于 1, 在微发光二极管 110位于桥臂 140—侧的上表 面具有高于桥臂 140的凸起 160, 或者与微发光二极管 110连接的桥臂 140上表面 具有凸起 160;
[0085] 步骤 (2) 通过印刷印模 200对微发光元件上的微发光二极管 110进行压印, 压 印过程中, 印刷印模 200与凸起 160接触, 并向凸起 160传递压力, 受到压力后, 微发光二极管 110与微发光元件脱离。 该步骤的脱离包括: 由桥臂 140断裂造成 的微发光二极管 110与微发光元件的脱离、 桥臂 140从基架 130上脱落造成的微发 光二极管 110与微发光元件的脱离、 微发光二极管 110从桥臂 140上脱落造成的微 发光二极管 110与微发光元件的脱离、 微发光二极管 110与桥臂 140连接部分的断 裂造成的微发光二极管 110与微发光元件的脱离或者以上情况的任意组合造成的 脱离;
[0086] 步骤 (3) 利用印刷印模 200与微发光二极管 110之间范德瓦力、 变形夹紧力或 者其他吸附力, 将微发光二极管 110提起转印到封装基板或者作其他用途。
[0087] 参看图 7 , 在第九个实施例中, 利用微发光元件具有的不同高度的凸起, 选择 性大批量转印微芯粒。
[0088] 本实施例中提供了一种选择性转印的方法, 该方法中, 微发光二极管 110出光 波长为蓝光段, 例如, 其波长为 400nm~800nm, 将蓝光微发光二极管分为三部 分, 在第一部分蓝光微发光二极管上表面制作绝缘材料凸起 161, 再选取第二部 分蓝光微发光二极管, 在第二部分蓝光微发光二极管上表面制作例如绿光荧光 层 (将蓝光转换为绿光) 等波长转换材料的凸起 162, 该凸起 162高于上述绝缘 材料凸起 161, 在第三部分蓝光微发光二极管 110上表面制作例如红光荧光层 ( 将蓝光转换为红光) 等波长转换材料, 该凸起 163高于上述绝缘材料凸起 161和 绿光変光层凸起 162。
[0089] 利用凸起高度的差异, 印刷印模 200先对带有红光荧光层的微发光二极管进行 转印, 再对带有绿光荧光层的微发光二极管进行转印, 最后对待有绝缘材料凸 起 161的蓝光微发光二极管进行转印, 即可实现工艺较为简易的微发光二极管选 择性转印。
[0090] 在第九个实施例的一些实施方式中, 还包括了对相同规格的微发光二极管进行 转印的工艺, 利用不同的凸起高度选择性转印部分微发光二极管芯粒。
[0091] 以上所述仅是本发明的优选实施方式, 应当指出, 对于本技术领域的技术人员
, 在不脱离本发明原理的前提下, 还可以做出若干改进和润饰, 这些改进和润 饰也应视为本发明的保护范围。

Claims

权利要求书
[权利要求 1] 微发光元件, 包括若干个微发光二极管、 具有容置微发光二极管的凹 槽的基架、 用于连接微发光二极管和基架的桥臂, 其中桥臂位于微发 光二极管的上表面, 若干个大于等于 1, 其特征在于: 在微发光二极 管的上表面具有高于桥臂的凸起, 或者与微发光二极管连接的桥臂上 表面具有凸起。
[权利要求 2] 根据权利要求 1所述的微发光元件, 其特征在于: 凸起的高度为 0.5pm 至 lj 1 [im、 1 [im至 U 3 [im或 3 [im到 5 [im。
[权利要求 3] 根据权利要求 1所述的微发光元件, 其特征在于: 微发光二极管包括 半导体外延层, 凸起的材料至少与半导体外延层的其中一种成分的相 同。
[权利要求 4] 根据权利要求 1所述的微发光元件, 其特征在于: 凸起的材料包括半 导体外延层、 波长转换材料、 透明绝缘材料或其中任意种组合。
[权利要求 5] 根据权利要求 1所述的微发光元件, 其特征在于: 凸起的材料包括 N 型半导体、 多量子阱、 P型半导体、 二氧化硅、 氮化硅、 硅胶、 树脂 、 紫外胶、 Ti0 2或其中任意种组合。
[权利要求 6] 根据权利要求 1所述的微发光元件, 其特征在于: 微发光元件中具有 矩阵排布的微发光二极管。
[权利要求 7] 根据权利要求 1所述的微发光元件, 其特征在于: 微发光二极管具有 从 2[im至 Ij5[im、 从 5[im到 10[im、 从 10[im至 Ij20[im、 从 20[im到 50[im或 从 5(Vm到 lOOpm的宽度。
[权利要求 8] 根据权利要求 1所述的微发光元件, 其特征在于: 微发光二极管具有 从 2[im至 Ij5[im、 从 5[im到 10[im、 从 10[im至 Ij20[im、 从 20[im到 50[im或 从 50 1到 lOOpm的长度。
[权利要求 9] 根据权利要求 1所述的微发光元件, 其特征在于: 微发光二极管具有 从 2[im至 Ij5[im、 从 5[im到 10[im、 从 10[im至 Ij20[im、 从 20[im到 50[im或 从 50pm到 lOOpm的高度。
[权利要求 10] 根据权利要求 1所述的微发光元件, 其特征在于: 基架包括衬底及键 合层。
[权利要求 11] 根据权利要求 10所述的微发光元件, 其特征在于: 键合层的材料为 B
CB胶、 硅胶、 紫外胶或者树脂。
[权利要求 12] 根据权利要求 1所述的微发光元件, 其特征在于: 桥臂的材料为介电 质、 金属或者半导体材料。
[权利要求 13] 根据权利要求 1所述的微发光元件, 其特征在于: 微发光二极管下表 面具有第一电极和第二电极。
[权利要求 14] 根据权利要求 1所述的微发光元件, 其特征在于: 微发光二极管为倒 装结构。
[权利要求 15] 根据权利要求 1所述的微发光元件, 其特征在于: 微发光二极管通过 印刷印模转印与基架分离。
[权利要求 16] 根据权利要求 15所述的微发光元件, 其特征在于: 印刷印模材料为 P
DMS、 硅胶、 热解胶或紫外胶。
[权利要求 17] 根据权利要求 1所述的微发光元件, 其特征在于: 微发光元件具有不 同高度的凸起。
[权利要求 18] 根据权利要求 17所述的微发光元件, 其特征在于: 不同高度的凸起下 方为不同的发光二极管。
[权利要求 19] 根据权利要求 17所述的微发光元件, 其特征在于: 不同的发光二极管 具有不同的尺寸、 不同的形状、 不同的波长、 不同的亮度或者不同的 色温。
[权利要求 20] 根据权利要求 1所述的微发光元件, 其特征在于: 微发光二极管与凹 槽之间具有牺牲材料, 至少在特定情况下牺牲材料的移除效率高于微 发光二极管, 特定情况包括化学分解或物理分解。
[权利要求 21] 根据权利要求 1所述的微发光元件, 其特征在于: 凸起的形状为方台 、 筒状、 圆台、 圆柱或锥体。
[权利要求 22] 微发光二极管, 具有半导体外延层, 其特征在于: 微发光二极管是从 权利要求 1~21中任意一项所述的微发光元件中通过转印分离出来的芯 粒。
[权利要求 23] 微发光二极管, 至少具有半导体外延层和桥臂, 桥臂位于微发光二极 管的上表面, 其特征在于: 在微发光二极管的上表面具有高于桥臂的 凸起, 或者与微发光二极管连接的桥臂上表面具有凸起。
[权利要求 24] 根据权利要求 23所述的微发光二极管, 其特征在于: 凸起的高度为 0.
5 [im至 U 1 [im、 1 [im至 U 3 [im或 3 [im到 5 [im。
[权利要求 25] 根据权利要求 23所述的微发光二极管, 其特征在于: 凸起的材料至少 与半导体外延层的其中一种成分的相同。
[权利要求 26] 根据权利要求 23所述的微发光二极管, 其特征在于: 凸起的材料包括 半导体外延层、 波长转换材料、 透明绝缘材料或其中任意种组合。
[权利要求 27] 根据权利要求 23所述的微发光二极管, 其特征在于: 凸起的材料包括
N型半导体、 多量子阱、 P型半导体、 二氧化硅、 氮化硅、 硅胶、 树 脂、 紫外胶、 Ti0 2或其中任意种组合。
[权利要求 28] 根据权利要求 23所述的微发光二极管, 其特征在于: 凸起的形状为方 台、 筒状、 圆台、 圆柱或锥体。
[权利要求 29] 根据权利要求 23所述的微发光二极管, 其特征在于: 微发光二极管为 倒装结构。
[权利要求 30] 根据权利要求 23所述的微发光二极管, 其特征在于: 微发光二极管具 有从 2[im至 Ij5[im、 从 5[im到 10[im、 从 10[im至 Ij20[im、 从 20[im到 50[im 或从 5(Vm到 lOOpm的宽度。
[权利要求 31] 根据权利要求 23所述的微发光元件, 其特征在于: 微发光二极管具有 从 2[im至 Ij5[im、 从 5[im到 10[im、 从 10[im至 Ij20[im、 从 20[im到 50[im或 从 50 1到 lOOpm的长度。
[权利要求 32] 根据权利要求 23所述的微发光元件, 其特征在于: 微发光二极管具有 从 2[im至 Ij5[im、 从 5[im到 10[im、 从 10[im至 Ij20[im、 从 20[im到 50[im或 从 50pm到 lOOpm的高度。
[权利要求 33] 一种微发光二极管转印方法, 包括步骤:
步骤 (1) 提供微发光元件, 微发光元件包括若干个微发光二极管、 具有容置微发光二极管的凹槽的基架、 用于连接微发光二极管和基架 的桥臂, 其中若干个大于等于 1, 在微发光二极管位于桥臂一侧的上 表面具有高于桥臂的凸起, 或者与微发光二极管连接的桥臂上表面具 有凸起;
步骤 (2) 通过印刷印模对微发光元件上的微发光二极管进行压印, 压印过程中, 印刷印模与凸起接触, 并向凸起传递压力, 受到压力后 , 微发光二极管与微发光元件脱离。
[权利要求 34] 根据权利要求 33所述的一种微发光二极管转印方法, 其特征在于: 微 发光元件具有不同高度的凸起。
PCT/CN2018/085133 2018-03-20 2018-04-28 微发光元件、微发光二极管及其转印方法 WO2019178920A1 (zh)

Priority Applications (6)

Application Number Priority Date Filing Date Title
KR1020207015212A KR102517964B1 (ko) 2018-03-20 2018-04-28 마이크로 발광다이오드 및 그 전사 방법
JP2020526218A JP7194183B2 (ja) 2018-03-20 2018-04-28 マイクロ発光デバイス、マイクロ発光ダイオード及びその転写方法
KR1020237011041A KR102586192B1 (ko) 2018-03-20 2018-04-28 마이크로 발광다이오드 및 그 전사 방법
US17/024,391 US11424385B2 (en) 2018-03-20 2020-09-17 Micro light-emitting element and device and transfer method thereof
US17/819,406 US20220384678A1 (en) 2018-03-20 2022-08-12 Micro light-emitting element and device and transfer method thereof
JP2022196999A JP7493019B2 (ja) 2018-03-20 2022-12-09 マイクロ発光デバイス、マイクロ発光ダイオード及びその転写方法

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201810229801.3A CN108364971B (zh) 2018-03-20 2018-03-20 微发光元件、微发光二极管及其转印方法
CN201810229801.3 2018-03-20

Related Child Applications (1)

Application Number Title Priority Date Filing Date
US17/024,391 Continuation-In-Part US11424385B2 (en) 2018-03-20 2020-09-17 Micro light-emitting element and device and transfer method thereof

Publications (1)

Publication Number Publication Date
WO2019178920A1 true WO2019178920A1 (zh) 2019-09-26

Family

ID=63000634

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2018/085133 WO2019178920A1 (zh) 2018-03-20 2018-04-28 微发光元件、微发光二极管及其转印方法

Country Status (6)

Country Link
US (2) US11424385B2 (zh)
JP (2) JP7194183B2 (zh)
KR (2) KR102586192B1 (zh)
CN (3) CN108364971B (zh)
TW (1) TWI709252B (zh)
WO (1) WO2019178920A1 (zh)

Families Citing this family (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
TWI707491B (zh) * 2019-12-04 2020-10-11 錼創顯示科技股份有限公司 微型發光二極體顯示面板
CN110998878B (zh) * 2019-03-19 2022-11-22 厦门市三安光电科技有限公司 一种半导体发光组件
WO2020191593A1 (zh) * 2019-03-25 2020-10-01 厦门市三安光电科技有限公司 微发光组件、微发光二极管及微发光二极管转印方法
CN112750935B (zh) * 2020-12-31 2022-03-15 深圳市思坦科技有限公司 一种led芯片及其制作方法
CN113451352B (zh) * 2021-08-31 2021-12-28 深圳市思坦科技有限公司 芯片弱化结构及其制作方法、巨量转移方法、显示面板
CN116053361A (zh) * 2021-10-28 2023-05-02 重庆康佳光电技术研究院有限公司 转移基板、制备方法和led芯片的巨量转移方法

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1983649A (zh) * 2005-12-13 2007-06-20 北京大学 光子晶体和织构化薄膜转印提高led出光效率的方法
CN101207169A (zh) * 2006-12-19 2008-06-25 南茂科技股份有限公司 发光芯片封装体与光源组件
US8350467B2 (en) * 2006-01-11 2013-01-08 Samsung Display Co., Ltd. Flat panel display device and method thereof
CN106663732A (zh) * 2014-08-26 2017-05-10 德州仪器公司 倒装芯片led封装
CN106847796A (zh) * 2015-11-19 2017-06-13 三星电子株式会社 Led芯片、光源模块、led显示面板及包括其的led显示设备

Family Cites Families (29)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7923746B2 (en) * 2008-03-12 2011-04-12 Industrial Technology Research Institute Light emitting diode package structure and method for fabricating the same
JP2010135746A (ja) * 2008-10-29 2010-06-17 Panasonic Electric Works Co Ltd 半導体発光素子およびその製造方法、発光装置
JP2011060966A (ja) * 2009-09-09 2011-03-24 Panasonic Electric Works Co Ltd 発光装置
US9112122B2 (en) * 2010-04-13 2015-08-18 Konica Minolta Advanced Layers, Inc. Light-emitting device and method for manufacturing same
US8889485B2 (en) * 2011-06-08 2014-11-18 Semprius, Inc. Methods for surface attachment of flipped active componenets
CN102903804B (zh) * 2011-07-25 2015-12-16 财团法人工业技术研究院 发光元件的转移方法以及发光元件阵列
US9105714B2 (en) * 2012-12-11 2015-08-11 LuxVue Technology Corporation Stabilization structure including sacrificial release layer and staging bollards
US9111464B2 (en) * 2013-06-18 2015-08-18 LuxVue Technology Corporation LED display with wavelength conversion layer
US9087764B2 (en) * 2013-07-26 2015-07-21 LuxVue Technology Corporation Adhesive wafer bonding with controlled thickness variation
KR102116856B1 (ko) * 2014-06-18 2020-06-01 엑스-셀레프린트 리미티드 마이크로 어셈블리를 위한 gan 및 관련 물질들을 제조하기 위한 시스템들 및 방법들
CN110010750B (zh) * 2014-06-18 2021-11-09 艾克斯展示公司技术有限公司 微组装led显示器
US10643981B2 (en) * 2014-10-31 2020-05-05 eLux, Inc. Emissive display substrate for surface mount micro-LED fluidic assembly
US9825202B2 (en) * 2014-10-31 2017-11-21 eLux, Inc. Display with surface mount emissive elements
US10804426B2 (en) * 2014-10-31 2020-10-13 ehux, Inc. Planar surface mount micro-LED for fluidic assembly
US11894350B2 (en) * 2014-10-31 2024-02-06 e Lux, Inc. Fluidic assembly enabled mass transfer for microLED displays
US9640715B2 (en) * 2015-05-15 2017-05-02 X-Celeprint Limited Printable inorganic semiconductor structures
TWI557831B (zh) * 2015-05-15 2016-11-11 友達光電股份有限公司 微組件的傳送方法
WO2017075776A1 (en) * 2015-11-04 2017-05-11 Goertek. Inc Transferring method, manufacturing method, device and electronic apparatus of micro-led
JP2017183462A (ja) * 2016-03-30 2017-10-05 ソニー株式会社 発光素子
CN107437523B (zh) * 2016-05-26 2020-01-31 群创光电股份有限公司 拾取与放置装置及其作动方法
US9997501B2 (en) * 2016-06-01 2018-06-12 X-Celeprint Limited Micro-transfer-printed light-emitting diode device
CN106229326B (zh) * 2016-07-22 2019-03-12 深圳市华星光电技术有限公司 转印微发光二极管的方法及显示面板的制作方法
US10044873B2 (en) * 2016-08-15 2018-08-07 Opentv, Inc. Mute alert
US11024608B2 (en) * 2017-03-28 2021-06-01 X Display Company Technology Limited Structures and methods for electrical connection of micro-devices and substrates
CN107170771B (zh) * 2017-05-23 2019-12-24 深圳市华星光电技术有限公司 微发光二极管阵列基板的封装结构及其封装方法
CN106941108B (zh) * 2017-05-23 2019-09-17 深圳市华星光电技术有限公司 微发光二极管显示面板及其制作方法
CN108231968B (zh) * 2017-12-11 2020-02-11 厦门市三安光电科技有限公司 微发光二极管及其转移方法
JP7194138B2 (ja) 2019-03-25 2022-12-21 ヤンマーパワーテクノロジー株式会社 苗縦送り機構
US11355686B2 (en) * 2019-03-29 2022-06-07 Seoul Semiconductor Co., Ltd. Unit pixel having light emitting device, pixel module and displaying apparatus

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1983649A (zh) * 2005-12-13 2007-06-20 北京大学 光子晶体和织构化薄膜转印提高led出光效率的方法
US8350467B2 (en) * 2006-01-11 2013-01-08 Samsung Display Co., Ltd. Flat panel display device and method thereof
CN101207169A (zh) * 2006-12-19 2008-06-25 南茂科技股份有限公司 发光芯片封装体与光源组件
CN106663732A (zh) * 2014-08-26 2017-05-10 德州仪器公司 倒装芯片led封装
CN106847796A (zh) * 2015-11-19 2017-06-13 三星电子株式会社 Led芯片、光源模块、led显示面板及包括其的led显示设备

Also Published As

Publication number Publication date
JP2023022313A (ja) 2023-02-14
KR20200068742A (ko) 2020-06-15
US20220384678A1 (en) 2022-12-01
CN112786643A (zh) 2021-05-11
US20210005782A1 (en) 2021-01-07
TW201941453A (zh) 2019-10-16
CN108364971A (zh) 2018-08-03
CN112786642A (zh) 2021-05-11
KR102517964B1 (ko) 2023-04-03
JP7194183B2 (ja) 2022-12-21
JP7493019B2 (ja) 2024-05-30
JP2021504937A (ja) 2021-02-15
CN112786643B (zh) 2023-06-13
KR102586192B1 (ko) 2023-10-05
KR20230047518A (ko) 2023-04-07
US11424385B2 (en) 2022-08-23
TWI709252B (zh) 2020-11-01
CN108364971B (zh) 2021-03-30
CN112786642B (zh) 2023-08-11

Similar Documents

Publication Publication Date Title
WO2019178920A1 (zh) 微发光元件、微发光二极管及其转印方法
CN106876562B (zh) 一种新型微缩化led结构及其制备方法
CN111033737B (zh) 微发光组件、微发光二极管及微发光二极管转印方法
CN108281456B (zh) Micro-LED器件结构及制作方法
TW201739079A (zh) 微轉印發光二極體及濾色器結構
TW201828517A (zh) 使用黏著劑之微結構的質量轉遞
KR101077789B1 (ko) Led 디스플레이 제조 방법 및 이에 의하여 제조된 led 디스플레이
WO2019132050A1 (ko) Led 디스플레이 장치 및 그 제조 방법
KR101894789B1 (ko) Led 디스플레이 장치 및 그 제조 방법
WO2019148680A1 (zh) 微发光装置的键合治具、键合设备及其键合方法
TWI726648B (zh) 畫素陣列基板及其製造方法
CN113826201A (zh) 一种led发光装置
KR102669051B1 (ko) 수직 적층형 마이크로디스플레이 패널 제조 방법
CN217426775U (zh) 一种无荧光粉的白光led芯片及复合基板
CN208421495U (zh) Rgby微型投影仪
WO2022032568A1 (zh) 芯片转移组件及其制作方法、芯片转移方法及显示背板
JP2015216192A (ja) ウェハーレベル光半導体デバイス用部材の製造方法、光半導体デバイスの製造方法、及び光半導体デバイス
CN117480612A (zh) 发光芯片及其制备方法、发光基板、显示装置
JP2023050435A (ja) 発光装置及びその製造方法
WO2018233096A1 (zh) 发光二极管led的制备方法及led
Liang et al. Li Yang
TW201138154A (en) Manufacturing method of light emitting device
TWI330416B (en) Light emitting device

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 18910418

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2020526218

Country of ref document: JP

Kind code of ref document: A

ENP Entry into the national phase

Ref document number: 20207015212

Country of ref document: KR

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 18910418

Country of ref document: EP

Kind code of ref document: A1