WO2019176904A1 - 弁装置 - Google Patents

弁装置 Download PDF

Info

Publication number
WO2019176904A1
WO2019176904A1 PCT/JP2019/009892 JP2019009892W WO2019176904A1 WO 2019176904 A1 WO2019176904 A1 WO 2019176904A1 JP 2019009892 W JP2019009892 W JP 2019009892W WO 2019176904 A1 WO2019176904 A1 WO 2019176904A1
Authority
WO
WIPO (PCT)
Prior art keywords
valve
port
valve body
flow path
opening
Prior art date
Application number
PCT/JP2019/009892
Other languages
English (en)
French (fr)
Inventor
幸大 宮川
Original Assignee
三菱電機株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 三菱電機株式会社 filed Critical 三菱電機株式会社
Publication of WO2019176904A1 publication Critical patent/WO2019176904A1/ja

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16KVALVES; TAPS; COCKS; ACTUATING-FLOATS; DEVICES FOR VENTING OR AERATING
    • F16K11/00Multiple-way valves, e.g. mixing valves; Pipe fittings incorporating such valves
    • F16K11/02Multiple-way valves, e.g. mixing valves; Pipe fittings incorporating such valves with all movable sealing faces moving as one unit
    • F16K11/08Multiple-way valves, e.g. mixing valves; Pipe fittings incorporating such valves with all movable sealing faces moving as one unit comprising only taps or cocks
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16KVALVES; TAPS; COCKS; ACTUATING-FLOATS; DEVICES FOR VENTING OR AERATING
    • F16K27/00Construction of housing; Use of materials therefor
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16KVALVES; TAPS; COCKS; ACTUATING-FLOATS; DEVICES FOR VENTING OR AERATING
    • F16K27/00Construction of housing; Use of materials therefor
    • F16K27/06Construction of housing; Use of materials therefor of taps or cocks
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16KVALVES; TAPS; COCKS; ACTUATING-FLOATS; DEVICES FOR VENTING OR AERATING
    • F16K5/00Plug valves; Taps or cocks comprising only cut-off apparatus having at least one of the sealing faces shaped as a more or less complete surface of a solid of revolution, the opening and closing movement being predominantly rotary
    • F16K5/06Plug valves; Taps or cocks comprising only cut-off apparatus having at least one of the sealing faces shaped as a more or less complete surface of a solid of revolution, the opening and closing movement being predominantly rotary with plugs having spherical surfaces; Packings therefor

Definitions

  • the present invention relates to a valve device.
  • valve device that is attached to a pipe for transporting fluid and that opens and closes a flow path or changes the flow path.
  • the valve device described in Patent Document 1 includes a valve body provided with a first flow path and a second flow path, a valve chamber in which the valve body is rotatably accommodated, an inflow port, and a first outflow port.
  • the valve main body provided with the 2nd outflow port, and the rotational drive apparatus which rotates a valve body to the surroundings of a rotating shaft center within a valve chamber are provided.
  • Each of the inflow port, the first outflow port, and the second outflow port includes a tubular joint, and is connected to a pipe constituting the hot water supply facility.
  • the first channel is a channel that allows fluid to pass from the inlet port to the first outlet port
  • the second channel is a channel that allows fluid to pass from the inlet port to the second outlet port.
  • the valve device described in Patent Document 2 includes a body main body and a ball valve that is held in the body main body and is rotationally driven by a motor.
  • the body main body is provided with a fluid inlet and a fluid outlet.
  • a pipe for transporting exhaust gas is connected to the fluid inlet and the fluid outlet.
  • the fluid inlet, the ball valve, and the fluid outlet are arranged in series.
  • the valve device described in Patent Document 1 is connected to three pipes arranged in a T shape.
  • two of the three pipes connected to the valve device described in Patent Document 1 are arranged in series, and the remaining one pipe is fixed in a direction orthogonal to the other two pipes. Is done.
  • Two pipes arranged in series are connected to the valve device described in Patent Document 2. Further, in the valve devices described in Patent Document 1 and Patent Document 2, the mounting angle of the pipe is fixed and cannot be changed.
  • valve device described in Patent Document 1 cannot be directly attached to a pipe line in which three pipes are not arranged in a T shape. Further, the valve device described in Patent Document 2 cannot be directly attached to a pipe line in which two pipes are not arranged in series. In such a case, it is necessary to manufacture a valve device with a changed pipe attachment angle and attach it to the pipe line, or to bend the pipe according to the pipe attachment angle in the valve device.
  • valve device described in Patent Document 1 since the valve device described in Patent Document 1 includes the first flow path and the second flow path in the valve body, that is, includes two mutually independent flow paths, Cross-sectional area is limited. For this reason, there is a problem that the cross-sectional area of each flow path is reduced, resulting in an increase in flow path resistance and an increase in pressure loss in the valve device. If an attempt is made to increase the cross-sectional area of each flow path in order to reduce the pressure loss, it is necessary to increase the outer dimensions of the valve body, resulting in a problem that the valve device is increased in size. In many devices, downsizing of the device is always required, so that the enlargement of the valve device is not desirable.
  • the present invention has been made under such a background, and is a valve device that can be adapted to piping arrangement in a device to which the valve device is attached by changing the form, and has a small pressure loss. Is to provide.
  • the valve device includes a first port, a second port, and a joint pipe connected to the second port, and the central axis of the second port intersects the central axis of the first port.
  • the joint pipe is bent in the middle of the flow path, and the joint pipe can be fixed by changing the mounting angle around the central axis of the second port. In this manner, it is attached to the second port.
  • the mounting angle of the pipe connected to the valve device is changed by changing the mounting angle around the central axis of the second port of the joint pipe according to the arrangement of the pipe line to which the valve device is mounted. can do. That is, the form of the valve device can be changed to be adapted to the piping arrangement in the device to which the valve device is attached. Therefore, it is not necessary to design and manufacture a plurality of types of valve devices having different pipe attachment angles. As a result, the cost for designing and manufacturing the valve device is reduced. Further, in the valve device according to the present invention, the shape of the flow path inside the valve body and inside the second port is not restricted. Therefore, the cross-sectional area of the flow path inside the valve body and the second port can be enlarged, the flow resistance in the valve device can be reduced, and the pressure loss can be reduced.
  • FIG. 1C is a diagram illustrating the operation of the valve device illustrated in FIGS. 1A to 1C, and is a cross-sectional view of the valve device illustrating a state in which fluid flows to a first outflow port FIG.
  • FIG. 2C is a diagram illustrating the operation of the valve device illustrated in FIGS. 1A to 1C, and is a cross-sectional view of the valve device illustrating a state in which fluid flows to the second outflow port
  • Sectional drawing which shows the state which attached piping to the valve apparatus which concerns on the 2nd Embodiment of this invention. It is a figure which shows the effect
  • Sectional drawing of the valve apparatus which shows the state by which the flow path was closed
  • Sectional drawing of the valve apparatus which concerns on the modification of this invention
  • the perspective view of the valve body which concerns on another modification of this invention.
  • Sectional drawing of the valve body which concerns on another modification of this invention.
  • the perspective view of the valve apparatus which concerns on the 3rd Embodiment of this invention.
  • Sectional drawing of the valve apparatus which concerns on the 3rd Embodiment of this invention.
  • Sectional drawing of the valve apparatus which shows the effect
  • FIG. 8A and 8B Sectional drawing of the valve apparatus which shows another effect
  • FIG. 1A is a perspective view of the valve device 1 according to the first embodiment of the present invention
  • FIG. 1B is a cross-sectional view of the valve device 1.
  • the valve device 1 includes a valve body 2 and a valve chamber 3.
  • the valve body 2 is accommodated in the valve chamber 3 and is supported in the valve chamber 3 so as to be rotatable around the rotation center Rx.
  • the valve body 2 includes a rotation drive shaft 4.
  • One end of the rotary drive shaft 4 protrudes outside the valve chamber 3.
  • a portion of the rotary drive shaft 4 that protrudes outside the valve chamber 3 is fixed to an output end of a rotary drive device (not shown).
  • valve body 2 is rotationally driven around the rotation center Rx by a rotational drive device (not shown).
  • a rotational drive device (not shown).
  • An O-ring 2 a and a seat packing 2 b are sandwiched between the valve body 2 and the valve chamber 3 to prevent liquid leakage from the gap between the valve body 2 and the valve chamber 3.
  • An inflow port 5 is provided on the end surface of the valve chamber 3 far from the rotational drive shaft 4, that is, the lower end surface of the valve chamber 3 in FIG. 1B. Further, a first outflow port 6 and a second outflow port 7 are provided at the end of the valve chamber 3 on the side from which the rotary drive shaft 4 protrudes, that is, in the upper portion of the valve chamber 3 in FIGS. 1A and 1B. ing. A joint pipe 8 that connects the space outside the valve chamber 3 and the inside of the valve chamber 3 is attached to the inflow port 5.
  • the first outflow port 6 and the second outflow port 7 are examples of the first port. That is, this embodiment shows an example in which two first ports are provided.
  • the inflow port 5 is an example of a second port.
  • the central axis of the inflow port 5 coincides with the rotation center Rx of the valve body 2.
  • the central axis Cx1 of the flow path on the inlet side of the joint pipe 8, that is, on the side far from the inflow port 5 intersects the rotation center Rx of the valve body 2 at an intersection angle ⁇ 1.
  • the center of the flow path on the outlet side of the joint pipe 8, that is, the side connected to the inflow port 5 coincides with the rotation center Rx of the valve body 2.
  • the intersection angle ⁇ 1 is an acute angle and is + 45 ° in the present embodiment.
  • the joint pipe 8 has the center axis of the flow path bent in the middle of the flow path.
  • the central axis Cx1 of the flow path on the inlet side of the joint pipe 8 intersects the central axis of the flow path on the outlet side of the joint pipe 8, that is, the rotation center Rx of the valve body 2 at an acute angle.
  • the joint pipe 8 is fixed to the inflow port 5 by fastening means (not shown) such as bolts.
  • fastening means such as bolts.
  • the joint pipe 8 can be rotated around the central axis of the inflow port 5. That is, when the fixation by the fastening means is released, the attachment angle of the joint pipe 8 around the central axis of the inflow port 5 can be arbitrarily changed. Thereafter, if the fixing by the fastening means is restored, the joint pipe 8 is fixed to the inflow port 5 at the changed mounting angle.
  • the joint pipe 8 is attached to the inflow port 5 in such a manner that the attachment angle around the central axis of the inflow port 5 can be arbitrarily changed and fixed at that angle.
  • the central axis Cx2 of the first outflow port 6 and the central axis Cx3 of the second outflow port 7 intersect with the rotation center Rx of the valve body 2 at intersection angles ⁇ 2 and ⁇ 3, respectively.
  • the intersection angles ⁇ 2 and ⁇ 3 are acute angles.
  • the intersection angle ⁇ 2 is + 45 °
  • the intersection angle ⁇ 3 is set to ⁇ 45 °. Since ⁇ 1 to ⁇ 3 are set as described above, in the state shown in FIG. 1B, the central axis Cx2 of the first outflow port 6 is parallel to the central axis Cx1 of the flow path on the inlet side of the joint pipe 8.
  • the central axis Cx3 of the second outflow port 7 is orthogonal to the central axis Cx1. Therefore, as shown in FIG. 1C, the pipe P ⁇ b> 2 connected to the first outflow port 6 is arranged in parallel to the pipe P ⁇ b> 1 connected to the joint pipe 8, and the pipe P ⁇ b> 3 connected to the second outflow port 7. Is orthogonal to the pipe P1.
  • the joint pipe 8 can be fixed to the valve chamber 3 at a changed mounting angle by changing the mounting angle around the rotation center Rx of the valve body 2. 3 is attached.
  • the central axis Cx2 of the first outflow port 6 becomes the joint pipe. 8 is perpendicular to the central axis Cx1 of the flow path on the inlet side, and the central axis Cx3 of the second outflow port 7 is parallel to the central axis Cx1.
  • the pipe P2 connected to the first outflow port 6 is orthogonal to the pipe P1 connected to the joint pipe 8, and the pipe P3 connected to the second outflow port 7 is arranged in parallel to the pipe P1. Is done.
  • valve device 1 is connected to the valve device 1 by changing the rotation angle Rx of the valve body 2 relative to the valve chamber 3 of the joint pipe 8, that is, the attachment angle around the central axis of the inflow port 5.
  • the mounting angle of the pipe P1 can be changed.
  • a positioning projection 3a is formed in the valve chamber 3, and a positioning projection 8a is formed in the joint tube 8, respectively.
  • the positioning protrusion 3a and the positioning protrusion 8a are portions that function as a reference or a mark when the joint pipe 8 is assembled to the valve chamber 3.
  • the joint pipe 8 is positioned with respect to the valve chamber 3 so that the positioning projection 3 a and the positioning projection 8 a overlap vertically, and the joint pipe 8 is fixed to the valve chamber 3.
  • the joint pipe 8 is fixed to the valve chamber 3 in a state as shown in FIG. 1B.
  • FIG. 2A is a perspective view of the valve body 2 included in the valve device 1, and FIG. 2B is a cross-sectional view of the valve body 2.
  • the valve body 2 includes a rotation drive shaft 4 and a valve body 9 fixed to the rotation drive shaft 4.
  • the valve body 9 is a rotating body having the rotation center Rx of the rotation drive shaft 4 as a central axis, and is configured in a column shape as a whole.
  • the end of the valve body 9 on the side connected to the rotary drive shaft 4, that is, the upper end of the valve body 9 in FIGS. 2A and 2B is a hemisphere having the same diameter of the cylinder constituting the lower part of the valve body 9.
  • the outer surface of the cylinder which comprises the lower part of the valve main body 9, and the hemisphere which comprises the edge part by the side connected to the rotational drive shaft 4 of the valve main body 9 comprise the continuous curved surface.
  • the portion of the inner surface of the valve chamber 3 that comes into contact with the upper end portion of the valve body 9 is also formed in a hemispherical shape and is in surface contact with the valve body 9.
  • a D-cut portion 4a is formed at the upper end portion of the rotary drive shaft 4, and a serration shaft portion 4b is formed below the D-cut portion 4a.
  • the D-cut portion 4a is a portion having a shape formed by cutting out a part of the cross-sectional shape of the rotary drive shaft 4 that is originally circular and forming it in a D shape. By confirming in which direction the cut-out portion of the D-cut portion 4a is directed with respect to the valve chamber 3, the rotation angle around the rotation center Rx of the valve body 2 can be determined.
  • the serration shaft portion 4b is a portion where key-shaped irregularities are provided at equal intervals on the outer periphery of the rotation drive shaft 4, and is a portion that is fitted to an output end of a rotation drive device (not shown).
  • An inflow port 10 is formed on the end surface of the valve body 9 far from the rotation drive shaft 4, that is, the lower end surface of the valve body 9 in FIGS. 2A and 2B.
  • An outlet 11 is formed at the end of the valve body 9 on the side connected to the rotation drive shaft 4, that is, at the upper part of the valve body 9 in FIGS. 2A and 2B.
  • An inflow path 12 and an outflow path 13 are formed inside the valve body 9, and the inflow path 12 and the outflow path 13 are connected to each other to form a continuous single flow path.
  • a flow path formed by connecting the inflow path 12 and the outflow path 13 communicates between the inflow port 10 and the outflow port 11.
  • the fluid that flows into the inflow path 12 from the inflow port 5 through the inflow port 10 flows out from the outflow port 11 through the outflow path 13.
  • the outlet 11 is an example of a first opening
  • the inlet 10 is an example of a second opening. This embodiment shows an example in which liquid flows in from the second opening and flows out through the first opening.
  • the inflow path 12 is a cylindrical flow path having an inner diameter D whose center axis Cx4 coincides with the rotation center Rx of the rotary drive shaft 4.
  • the outflow path 13 is a cylindrical flow path having an inner diameter D whose central axis Cx5 intersects the central axis Cx4 of the inflow path 12 at an intersection angle ⁇ 4.
  • the intersection angle ⁇ 4 is an acute angle, and is set to + 45 ° in the present embodiment.
  • the junction part 9a which connects between the inflow path 12 and the outflow path 13 is comprised by the smooth curved surface. Thus, only the inflow path 12 and the outflow path 13 are formed inside the valve body 9, and no other flow path is formed.
  • the cross-sectional areas of the inflow path 12 and the outflow path 13 can be increased as compared with the case where a plurality of flow paths are provided. Moreover, the inflow path 12 and the outflow path 13 intersect at an acute angle. Therefore, the flow resistance in the inflow path 12 and the outflow path 13 is smaller than that in the case where the inflow path 12 and the outflow path 13 are orthogonal to each other. As a result, the pressure loss in the valve device 1 is smaller than that of the conventional product.
  • FIG. 3A is a cross-sectional view when fluid flows out from the first outflow port 6, and FIG. 3B is a cross-sectional view when fluid flows out from the second outflow port 7.
  • valve device 1 Flows out of the valve device 1 through the outlet 11 of the valve body 2 and the second outlet port 7 of the valve chamber 3.
  • the fluid can flow out to either the first outflow port 6 or the second outflow port 7 by rotating the valve body 2 around the rotation center Rx.
  • the outlet 11 of the valve body 2 is connected to the first outlet port 6 of the valve chamber 3 and the fluid flows out from the first outlet port 6, that is, the valve body 2 is in the rotational position shown in FIG. 3A.
  • the notch portion of the D-cut portion 4a is not visible because it faces the back side of the paper surface.
  • the outlet 11 of the valve body 2 is connected to the second outlet port 7 of the valve chamber 3, and the fluid flows out from the second outlet port 7, that is, the valve body 2 is in the rotational position shown in FIG. 3B.
  • the cutout portion of the D-cut portion 4a faces the front side of the paper surface. In this way, the switching state of the valve device 1 can be known by confirming which of the cutout portions of the D-cut portion 4a is facing.
  • the valve device 1 includes a single inflow port, that is, the inflow port 5, and two outflow ports, that is, the first and second outflow ports 6 and 7, and one of the two outflow ports. Can be arbitrarily selected to allow fluid to flow out of the selected outflow port.
  • the valve device 1 is configured such that one of the first and second outflow ports 6 and 7 is connected to the outflow port 11 when the rotation drive shaft 4 is at different specific rotation angles. . Therefore, the valve device 1 functions as a switching valve.
  • FIG. 4A is a perspective view showing the configuration of the valve device 20 according to the second embodiment of the present invention.
  • the basic configuration of the valve device 20 is the same as that of the valve device 1. That is, the valve device 20 includes a valve body 2 and a valve chamber 3 that accommodates the valve body 2 therein and rotatably supports the valve body 2 around the rotation center Rx. A joint pipe 8 is attached to the valve chamber 3.
  • the valve device 20 is different from the valve device 1 in that it includes only the first outflow port 6 and does not include the second outflow port 7. 4A and 4B, the pipe P2 connected to the first outflow port 6 of the valve device 20 is arranged in parallel to the pipe P1 connected to the joint pipe 8.
  • FIG. 5A is a cross-sectional view showing a state in which the valve device 20 is opened
  • FIG. 5B is a cross-sectional view showing a state in which the valve device 20 is closed.
  • valve body 2 when the valve body 2 is rotated around the rotation center Rx and the outlet 11 of the valve body 2 is placed at a position connected to the first outlet port 6 of the valve chamber 3, the joint pipe 8 and the inflow
  • the fluid that flows into the valve chamber 3 through the port 5 flows out of the valve device 20 through the outlet 11 of the valve body 2 and the first outlet port 6 of the valve chamber 3. That is, in the state shown in FIG. 5A, the valve device 20 is opened.
  • the valve body 2 is rotated 180 ° around the rotation center Rx from the state shown in FIG. 5A, the state shown in FIG. 5B is obtained.
  • the notch portion of the D-cut portion 4a is visible because it faces the back side of the paper. Absent.
  • the valve device 20 is in a closed state, that is, in a state where the valve body 2 is in the rotational position shown in FIG. 5B, the notch portion of the D-cut portion 4a faces the front side of the paper surface.
  • the open / closed state of the valve device 20 can be known by confirming which one of the cutout portions of the D-cut portion 4a is facing.
  • the valve device 20 includes a single inflow port, that is, the inflow port 5, and a single outflow port, that is, the first outflow port 6, and fluid flows out from the first outflow port 6.
  • the state and the state where the fluid does not flow out from the first outflow port 6 can be arbitrarily selected. That is, the valve device 20 includes one inflow port and one outflow port, and functions as an on-off valve that opens and closes a flow path connected to the valve device 20.
  • the attachment angle of the pipe connected to the valve device 20 is changed by changing the attachment angle of the joint pipe 8 around the rotation axis Rx of the valve body 2, that is, the central axis of the inflow port 5. be able to.
  • the joint pipe 8 is rotated 180 ° around the rotation center Rx of the valve body 2, and the intersection angle of the center axis Cx1 of the flow path on the inlet side of the joint pipe 8 with respect to the rotation center Rx of the valve body 2.
  • ⁇ 1 is set to ⁇ 45 °
  • the central axis Cx2 of the first outflow port 6 is orthogonal to the central axis Cx1 of the flow path on the inlet side of the joint pipe 8. Therefore, in this case, the pipe P2 connected to the first outflow port 6 of the valve device 20 is orthogonal to the pipe P1 connected to the joint pipe 8.
  • valve device 20 it is possible to select a configuration in which the pipes P1, P2 are arranged in parallel to each other and connected to the valve device 20, and a configuration in which the pipes P1, P2 are orthogonal to each other.
  • the form of the valve device 20 can be changed according to the relative arrangement of the pipes P1 and P2, that is, depending on whether the pipes P1 and P2 are arranged in parallel or orthogonally.
  • the shape of the outflow path 13 formed in the valve body 2 included in the valve device 1 and the valve device 20 is not limited to that shown in FIGS. 2A and 2B. That is, the outflow path 13 is not limited to a cylindrical flow path having an inner diameter D in which the central axis Cx5 intersects the central axis Cx4 of the inflow path 12 at an intersection angle ⁇ 4. As shown in FIGS. 7A and 7B, the outflow passage 13 has a cylindrical flow path having an inner diameter D in which the central axis Cx5 intersects the central axis Cx4 of the inflow passage 12 at an intersection angle ⁇ 4, and the central axis Cx6.
  • a cylindrical flow path having an inner diameter D which is in the same plane as the axis Cx5 and the center axis Cx4 and is orthogonal to the center axis Cx4, may be configured to overlap. If the outflow path 13 is configured in this way, the cross-sectional area of the outflow path 13 and the outflow port 11 is increased, so that the flow path resistance inside the valve body 2 is further reduced.
  • the joint pipe 8 having a bent flow path is connected to the inflow port 5, and the attachment angle around the central axis of the inflow port 5 of the joint pipe 8 is changed. It can be fixed to the inflow port 5. Therefore, in the valve devices 1 and 20, the pipes P ⁇ b> 2 and P ⁇ b> 3 connected to the first and second outflow ports 6 and 7 are parallel and orthogonal to the pipe P ⁇ b> 1 connected to the inflow port 5. And forms that are orthogonal to and parallel to each other can be selected. The form of the valve devices 1 and 20 can be changed according to the state of piping in the device to which the valve devices 1 and 20 are attached.
  • valve devices 1 and 20 it is not necessary to determine the form of the valve devices 1 and 20 in advance according to the state of piping in the device to which the valve devices 1 and 20 are attached, and to manufacture the valve devices 1 and 20 having the form. Therefore, the manufacturing cost of the device can be reduced.
  • the inflow path 12 and the outflow path 13 provided in the valve body 9 of the valve devices 1 and 20 are connected to each other to form a single flow path, and the flow path is a connection portion between the inflow path 12 and the outflow path 13.
  • the bent portion is shallower than the conventional valve device. Therefore, the pressure loss due to the bending of the flow path is smaller than that of the conventional valve device.
  • the valve main body 9 of the valve devices 1 and 20 does not include a flow path other than the flow path, the ratio of the cross-sectional area of the flow path to the cross-sectional area of the valve main body 9 can be increased. Therefore, the pressure loss can be reduced by enlarging the cross-sectional area of the flow path without increasing the outer dimensions of the valve body 9 or the valve devices 1 and 20.
  • FIG. 8A is a perspective view showing the outer shape of the valve device 30 according to the third embodiment of the present invention
  • FIG. 8B is a cross-sectional view of the valve device 30
  • FIG. 9 is a perspective view showing the outer shape of the valve body 31 provided in the valve device 30.
  • the valve device 30 includes a casing 32.
  • the casing 32 includes an outflow port 33 and inflow ports 34 and 35.
  • the casing 32 is an example of a valve chamber.
  • the outflow port 33 is an example of a first port
  • the inflow ports 34 and 35 are examples of a second port.
  • the valve device 30 according to the present embodiment includes two second ports.
  • a joint pipe 36 is connected to one of the two second ports, that is, the inflow port 34.
  • a blocking plate 37 is assigned to the other of the two second ports, that is, the inflow port 35.
  • the joint pipe 36 is fixed to the inflow port 34 by screws 34a, and the closing plate 37 is fixed to the inflow port 35 by screws 35a.
  • the valve body 31 is supported by the casing 32 so as to be rotatable around the rotation center Rx.
  • the outflow port 33 and the joint pipe 36 are each connected to piping which is not shown in figure.
  • the valve body 31 includes a valve body 38 and a rotation drive shaft 39.
  • the valve body 38 is a member having a spherical outer shape as a whole.
  • the rotary drive shaft 39 is a member having a cylindrical outer shape as a whole, and a base portion thereof is fixed to the valve body 38.
  • a D-cut portion 39a is formed at the upper end of the rotary drive shaft 39, and a serration shaft portion 39b is formed below the D-cut portion 39a.
  • the D-cut portion 39a is a portion having a shape formed by cutting out a part of the cross-sectional shape of the rotary drive shaft 39 that is originally circular and forming it in a D shape.
  • the serration shaft portion 39b is a portion where key-like irregularities are provided at equal intervals on the outer periphery of the rotary drive shaft 39. As shown in FIG. 9, an opening 38a is formed in the valve body 38. A specific configuration of the valve body 38 including the opening 38a will be described later.
  • the tip of the rotary drive shaft 39 protrudes outside the casing 32, and the D-cut portion 39a and the serration shaft portion 39b are exposed to the outside of the casing 32. Therefore, the rotation angle around the rotation center Rx of the valve body 31 with respect to the casing 32 can be determined by confirming in which direction the cut portion of the D-cut portion 39a is directed. Further, the serration shaft portion 39b is fitted to an output end of a rotation drive device (not shown).
  • the valve body 38 is held inside the casing 32.
  • the valve body 38 is formed with a first opening 38a and a second opening 38b.
  • the valve body 38 includes a first flow path 38c extending in the radial direction of the valve body 38 from the first opening 38a toward the center of the valve body 38, and a second opening 38b from the first opening 38a to the center of the valve body 38.
  • a second flow path 38d extending in the radial direction of the valve main body 38 is formed.
  • the first flow path 38c and the second flow path 38d are connected to each other inside the valve body 38, and a communication flow path is formed to communicate between the first opening 38a and the second opening 38b. Yes.
  • the central axis Dx1 of the first flow path 38c and the central axis Dx2 of the second flow path 38d extend in the radial direction of the cross section of the valve body 38 appearing in FIG. is doing. Further, the central axis Dx1 and the central axis Dx2 are orthogonal to the rotation center Rx of the valve body 31.
  • the first opening 38a is at a position facing the outflow port 33
  • the second opening 38b is at a position facing the inflow port 34. Therefore, in this state, the fluid that has flowed into the casing 32 through the joint pipe 36 and the inflow port 34 flows through the second flow path 38d and the first flow path 38c, and further passes through the outflow port 33. And flows out of the casing 32. That is, in the state shown in FIG. 8B, the valve device 30 is in the valve open state, and the fluid flows from the inflow port 34 to the outflow port 33.
  • a sheet packing 32a and an O-ring 32b are sandwiched.
  • the seat packing 32a and the O-ring 32b are annular sealing members that seal the gap between the valve body 38 and the outflow port 33 in a liquid-tight manner.
  • the seat packing 32a and the O-ring 32b are also sandwiched in the gap between the valve body 38 and the joint pipe 36 and the gap between the valve body 38 and the closing plate 37, and these gaps are also liquid-tight. Sealed.
  • the rotary drive shaft 39 of the valve body 31 is coupled to the output end of a rotary drive device (not shown), and the valve body 31 is rotationally driven around the rotation center Rx by the rotary drive device.
  • the state shown in FIG. 8B when the valve body 31 is rotated 135 ° clockwise around the rotation center Rx, that is, in the direction indicated by the arrow cw, the state shown in FIG. 10 is obtained.
  • the valve body 38 since the joint pipe 36 is closed by the valve body 38, the flow of fluid from the joint pipe 36 toward the outflow port 33 is stopped. That is, the valve device 30 is in a closed state.
  • the first opening 38 a is at a position facing the inflow port 35
  • the second opening 38 b is at a position facing the outflow port 33.
  • the closing port 37 is assigned to the inflow port 35, and the gap between the closing plate 37 and the valve body 38 is sealed in a liquid-tight manner by the seat packing 32a and the O-ring 32b. No fluid flows between 35 and the outflow port 33.
  • the outflow port 33 is provided with the first opening 38a.
  • the inflow port 34 faces the second opening 38b.
  • the outflow port 33 faces the second opening 38b and at the same time, the inflow port. 35 faces the first opening 38a.
  • the central axis Dx3 of the outflow port 33 coincides with the central axis Dx1 of the first flow path 38c.
  • the central axis Dx1 and the central axis Dx3 obliquely intersect with the central axis Dx2 of the second flow path 38d.
  • the joint pipe 36 is bent halfway. Therefore, the central axis Dx4 at the end of the joint pipe 36 connected to the inflow port 34 coincides with the central axis Dx2 of the second flow path 38d, but is connected to a pipe (not shown) of the joint pipe 36.
  • the central axis Dx5 at the end on the side crosses the central axis Dx2 obliquely.
  • the central axis Dx3 of the outflow port 33 and the central axis Dx5 of the joint pipe 36 extend in parallel to each other.
  • each of the four screws 34a is arranged at a vertex of each square and symmetric with respect to the central axis of the inflow port 34, and therefore the inflow port 34 of the joint pipe 36.
  • the mounting angle around the central axis can be changed at a 90 ° pitch. As shown in FIG.
  • the joint pipe 36 is attached to the inflow port 34, and the closing plate 37 is attached to the inflow port 35.
  • the arrangement of the joint pipe 36 and the closing plate 37 may be reversed.
  • the closing plate 37 may be directed to the inflow port 34 and the joint pipe 36 may be attached to the inflow port 35.
  • the flow path between the joint pipe 36 and the outflow port 33 can be opened and closed by rotating the valve body 31 around the rotation center Rx.
  • the attachment angle around the central axis of the inflow port 35 of the joint pipe 36 can be changed at a 90 ° pitch.
  • a joint pipe 36 can be attached to each of the inflow port 34 and the inflow port 35. That is, the valve device 30 can be provided with two joint pipes 36. According to the valve device 30, the valve body 31 is rotated around the rotation center Rx, and the fluid flows from the joint pipe 36 connected to the inflow port 34 to the outflow port 33, and is connected to the inflow port 35. The state in which the fluid flows from the joint pipe 36 to the outflow port 33 can be selected. Also in this valve device 30, the attachment angle around the central axis of the inflow port 34 of the joint pipe 36 and the attachment angle around the central axis of the inflow port 35 of the joint pipe 36 can be changed at a 90 ° pitch. Can do.
  • valve devices 1, 20, 30 change the mounting angle of the joint pipe 8 or the joint pipe 36 to connect the valve devices 1, 20, 30 to the valve devices 1, 20, 30. It can be adapted to the piping arrangement in the road. Further, according to the valve devices 1, 20 and 30, the pressure loss can be reduced as compared with the conventional valve device.
  • the fluid flows into the valve devices 1 and 20 from the inflow port 5, and the fluid flows out from the first outflow port 6 or the second outflow port 7.
  • the direction of fluid flow may be reversed. That is, the valve devices 1 and 20 may be configured such that the fluid flows into the valve devices 1 and 20 from the first outflow port 6 or the second outflow port 7 and the fluid flows out from the inflow port 5.
  • the example in which the fluid flows into the valve device 30 from the inflow port 34 or the inflow port 35 and flows out from the outflow port 33 has been described. That is, although the fluid flows into the inside of the valve device 30 through the second port and the fluid flows out of the valve device 30 through the first port, the fluid flows in the valve device 30. The direction may be reversed. That is, the valve device 30 may be one in which the fluid flows into the valve device 30 from the outflow port 33 and flows out of the valve device 30 through the inflow port 34 or the inflow port 35.
  • valve devices 1, 20, and 30 pass through the first port, the fluid flows into the valve devices 1, 20, and 30, and the fluid passes through the second port and the fluid flows through the valve devices 1, 20, and 30. It may flow out to the outside.
  • the fluid flowing inside the valve devices 1, 20, and 30 is not particularly limited.
  • the fluid flowing inside the valve devices 1, 20, 30 may be a liquid or a gas.
  • the kind of liquid or gas is not specifically limited. That is, the valve devices 1, 20, and 30 can handle various liquids and gases.
  • valve devices 1 and 20 shown in the first and second embodiments are merely examples, and the technical scope of the present invention is not limited thereto.
  • the magnitudes of the intersection angles ⁇ 1 to ⁇ 4 are not limited by the exemplified numerical values.
  • the valve devices 1 and 20 are designed by arbitrarily selecting the sizes of the intersection angles ⁇ 1 to ⁇ 4.
  • valve device 30 shown in the third embodiment are examples, and the technical scope of the present invention is not limited by these.
  • the angle at which the central axis Dx3 of the outflow port 33 and the central axis Dx5 of the joint pipe 36 intersect, and the angle at which the central axis Dx1 of the first flow path 38c and the central axis Dx2 of the second flow path 38d intersect are illustrated.
  • the angle is not limited.
  • the size of these angles can be selected arbitrarily.
  • the outer shape of the valve body 38 is sufficient as long as it is a rotating body having the rotation center Rx as a rotation axis, and is not limited to a sphere.
  • the outer shape of the valve body 38 may be a cylinder having the rotation center Rx as a rotation axis.
  • the valve device 30 can change its form by changing the combination of components.
  • Each component can be freely changed in shape and size as long as the common shape and size of the joint portion are maintained, that is, as long as the components can be assembled. be able to. If a plurality of types of parts having different shapes and dimensions are manufactured for each of the component parts, the form of the valve device 30 can be further variously changed by arbitrarily selecting and combining them.
  • the material of the valve devices 1, 20, 30 is not particularly limited.
  • the valve devices 1, 20, and 30 can be made of various metal materials or non-metal materials.
  • the use of the valve devices 1, 20, 30 and the type of device or plant in which the valve devices 1, 20, 30 are used are not particularly limited.
  • the valve devices 1, 20, and 30 can be used in various various applications, devices, or plants.
  • the present invention can be suitably used as a valve device that is attached to a pipe for transporting a fluid and opens / closes a flow path or changes a flow path.
  • Valve apparatus 2 Valve body, 2a O-ring, 2b Seat packing, 3 Valve chamber, 4 Rotation drive shaft, 4a D cut part, 4b Serration shaft part, 5 Inflow port, 6 1st outflow port, 7 2nd Outflow port, 8 joint pipe, 9 valve body, 9a joint, 10 inflow port, 11 outflow port, 12 inflow passage, 13 outflow passage, 20 valve device, 30 valve device, 31 valve body, 32 casing, 32a seat packing, 32b O-ring, 33 Outflow port, 34, 35 Inflow port, 36 Joint pipe, 37 Closing plate, 38 Valve body, 38a First opening, 38b Second opening, 38c First flow path, 38d Second flow Road, Cx1 to Cx6 central axis, Dx1 to Dx5 central axis, P1 to P3 piping.

Landscapes

  • Engineering & Computer Science (AREA)
  • General Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Valve Housings (AREA)
  • Multiple-Way Valves (AREA)

Abstract

第1及び第2の流出ポート(6,7)と、流入ポート(5)と、流入ポート(5)に接続されるジョイント管(8)を備え、流入ポート(5)の中心軸Cx1は、第1及び第2の流出ポート(6,7)の中心軸Cx2,Cx3と交差するとともに、ジョイント管(8)は、その流路の途中で、流路の中心軸が屈曲され、さらに、ジョイント管(8)は、流入ポート(5)の中心軸Rx周りの取り付け角度を変更して、その角度で固定可能な態様で、流入ポート(5)に取り付けられている。

Description

弁装置
 本発明は、弁装置に関する。
 流体を輸送する配管に取り付けられて、流路の開閉あるいは流路の変更を行う弁装置が知られている。例えば、特許文献1に記載の弁装置は、第1流路及び第2流路が設けられた弁体と、弁体が回転自在に収容された弁室と、流入ポートと第1流出ポートと第2流出ポートが設けられた弁本体と、弁室内で弁体を回転軸心周りに回転させる回転駆動装置と、を備えている。流入ポートと第1流出ポートと第2流出ポートは、それぞれ管状継手を備えていて、給湯設備を構成する配管に接続される。なお、第1流路は流入ポートから第1流出ポートに流体を通過させる流路であり、第2流路は、流入ポートから第2流出ポートに流体を通過させる流路である。
 特許文献2に記載の弁装置は、ボディ本体と、ボディ本体内に保持されてモータによって回転駆動されるボールバルブを備えている。ボディ本体には流体流入口と流体流出口が設けられている。流体流入口と流体流出口には排気ガスを輸送する配管が接続されている。流体流入口とボールバルブと流体流出口は直列に配置されている。
特開2016-23788号公報 特開2012-47238号公報
 特許文献1に記載の弁装置には、T字形に配置された3本の配管が接続されている。つまり、特許文献1に記載の弁装置に接続される3本の配管の内、2本は、直列に配置され、残りの1本の配管は、他の2本に対して直交する方向に固定される。特許文献2に記載の弁装置には、直列に配置された2本の配管が接続されている。また、特許文献1及び特許文献2に記載の弁装置において、配管の取り付け角度は固定されていて、変更することができない。
 そのため、3本の配管がT字形に配置されていない管路に、特許文献1に記載の弁装置をそのまま取り付けることはできない。また、2本の配管が直列に配置されていない管路に、特許文献2に記載の弁装置をそのまま取り付けることはできない。このような場合には、配管の取り付け角度を変更した弁装置を製造して管路に取り付けるか、あるいは、弁装置における配管の取り付け角度に合わせて、配管を曲げる必要があった。
 しかしながら、様々な配管の配置に適合する、多種の弁装置を、設計および製造しようとすれば、コストが嵩むという問題がある。コストの上昇に鑑みれば、多種の弁装置を、事前に設計及び製造することは、事実上、不可能だとも言える。また、配管を曲げて、配管の配置を弁装置に適合させようとすれば、管路の設計や製造に係るコストが嵩むという問題が生じる。
 また、特許文献1に記載の弁装置は、弁体に第1流路と第2流路とを備えているので、つまり2本の互いに独立した流路を備えているので、各流路の断面積が制限される。そのために、各流路の断面積が小さくなり、その結果、流路抵抗が増加して、弁装置における圧力損失が大きくなるという問題がある。圧力損失を小さくするために、各流路の断面積を大きくしようとすれば、弁体の外形寸法を大きくする必要が生じ、その結果、弁装置が大型化するという問題が生じる。多くの装置において、装置の小型化は常に求められているので、弁装置の大型化は望ましくない。
 本発明は、このような背景の下でなされたものであり、形態を変更して、弁装置が取り付けられる装置における配管配置に適合させることができる弁装置であって、圧力損失が小さい弁装置を提供するものである。
 本発明に係る弁装置は、第1のポートと、第2のポートと、第2のポートに接続されるジョイント管を備え、第2のポートの中心軸は第1のポートの中心軸と交差するとともに、ジョイント管は、その流路の途中で、流路の中心軸が屈曲され、さらに、ジョイント管は、第2のポートの中心軸周りの取り付け角度を変更して、その角度で固定可能な態様で、第2のポートに取り付けられているものである。
 本発明によれば、弁装置が取り付けられる管路の配置に応じて、ジョイント管の第2のポートの中心軸周りの取り付け角度を変更して、弁装置に接続される配管の取り付け角度を変更することができる。つまり、弁装置の形態を変更して、当該弁装置が取り付けられる装置における配管配置に適合させることができる。そのため、配管の取り付け角度が異なる複数種の弁装置を設計製造する必要が無くなる。その結果、弁装置の設計製造に掛かるコストが削減される。また、本発明に係る弁装置においては、弁体内部及び第2のポート内部の流路の形状が制約されない。そのため、弁体内部及び第2のポート内部の流路の断面積を拡大して、弁装置における流路抵抗を減少させて、圧力損失を小さくすることができる。
本発明の第1の実施の形態に係る弁装置の構成を示す斜視図 本発明の第1の実施の形態に係る弁装置の断面図 本発明の第1の実施の形態に係る弁装置に配管を取りつけた状態を示す断面図 図1A~図1Cに記載の弁装置が備える弁体の斜視図 図1A~図1Cに記載の弁装置が備える弁体の断面図 図1A~図1Cに記載の弁装置の作用を示す図であって、第1の流出ポートに流体が流れる状態を示す弁装置の断面図 図1A~図1Cに記載の弁装置の作用を示す図であって、第2の流出ポートに流体が流れる状態を示す弁装置の断面図 本発明の第2の実施の形態に係る弁装置の斜視図 本発明の第2の実施の形態に係る弁装置に配管を取りつけた状態を示す断面図 図4A及び図4Bに記載の開閉弁の作用を示す図であって、流路が開放された状態を示す弁装置の断面図 図4A及び図4Bに記載の開閉弁の作用を示す図であって、流路が閉鎖された状態を示す弁装置の断面図 本発明の変形例に係る弁装置の断面図 本発明の別の変形例に係る弁体の斜視図 本発明の別の変形例に係る弁体の断面図 本発明の第3の実施の形態に係る弁装置の斜視図 本発明の第3の実施の形態に係る弁装置の断面図 図8A及び図8Bに記載の弁装置が備える弁体の構成を示す斜視図 図8A及び図8Bに記載の弁装置の作用を示す弁装置の断面図 図8A及び図8Bに記載の弁装置の別の作用を示す弁装置の断面図 図8A及び図8Bに記載の弁装置の変形例を示す弁装置の断面図 図8A及び図8Bに記載の弁装置の別の変形例を示す弁装置の断面図
 以下、本発明の実施の形態に係る弁装置について、図面を参照しながら詳細に説明する。なお、各図面においては、同一または同等の部分に同一の符号を付している。
(第1の実施の形態)
 図1Aは、本発明の第1の実施の形態に係る弁装置1の斜視図であり、図1Bは弁装置1の断面図である。図1A,図1Bに示すように、弁装置1は、弁体2と弁室3を備えている。弁体2は、弁室3の内部に収容されていて、弁室3に回転中心Rx周りに回転自在に支持されている。また、弁体2は、回転駆動軸4を備えている。回転駆動軸4は一方端が弁室3の外部に突出している。回転駆動軸4の弁室3の外部に突出する部位は、図示しない回転駆動装置の出力端に固定されている。そのため、弁体2は図示しない回転駆動装置によって、回転中心Rx周りに回転駆動される。なお、弁体2と弁室3の間には、Oリング2aとシートパッキング2bが挟まれていて、弁体2と弁室3の間の隙間からの液漏れを防止している。
 弁室3の回転駆動軸4から遠い側の端面、つまり図1Bにおける弁室3の下端面には、流入ポート5が備えられている。また、弁室3の回転駆動軸4が突出する側の端部、つまり図1A,図1Bにおける弁室3の上部には第1の流出ポート6と第2の流出ポート7とが、備えられている。そして、流入ポート5には、弁室3の外部の空間と弁室3の内部を連絡するジョイント管8が取り付けられている。なお、第1の流出ポート6と第2の流出ポート7は、第1のポートの例示である。つまり、本実施の形態は、第1のポートを2個、備える例を示している。また、流入ポート5は、第2のポートの例示である。
 図1Bに示すように、流入ポート5の中心軸は弁体2の回転中心Rxと一致している。また、ジョイント管8の入口側、つまり流入ポート5から遠い側の流路の中心軸Cx1は弁体2の回転中心Rxに対して、交角θ1で交差する。一方、ジョイント管8の出口側、つまり流入ポート5に接続される側の流路の中心は弁体2の回転中心Rxと一致する。なお、交角θ1は鋭角であって、本実施の形態では+45°である。このように、ジョイント管8は、その流路の途中で、流路の中心軸が屈曲されている。そして、ジョイント管8の入口側の流路の中心軸Cx1は、ジョイント管8の出口側の流路の中心軸つまり弁体2の回転中心Rxと鋭角で交差する。
 なお、ジョイント管8は、図示しない締結手段、例えばボルトによって流入ポート5に固定されている。そして、締結手段による固定を解除すると、ジョイント管8を流入ポート5の中心軸周りに回転させることができる。つまり、締結手段による固定を解除すると、ジョイント管8の、流入ポート5の中心軸周りの取り付け角度を任意に変更することができる。その後で、締結手段による固定を復旧すれば、ジョイント管8は変更後の取り付け角度で、流入ポート5に固定される。このように、ジョイント管8は、流入ポート5の中心軸周りの取り付け角度を任意に変更して、その角度で固定可能な態様で、流入ポート5に取り付けられている。
 第1の流出ポート6の中心軸Cx2と第2の流出ポート7の中心軸Cx3は、弁体2の回転中心Rxに対して、それぞれ交角θ2,θ3で交差する。交角θ2,θ3は鋭角であって、本実施の形態では、交角θ2は+45°であり、交角θ3は-45°に設定されている。そして、θ1~θ3を上記のように設定しているので、図1Bに示す状態においては、第1の流出ポート6の中心軸Cx2はジョイント管8の入口側の流路の中心軸Cx1に平行に配置され、第2の流出ポート7の中心軸Cx3は中心軸Cx1に直交する。
そのため、図1Cに示すように、第1の流出ポート6に接続される配管P2は、ジョイント管8に接続される配管P1に平行に配置され、第2の流出ポート7に接続される配管P3は、配管P1に直交する。
 また、前述したように、ジョイント管8は、弁体2の回転中心Rx周りの取り付け角度を変更して、変更された取り付け角度で弁室3に固定することができるような態様で、弁室3に取り付けられている。図1Bに示す状態において、ジョイント管8を弁体2の回転中心Rx周りに180°回転させて、その位置でジョイント管8を固定すれば、第1の流出ポート6の中心軸Cx2はジョイント管8の入口側の流路の中心軸Cx1に直交し、第2の流出ポート7の中心軸Cx3は中心軸Cx1に対して平行になる。この場合、第1の流出ポート6に接続される配管P2は、ジョイント管8に接続される配管P1に直交し、第2の流出ポート7に接続される配管P3は、配管P1に平行に配置される。
 このように、弁装置1においては、ジョイント管8の弁室3に対する、弁体2の回転中心Rx、つまり流入ポート5の中心軸回りの取り付け角度を変更することによって、弁装置1に接続される配管P1の取り付け角度を変更することができる。
 なお、図1Bに示すように、弁室3には位置決め突起3aが、ジョイント管8には位置決め突起8aが、それぞれ形成されている。位置決め突起3aと位置決め突起8aは、弁室3にジョイント管8を組み付ける際の基準又は目印として機能する部位である。弁室3にジョイント管8を組み付ける際に、位置決め突起3aと位置決め突起8aが上下に重なるように、ジョイント管8を弁室3に対して位置決めしてジョイント管8を弁室3に固定すれば、ジョイント管8は弁室3に対して、図1Bに示すような状態で、固定される。
 図2Aは、弁装置1が備える弁体2の斜視図であり、図2Bは弁体2の断面図である。図2A,図2Bに示すように、弁体2は回転駆動軸4と回転駆動軸4に固定された弁本体9を備えている。弁本体9は回転駆動軸4の回転中心Rxを中心軸とする回転体であって、全体として円柱状に構成されている。そして、弁本体9の回転駆動軸4に接続される側の端部、つまり図2A,図2Bにおける弁本体9の上端部は、弁本体9の下部を構成する円柱の同一の径を有する半球で構成されている。つまり、弁本体9の下部を構成する円柱の外表面と弁本体9の回転駆動軸4に接続される側の端部を構成する半球は連続する曲面を構成している。なお、図1Bに示すように、弁室3の内面の、弁本体9の上端部と当接する部位も、半球状に形成されていて、弁本体9と面接触する。
 また、図2A,図2Bに示すように、回転駆動軸4の上端部にはDカット部4aが形成され、Dカット部4aの下方にはセレーション軸部4bが形成されている。Dカット部4aは、本来、円形である回転駆動軸4の断面形の一部を切り取って、D形に成形した形状を有する部分である。Dカット部4aの切り取られた形状の部分が、弁室3に対して、どの方向を向いているかを確認することによって、弁体2の回転中心Rx周りの回転角度を判別できる。セレーション軸部4bは、回転駆動軸4の外周に等間隔にキー状の凹凸をつけた部位であって、図示しない回転駆動装置の出力端に嵌合される部位である。
 弁本体9の回転駆動軸4から遠い側の端面、つまり図2A,図2Bにおける弁本体9の下端面には流入口10が形成されている。弁本体9の回転駆動軸4に接続される側の端部、つまり図2A,図2Bにおける弁本体9の上部には、流出口11が形成されている。そして、弁本体9の内部には、流入路12と流出路13が形成されていて、流入路12と流出路13は互いに接続されて、連続する単一の流路を形成している。そして、流入路12と流出路13が接続されて形成される流路は流入口10と流出口11の間を連絡している。そのため、流入ポート5から流入口10を通って流入路12に流入した流体は、流出路13を通って流出口11から流出する。なお、本実施の形態において、流出口11は第1の開口の例示であり、流入口10は第2の開口の例示である。本実施の形態は、液体が第2の開口から流入して、第1の開口を通って外部に流出する例を示している。
 流入路12は、その中心軸Cx4が回転駆動軸4の回転中心Rxに一致する、内径Dの円筒状の流路である。流出路13は、その中心軸Cx5が、流入路12の中心軸Cx4に交角θ4で交差する、内径Dの円筒状の流路である。なお、交角θ4は鋭角であって、本実施の形態においては、+45°に設定されている。また、流入路12と流出路13の間を繋ぐ接合部9aは滑らかな曲面で構成されている。このように、弁本体9の内部には、流入路12と流出路13だけが形成されていて、他の流路が形成されない。そのため、複数の流路を備える場合に比べて、流入路12と流出路13の断面積を大きくすることができる。また、流入路12と流出路13は鋭角で交差している。そのため、流入路12と流出路13における流路抵抗は、流入路12と流出路13が直交する場合に比べて小さくなる。その結果、弁装置1における圧力損失は従来品に比べて小さくなる。
 次に、図3A,図3Bを参照して、弁装置1の作用を説明する。なお図3Aは、第1の流出ポート6から流体を流出させる場合の断面図であり、図3Bは、第2の流出ポート7から流体を流出させる場合の断面図である。
 図3Aに示すように、弁体2を回転中心Rx周りに回転させて、弁体2の流出口11を弁室3の第1の流出ポート6に繋がる位置に置くと、ジョイント管8と流入ポート5を通って弁室3の内部に流入した流体は、弁体2の流出口11と弁室3の第1の流出ポート6を通って、弁装置1の外部に流出する。図3Aに示す状態から、弁体2を回転中心Rx周りに180°回転させると、図3Bに示す状態になる。この状態においては、弁体2の流出口11は弁室3の第2の流出ポート7に繋がる位置に置かれるので、ジョイント管8と流入ポート5を通って弁室3の内部に流入した流体は、弁体2の流出口11と弁室3の第2の流出ポート7を通って、弁装置1の外部に流出する。このように、弁装置1においては、弁体2を回転中心Rx周りに回転させることによって、第1の流出ポート6あるいは第2の流出ポート7のいずれか一方に流体を流出させることができる。
 なお、弁体2の流出口11が弁室3の第1の流出ポート6に繋がっていて、第1の流出ポート6から流体が流出する状態、つまり、弁体2が図3Aに示す回転位置にある状態においては、Dカット部4aの切欠き部は、紙面の裏側を向いているので見えない。一方、弁体2の流出口11が弁室3の第2の流出ポート7に繋がっていて、第2の流出ポート7から流体が流出する状態、つまり、弁体2が図3Bに示す回転位置にある状態においては、Dカット部4aの切欠き部は、紙面の表側を向いている。このように、Dカット部4aの切欠き部がどちらを向いているかを確認すれば、弁装置1の切換え状態を知ることができる。
 このように、弁装置1は単一の流入ポート、つまり流入ポート5と、2個の流出ポート、つまり第1及び第2の流出ポート6,7を備えていて、2個の流出ポートの一方を任意に選択して、選択された流出ポートから流体を流出させることができる。要するに、弁装置1は回転駆動軸4が、それぞれ異なる特定の回転角度にある場合に、第1及び第2の流出ポート6,7のいずれかが、流出口11に繋がるようの構成されている。そのため、弁装置1は、切換弁として機能する。
(第2の実施の形態)
 図4Aは、本発明の第2の実施の形態に係る弁装置20の構成を示す斜視図である。図4Aに示すように弁装置20の基本的な構成は、弁装置1と同一である。すなわち、弁装置20は、弁体2と、弁体2を内部に収容して、弁体2を回転中心Rx周りに回転自在に支持する弁室3とを、備えている。また、弁室3にはジョイント管8が取り付けられている。弁装置20は第1の流出ポート6のみを備えて、第2の流出ポート7を備えない点で、弁装置1と相違する。また、図4Aと図4Bに示す状態では、弁装置20の第1の流出ポート6に接続される配管P2は、ジョイント管8に接続される配管P1に平行に配置される。
 次に、図5Aと図5Bを参照して、弁装置20の作用を説明する。なお図5Aは、弁装置20が開弁された状態を示す断面図であり、図5Bは、弁装置20が閉弁された状態を示す断面図である。
 図5Aに示すように、弁体2を回転中心Rx周りに回転させて、弁体2の流出口11を弁室3の第1の流出ポート6に繋がる位置に置くと、ジョイント管8と流入ポート5を通って弁室3の内部に流入した流体は、弁体2の流出口11と弁室3の第1の流出ポート6を通って、弁装置20の外部に流出する。つまり、図5Aに示す状態においては、弁装置20は開弁されている。図5Aに示す状態から、弁体2を回転中心Rx周りに180°回転させると、図5Bに示す状態になる。この状態においては、弁体2の流出口11は弁室3の第1の流出ポート6に繋がる位置にないので、ジョイント管8と流入ポート5を通って弁室3の内部に流入した流体は、弁室3の外部に流出しない。つまり、図5Bに示す状態においては、弁装置20は閉弁されている。このように、弁装置20によれば、弁体2を回転中心Rx周りに回転させることによって、弁装置20が接続される流路を開閉することができる。
 なお、弁装置20が開弁状態にある時、つまり、弁体2が図5Aに示す回転位置にある状態においては、Dカット部4aの切欠き部は、紙面の裏側を向いているので見えない。一方、弁装置20が閉弁状態にある時、つまり、弁体2が図5Bに示す回転位置にある状態においては、Dカット部4aの切欠き部は、紙面の表側を向いている。このように、Dカット部4aの切欠き部がどちらを向いているかを確認すれば、弁装置20の開閉状態を知ることができる。
 このように、弁装置20は、単一の流入ポート、つまり流入ポート5と、単一の流出ポート、つまり第1の流出ポート6を備えていて、第1の流出ポート6から流体が流出する状態と、第1の流出ポート6から流体が流出しない状態を、任意に選択することができる。つまり、弁装置20は、流入ポートと前記流出ポートをそれぞれ1個ずつ、備えていて、弁装置20に接続された流路を開閉する開閉弁として機能する。
 弁装置20においても、ジョイント管8の、弁体2の回転中心Rx、つまり流入ポート5の中心軸回りの取り付け角度を変更することによって、弁装置20に接続される配管の取り付け角度を変更することができる。図6に示すように、ジョイント管8を弁体2の回転中心Rxの周りに180°回転させて、ジョイント管8の入口側の流路の中心軸Cx1の弁体2の回転中心Rxに対する交角θ1を-45°にすれば、第1の流出ポート6の中心軸Cx2はジョイント管8の入口側の流路の中心軸Cx1と直交する。そのため、この場合、弁装置20の第1の流出ポート6に接続される配管P2は、ジョイント管8に接続される配管P1に直交する。
 このように、弁装置20においては、配管P1,P2が互いに平行に配置されて、弁装置20に接続される形態と、配管P1,P2が互いに直交する形態を選択することができる。配管P1,P2の相対的な配置に応じて、つまり、配管P1,P2が平行配置されているか、直交配置されているかに応じて、弁装置20の形態を変更することができる。
 弁装置1及び弁装置20が備える弁体2に形成される流出路13の形状は、図2Aと図2Bに示したものには限定されない。つまり流出路13は、その中心軸Cx5が、流入路12の中心軸Cx4に交角θ4で交差する、内径Dの円筒状の流路には、限定されない。図7Aと図7Bに示すように、流出路13は、中心軸Cx5が、流入路12の中心軸Cx4に交角θ4で交差する、内径Dの円筒状の流路と、中心軸Cx6が、中心軸Cx5及び中心軸Cx4と同一平面にあって、中心軸Cx4に直交する、内径Dの円筒状の流路とを重ねあわせて構成されても良い。流出路13をこのように構成すれば、流出路13と流出口11の断面積が拡がるので、弁体2内部の流路抵抗が更に小さくなる。
 弁装置1,20は、屈曲された流路を備えるジョイント管8が流入ポート5に接続されていて、ジョイント管8の流入ポート5の中心軸周りの取り付け角度を変更して、ジョイント管8の流入ポート5に固定できる。そのため、弁装置1,20は、第1及び第2の流出ポート6,7に接続される配管P2,P3が、流入ポート5に接続される配管P1に対して、それぞれが平行、直交の関係にある形態と、それぞれが直交、平行の関係にある形態を選択することができる。弁装置1,20が取り付けられる装置における配管の状態に合わせて、弁装置1,20の形態を変更することができる。そのため、弁装置1,20が取り付けられる装置における配管の状態に合わせて、弁装置1,20の形態を事前に決定して、当該形態を有する弁装置1,20を製造する必要がない。そのため、当該装置の製造コストを圧縮することができる。
 また、弁装置1,20の弁本体9に備える流入路12と流出路13は互いに接続されて単一の流路を形成していて、前記流路は流入路12と流出路13の接続部で屈曲されているが、その屈曲部は従来の弁装置に比べて浅い。そのため、前記流路の屈曲に起因する圧力損失は従来の弁装置に比べて小さい。また、また、弁装置1,20の弁本体9は、前記流路以外の流路を備えないので、弁本体9の断面積に対する前記流路の断面積の比率を大きくすることができる。そのため、弁本体9あるいは弁装置1,20の外形寸法を大きくすることなしに、前記流路の断面積を拡大して、圧力損失を小さくすることができる。
(第3の実施の形態)
 図8Aは、本発明の第3の実施の形態に係る弁装置30の外形を示す斜視図であり、図8Bは弁装置30の断面図である。また、図9は、弁装置30が備える弁体31の外形を示す斜視図である。
 図8Aと図8Bに示すように、弁装置30は、ケーシング32を備えていて、ケーシング32は流出ポート33と、流入ポート34,35を備えている。なお、本実施の形態において、ケーシング32は弁室の例示である。また、流出ポート33は第1のポートの例示であり、流入ポート34,35は第2のポートの例示である。このように、本実施の形態に係る弁装置30は、第2のポートを2個、備えている。そして、2個の第2のポートの一方、つまり流入ポート34にはジョイント管36が接続されている。2個の第2のポートの他方、つまり流入ポート35には塞ぎ板37が宛がわれている。ジョイント管36はビス34aによって流入ポート34に、塞ぎ板37はビス35aによって流入ポート35に、それぞれ固定されている。また、ケーシング32には、弁体31が回転中心Rx周りに回転自在に支持されている。また、流出ポート33とジョイント管36は、それぞれ図示しない配管に接続される。
 図9に示すように、弁体31は、弁本体38と回転駆動軸39を備えている。弁本体38は全体として球状の外形を有する部材である。回転駆動軸39は全体として円柱状の外形を有する部材であって、その基部は弁本体38に固定されている。回転駆動軸39の上端部にはDカット部39aが形成され、Dカット部39aの下方にはセレーション軸部39bが形成されている。Dカット部39aは、本来、円形である回転駆動軸39の断面形の一部を切り取って、D形に成形した形状を有する部分である。セレーション軸部39bは、回転駆動軸39の外周に等間隔にキー状の凹凸をつけた部位である。なお、図9に示すように、弁本体38には開口38aが形成されているが、開口38aを含む弁本体38の具体的な構成については、後述する。
 図8Aに示すように、回転駆動軸39の先端はケーシング32の外部に突出していて、Dカット部39aとセレーション軸部39bはケーシング32の外部に露出している。そのため、Dカット部39aの切り取られた部分が、どの方向を向いているかを確認することによって、弁体31のケーシング32に対する回転中心Rx周りの回転角度を判別できる。また、セレーション軸部39bは、図示しない回転駆動装置の出力端に嵌合される。
 図8Bに示すように、弁本体38は、ケーシング32の内部に保持されている。弁本体38には、第1の開口38aと第2の開口38bが形成されている。そして、弁本体38には、第1の開口38aから弁本体38の中心に向かって弁本体38の半径方向に延びる第1の流路38cと、第2の開口38bから弁本体38の中心に向かって弁本体38の半径方向に延びる第2の流路38dが形成されている。第1の流路38cと第2の流路38dは弁本体38の内部で互い接続されていて、第1の開口38aと第2の開口38bとの間を連絡する連絡流路が形成されている。
 第1の流路38cの中心軸Dx1と第2の流路38dの中心軸Dx2は、図8Bに現れる弁本体38の断面の半径方向に延びて、弁本体38の断面の中心で斜めに交差している。また、中心軸Dx1と中心軸Dx2は、弁体31の回転中心Rxと直交している。
 図8Bに示す状態において、第1の開口38aは流出ポート33と向かい合う位置にあり、第2の開口38bは流入ポート34と向かい合う位置にある。そのため、この状態においては、ジョイント管36と流入ポート34を通ってケーシング32の内部に流入した流体は、第2の流路38dと第1の流路38cを流れて、更に流出ポート33を通って、ケーシング32の外部に流出する。つまり、図8Bに示す状態において、弁装置30は開弁状態にあって、流入ポート34から流出ポート33に流体が流れる。
 弁本体38と流出ポート33の間の隙間にはシートパッキング32aとOリング32bが挟持されている。シートパッキング32aとOリング32bは環状の封止部材であって、弁本体38と流出ポート33の間の隙間を液密に封止する。同様に、弁本体38とジョイント管36の間の隙間、及び弁本体38と塞ぎ板37の間の隙間にも、シートパッキング32aとOリング32bが挟持されていて、これらの隙間も液密に封止される。
 前述したように、弁体31の回転駆動軸39は図示しない回転駆動装置の出力端に結合されていて、該回転駆動装置によって、弁体31は回転中心Rx周りに回転駆動される。図8Bに示す状態において、弁体31を、回転中心Rx周りに、時計回りに、つまり矢印cwで示す方向に135°回転させると、図10に示す状態になる。この状態においては、ジョイント管36は弁本体38によって閉塞されるので、ジョイント管36から流出ポート33に向かう流体の流れは停止される。つまり、弁装置30は閉弁状態にある。また、この時、第1の開口38aは流入ポート35と向かい合う位置にあり、第2の開口38bは流出ポート33と向かい合う位置にある。しかしながら、流入ポート35には塞ぎ板37が宛がわれていて、塞ぎ板37と弁本体38の間の隙間はシートパッキング32aとOリング32bによって、液密に封止されているので、流入ポート35と流出ポート33の間で流体は流れない。
 このように、弁装置30においては、弁本体38が特定の回転角度にある場合に、つまり回転駆動軸39が図8Bに示す回転角度にある場合には、流出ポート33が第1の開口38aと向かい合うと同時に流入ポート34が第2の開口38bと向かい合う。そして、弁本体38が別の特定の回転角度にある場合に、つまり回転駆動軸39が図10に示す回転角度にある場合には、流出ポート33が第2の開口38bと向かい合うと同時に流入ポート35が第1の開口38aと向かい合う。
 図8Bに示すように、流出ポート33の中心軸Dx3は第1の流路38cの中心軸Dx1と一致している。中心軸Dx1および中心軸Dx3は、第2の流路38dの中心軸Dx2と斜めに交差している。また、ジョイント管36は途中で屈曲されている。そのため、ジョイント管36の流入ポート34に接続される側の端部の中心軸Dx4は第2の流路38dの中心軸Dx2と一致しているが、ジョイント管36の図示しない配管に接続される側の端部の中心軸Dx5は中心軸Dx2と斜めに交差している。そして、流出ポート33の中心軸Dx3とジョイント管36の中心軸Dx5は互いに平行に延びている。
 前述したように、ジョイント管36は4本のビス34aで流入ポート34に固定されているので、ビス34aによる固定を解除して、ジョイント管36の流入ポート34の中心軸周りの取り付け角度を変更して、その後に、ジョイント管36を4本のビス34aで流入ポート34に固定することができる。本実施の形態では、4本のビス34aのそれぞれを、正方形の各頂点であって、流入ポート34の中心軸に対して対称となる位置に配置しているので、ジョイント管36の流入ポート34の中心軸周りの取り付け角度を、90°ピッチで変更することができる。図11に示すように、ジョイント管36の流入ポート34の中心軸周りの取り付け角度を、図8Bに示した取り付け角度から180°変更すると、流出ポート33の中心軸Dx3とジョイント管36の中心軸Dx5は互いに直交する。
 上記においては、弁装置30において、流入ポート34にジョイント管36を取り付け、流入ポート35に塞ぎ板37を宛がう例を示したが、ジョイント管36と塞ぎ板37の配置を逆にしてもよい。つまり、図12に示すように、流入ポート34に塞ぎ板37を宛がって、流入ポート35にジョイント管36を取り付けても良い。この弁装置30によれば、弁体31を回転中心Rx周りに回転させて、ジョイント管36と流出ポート33の間の流路を開閉することができる。また、この弁装置30においても、ジョイント管36の流入ポート35の中心軸周りの取り付け角度を、90°ピッチで変更することができる。
 図13に示すように、流入ポート34と流入ポート35のそれぞれにジョイント管36を取り付けることもできる。つまり、弁装置30に2本のジョイント管36を備えることもできる。そして、この弁装置30によれば、弁体31を回転中心Rx周りに回転させて、流入ポート34に接続されたジョイント管36から流出ポート33に流体が流れる状態と、流入ポート35に接続されたジョイント管36から流出ポート33に流体が流れる状態を選択することができる。また、この弁装置30においても、ジョイント管36の流入ポート34の中心軸周りの取り付け角度と、ジョイント管36の流入ポート35の中心軸周りの取り付け角度を、それぞれ、90°ピッチで変更することができる。
 以上、説明したように、弁装置1,20,30は、ジョイント管8又はジョイント管36の取り付け角度を変更して、弁装置1,20,30を弁装置1,20,30が取り付けられる管路における配管配置に適合させることができる。また、弁装置1,20,30によれば、従来の弁装置に比べて圧力損失を小さくすることができる。
 なお、本発明の技術的範囲は、上記第1から第3の実施の形態と変形例によっては限定されない。本発明は、特許請求の範囲に記載の技術的思想の限りにおいて、自由に、変形、変更あるいは改良して実施することができる。
 上記第1及び第2の実施の形態においては、流入ポート5から流体が弁装置1,20の内部に流入し、第1の流出ポート6あるいは第2の流出ポート7から流体が流出する例を示した。つまり、第2のポートを通って流体が弁装置1,20の内部に流入し、第1のポートを通って流体が弁装置1,20の外部に流出する例を示したが、弁装置1,20において流体が流れる方向は逆であっても良い。つまり弁装置1,20は、第1の流出ポート6あるいは第2の流出ポート7から流体が弁装置1,20の内部に流入し、流入ポート5から流体が流出するものであっても良い。
 上記第3の実施の形態においては、流入ポート34又は流入ポート35から流体が弁装置30の内部に流入し、流出ポート33から流体が流出する例を示した。つまり、第2のポートを通って流体が弁装置30の内部に流入し、第1のポートを通って流体が弁装置30の外部に流出する例を示したが、弁装置30において流体が流れる方向は逆であっても良い。つまり、弁装置30は、流出ポート33から流体が弁装置30の内部に流入し、流入ポート34又は流入ポート35を通って流体が弁装置30の外部に流出するものであっても良い。
 要するに、弁装置1,20,30は、第1のポートを通って流体が弁装置1,20,30の内部に流入し、第2のポートを通って流体が弁装置1,20,30の外部に流出するものであっても良い。
 弁装置1,20,30の内部を流れる流体は特に限定されない。弁装置1,20,30の内部を流れる流体は、液体であっても良いし、気体であっても良い。また、液体あるいは気体の種類は特に限定されない。つまり、弁装置1,20,30は各種の液体と気体を取り扱うことができる。
 上記第1及び第2の実施の形態において示した弁装置1,20の具体的な構成と形状は例示であって、本発明の技術的範囲は、これらによっては限定されない。特に交角θ1~θ4の大きさは例示された数値によっては限定されない。弁装置1,20は、交角θ1~θ4の大きさを任意に選択して設計される。
 上記第3の実施の形態において示した弁装置30の具体的な構成と形状は例示であって、本発明の技術的範囲は、これらによっては限定されない。特に流出ポート33の中心軸Dx3とジョイント管36の中心軸Dx5が交差する角度、及び第1の流路38cの中心軸Dx1と第2の流路38dの中心軸Dx2が交差する角度は、図示された角度には限定されない。これらの角度の大きさは任意に選択できる。
 また、弁本体38の外形は回転中心Rxを回転軸とする回転体であれば十分であり、球体には限定されない。弁本体38の外形は回転中心Rxを回転軸とする円柱であっても良い。
 図8A/B,10,11,12に示すように、弁装置30は、構成部品の組み合わせを変更することによって、その形態を変更することができる。また、各構成部品は、取り合い部の形状と寸法の共通性を維持する限りにおいて、つまり、各構成部品同士の組み付けが可能な状態を維持する限りにおいて、それぞれの形状と寸法を自由に変更することができる。構成部品のそれぞれについて、形状と寸法が異なる複数種の部品を製造すれば、それらを任意に選択して組み合わせることによって、弁装置30の形態を、さらに様々に変更することができる。
 弁装置1,20,30の素材は特に限定されない。弁装置1,20,30は、各種の金属材料、あるいは非金属材料で構成されることができる。弁装置1,20,30の用途、及び弁装置1,20,30が使用される装置あるいはプラントの種類は特に限定されない。弁装置1,20,30は、各種の多様な用途、装置あるいはプラントに使用することができる。
 本発明は、本発明の広義の精神と範囲を逸脱することなく、様々な実施の形態及び変形が可能とされるものである。また、上述した実施の形態は、本発明を説明するためのものであり、本発明の範囲を限定するものではない。すなわち、本発明の範囲は、実施形態ではなく、特許請求の範囲によって示される。そして、特許請求の範囲内及びそれと同等の発明の意義の範囲内で施される様々な変形が、本発明の範囲内とみなされる。
 本出願は、2018年3月12日に出願された日本国特許出願2018-044011号と、2018年6月7日に出願された日本国特許出願2018-109378号に基づく。本明細書中に日本国特許出願2018-044011号と日本国特許出願2018-109378号の明細書、特許請求の範囲、図面全体を参照として取り込むものとする。
 本発明は、流体を輸送する配管に取り付けられて、流路の開閉あるいは流路の変更を行う弁装置として好適に利用することができる。
1 弁装置、2 弁体、2a Oリング、2b シートパッキング、3 弁室、4 回転駆動軸、4a Dカット部、4b セレーション軸部、5 流入ポート、6 第1の流出ポート、7 第2の流出ポート、8 ジョイント管、9 弁本体、9a 接合部、10 流入口、11 流出口、12 流入路、13 流出路、20 弁装置、30 弁装置、31 弁体、32 ケーシング、32a シートパッキング、32b Oリング、33 流出ポート、34,35 流入ポート、36 ジョイント管、37 塞ぎ板、38 弁本体、38a 第1の開口、38b 第2の開口、38c 第1の流路、38d 第2の流路、Cx1~Cx6 中心軸、Dx1~Dx5 中心軸、P1~P3 配管。 
 


 

Claims (10)

  1.  第1のポートと、
     第2のポートと、
     前記第2のポートに接続されるジョイント管を備え、
     前記第1のポートの中心軸は前記第2のポートの中心軸と交差するとともに、
     前記ジョイント管は、その流路の途中で、前記流路の中心軸が屈曲され、
     さらに、前記ジョイント管は、前記第2のポートの中心軸周りの取り付け角度を変更して、その角度で固定可能な態様で、前記第2のポートに取り付けられている、
     弁装置。
  2.  弁室と、
     前記弁室に保持されて回転駆動される弁体と、を備えるとともに、
     前記弁体は、
     前記弁室を貫通して一方端が前記弁室の外部に突出する回転駆動軸と、
     前記回転駆動軸の他方端に固定されて、前記弁室の内部に保持される弁本体と、を備え、
     前記弁本体は、
     前記回転駆動軸を回転中心とする回転体であって、
     前記回転駆動軸に接続される側の端部に形成された第1の開口と、
     前記回転駆動軸から遠い側の端面に形成された第2の開口と、
     互いに接続されて、前記第1の開口と前記第2の開口との間を連絡する第1の流路及び第2の流路と、を備え、
     前記第1の流路の中心軸は、前記第2の流路の中心軸と交差し、
     前記第2の流路の中心軸は、前記回転駆動軸の回転中心に一致し、
     前記弁室は、
     前記回転駆動軸が特定の回転角度にある場合に前記第1の開口に向かい合う位置に前記第1のポートを、前記第2の開口に向かい合う位置に前記第2のポートを、
     それぞれ備える、
     請求項1に記載の弁装置。
  3.  前記第1の流路の中心軸は、前記第2の流路の中心軸と鋭角で交差する、
     請求項2に記載の弁装置。
  4.  複数個の前記第1のポートを、前記回転駆動軸が、それぞれ異なる特定の回転角度にある場合に前記第1の開口に向かい合う位置に備える、
     請求項2又は請求項3に記載の弁装置。
  5.  前記第1のポートと前記第2のポートをそれぞれ1個ずつ、備える、
     請求項2又は請求項3に記載の弁装置。
  6.  前記第2のポートを2個、備える、
     請求項1に記載の弁装置。
  7.  前記2個の第2のポートの一方には、前記ジョイント管が接続され、
     前記2個の第2のポートの他方には、塞ぎ板が宛がわれている、
     請求項6に記載の弁装置。
  8.  前記2個の第2のポートの両方に、それぞれ、前記ジョイント管が接続されている、
     請求項6に記載の弁装置。
  9.  弁室と、
     前記弁室に保持されて回転駆動される弁体と、を備えるとともに、
     前記弁体は、
     前記弁室を貫通して一方端が前記弁室の外部に突出する回転駆動軸と、
     前記回転駆動軸の他方端に固定されて、前記弁室の内部に保持される弁本体と、を備え、
     前記弁本体は、
     前記回転駆動軸を回転中心とする回転体であって、
     第1の開口と、
     第2の開口と、
     前記第1の開口から、前記弁本体の中心に向かって前記弁本体の半径方向に延びる第1の流路と、
     前記第2の開口から、前記弁本体の中心に向かって前記弁本体の半径方向に延びる第2の流路と、を備えるとともに、
     前記第1の流路と前記第2の流路は互いに接続されて、前記第1の開口と前記第2の開口との間を連絡する連絡流路を形成し、
     前記弁室は、
     前記弁本体が特定の回転角度にある場合に、前記第1のポートが前記弁本体の前記第1の開口と向かい合うと同時に前記2個の第2のポートの一方が前記弁本体の前記第2の開口と向かい合い、前記弁本体が別の特定の回転角度にある場合に、前記第1のポートが前記弁本体の前記第2の開口と向かい合うと同時に前記2個の第2のポートの他方が前記弁本体の前記第1の開口と向かい合う位置に、前記第1のポートと前記2個の第2のポートを備えている、
     請求項6から請求項8のいずれか一項に記載の弁装置。
  10.  前記弁本体は、前記回転駆動軸を回転中心とする球体である、
     請求項9に記載の弁装置。
PCT/JP2019/009892 2018-03-12 2019-03-12 弁装置 WO2019176904A1 (ja)

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
JP2018044011 2018-03-12
JP2018-044011 2018-03-12
JP2018109378 2018-06-07
JP2018-109378 2018-06-07

Publications (1)

Publication Number Publication Date
WO2019176904A1 true WO2019176904A1 (ja) 2019-09-19

Family

ID=67908209

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2019/009892 WO2019176904A1 (ja) 2018-03-12 2019-03-12 弁装置

Country Status (1)

Country Link
WO (1) WO2019176904A1 (ja)

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH09257138A (ja) * 1996-03-19 1997-09-30 Crosby Valve Inc 交差駆動部材を有する切換え弁システム
JP2000265500A (ja) * 1999-03-17 2000-09-26 Nippo Valve Co Ltd 不凍水抜栓
JP2013044354A (ja) * 2011-08-22 2013-03-04 Time Engineering Co Ltd ボールバルブ

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH09257138A (ja) * 1996-03-19 1997-09-30 Crosby Valve Inc 交差駆動部材を有する切換え弁システム
JP2000265500A (ja) * 1999-03-17 2000-09-26 Nippo Valve Co Ltd 不凍水抜栓
JP2013044354A (ja) * 2011-08-22 2013-03-04 Time Engineering Co Ltd ボールバルブ

Similar Documents

Publication Publication Date Title
US9791053B2 (en) Ball valve with offset straight through flow
JP2003343747A (ja) ハーフボール弁
JP2010038280A (ja) 流路の切換装置
KR900014800A (ko) 유체방향 조정밸브
WO2019176904A1 (ja) 弁装置
JP2010261564A (ja) ロータリー弁及びその生産方法
JP6523734B2 (ja) バタフライ弁
US6309096B1 (en) Mixing valve structure for destroying pressure difference between liquids
JPH0658440A (ja) 一つまたは二つの流路のコック栓を有する管切換えゲート
JP4687200B2 (ja) ボール弁
JP3747169B2 (ja) 液体希釈装置
KR102609877B1 (ko) 밸브용 볼 및 이를 구비한 볼 밸브
JP6753694B2 (ja) バルブ装置
JP4859037B2 (ja) 一方向バルブ及びドアチェック装置
IT201800003489A1 (it) Guarnizione per una valvola a sfera e gruppo otturatore sferico comprendente la guarnizione
JP2014169773A (ja) 流路切替装置
JP2021143743A (ja) ロータリバルブ
JP2004190851A (ja) バタフライ弁
JP7068866B2 (ja) 三方弁
KR102604318B1 (ko) 밸브 장치
JP4298265B2 (ja) 水栓
JPH084920A (ja) 流体管路用三方切換え弁
WO2023139889A1 (ja) 流路切換弁の組立方法
JP7269676B1 (ja) バルブ装置
JP2004132469A (ja) プラグバルブ

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 19766502

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 19766502

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: JP