WO2019177060A1 - 燃料電池用電極触媒及びそれを用いた燃料電池 - Google Patents

燃料電池用電極触媒及びそれを用いた燃料電池 Download PDF

Info

Publication number
WO2019177060A1
WO2019177060A1 PCT/JP2019/010387 JP2019010387W WO2019177060A1 WO 2019177060 A1 WO2019177060 A1 WO 2019177060A1 JP 2019010387 W JP2019010387 W JP 2019010387W WO 2019177060 A1 WO2019177060 A1 WO 2019177060A1
Authority
WO
WIPO (PCT)
Prior art keywords
less
fuel cell
electrode catalyst
metal particles
catalyst
Prior art date
Application number
PCT/JP2019/010387
Other languages
English (en)
French (fr)
Inventor
幹裕 片岡
洸大朗 堀合
智明 寺田
伊藤 祐介
幹裕 堀
Original Assignee
株式会社キャタラー
トヨタ自動車株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 株式会社キャタラー, トヨタ自動車株式会社 filed Critical 株式会社キャタラー
Priority to EP19767274.4A priority Critical patent/EP3767723A4/en
Priority to JP2020506626A priority patent/JP6956851B2/ja
Priority to US16/979,616 priority patent/US11949113B2/en
Priority to CN201980016226.1A priority patent/CN111788728B/zh
Publication of WO2019177060A1 publication Critical patent/WO2019177060A1/ja

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/86Inert electrodes with catalytic activity, e.g. for fuel cells
    • H01M4/96Carbon-based electrodes
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J23/00Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00
    • B01J23/70Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00 of the iron group metals or copper
    • B01J23/89Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00 of the iron group metals or copper combined with noble metals
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J35/00Catalysts, in general, characterised by their form or physical properties
    • B01J35/60Catalysts, in general, characterised by their form or physical properties characterised by their surface properties or porosity
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/86Inert electrodes with catalytic activity, e.g. for fuel cells
    • H01M4/90Selection of catalytic material
    • H01M4/92Metals of platinum group
    • H01M4/925Metals of platinum group supported on carriers, e.g. powder carriers
    • H01M4/926Metals of platinum group supported on carriers, e.g. powder carriers on carbon or graphite
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/10Fuel cells with solid electrolytes
    • H01M2008/1095Fuel cells with polymeric electrolytes
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/30Hydrogen technology
    • Y02E60/50Fuel cells

Definitions

  • the present invention relates to an electrode catalyst for a fuel cell and a fuel cell using the same.
  • Fuel cells have high power generation efficiency, are easy to miniaturize, and have little adverse impact on the environment. Therefore, they are expected to be used in various fields such as personal computers, mobile devices such as mobile phones, automobiles, vehicles such as railways, etc. Has been.
  • the fuel cell is composed of a pair of electrodes and an electrolyte, and the electrodes include an electrode catalyst composed of catalyst metal particles and a carrier that supports the catalyst metal particles.
  • the electrodes include an electrode catalyst composed of catalyst metal particles and a carrier that supports the catalyst metal particles.
  • carbon is conventionally used as a carrier for a fuel cell, and platinum or a platinum alloy is used as a catalyst metal particle.
  • Patent Documents 1 to 8 There has been a demand for a fuel cell having high initial activity of an electrode catalyst and capable of maintaining the activity for a long period of time, and many techniques have been reported.
  • An object of the present invention is to provide an electrode catalyst for a fuel cell in which the initial activity of the electrode catalyst is high and the activity can be maintained for a long time, and a fuel cell using the same.
  • a fuel cell electrode catalyst comprising catalyst metal particles containing platinum or a platinum alloy and carrier particles supporting the catalyst metal particles, wherein the carrier particles have a cumulative pore volume of 2 nm or less in diameter of 0.10 cc /
  • An electrode catalyst for a fuel cell which is a carbonaceous material having a BET specific surface area of more than 900 m 2 / g and less than g.
  • ⁇ Aspect 2 The fuel cell electrode catalyst according to aspect 1, wherein a cumulative pore volume of the carbonaceous material having a diameter of 6 nm or less is 0.25 cc / g or more.
  • ⁇ Aspect 3 The electrode catalyst for fuel cells according to aspect 1 or 2, wherein the total pore volume of the carrier particles is 1.0 cc / g or more.
  • ⁇ Aspect 4 The electrode catalyst for a fuel cell according to any one of aspects 1 to 3, wherein the carbonaceous material has a BET specific surface area of 1500 m 2 / g or less.
  • ⁇ Aspect 5 The electrode catalyst for a fuel cell according to any one of embodiments 1 to 4, wherein the ratio of the number of the catalyst metal particles having a diameter of 2 nm or less is 23% or less with respect to the total number of the catalyst metal particles.
  • ⁇ Aspect 6 The electrode catalyst for a fuel cell according to any one of embodiments 1 to 5, wherein the number average particle diameter of the catalyst metal particles is 2.8 to 4.0 nm.
  • ⁇ Aspect 7 A fuel cell comprising the electrode catalyst according to any one of embodiments 1 to 6.
  • FIG. 1 illustrates one embodiment of a fuel cell.
  • the fuel cell electrode catalyst of the present invention includes catalyst metal particles containing platinum or a platinum alloy and carrier particles carrying the catalyst metal particles.
  • the carrier particles are a carbonaceous material having a cumulative pore volume of 2 nm or less in diameter of 0.10 cc / g or less and a BET specific surface area of more than 900 m 2 / g.
  • Patent Document 12 discloses that the dispersibility of catalytic metal particles can be increased by using carrier particles having a reduced cumulative pore volume of 6 nm or less in diameter and having a BET specific surface area in an appropriate range, thereby improving the fuel cell. It is disclosed that the output of can be improved.
  • carrier particles having a BET specific surface area of more than 900 m 2 / g are used, catalyst metal particles that function effectively are reduced by burying the catalyst metal particles in the pores of the carrier particles. Disclosed that the output will decrease.
  • the cumulative pore volume with a diameter of 2 nm or less is 0.10 cc / g or less.
  • the fuel cell electrode catalyst of the present invention can prevent agglomeration of catalyst metal particles by using a carbonaceous material having a BET specific surface area of more than 900 m 2 / g as support particles.
  • the catalyst metal particles having a relatively small particle diameter can be supported on the carrier particles in a highly dispersed state.
  • the cumulative pore volume of the carbonaceous material having a diameter of 2 nm or less to 0.10 cc / g or less, it is possible to suppress the catalyst metal particles from being buried in the pores, and the catalyst metal particles having a diameter of 2 nm or less. The ratio can be reduced.
  • the fuel cell electrode catalyst of the present invention in which the catalytic metal particles having a small particle size are increased has a high initial activity and can maintain the activity for a long period of time.
  • the carrier particles used in the present invention are carbonaceous materials having a cumulative pore volume of 2 nm or less in diameter and 0.10 cc / g or less and a BET specific surface area of 900 m 2 / g or more.
  • the cumulative pore volume having a diameter of 2 nm or less is 0.10 cc / g or less, and the BET specific surface area is 900 m.
  • a carbonaceous material of 2 / g or more has very small pores (pores having a diameter of 2 nm or less), but many relatively small pores (for example, pores having a diameter of 2 nm to 6 nm or 2 nm to 10 nm). It can be said that it is a carbonaceous material.
  • the cumulative pore volume was measured by a BJH method using a gas adsorption amount measuring apparatus (“Tri-Star 3000” manufactured by Shimadzu Corporation) using nitrogen gas as an adsorbate at a measurement temperature of 77.4K. Value.
  • the cumulative pore volume of the carbonaceous material of the carrier particles used in the present invention having a diameter of 2 nm or less may be 0.20 cc / g or less, 0.10 cc / g or less, or 0.08 cc / g or less, It may be 0.01 cc / g or more, 0.03 cc / g or more, 0.05 cc / g or more, 0.06 cc / g or more, or 0.08 cc / g or more.
  • the cumulative pore volume having a diameter of 2 nm or less may be 0.01 cc / g or more and 0.20 cc / g or less, or 0.03 cc / g or more and 0.10 cc / g or less.
  • the carbonaceous material of the carrier particles used in the present invention preferably has a low cumulative pore volume with a diameter of 2 nm or less as described above, but preferably has a relatively high cumulative pore volume with a diameter of 6 nm or less.
  • the cumulative pore volume of the carbonaceous material having a diameter of 6 nm or less is 0.25 cc / g or more, 0.30 cc / g or more, 0.40 cc / g or more, 0.50 cc / g or more, 0.60 cc / g.
  • the cumulative pore volume having a diameter of 6 nm or less may be 0.25 cc / g or more and 1.20 cc / g or less, or 0.50 cc / g or more and 1.00 cc / g or less.
  • the accumulated pore volume of the carbonaceous material having a diameter of 10 nm or less is 0.50 cc / g or more, 0.60 cc / g or more, 0.70 cc / g or more, 0.80 cc / g or more, 0.90 cc / g or more. 1.50 cc / g or less, 1.30 cc / g or less, 1.10 cc / g or less, 1.00 cc / g or less, 0.90 cc / g or less, or 0.80 cc / g or less Good.
  • the cumulative pore volume having a diameter of 10 nm or less may be 0.50 cc / g or more and 1.50 cc / g or less, or 0.70 cc / g or more and 1.00 cc / g or less.
  • the total cumulative pore volume of the carbonaceous material may be 0.80 cc / g or more, 0.90 cc / g or more, 1.00 cc / g or more, 1.10 cc / g or more, 1.20 cc / g or more. It may be 2.00 cc / g or less, 1.50 cc / g or less, 1.30 cc / g or less, or 1.20 cc / g or less.
  • the total cumulative pore volume may be 0.80 cc / g or more and 2.00 cc / g or less, or 1.00 cc / g or more and 1.50 cc / g or less.
  • the ratio of the cumulative pore volume having a diameter of 2 nm or less to the total cumulative pore volume of the carbonaceous material may be 0.20 or less, 0.10 or less, 0.08 or less, or 0.06 or less. It may be 0.01 or more, 0.03 or more, 0.05 or more, or 0.06 or more.
  • the ratio of the cumulative pore volume with a diameter of 6 nm or less to the total cumulative pore volume of the carbonaceous material may be 0.80 or less, 0.70 or less, or 0.60 or less, and 0.40 or more. 0.50 or more, or 0.60 or more. For example, the ratio may be 0.01 or more and 0.50 or less, or 0.02 or more and 0.10 or less.
  • the BET specific surface area of the carbonaceous material may be 900 m 2 / g or more, 950 m 2 / g or more, 1000 m 2 / g or more, or 1100 m 2 / g or more, 2500 m 2 / g or less, 2000 m 2 / g or less. It may be 1800 m 2 / g or less, 1500 m 2 / g or less, 1200 m 2 / g or less, or 1000 m 2 / g or less. In such a range, it was found that the particle diameter of the obtained platinum alloy is an appropriate size and relatively uniform.
  • the BET specific surface area can be measured according to JIS K6217-2. For example, the BET specific surface area may be 900 m 2 / g or more and 1500 m 2 / g or less, or 900 m 2 / g or more and 1200 m 2 / g or less.
  • the type of the carbonaceous material is not particularly limited as long as it has the above pore volume and BET specific surface area.
  • graphite, activated carbon, carbon black, carbon nanotube, solid carbon, hollow carbon, dendritic carbon, and These combinations are mentioned.
  • the solid carbon and the hollow carbon include carbon as described in Patent Document 8, and examples of the dendritic carbon include carbon as described in Patent Documents 9 to 11.
  • the average particle size of the carrier particles may preferably be 30 ⁇ m or less, 20 ⁇ m or less, or 10 ⁇ m or less, and may be 0.1 ⁇ m or more, 0.5 ⁇ m or more, 1.0 ⁇ m or more, 5.0 ⁇ m or more, or 10 ⁇ m or more. There may be.
  • the average particle diameter may be 0.1 ⁇ m or more and 30 ⁇ m or less, or 1.0 ⁇ m or more and 10 ⁇ m or less.
  • the average particle diameter can be calculated from the number-average equivalent diameter based on a number of photographs taken at an arbitrary position by an electron microscope.
  • the equivalent diameter means a diameter of a perfect circle having an outer peripheral length equal to the outer peripheral length of the surface.
  • the carrier particles as described above are activated in the raw material carbon black to obtain carbon black having a very high BET specific surface area, and then in an inert gas.
  • the heat treatment it can be obtained by reducing the proportion of the cumulative pore volume having a diameter of 2 nm or less.
  • the BET specific surface area of carbon black after the activation treatment is usually reduced by this heat treatment.
  • Such heat treatment has been conventionally performed to develop the crystallinity of carbon black, and examples thereof include heat treatment at 1500 to 2100 ° C. in an inert gas.
  • the raw material carbon black and activation treatment those well known in the art can be employed.
  • the catalytic metal particles used in the present invention include platinum or a platinum alloy, preferably platinum or a platinum alloy particle, particularly preferably a platinum alloy particle.
  • the average particle diameter of the catalyst metal particles is preferably in the range of 2.8 to 3.8 nm.
  • the average particle diameter of the catalytic metal particles may be 2.8 nm or more, 2.9 nm or more, 3.0 nm or more, 3.2 nm or more, or 3.4 nm or more, 4.0 nm or less, 3.8 nm or less, It may be 3.6 nm or less, 3.5 nm or less, or 3.4 nm or less.
  • the standard deviation of the particle size of the catalytic metal particles is 1.50 nm or less, 1.35 nm or less, 1.25 nm or less, 1.20 nm or less, 1.15 nm or less, 1.10 nm or less, or 1.05 nm or less.
  • the average particle diameter of the catalytic metal particles may be 2.8 nm to 4.0 nm, or 2.9 nm to 3.6 nm.
  • the average particle diameter of the catalyst metal particles is calculated from the measurement peak of X-ray diffraction using analysis software JADE.
  • the average particle size is the number average average particle size.
  • the standard deviation of the particle diameter of the catalytic metal particles can be calculated using analysis software by the X-ray small angle scattering method. Examples of the analysis software include nano-solver (manufactured by Rigaku Corporation).
  • the type of platinum alloy is not particularly limited as long as it functions as a fuel cell electrode catalyst.
  • the platinum alloy may be an alloy of platinum and a metal selected from the group consisting of iron, chromium, nickel, cobalt, terbium, yttrium, gadolinium, ruthenium, and combinations thereof, preferably nickel, An alloy of platinum and a metal selected from the group consisting of cobalt, terbium, yttrium, gadolinium, ruthenium and combinations thereof, and particularly preferably an alloy of platinum and cobalt.
  • the molar ratio of platinum to the metal forming the platinum alloy may be 1 or more: 1, 2 or more: 1, 4 or more: 1, 5 or more: 1, or 10 or more: 1, or 100 or less: 1 50 or less: 1, 30 or less: 1, 20 or less: 1, or 10 or less: 1.
  • the molar ratio of platinum to cobalt alloy may range from 4: 1 to 11: 1.
  • the content of the catalyst metal particles in the fuel cell electrode catalyst of the present invention is 10% by weight, 20% by weight, 30% by weight, 35% by weight or more based on the total weight of the support particles and the catalyst metal particles. 40 wt% or more, or 45 wt% or more, 70 wt% or less, 60 wt% or less, 55 wt% or less, 50 wt% or less, 45 wt% or less, 40 wt% or less, or 35 wt% % Or less.
  • the fuel cell of the present invention includes the above electrode catalyst.
  • the fuel cell may include an electrode including the above-described electrode catalyst and ionomer on a base material, and an electrolyte, particularly a polymer electrolyte.
  • ionomer examples include, for example, Nafion (trademark) DE2020, DE2021, DE520, DE521, DE1020, and DE1021 manufactured by Du Pont, and Aciplex (trademark) SS700C / 20, SS900 / 10, and SS1100 manufactured by Asahi Kasei Chemicals Corporation. / 5 etc. can be mentioned.
  • the types of fuel cells include polymer electrolyte fuel cells (PEFC), phosphoric acid fuel cells (PAFC), molten carbonate fuel cells (MCFC), solid oxide fuel cells (SOFC), and alkaline electrolyte fuels. Examples thereof include a battery (AFC) and a direct fuel cell (DFC). Although not particularly limited, the fuel cell is preferably a solid polymer fuel cell.
  • PEFC polymer electrolyte fuel cells
  • PAFC phosphoric acid fuel cells
  • MCFC molten carbonate fuel cells
  • SOFC solid oxide fuel cells
  • alkaline electrolyte fuels examples thereof include a battery (AFC) and a direct fuel cell (DFC).
  • the fuel cell is preferably a solid polymer fuel cell.
  • the electrode containing the above electrode catalyst may be used as a cathode, may be used as an anode, or may be used as both a cathode and an anode.
  • the fuel cell may further include a separator.
  • High power can be obtained by stacking single cells each having a membrane electrode assembly (MEA) composed of a pair of electrodes (cathode and anode) and an electrolyte membrane sandwiched between a pair of separators to form a cell stack.
  • MEA membrane electrode assembly
  • the fuel cell may further have a gas diffusion layer or the like.
  • FIG. 1 shows a membrane electrode assembly (100) having an anode electrode layer (20) and a cathode electrode layer (30) including the above electrodes on both sides of an electrolyte membrane (10) having proton conductivity.
  • FIG. 1 shows the membrane electrode assembly (10), anode side gas flow path (21), anode side gas diffusion layer (22), anode side separator (23), cathode side gas flow path (31), cathode side.
  • a fuel cell (200) comprising a gas diffusion layer (32) and a cathode separator (33) as a single cell.
  • the method for producing an electrode catalyst for a fuel cell according to the present invention includes heat-treating carrier particles carrying the metal constituting the catalyst metal particles.
  • the fuel cell electrode catalyst obtained by the method of the present invention may be the above-mentioned fuel cell electrode catalyst, and the catalyst metal particles and the carrier particles used are those described in relation to the above fuel cell electrode catalyst. Can do.
  • the method for producing an electrode catalyst for a fuel cell of the present invention may include a step of supporting catalytic metal particles on carrier particles.
  • the step of supporting the catalytic metal particles on the carrier particles may include bringing the platinum salt solution into contact with the carrier particles and reducing the platinum salt with a reducing agent.
  • Examples of the platinate solution include a dinitrodiammine platinum nitrate solution.
  • the carrier particles can be dispersed in an aqueous solvent and mixed with the platinate solution.
  • the platinate solution is made acidic by acidifying the aqueous solvent. You may suppress generation
  • the reducing agent is not particularly limited, but alcohol such as ethanol can be used.
  • heat treatment can be performed after adding the reducing agent.
  • the heat treatment conditions vary depending on the type of the reducing agent. For example, when ethanol is used as the reducing agent, it can be heated at a temperature of 60 ° C. to 90 ° C. for about 1 to 3 hours.
  • platinum particles and carrier particles may be separated from the dispersion and separated by, for example, filtration to obtain platinum particles and carrier particles carrying them. After separating the platinum particles and the carrier particles carrying them, washing and / or drying may be performed.
  • the platinum particles and the carrier particles carrying the platinum particles may be further dispersed in an aqueous solvent and brought into contact with an acid salt solution of the metal forming the platinum alloy.
  • an acid salt solution of the metal forming the platinum alloy for example, when the metal forming the platinum alloy is cobalt, a cobalt nitrate solution can be used as the acid salt solution.
  • the metal acid salt can be reduced with a reducing agent, and the metal forming the platinum alloy and platinum can be alloyed to a certain extent.
  • the platinum alloy particles and the carrier particles may be separated from the dispersion and separated by, for example, filtration to obtain platinum alloy particles and carrier particles carrying the same. After separating the platinum alloy particles and the carrier particles supporting them, washing and / or drying may be performed.
  • the catalytic metal particles and the carrier particles supporting the catalytic metal particles are subjected to a heat treatment, for example, at a temperature of 830 ° C. or higher for 0.2 hours to 2 hours. You may go.
  • This heat treatment is preferably performed at a high temperature in a relatively short time from the viewpoint of the particle size distribution of the catalytic metal particles.
  • the heat treatment may be a temperature of 830 ° C. or higher, 850 ° C. or higher, 880 ° C. or higher, 900 ° C. or higher, or 930 ° C. or higher, and the maximum temperature is 1100 ° C. or lower, 1050 ° C. or lower, 1000 ° C. or lower, 980 ° C.
  • it may be 950 ° C. or lower, 930 ° C. or lower, 900 ° C. or lower, or 880 ° C. or lower.
  • the time of heat treatment performed at 830 ° C. or higher is within 2 hours, within 1.8 hours, within 1.5 hours, within 1.2 hours, within 1.0 hour, within 0.8 hour, or 0.5 hour. May be within.
  • the time of heat treatment performed at 880 ° C. or higher may be within 1.5 hours, within 1.2 hours, within 1.0 hour, within 0.8 hour, or within 0.5 hour.
  • the time of the heat treatment performed at 920 ° C. or higher may be within 1.0 hour, within 0.8 hour, or within 0.5 hour.
  • These heat treatments may be performed for 0.2 hours or more, 0.3 hours or more, 0.5 hours or more, 0.8 hours or more, 1.0 hours or more, or 1.5 hours or more. It has been found that when such heat treatment is performed for a long time, the particle size distribution of the catalyst metal particles tends to be non-uniform.
  • the heat treatment is performed, for example, at a temperature of 830 ° C. or more and 880 ° C. or less within 2 hours or 1.8 hours, or at a temperature of 880 ° C. or more and 920 ° C. or less within 1.5 hours or 1.2 hours, You may perform within 0.8 hours or less than 0.5 hours at the temperature of more than 920 degreeC and below 980 degreeC. For example, it may be performed at a temperature of 880 to 980 ° C. within 1.5 hours, within 1.0 hour, or within 0.5 hour.
  • the heating rate and cooling rate during the heat treatment are not particularly limited as long as the heat treatment can be sufficiently performed.
  • the heating rate may be 3 ° C./min or more, 5 ° C./min or more, 10 ° C./min or more, or 15 ° C./min or more, 30 ° C./min or less, 20 ° C./min or less, or It may be 15 ° C./min or less.
  • the cooling rate may be 10 ° C / min or more, 20 ° C / min or more, 30 ° C / min or more, or 50 ° C / min or more, 80 ° C / min or less, 50 ° C / min or less, or 30 ° C / min. It may be less than a minute.
  • the atmosphere during the heat treatment is preferably performed in an inert atmosphere or a reducing atmosphere so that the carbonaceous material is not oxidized.
  • the method for producing an electrode catalyst for a fuel cell of the present invention can further include an acid treatment step.
  • the PtCo alloy supported on the solid carbon support is preferably acid-treated at 70 to 90 ° C., more preferably 75 to 85 ° C.
  • the acid treatment at such a temperature, Co that does not contribute to the reaction can be sufficiently removed. Thereby, Co elution can be suppressed.
  • acids used in the acid treatment step include inorganic acids (nitric acid, phosphoric acid, permanganic acid, sulfuric acid, hydrochloric acid, etc.) and organic acids (acetic acid, malonic acid, oxalic acid, formic acid, citric acid, lactic acid, etc.). Can be mentioned.
  • Dendritic carbon black (BET specific surface area of 1300 m 2 / g, cumulative pore volume of diameter 2 nm or less having a cumulative pore volume of 0.15 cc / g) as described in Patent Documents 9 to 11 is reduced to 0.000 at 2000 ° C. in an inert gas. After heat treatment for 5 hours, activation treatment is performed in air at 480 ° C. for 5 hours, whereby a cumulative pore volume with a diameter of 2 nm or less is 0.09 cc / g and a BET specific surface area is 1180 m 2 / g. Carbon black was obtained.
  • This carbon black powder 0.6 gram was dispersed in 1 liter of 0.1N nitric acid aqueous solution. To this dispersion, a dinitrodiammine platinum nitric acid solution containing 0.4 g of platinum was added so that the platinum loading was 40% by weight, and 27 g of 99.5% ethanol was further added as a reducing agent. I got used to it. Then, heating was performed at 60 to 90 ° C. for 1 to 3 hours using ethanol as a reducing agent. The dispersion after the reduction treatment was repeatedly filtered and washed until the electric conductivity of the filtrate waste liquid became 50 ⁇ S / cm or less. The powder cake obtained by filtration and washing was blown and dried at 80 ° C. for 15 hours or more to obtain platinum-supporting carbon.
  • Platinum-supported carbon was dispersed in 80 times pure water relative to the amount of carbon, and an aqueous cobalt nitrate solution was added dropwise.
  • This aqueous cobalt nitrate solution was prepared by dissolving commercially available cobalt nitrate hexahydrate in pure water, and was used so that the molar ratio of platinum: cobalt was 7: 1.
  • sodium borohydride dissolved in pure water was added dropwise 1 to 6 times the molar amount of cobalt and stirred for about 1 to 20 hours.
  • the dispersion was repeatedly filtered and washed until the conductivity of the filtrate waste liquid was 5 ⁇ S / cm or less.
  • the powder cake obtained by filtration and washing was blown and dried at 80 ° C. for 15 hours or more to obtain platinum alloy-supported carbon.
  • the platinum alloy-supported carbon thus obtained was heat-treated in an argon atmosphere at 900 ° C. for 1 hour. As a result, a fuel cell electrode catalyst of Example 1 was obtained.
  • Example 2 and Comparative Examples 1 to 4 By changing the conditions of the heat treatment performed on the carbon black, carbon black having a cumulative pore volume and a BET specific surface area as shown in Table 1 was prepared, and the same as in Example 1 except that these were used. Thus, fuel cell electrode catalysts of Example 2 and Comparative Examples 1 to 4 were obtained.
  • Example 3 In order to obtain a carbon porous body as described in Patent Document 13, lithium hydroxide hydrate was dissolved in pure water so as to be 0.04 mol / L, and 100 mol equivalent of terephthalic acid and 90 mol equivalent of calcium hydroxide And mixed. This mixture was allowed to stand for 48 hours in a sealed state to obtain a composite salt, and then dried at 100 ° C. to obtain a carbon black precursor. This precursor was heat-treated at 600 ° C. for 5 hours, suspended in pure water, and hydrochloric acid was added with stirring to adjust the pH to 3 or less. Thereafter, the residue obtained by filtration was dried at 100 ° C. The dried residue was heat treated in vacuum at 2000 ° C. for 1 hour, and then in air at 450 ° C. for 1 hour to obtain a carbonaceous material that is a carbon porous body.
  • a fuel cell electrode catalyst of Example 3 was obtained in the same manner as Example 1 except that the carbonaceous material thus obtained was used.
  • the BET specific surface area of the carrier particles was measured using Tri-Star 3000 manufactured by Shimadzu Corporation according to JIS K6217-2.
  • the cumulative pore volume is a value measured by a BJH method using a gas adsorption amount measuring apparatus (“Tri-Star 3000” manufactured by Shimadzu Corporation) using nitrogen gas as an adsorbate at a measurement temperature of 77.4K.
  • ⁇ Particle size measurement> The average particle diameter of the prepared catalyst metal particles was calculated from the measurement peak on the Pt (220) plane of X-ray diffraction using analysis software JADE. Moreover, the ratio of the catalyst metal particle
  • Electrode catalysts produced in the examples and comparative examples were dispersed in an organic solvent, and the dispersion was applied to a Teflon (trademark) sheet to form an electrode.
  • the electrodes were bonded to each other by hot pressing through a polymer electrolyte membrane, and a diffusion layer was disposed on both sides thereof to produce a single cell for a polymer electrolyte fuel cell.
  • Cyclic voltammetry (CV) and IV measurement were performed using a small single cell evaluation system (manufactured by Toyo Corporation) with a cell temperature of 80 ° C. and a relative humidity of both electrodes of 100%.
  • the current was arbitrarily controlled in the range of 0.01 to 1.0 A / cm 2 .
  • the current value per Pt mass at 0.86 V was defined as the initial catalyst activity.
  • ⁇ Activity maintenance rate> About the fuel cell which tested the initial stage catalyst activity, after repeating 2000 charging / discharging, IV measurement was performed again. The ratio (%) to the current value after the charge / discharge test with respect to the current value of the initial catalyst activity was calculated, and the value was defined as the activity maintenance rate.
  • Examples 1 to 3 using a catalyst containing carbon black having a cumulative pore volume of 2 nm or less in diameter of 0.10 cc / g or less and a BET specific surface area of more than 900 m 2 / g have high initial activity. It can be seen that the activity maintenance rate can be compatible.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Electrochemistry (AREA)
  • General Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Organic Chemistry (AREA)
  • Catalysts (AREA)
  • Inert Electrodes (AREA)
  • Fuel Cell (AREA)

Abstract

本発明は、電極触媒の初期活性が高く、かつその活性を長期間維持できる燃料電池用電極触媒及びそれを用いた燃料電池を提供することを目的とする。 本発明は、白金又は白金合金を含む触媒金属粒子及び前記触媒金属粒子を担持している担体粒子を含む燃料電池用電極触媒であって、前記担体粒子は、直径2nm以下の累積細孔容積が0.10cc/g以下で、かつBET比表面積が900m/g超の炭素質材料である、燃料電池用電極触媒、及びそれを含む燃料電池に関する。

Description

燃料電池用電極触媒及びそれを用いた燃料電池
 本発明は、燃料電池用電極触媒及びそれを用いた燃料電池に関する。
 燃料電池は、発電効率が高く、小型化が容易であり、かつ環境への悪影響が少ないため、パソコン、携帯電話等の携帯機器、自動車、鉄道等の車両等の様々な分野での利用が期待されている。
 燃料電池は、一対の電極及び電解質から構成されており、電極は、触媒金属粒子及びそれを担持する担体からなる電極触媒を含む。一般的に、従来から燃料電池用の担体としては、カーボンが使用されており、また触媒金属粒子としては、白金又は白金合金が使用されている。
 電極触媒の初期活性が高く、かつその活性を長期間維持できる燃料電池が求められており、そのための多くの技術が報告されている(特許文献1~8)。
特開2012-124001号公報 特開2013-252483号公報 特開2012-248365号公報 特開2012-236138号公報 特開2005-317546号公報 特開2005-166409号公報 特開2009-140657号公報 国際公開第2016/063968号 国際公開第2014/129597号 特許第5481748号 国際公開第2015/141810号 国際公開第2017/094648号 特開2016-160170号公報
 本発明は、電極触媒の初期活性が高く、かつその活性を長期間維持できる燃料電池用電極触媒及びそれを用いた燃料電池を提供することを目的とする。
 本発明者らは、以下の態様を有する本発明により、上記課題を解決できることを見出した。
《態様1》
 白金又は白金合金を含む触媒金属粒子及び前記触媒金属粒子を担持している担体粒子を含む燃料電池用電極触媒であって、前記担体粒子は、直径2nm以下の累積細孔容積が0.10cc/g以下で、かつBET比表面積が900m/g超の炭素質材料である、燃料電池用電極触媒。
《態様2》
 前記炭素質材料の直径6nm以下の累積細孔容積が、0.25cc/g以上である、態様1に記載の燃料電池用電極触媒。
《態様3》
 前記担体粒子の全細孔容積が、1.0cc/g以上である、態様1又は2に記載の燃料電池用電極触媒。
《態様4》
 前記炭素質材料が、1500m/g以下のBET比表面積を有する、態様1~3のいずれか一項に記載の燃料電池用電極触媒。
《態様5》
 直径が2nm以下の前記触媒金属粒子の個数の割合が、前記触媒金属粒子の全個数に対して、23%以下である、態様1~4のいずれか一項に記載の燃料電池用電極触媒。
《態様6》
 前記触媒金属粒子の個数平均粒径が、2.8~4.0nmである、態様1~5のいずれか一項に記載の燃料電池用電極触媒。
《態様7》
 態様1~6のいずれか一項に記載の電極触媒を含む、燃料電池。
図1は、燃料電池の一態様を例示している。
 本発明の燃料電池用電極触媒は、白金又は白金合金を含む触媒金属粒子及び触媒金属粒子を担持している担体粒子を含む。その担体粒子は、直径2nm以下の累積細孔容積が0.10cc/g以下で、かつBET比表面積が900m/g超の炭素質材料である。
 特許文献12は、直径6nm以下の累積細孔容積を低くし、かつBET比表面積を適度な範囲にした担体粒子を用いることによって、触媒金属粒子の分散性を高めることができ、それにより燃料電池の出力を向上させることができると開示している。特に、特許文献12は、BET比表面積が900m/g超の担体粒子を用いた場合、担体粒子の細孔内に触媒金属粒子が埋没することによって、有効に機能する触媒金属粒子が減少し、出力が低下すると開示している。
 しかしながら、本発明者らは、担体粒子としてBET比表面積が900m/g超の炭素質材料を用いた場合であっても、その直径2nm以下の累積細孔容積が0.10cc/g以下である場合には、初期活性が高く、かつその活性を長期間維持できる燃料電池用電極触媒が得られることを見出した。
 理論に拘束されないが、本発明の燃料電池用電極触媒は、BET比表面積が900m/g超の炭素質材料を担体粒子として用いることによって、触媒金属粒子の凝集を防止することができ、それにより比較的小さい粒径の触媒金属粒子を高分散の状態で担体粒子に担持することができる。また、炭素質材料の直径2nm以下の累積細孔容積を0.10cc/g以下とすることによって、細孔内に触媒金属粒子が埋没することが抑制でき、かつ直径2nm以下の触媒金属粒子の割合を低下させることができる。直径2nm以下の触媒金属粒子は、強度が弱い結晶面が多く、触媒活性も低いという傾向があり、触媒の劣化起点にもなるため、このような触媒金属粒子を減らしつつ、直径2nmより大きく比較的小さい粒径の触媒金属粒子を増加させた本発明の燃料電池用電極触媒は、初期活性が高く、かつその活性を長期間維持できたと考えられる。
〈担体粒子〉
 本発明で使用される担体粒子は、直径2nm以下の累積細孔容積が0.10cc/g以下で、かつBET比表面積が900m/g以上の炭素質材料である。一般的には、BET比表面積が高い炭素質材料には、直径の小さな細孔が多く存在するため、直径2nm以下の累積細孔容積が0.10cc/g以下で、かつBET比表面積が900m/g以上である炭素質材料は、非常に小さな細孔(直径2nm以下の細孔)は少ないが、比較的小さな細孔(例えば直径2nm~6nm又は直径2nm~10nmの細孔)が多い炭素質材料であるといえる。
 本明細書において、累積細孔容積は、ガス吸着量測定装置(島津製作所社製「Tri-Star3000」)により、吸着質として窒素ガスを使用し、測定温度77.4KにてBJH法により測定した値である。
 本発明で使用される担体粒子の炭素質材料の直径2nm以下の累積細孔容積は、0.20cc/g以下、0.10cc/g以下、又は0.08cc/g以下であってもよく、0.01cc/g以上、0.03cc/g以上、0.05cc/g以上、0.06cc/g以上、0.08cc/g以上であってもよい。例えば、直径2nm以下の累積細孔容積は、0.01cc/g以上0.20cc/g以下、又は0.03cc/g以上0.10cc/g以下であってもよい。
 本発明で使用される担体粒子の炭素質材料は、直径2nm以下の累積細孔容積が上記のように低いことが好ましいが、直径6nm以下の累積細孔容積は比較的高いことが好ましい。例えば、その炭素質材料の直径6nm以下の累積細孔容積は、0.25cc/g以上、0.30cc/g以上、0.40cc/g以上、0.50cc/g以上、0.60cc/g以上、0.80cc/g以上であってもよく、1.20cc/g以下、1.00cc/g以下、0.90cc/g以下又は0.80cc/g以下であってもよい。例えば、直径6nm以下の累積細孔容積は、0.25cc/g以上1.20cc/g以下、又は0.50cc/g以上1.00cc/g以下であってもよい。
 その炭素質材料の直径10nm以下の累積細孔容積は、0.50cc/g以上、0.60cc/g以上、0.70cc/g以上、0.80cc/g以上、0.90cc/g以上であってもよく、1.50cc/g以下、1.30cc/g以下、1.10cc/g以下、1.00cc/g以下、0.90cc/g以下又は0.80cc/g以下であってもよい。例えば、直径10nm以下の累積細孔容積は、0.50cc/g以上1.50cc/g以下、又は0.70cc/g以上1.00cc/g以下であってもよい。
 その炭素質材料の全累積細孔容積は、0.80cc/g以上、0.90cc/g以上、1.00cc/g以上、1.10cc/g以上、1.20cc/g以上であってもよく、2.00cc/g以下、1.50cc/g以下、1.30cc/g以下又は1.20cc/g以下であってもよい。例えば、その全累積細孔容積は、0.80cc/g以上2.00cc/g以下で、又は1.00cc/g以上1.50cc/g以下であってもよい。
 その炭素質材料の全累積細孔容積に対する直径2nm以下の累積細孔容積の割合は、0.20以下、0.10以下、0.08以下、又は0.06以下であってもよく、0.01以上、0.03以上、0.05以上、又は0.06以上であってもよい。また、その炭素質材料の全累積細孔容積に対する直径6nm以下の累積細孔容積の割合は、0.80以下、0.70以下、又は0.60以下であってもよく、0.40以上、0.50以上、又は0.60以上であってもよい。例えば、その割合は、0.01以上0.50以下、又は0.02以上0.10以下であってもよい。
 炭素質材料のBET比表面積は、900m/g以上、950m/g以上、1000m/g以上、又は1100m/g以上であってもよく、2500m/g以下、2000m/g以下、1800m/g以下、1500m/g以下、1200m/g以下、又は1000m/g以下であってもよい。このような範囲である場合には、得られる白金合金の粒径が、適度な大きさであり、かつ比較的均一となることが分かった。BET比表面積は、JIS K6217-2に従って測定することができる。例えば、そのBET比表面積は、900m/g以上1500m/g以下、又は900m/g以上1200m/g以下であってもよい。
 炭素質材料の種類は、上記のような細孔容積及びBET比表面積であれば特に限定されないが、例えば、黒鉛、活性炭、カーボンブラック、カーボンナノチューブ、中実カーボン、中空カーボン、樹状カーボン、及びこれらの組合せが挙げられる。中実カーボン及び中空カーボンとしては、特許文献8に記載のようなカーボンを挙げることができ、樹状カーボンとしては、特許文献9~11に記載のようなカーボンを挙げることができる。また、特許文献13に記載のような炭素多孔体を使用してもよい。
 担体粒子の平均粒径は、好ましくは、30μm以下、20μm以下、又は10μm以下であってもよく、0.1μm以上、0.5μm以上、1.0μm以上、5.0μm以上、又は10μm以上であってもよい。例えば、その平均粒径は、0.1μm以上30μm以下、又は1.0μm以上10μm以下であってもよい。この場合、平均粒径は、電子顕微鏡によって任意の位置で撮影した多数の写真に基づいて、個数平均の等価直径から計算することができる。なお、等価直径とは、その面の外周長さと等しい外周長さを有する正円の直径をいう。
 上記のような担体粒子は、例えば炭素質材料がカーボンブラックである場合、原料のカーボンブラックに賦活処理を行って、BET比表面積が非常に高いカーボンブラックを得た後に、さらに不活性ガス中で熱処理を行うことによって、直径2nm以下の累積細孔容積の割合を低下させることによって得ることができる。なお、賦活処理が終わった後のカーボンブラックのBET比表面積は、この熱処理によって通常低下する。このような熱処理は、従来からカーボンブラックの結晶性を発達させるためにも行われており、例えば不活性ガス中、1500~2100℃での熱処理を挙げることができる。また、原料のカーボンブラック及び賦活処理については、本分野について周知のものを採用することができる。
〈触媒金属粒子〉
 本発明で使用される触媒金属粒子は、白金又は白金合金を含み、好ましくは白金又は白金合金の粒子、特に好ましくは白金合金の粒子である。触媒金属粒子の平均粒径は、2.8~3.8nmの範囲であることが好ましい。
 触媒金属粒子の平均粒径は、2.8nm以上、2.9nm以上、3.0nm以上、3.2nm以上、又は3.4nm以上であってもよく、4.0nm以下、3.8nm以下、3.6nm以下、3.5nm以下、又は3.4nm以下であってもよい。また、触媒金属粒子の粒径の標準偏差は、1.50nm以下、1.35nm以下、1.25nm以下、1.20nm以下、1.15nm以下、1.10nm以下、又は1.05nm以下であってもよく、0.10nm以上、0.30nm以上、0.50nm以上、0.80nm以上、0.90nm以上、又は0.95nm以上であってもよい。触媒金属粒子の粒径がこのような範囲である場合には、電極触媒の初期活性が高く、かつその活性を長期間維持できる傾向にある。例えば、その触媒金属粒子の平均粒径は、2.8nm以上4.0nm以下、又は2.9nm以上3.6nm以下であってもよい。
 触媒金属粒子の平均粒径はX線回折の測定ピークから、解析ソフトJADEを用いて算出する。この場合、平均粒径は、個数平均の平均粒径となる。触媒金属粒子の粒径の標準偏差は、X線小角散乱法によって解析ソフトを用いて算出することができる。解析ソフトとしては、例えば、nano-solver(株式会社リガク製)等を挙げることができる。
 触媒金属粒子に白金合金が含まれる場合、白金合金の種類は、燃料電池用電極触媒として機能するのであれば、特に限定されない。例えば、白金合金は、鉄、クロム、ニッケル、コバルト、テルビウム、イットリウム、ガドリニウム、ルテニウム及びこれらの組合せからなる群より選択される金属と、白金との合金であってもよく、好ましくは、ニッケル、コバルト、テルビウム、イットリウム、ガドリニウム、ルテニウム及びこれらの組合せからなる群より選択される金属と、白金との合金であり、特に好ましくは白金とコバルトとの合金である。
 白金と、白金合金を形成する金属とのモル比は、1以上:1、2以上:1、4以上:1、5以上:1、又は10以上:1であってもよく、100以下:1、50以下:1、30以下:1、20以下:1、又は10以下:1であってもよい。例えば、白金とコバルトとの合金のモル比は、4:1~11:1の範囲であってもよい。
 本発明の燃料電池用電極触媒における触媒金属粒子の含有量は、担体粒子と触媒金属粒子との合計重量を基準として、10重量%以上、20重量%以上、30重量%以上、35重量%以上、40重量%以上、又は45重量%以上であってもよく、70重量%以下、60重量%以下、55重量%以下、50重量%以下、45重量%以下、40重量%以下、又は35重量%以下であってもよい。
《燃料電池》
 本発明の燃料電池は、上記の電極触媒を含む。この燃料電池は、上記の電極触媒及びアイオノマーを基材上に含む電極と、電解質、特に高分子電解質とを含んでもよい。
 アイオノマーの種類としては、例えば、Du Pont社製のNafion(商標)DE2020、DE2021、DE520、DE521、DE1020及びDE1021、並びに旭化成ケミカルズ(株)製のAciplex(商標)SS700C/20、SS900/10及びSS1100/5等を挙げることができる。
 燃料電池の種類としては、固体高分子形燃料電池(PEFC)、リン酸形燃料電池(PAFC)、溶融炭酸塩形燃料電池(MCFC)、固体酸化物形燃料電池(SOFC)、アルカリ電解質形燃料電池(AFC)、直接形燃料電池(DFC)等を挙げることができる。特に限定するものではないが、燃料電池は固体高分子形燃料電池であることが好ましい。
 上記電極触媒を含む電極はカソードとして使用してもよいし、アノードとして使用してもよいし、カソード及びアノードの両方として使用してもよい。
 燃料電池は、セパレータを更に含んでいてもよい。一対の電極(カソード及びアノード)と電解質膜とからなる膜電極接合体(MEA)を一対のセパレータで挟持した単セルを積み重ね、セルスタックを構成することにより、高い電力を得ることができる。燃料電池は、さらにガス拡散層等を有していてもよい。
 図1に、上記の電極を含むアノード電極層(20)及びカソード電極層(30)を、プロトン伝導性を有する電解質膜(10)の両面に有する膜電極接合体(100)を示す。また、図1にこの膜電極接合体(10)、アノード側ガス流路(21)、アノード側ガス拡散層(22)、アノード側セパレータ(23)、カソード側ガス流路(31)、カソード側ガス拡散層(32)、及びカソード側セパレータ(33)を単セルとして具備する、燃料電池(200)も示す。
《燃料電池用電極触媒の製造方法》
 本発明の燃料電池用電極触媒の製造方法は、触媒金属粒子を構成する金属を担持した担体粒子を、熱処理をすることを含む。本発明の方法によって得られる燃料電池用電極触媒は、上記の燃料電池用電極触媒であってもよく、触媒金属粒子及び担体粒子は、上記の燃料電池用電極触媒に関して説明したものを使用することができる。
《担持工程》
 本発明の燃料電池用電極触媒の製造方法は、触媒金属粒子を担体粒子に担持する工程を含んでもよい。触媒金属粒子を担体粒子に担持する工程は、白金酸塩溶液を担体粒子と接触させること、還元剤によって白金酸塩を還元することを含んでもよい。白金酸塩溶液としては、例えばジニトロジアンミン白金硝酸溶液を挙げることができる。
 白金酸塩溶液を担体粒子と接触させる工程では、担体粒子を水系溶媒に分散させて、白金酸塩溶液と混合することができ、この場合、水系溶媒を酸性にすることによって白金酸塩溶液の混合の際に発生しうる沈殿の発生を抑制してもよい。
 還元剤としては、特に限定されないが、アルコール、例えばエタノールを使用することができる。還元工程においては、還元剤を添加した後に、加熱処理を行うことができる。加熱処理の条件は、還元剤の種類によって異なるが、例えばエタノールを還元剤として使用する場合には、60℃~90℃の温度で、1時間~3時間程度加熱することができる。
 還元工程のあとに、白金粒子及び担体粒子を分散液から分離して、例えばろ過によって分離して、白金粒子及びそれを担持した担体粒子を得てもよい。白金粒子及びそれを担持した担体粒子を分離した後、洗浄及び/又は乾燥を行ってもよい。
 触媒金属粒子として、白金合金を使用する場合には、白金粒子及びそれを担持した担体粒子をさらに水系溶媒に分散させて、白金合金を形成する金属の酸塩溶液と接触させることを含んでもよい。例えば、白金合金を形成する金属がコバルトである場合、その酸塩溶液としては、硝酸コバルト溶液を用いることができる。この場合、還元剤によってその金属の酸塩を還元し、白金合金を形成する金属と白金とを一定程度合金化することができる。還元工程のあとに、白金合金粒子及び担体粒子を分散液から分離して、例えばろ過によって分離して、白金合金粒子及びそれを担持した担体粒子を得てもよい。白金合金粒子及びそれを担持した担体粒子を分離した後、洗浄及び/又は乾燥を行ってもよい。
〈熱処理工程〉
 このようにして触媒金属粒子を担体粒子に担持させたあと、触媒金属粒子及びそれを担持した担体粒子を、熱処理を行い、例えば830℃以上の温度で0.2時間以上2時間以内で熱処理を行ってもよい。この熱処理は、比較的短時間でかつ高温で行うことが触媒金属粒子の粒径分布の観点から好ましい。
 熱処理は、830℃以上、850℃以上、880℃以上、900℃以上、又は930℃以上の温度であってもよく、その最高温度は、1100℃以下、1050℃以下、1000℃以下、980℃以下、950℃以下、930℃以下、900℃以下、又は880℃以下であってもよい。
 830℃以上で行われる熱処理の時間は、2時間以内、1.8時間以内、1.5時間以内、1.2時間以内、1.0時間以内、0.8時間以内、又は0.5時間以内であってもよい。この熱処理では、880℃以上で行われる熱処理の時間が、1.5時間以内、1.2時間以内、1.0時間以内、0.8時間以内、又は0.5時間以内であってもよく、920℃以上で行われる熱処理の時間が、1.0時間以内、0.8時間以内、又は0.5時間以内であってもよい。また、これらの熱処理は、0.2時間以上、0.3時間以上、0.5時間以上、0.8時間以上、1.0時間以上、又は1.5時間以上行ってもよい。このような熱処理を長時間行うと触媒金属粒子の粒径分布が不均一化する傾向があることが分かった。
 熱処理は、例えば、830℃以上880℃以下の温度で2時間以内又は1.8時間以内行うか、880℃超920℃以下の温度で1.5時間以内又は1.2時間以内で行うか、920℃超980℃以下の温度で0.8時間以内又は0.5時間以内で行ってもよい。例えば、880~980℃の温度で1.5時間以内、1.0時間以内又は0.5時間以内で行ってもよい。
 熱処理時の昇温速度及び冷却速度は、熱処理が十分に行える範囲であれば、特に限定されない。例えば、昇温速度は、3℃/分以上、5℃/分以上、10℃/分以上、又は15℃/分以上であってもよく、30℃/分以下、20℃/分以下、又は15℃/分以下であってもよい。冷却速度は、10℃/分以上、20℃/分以上、30℃/分以上、又は50℃/分以上であってもよく、80℃/分以下、50℃/分以下、又は30℃/分以下であってもよい。
 熱処理時の雰囲気は、炭素質材料が酸化しないように、不活性雰囲気下又は還元雰囲気下で行われることが好ましい。
〈酸処理工程〉
 本発明の燃料電池用電極触媒の製造方法は、さらに酸処理工程を含むことができる。
 酸処理工程では、中実カーボン担体に担持されたPtCo合金を好ましくは70~90℃、より好ましくは75~85℃で酸処理する。このような温度で酸処理することによって、反応に寄与しないCoを十分に除去することができる。これにより、Coの溶出を抑制することができる。
 酸処理工程において使用する酸としては、例えば、無機酸(硝酸、リン酸、過マンガン酸、硫酸、塩酸等)、有機酸(酢酸、マロン酸、シュウ酸、ギ酸、クエン酸、乳酸等)を挙げることができる。
 本発明を以下の実施例でさらに具体的に説明をするが、本発明はこれによって限定されるものではない。
《製造例》
〈実施例1〉
 特許文献9~11に記載のような樹状カーボンブラック(BET比表面積1300m/g、直径2nm以下の累積細孔容積が0.15cc/g)を不活性ガス中で、2000℃で0.5時間加熱処理を行った後に、空気中で、480℃で5時間賦活処理をすることによって、直径2nm以下の累積細孔容積が0.09cc/gで、かつBET比表面積が1180m/gであるカーボンブラックを得た。
 このカーボンブラック粉末0.6グラムを、1リットルの0.1Nの硝酸水溶液に分散させた。この分散液に、白金の担持率が40重量%となるように、白金量0.4グラムを含むジニトロジアンミン白金硝酸溶液を加え、還元剤として99.5%のエタノール27グラムをさらに加え、十分に馴染ませた。そして、エタノールを還元剤として、60℃~90℃で1~3時間加熱を行った。この還元処理後の分散液を、ろ液の廃液の電導率が50μS/cm以下になるまで繰返しろ過洗浄を行った。ろ過洗浄して得られた粉末ケーキを、80℃で15時間以上送風乾燥し、白金担持カーボンを得た。
 白金担持カーボンを、カーボン量に対して80倍の純水に分散させ、硝酸コバルト水溶液を滴下投入した。この硝酸コバルト水溶液は、市販の硝酸コバルト6水和物を純水に溶解させて調製されており、白金:コバルトのモル比が7:1となるように使用された。硝酸コバルト水溶液を投入した後、さらに純水に溶解した水素化ホウ素ナトリウムをコバルトモル量の1~6倍滴下投入し、1~20時間程度撹拌した。その分散液を、ろ液の廃液の電導率が5μS/cm以下になるまで繰返しろ過洗浄を行った。ろ過洗浄して得られた粉末ケーキを、80℃で15時間以上送風乾燥し、白金合金担持カーボンを得た。
 このようにして得た白金合金担持カーボンを、アルゴン雰囲気中で、900℃1時間の条件で熱処理をした。これにより、実施例1の燃料電池用電極触媒を得た。
〈実施例2及び比較例1~4〉
 カーボンブラックについて行った熱処理の条件を変更することによって、表1に記載のような累積細孔容積及びBET比表面積を有するカーボンブラックを準備し、これらを使用したこと以外は実施例1と同様にして、実施例2及び比較例1~4の燃料電池用電極触媒を得た。
〈実施例3〉
 特許文献13に記載のような炭素多孔体を得るために、水酸化リチウム水和物を0.04mol/Lとなるように純水に溶解させ、テレフタル酸100mol等量及び水酸化カルシウム90mol等量を加えて混合した。この混合物を密閉状態で48時間放置して複合塩を得た後に、100℃で乾燥させてカーボンブラック前駆体を得た。この前駆体を、600℃、5時間で熱処理した後に、純水に懸濁し、撹拌しながら塩酸を添加して、pHを3以下とした。その後、ろ過して得られた残渣を100℃で乾燥した。その乾燥した残渣を、真空中で2000℃、1時間熱処理をして、その後、空気中で、450℃、1時間熱処理をして、炭素多孔体である炭素質材料を得た。
 このようにして得られた炭素質材料を用いたこと以外は、実施例1と同様にして、実施例3の燃料電池用電極触媒を得た。
《評価》
〈BET比表面積〉
 担体粒子のBET比表面積は、JIS K6217-2に従って、島津製作所社製Tri-Star3000を用いて測定した。
〈累積細孔容積〉
 累積細孔容積は、ガス吸着量測定装置(島津製作所社製「Tri-Star3000」)により、吸着質として窒素ガスを使用し、測定温度77.4KにてBJH法により測定した値である。
〈粒径測定〉
 調製した触媒金属粒子の平均粒径は、X線回折のPt(220)面の測定ピークから、解析ソフトJADEを用いて算出した。また、TEM測定の画像解析から、2nm以下の触媒金属粒子の割合を求めた。
〈初期触媒活性〉
 実施例及び比較例で製造した電極触媒を有機溶媒に分散させ、分散液をテフロン(商標)シートへ塗布して電極を形成した。電極をそれぞれ高分子電解質膜を介してホットプレスによって貼り合わせ、その両側に拡散層を配置して固体高分子形燃料電池用の単セルを作製した。
 セル温度を80℃、両電極の相対湿度を100%とし、スモール単セル評価装置システム(株式会社東陽テクニカ製)を用いて、サイクリックボルタンメトリー(CV)及びIV測定を行った。
 IV測定については、0.01~1.0A/cmの範囲で任意に電流を制御した。0.86V時のPt質量当たりの電流値を、初期触媒活性と定義した。
〈活性維持率〉
 初期触媒活性を試験した燃料電池セルについて、2000回の充放電を繰り返した後に、再度IV測定を行った。初期触媒活性の電流値に対する充放電試験後の電流値に対する割合(%)を計算し、その値を活性維持率と定義した。
《結果》
 結果を以下の表に示す。
Figure JPOXMLDOC01-appb-T000001
 表1から、直径2nm以下の累積細孔容積が0.10cc/g以下で、かつBET比表面積が900m/g超のカーボンブラックを含む触媒を用いた実施例1~3が、高い初期活性と活性維持率とを両立できていることが分かる。
 10  電解質膜
 20  アノード電極層
 21  アノード側ガス流路
 22  アノード側ガス拡散層
 23  アノード側セパレータ
 30  カソード電極層
 31  カソード側ガス流路
 32  カソード側ガス拡散層
 33  カソード側セパレータ
 100  膜電極接合体
 200  燃料電池

Claims (7)

  1.  白金又は白金合金を含む触媒金属粒子及び前記触媒金属粒子を担持している担体粒子を含む燃料電池用電極触媒であって、前記担体粒子は、直径2nm以下の累積細孔容積が0.10cc/g以下で、かつBET比表面積が900m/g超の炭素質材料である、燃料電池用電極触媒。
  2.  前記炭素質材料の直径6nm以下の累積細孔容積が、0.25cc/g以上である、請求項1に記載の燃料電池用電極触媒。
  3.  前記担体粒子の全細孔容積が、1.0cc/g以上である、請求項1又は2に記載の燃料電池用電極触媒。
  4.  前記炭素質材料が、1500m/g以下のBET比表面積を有する、請求項1~3のいずれか一項に記載の燃料電池用電極触媒。
  5.  直径が2nm以下の前記触媒金属粒子の個数の割合が、前記触媒金属粒子の全個数に対して、23%以下である、請求項1~4のいずれか一項に記載の燃料電池用電極触媒。
  6.  前記触媒金属粒子の個数平均粒径が、2.8~4.0nmである、請求項1~5のいずれか一項に記載の燃料電池用電極触媒。
  7.  請求項1~6のいずれか一項に記載の電極触媒を含む、燃料電池。
PCT/JP2019/010387 2018-03-16 2019-03-13 燃料電池用電極触媒及びそれを用いた燃料電池 WO2019177060A1 (ja)

Priority Applications (4)

Application Number Priority Date Filing Date Title
EP19767274.4A EP3767723A4 (en) 2018-03-16 2019-03-13 ELECTRODE CATALYST FOR FUEL CELL AND FUEL CELL WITH USE THEREOF
JP2020506626A JP6956851B2 (ja) 2018-03-16 2019-03-13 燃料電池用電極触媒及びそれを用いた燃料電池
US16/979,616 US11949113B2 (en) 2018-03-16 2019-03-13 Electrode catalyst for fuel cell, and fuel cell using same
CN201980016226.1A CN111788728B (zh) 2018-03-16 2019-03-13 燃料电池用电极催化剂和使用它的燃料电池

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2018049227 2018-03-16
JP2018-049227 2018-03-16

Publications (1)

Publication Number Publication Date
WO2019177060A1 true WO2019177060A1 (ja) 2019-09-19

Family

ID=67906767

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2019/010387 WO2019177060A1 (ja) 2018-03-16 2019-03-13 燃料電池用電極触媒及びそれを用いた燃料電池

Country Status (5)

Country Link
US (1) US11949113B2 (ja)
EP (1) EP3767723A4 (ja)
JP (1) JP6956851B2 (ja)
CN (1) CN111788728B (ja)
WO (1) WO2019177060A1 (ja)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN111403757A (zh) * 2020-03-27 2020-07-10 北京化工大学 燃料电池用碳载铂钴铬有序结构催化剂及其制备方法

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP7150361B1 (ja) * 2021-07-01 2022-10-11 石福金属興業株式会社 燃料電池用白金コバルトクロム合金担持カーボン触媒の製造方法

Citations (18)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2005135817A (ja) * 2003-10-31 2005-05-26 Nittetsu Gijutsu Joho Center:Kk 燃料電池用電極触媒
JP2005166409A (ja) 2003-12-02 2005-06-23 Nissan Motor Co Ltd 電極触媒、触媒担持電極、燃料電池用meaおよび燃料電池
JP2005317546A (ja) 2004-04-27 2005-11-10 Samsung Sdi Co Ltd 燃料電池用膜−電極アセンブリー及びこれを含む燃料電池システム
WO2007055411A1 (ja) * 2005-11-14 2007-05-18 Cataler Corporation 燃料電池用触媒、燃料電池用電極、及びこれを備えた固体高分子型燃料電池
JP2008269850A (ja) * 2007-04-17 2008-11-06 Nippon Steel Corp 固体高分子形燃料電池電極用触媒
JP2009140657A (ja) 2007-12-04 2009-06-25 Nissan Motor Co Ltd 燃料電池用電極触媒
JP2012124001A (ja) 2010-12-08 2012-06-28 Tanaka Kikinzoku Kogyo Kk 固体高分子形燃料電池用触媒及びその製造方法
JP2012236138A (ja) 2011-05-11 2012-12-06 Ishifuku Metal Ind Co Ltd 高活性な燃料電池用カソード白金触媒
JP2012248365A (ja) 2011-05-26 2012-12-13 Nippon Steel Corp 固体高分子型燃料電池用触媒
JP2013252483A (ja) 2012-06-07 2013-12-19 Tanaka Kikinzoku Kogyo Kk 金担持カーボン触媒の製造方法
JP5481748B2 (ja) 2007-12-12 2014-04-23 新日鉄住金化学株式会社 炭素ナノ構造体、金属内包樹状炭素ナノ構造物の作製方法、及び炭素ナノ構造体の作製方法
WO2014129597A1 (ja) 2013-02-21 2014-08-28 新日鉄住金化学株式会社 触媒担体用炭素材料
WO2015141810A1 (ja) 2014-03-19 2015-09-24 新日鐵住金株式会社 固体高分子形燃料電池用の担体炭素材料及び触媒金属粒子担持炭素材料
WO2016063968A1 (ja) 2014-10-24 2016-04-28 株式会社キャタラー 燃料電池用電極触媒及びその製造方法
JP2016106170A (ja) 2010-12-24 2016-06-16 富士ゼロックス株式会社 樹脂組成物および樹脂成形体
WO2017042919A1 (ja) * 2015-09-09 2017-03-16 日産自動車株式会社 燃料電池用電極触媒層およびその製造方法、ならびに当該触媒層を用いる膜電極接合体、燃料電池および車両
WO2017094648A1 (ja) 2015-11-30 2017-06-08 国立大学法人山梨大学 カーボンブラック、それを用いた電極触媒及び燃料電池、並びにカーボンブラックの製造方法
JP2017212217A (ja) * 2013-04-25 2017-11-30 日産自動車株式会社 触媒およびその製造方法ならびに当該触媒を用いる電極触媒層

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2010084773A1 (ja) * 2009-01-23 2010-07-29 株式会社エクォス・リサーチ 燃料電池用触媒層及びそれに使用する触媒
CN107207255B (zh) 2015-03-05 2019-12-27 株式会社科特拉 碳多孔体、其制法和氨吸附材料以及碳罐及其制造方法
JP6042922B2 (ja) 2015-03-05 2016-12-14 株式会社豊田中央研究所 炭素多孔体、その製法及びアンモニア吸着材

Patent Citations (18)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2005135817A (ja) * 2003-10-31 2005-05-26 Nittetsu Gijutsu Joho Center:Kk 燃料電池用電極触媒
JP2005166409A (ja) 2003-12-02 2005-06-23 Nissan Motor Co Ltd 電極触媒、触媒担持電極、燃料電池用meaおよび燃料電池
JP2005317546A (ja) 2004-04-27 2005-11-10 Samsung Sdi Co Ltd 燃料電池用膜−電極アセンブリー及びこれを含む燃料電池システム
WO2007055411A1 (ja) * 2005-11-14 2007-05-18 Cataler Corporation 燃料電池用触媒、燃料電池用電極、及びこれを備えた固体高分子型燃料電池
JP2008269850A (ja) * 2007-04-17 2008-11-06 Nippon Steel Corp 固体高分子形燃料電池電極用触媒
JP2009140657A (ja) 2007-12-04 2009-06-25 Nissan Motor Co Ltd 燃料電池用電極触媒
JP5481748B2 (ja) 2007-12-12 2014-04-23 新日鉄住金化学株式会社 炭素ナノ構造体、金属内包樹状炭素ナノ構造物の作製方法、及び炭素ナノ構造体の作製方法
JP2012124001A (ja) 2010-12-08 2012-06-28 Tanaka Kikinzoku Kogyo Kk 固体高分子形燃料電池用触媒及びその製造方法
JP2016106170A (ja) 2010-12-24 2016-06-16 富士ゼロックス株式会社 樹脂組成物および樹脂成形体
JP2012236138A (ja) 2011-05-11 2012-12-06 Ishifuku Metal Ind Co Ltd 高活性な燃料電池用カソード白金触媒
JP2012248365A (ja) 2011-05-26 2012-12-13 Nippon Steel Corp 固体高分子型燃料電池用触媒
JP2013252483A (ja) 2012-06-07 2013-12-19 Tanaka Kikinzoku Kogyo Kk 金担持カーボン触媒の製造方法
WO2014129597A1 (ja) 2013-02-21 2014-08-28 新日鉄住金化学株式会社 触媒担体用炭素材料
JP2017212217A (ja) * 2013-04-25 2017-11-30 日産自動車株式会社 触媒およびその製造方法ならびに当該触媒を用いる電極触媒層
WO2015141810A1 (ja) 2014-03-19 2015-09-24 新日鐵住金株式会社 固体高分子形燃料電池用の担体炭素材料及び触媒金属粒子担持炭素材料
WO2016063968A1 (ja) 2014-10-24 2016-04-28 株式会社キャタラー 燃料電池用電極触媒及びその製造方法
WO2017042919A1 (ja) * 2015-09-09 2017-03-16 日産自動車株式会社 燃料電池用電極触媒層およびその製造方法、ならびに当該触媒層を用いる膜電極接合体、燃料電池および車両
WO2017094648A1 (ja) 2015-11-30 2017-06-08 国立大学法人山梨大学 カーボンブラック、それを用いた電極触媒及び燃料電池、並びにカーボンブラックの製造方法

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP3767723A4

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN111403757A (zh) * 2020-03-27 2020-07-10 北京化工大学 燃料电池用碳载铂钴铬有序结构催化剂及其制备方法

Also Published As

Publication number Publication date
EP3767723A1 (en) 2021-01-20
EP3767723A4 (en) 2021-04-21
JP6956851B2 (ja) 2021-11-02
CN111788728B (zh) 2022-04-01
US11949113B2 (en) 2024-04-02
CN111788728A (zh) 2020-10-16
US20210043947A1 (en) 2021-02-11
JPWO2019177060A1 (ja) 2021-01-14

Similar Documents

Publication Publication Date Title
JP4083721B2 (ja) 高濃度炭素担持触媒、その製造方法、該触媒を利用した触媒電極及びそれを利用した燃料電池
US6797667B2 (en) Process for preparing an anode catalyst for fuel cells and the anode catalyst prepared therewith
JP5054912B2 (ja) 燃料電池用触媒、その製造方法、及びそれを含む燃料電池システム
WO2016063968A1 (ja) 燃料電池用電極触媒及びその製造方法
JP6244936B2 (ja) 炭素触媒及びその製造方法、及び該炭素触媒を用いた触媒インキ並びに燃料電池
JP3643552B2 (ja) 高分子固体電解質形燃料電池の空気極用触媒及び該触媒の製造方法
CN108808027B (zh) 燃料电池用电极催化剂及其制造方法
KR20080067554A (ko) 백금/루테늄 합금 담지 촉매, 그 제조방법 및 이를 이용한연료전지
WO2020059504A1 (ja) 燃料電池用アノード触媒層及びそれを用いた燃料電池
KR102178482B1 (ko) 연료전지용 촉매의 제조 방법 및 이에 의하여 제조된 연료전지용 촉매
JP2003157857A (ja) 燃料電池用電極触媒体、それを用いた燃料電池用空気極、およびその触媒活性評価方法
JP4785757B2 (ja) 貴金属担持電極触媒の製造方法および該製造方法により得られる貴金属担持電極触媒
JPWO2006114942A1 (ja) カーボン粒子、白金および酸化ルテニウムを含んでなる粒子およびその製造方法
WO2020059503A1 (ja) 燃料電池用アノード触媒層及びそれを用いた燃料電池
JP6956851B2 (ja) 燃料電池用電極触媒及びそれを用いた燃料電池
KR100541977B1 (ko) 다공성 나노 탄소 구형 지지체 및 이에 담지된백금/루테늄합금 직접메탄올 연료전지용 전극촉매 및 이의제조방법
JP6727264B2 (ja) 燃料電池用アノード触媒層及びそれを用いた燃料電池
JP2005108453A (ja) 燃料電池用膜−電極接合体及び燃料電池
JPWO2006112368A1 (ja) 燃料電池用電極触媒およびその製造方法
JP7093860B1 (ja) 燃料電池電極触媒
JP2005190712A (ja) 触媒担持電極、燃料電池用meaおよび燃料電池
KR102337247B1 (ko) 금속 나노입자-탄소 복합체 및 이의 제조 방법
JP6727265B2 (ja) 燃料電池用アノード触媒層及びそれを用いた燃料電池
Çelebi Energy Applications: Fuel Cells
JP2021034128A (ja) 燃料電池触媒担体用の黒鉛化炭素多孔体、燃料電池触媒、及び燃料電池触媒層の製造方法

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 19767274

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2020506626

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

WWE Wipo information: entry into national phase

Ref document number: 2019767274

Country of ref document: EP