WO2019176036A1 - 作業機械 - Google Patents

作業機械 Download PDF

Info

Publication number
WO2019176036A1
WO2019176036A1 PCT/JP2018/010084 JP2018010084W WO2019176036A1 WO 2019176036 A1 WO2019176036 A1 WO 2019176036A1 JP 2018010084 W JP2018010084 W JP 2018010084W WO 2019176036 A1 WO2019176036 A1 WO 2019176036A1
Authority
WO
WIPO (PCT)
Prior art keywords
work
notification
work machine
determination unit
notification area
Prior art date
Application number
PCT/JP2018/010084
Other languages
English (en)
French (fr)
Inventor
和重 黒髪
坂本 博史
充基 時田
Original Assignee
日立建機株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 日立建機株式会社 filed Critical 日立建機株式会社
Priority to EP18905890.2A priority Critical patent/EP3572590B1/en
Priority to PCT/JP2018/010084 priority patent/WO2019176036A1/ja
Priority to KR1020197024293A priority patent/KR102243677B1/ko
Priority to CN201880013759.XA priority patent/CN110494613B/zh
Priority to US16/486,915 priority patent/US11225777B2/en
Priority to JP2019546416A priority patent/JP6734485B2/ja
Publication of WO2019176036A1 publication Critical patent/WO2019176036A1/ja

Links

Images

Classifications

    • EFIXED CONSTRUCTIONS
    • E02HYDRAULIC ENGINEERING; FOUNDATIONS; SOIL SHIFTING
    • E02FDREDGING; SOIL-SHIFTING
    • E02F9/00Component parts of dredgers or soil-shifting machines, not restricted to one of the kinds covered by groups E02F3/00 - E02F7/00
    • E02F9/26Indicating devices
    • E02F9/261Surveying the work-site to be treated
    • EFIXED CONSTRUCTIONS
    • E02HYDRAULIC ENGINEERING; FOUNDATIONS; SOIL SHIFTING
    • E02FDREDGING; SOIL-SHIFTING
    • E02F9/00Component parts of dredgers or soil-shifting machines, not restricted to one of the kinds covered by groups E02F3/00 - E02F7/00
    • E02F9/24Safety devices, e.g. for preventing overload
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60QARRANGEMENT OF SIGNALLING OR LIGHTING DEVICES, THE MOUNTING OR SUPPORTING THEREOF OR CIRCUITS THEREFOR, FOR VEHICLES IN GENERAL
    • B60Q5/00Arrangement or adaptation of acoustic signal devices
    • B60Q5/005Arrangement or adaptation of acoustic signal devices automatically actuated
    • B60Q5/006Arrangement or adaptation of acoustic signal devices automatically actuated indicating risk of collision between vehicles or with pedestrians
    • EFIXED CONSTRUCTIONS
    • E02HYDRAULIC ENGINEERING; FOUNDATIONS; SOIL SHIFTING
    • E02FDREDGING; SOIL-SHIFTING
    • E02F9/00Component parts of dredgers or soil-shifting machines, not restricted to one of the kinds covered by groups E02F3/00 - E02F7/00
    • E02F9/26Indicating devices
    • EFIXED CONSTRUCTIONS
    • E02HYDRAULIC ENGINEERING; FOUNDATIONS; SOIL SHIFTING
    • E02FDREDGING; SOIL-SHIFTING
    • E02F9/00Component parts of dredgers or soil-shifting machines, not restricted to one of the kinds covered by groups E02F3/00 - E02F7/00
    • E02F9/26Indicating devices
    • E02F9/261Surveying the work-site to be treated
    • E02F9/262Surveying the work-site to be treated with follow-up actions to control the work tool, e.g. controller
    • EFIXED CONSTRUCTIONS
    • E02HYDRAULIC ENGINEERING; FOUNDATIONS; SOIL SHIFTING
    • E02FDREDGING; SOIL-SHIFTING
    • E02F3/00Dredgers; Soil-shifting machines
    • E02F3/04Dredgers; Soil-shifting machines mechanically-driven
    • E02F3/28Dredgers; Soil-shifting machines mechanically-driven with digging tools mounted on a dipper- or bucket-arm, i.e. there is either one arm or a pair of arms, e.g. dippers, buckets
    • E02F3/30Dredgers; Soil-shifting machines mechanically-driven with digging tools mounted on a dipper- or bucket-arm, i.e. there is either one arm or a pair of arms, e.g. dippers, buckets with a dipper-arm pivoted on a cantilever beam, i.e. boom
    • E02F3/32Dredgers; Soil-shifting machines mechanically-driven with digging tools mounted on a dipper- or bucket-arm, i.e. there is either one arm or a pair of arms, e.g. dippers, buckets with a dipper-arm pivoted on a cantilever beam, i.e. boom working downwardly and towards the machine, e.g. with backhoes
    • EFIXED CONSTRUCTIONS
    • E02HYDRAULIC ENGINEERING; FOUNDATIONS; SOIL SHIFTING
    • E02FDREDGING; SOIL-SHIFTING
    • E02F9/00Component parts of dredgers or soil-shifting machines, not restricted to one of the kinds covered by groups E02F3/00 - E02F7/00
    • E02F9/26Indicating devices
    • E02F9/264Sensors and their calibration for indicating the position of the work tool

Definitions

  • the present invention relates to a work machine.
  • Patent Document 1 One example of an apparatus that has attempted to solve such a problem is disclosed in Patent Document 1, for example.
  • This device is used to control the stop of the work vehicle when an intruder such as an operator is detected in the intrusion prohibited area set around the work vehicle. Can be set, thereby suppressing unnecessary stop control intervention and preventing a reduction in work efficiency.
  • the intrusion prohibition area can be set according to the work content of the intruder, when the work of the work machine changes, it is necessary for the operator to set the entry prohibition area each time. In such a situation where the work is switched frequently, the operator's work load increases. Such an increase in the operator's work load may cause a decrease in work efficiency.
  • the intrusion prohibition area setting operation becomes cumbersome, so even if you forget to set the intrusion prohibition area or the work machine changes, the intrusion prohibition area remains fixed. There is a possibility that the originally assumed operation such as operating the work machine may not be performed. In such unexpected operations, unnecessary notifications and suppression of work machine operation restrictions are not sufficiently performed, and as a result, work efficiency may be reduced.
  • the present invention has been made in view of the above, and by suppressing an increase in the burden on the operator, it is possible to reduce work efficiency while performing appropriate control with respect to obstacles existing around the work machine without excess or deficiency.
  • An object is to provide a work machine that can be suppressed.
  • the present application includes a plurality of means for solving the above-described problems. For example, a vehicle body, a work machine attached to the vehicle body, and an operation signal for driving the work machine are detected.
  • An obstacle position calculation unit that detects an obstacle existing around a work machine having an operation signal detection device, the vehicle main body, and the work machine, and calculates a relative position of the detected obstacle with respect to the work machine.
  • the work machine includes a work mode selection device that selects a work mode of the work machine, and the control device is based on a detection result of the operation signal detection device.
  • a work determination unit that determines whether or not a work content different from the work content of the work mode selected by the work mode selection device is being performed.
  • a minimum notification area determination unit that selects one of a plurality of minimum notification areas preset around the work machine based on a selection result of the work mode selection device and a determination result of the work determination unit; and the obstacle
  • a notification signal is output. It shall have a notice judging part outputted to a notice device.
  • the present invention by suppressing an increase in the burden on the operator, it is possible to suppress a decrease in work efficiency while performing appropriate control with respect to obstacles around the work machine without excess or deficiency.
  • FIG. 1 is a diagram schematically showing a configuration of a hydraulic excavator that is an example of a work machine according to an embodiment of the present invention.
  • FIG. It is a functional block diagram which shows a part of processing function of the circumference
  • FIG. 1 is a diagram schematically showing a configuration of a hydraulic excavator that is an example of a work machine according to an embodiment of the present invention.
  • a hydraulic excavator 1 which is a work machine is attached to a crawler type lower traveling body 1e and an upper part of the lower traveling body 1e so as to be able to turn, and together with the lower traveling body 1e, constitutes an upper part constituting a vehicle body 1B of the working machine And a revolving body 1d.
  • the lower traveling body 1e is driven by left and right traveling hydraulic motors 3e (only one is shown in FIG. 1).
  • the upper swing body 1d is driven by torque generated by a swing hydraulic motor (not shown) and swings in the left-right direction.
  • a driver's cab 1f is installed on the upper swing body 1d, and an articulated front working device 1A (working device) for forming a target landform is attached to the side of the driver's cab 1f in front of the upper swing body 1d. It has been.
  • the front working device 1A (working device) is configured by connecting a boom 1a, an arm 1b, and a bucket 1c that rotate in the vertical direction, respectively, and a boom cylinder 3a, an arm cylinder 3b, and a bucket cylinder, respectively. It is driven by 3c.
  • the boom 1a, the arm 1b, the bucket 1c, and the upper swing body 1d are provided with angle sensors 8a, 8b, 8c, and 8d (attitude information acquisition devices) that detect relative angles as the respective attitude information.
  • an IMU Inertial Measurement Unit
  • a relative angle may be obtained from the measured values.
  • An operation signal for driving the boom cylinder 3a, arm cylinder 3b, bucket cylinder 3c, travel hydraulic motor 3e and swing hydraulic motor (not shown) is supplied to the cab 1f (pilot pressure in the case of a hydraulic drive system).
  • An operation lever (not shown) for operating the boom 1a, the arm 1b, the bucket 1c, the upper swing body 1d, and the lower traveling body 1e according to the operation signal is generated according to the operation direction and the operation amount.
  • Touch panel monitor 15a see FIG. 2 below
  • mode selection device 16a see FIG.
  • the information processing controller 200 (see FIG. 2 below) is disposed as a control device that controls the overall operation of the pressure excavator 1.
  • the operation lever is provided with pilot pressure sensors 9a, 9b, 9c, and 9d (operation signal detection devices) for detecting an operation signal (here, pilot pressure) output from the operation lever by the operator.
  • the mode selection device 16a may be configured by a switch or the like provided in the cab 1f, and the function of the mode selection device 16a is realized by selecting a work mode by input to the touch panel monitor 15a. You may comprise as follows.
  • Stereo cameras 13a, 13b, 13c, and 13d for capturing moving images in each direction are installed at the rear, right side, left side, and front of the upper swing body 1d, respectively.
  • FIG. 2 is a functional block diagram showing a part of the processing functions of the surrounding monitoring device in the hydraulic excavator together with related configurations.
  • the surroundings monitoring device is mounted on the information processing controller 200.
  • the information processing controller 200 is connected to each device of the excavator 1 and repeats the processing operation at a constant cycle.
  • the information processing controller 200 includes, as processing functions of the surrounding monitoring device, a visibility characteristic calculation unit 210, a dynamic characteristic calculation unit 220, a work determination unit 230, a minimum notification region determination unit 240, a notification region determination unit 250, a storage unit 260A, an obstacle.
  • a position calculation unit 270 and a notification determination unit 280 are provided, and when an obstacle such as a worker is detected inside a notification region set around the hydraulic excavator 1, a notification signal (for example, a notification device) By outputting to the buzzer 15b), the operator is notified of the approach of the obstacle.
  • the visual field characteristic calculation unit 210 is a region (direct visual field region, indirect visual field) that can be visually recognized from the operator cab 1f around the hydraulic excavator 1 according to the posture of the front work device 1A (boom 1a, arm 1b, bucket 1c). Area).
  • the front work device 1A is arranged on the right front side from the cab 1f.
  • the area visible from the cab 1f changes. Therefore, in order to obtain the visibility characteristics of the hydraulic excavator 1, it is necessary to consider the posture of the front working device 1A.
  • FIG. 3 is a diagram showing a processing flow of the visual field characteristic calculation unit.
  • the visual field characteristic calculation unit 210 first detects the detection results (output values) from the angle sensors 8a to 8c and the front work device 1A (boom 1a, arm 1b) previously stored in the information storage unit 261 of the storage unit 260A. Based on the front shape data 211 of the bucket 1c), information on the positions and sizes of the boom 1a, the arm 1b, and the bucket 1c in the vehicle body coordinate system (the coordinate system set for the upper swing body 1d) is provided. A model of the calculated front work device 1A is generated (step 212).
  • the operator's head position at the time of operation by the operation lever device of the excavator 1 is determined by a predetermined calculation method (for example, a standard position determined by ISO) (step 213), and the operator's head position is determined.
  • a predetermined calculation method for example, a standard position determined by ISO
  • An arbitrary representative point on the ground surface is determined with reference to the origin (step 214), and a three-dimensional vector (operator's line-of-sight vector) toward the determined representative point is determined (step 215).
  • a three-dimensional vector toward the determined representative point
  • step 214 to step 216 is repeatedly performed until all the representative points on the ground surface are performed (step 217), and the processing of step 214 to step 216 is completed for all the representative points.
  • visual field characteristic data which is information relating to the visual field of the operator, such as an area that becomes the blind spot of the operator from the cab 1f outside the hydraulic excavator 1 is determined (step 218).
  • the visual characteristic data calculated by the visual characteristic calculation unit 210 is output to the minimum notification area determination unit 240.
  • the calculation method of the operator's head position is not particularly limited to the above method, and the calculation of the head position with high accuracy is performed by using some measurement means, and the visual judgment with higher accuracy is performed. It is also possible to do.
  • the visual field characteristics of the area that is not affected by the posture of the front work apparatus 1A are stored in advance, and together with the visual characteristic data calculated by the processing of the visual characteristic calculation unit 210, the direct visual field area that can be viewed by the operator's direct viewing,
  • point cloud data representing each area it is classified into three types of areas: an indirect field of view that can be viewed with a mirror or a monitor (that is, imaging with stereo cameras 13a to 13d) and a blind spot area that cannot be viewed.
  • the information is output to the minimum notification area determination unit 240. 4 shows an example of the posture of the excavator 1 during work
  • FIG. 5 shows an example of the direct view area 401, the indirect view area 402, and the blind spot area 403 around the excavator 1 in the posture of FIG. .
  • the dynamic characteristic calculation unit 220 calculates the shortest collision prediction time.
  • the shortest collision prediction time is a prediction of the shortest time required for at least a part of the excavator 1 to reach each region around the excavator 1, and the maximum speed of the excavator 1 is determined from the posture at that time. It is the time to reach the target area when operating on the shortest path.
  • FIG. 6 is a diagram showing a processing flow of the dynamic characteristic calculation unit.
  • the dynamic characteristic calculation unit 220 first detects the detection results (output values) from the angle sensors 8a to 8c and the front work device 1A (boom 1a, arm 1b) previously stored in the information storage unit 261 of the storage unit 260A. Based on the front shape data 211 of the bucket 1c), the tip position of the bucket 1c in the vehicle body coordinate system is calculated (step 221). Next, based on the tip position of the bucket 1c obtained in step 221 (hereinafter referred to as bucket tip position), a model body model of the entire hydraulic excavator 1 including the front work device 1A and the vehicle main body 1B is generated (step). 222).
  • the shortest collision prediction time when the current bucket tip position is set as the initial position is calculated (step 223).
  • the basic dynamic characteristic data 505 stores, for example, the maximum operating speed (maximum turning angular speed, maximum traveling speed, etc.) as basic dynamic characteristics of each actuator, and the boom cylinder 3a, arm cylinder 3b, bucket cylinder 3c, The shortest collision prediction time is calculated based on the maximum speed when the turning motor (not shown) and the left and right traveling hydraulic motors 3e (only one is shown) are actuated independently in each operation direction.
  • the dynamic characteristics of each actuator vary depending on the initial posture of the front working apparatus 1A, the hydraulic oil temperature, and the presence / absence of the combined operation. Here, it is assumed that each actuator operates at the maximum operating speed. Subsequently, the dynamic characteristic data is generated by integrating the calculation results in step 223 (step 224). The dynamic characteristic data generated by the dynamic characteristic calculation unit 220 is output to the minimum notification area determination unit 240.
  • the work determination unit 230 is performing the work assumed in the work mode selected for the excavator 1, in other words, the work determination unit 230 has a work content different from the work content of the work mode selected by the mode selection device 16a. Determine if work is being performed.
  • FIG. 7 is a diagram showing a flow of processing of the work determination unit.
  • the work determination unit 230 first identifies the work mode currently selected by the mode selection device 16a (step 232), and determines whether the currently selected work mode is the standard mode (step 233). ).
  • the standard mode is a work mode for performing basic work. In the standard mode, it is selected when performing normal excavation and earthing work or traveling operation.
  • the operation of the hydraulic excavator 1 can be roughly classified into five operations: a boom operation, an arm operation, a bucket operation, a turning operation, and a traveling operation. In the standard mode, it is assumed that various movements are required according to the work contents based on excavation and earthing and traveling, and thus any of the above five operations may be performed.
  • MG mode is a work mode that is selected mainly when performing leveling work.
  • information on the relative position between the target ground surface and the tip of the bucket 1c is displayed on a display device such as the touch panel monitor 15a installed in the cab 1f.
  • the operator Based on the information displayed on the display device (for example, the touch panel monitor 15a), the operator performs an operation while viewing the front end of the bucket 1c directly by performing an operation so that the front end position of the bucket 1c matches the target surface. It becomes possible to align the bucket 1c more easily than that.
  • the leveling work is mainly performed. Therefore, as the operation of the hydraulic excavator 1, the boom operation, the arm operation, and the bucket operation are mainly performed. Both are assumed to be small.
  • the soil volume measurement mode is a mode for measuring the weight of the excavated soil.
  • the operator checks the loading amount displayed on the monitor so as not to overload. Do work.
  • excavation and loading work is the center, so it is assumed that boom operation, arm operation, bucket operation, and turning operation are mainly performed.
  • a state in which work with a work content different from the work content of the selected work mode is being performed can also be considered as a work mode other than the three work modes selected by the mode selection device 16a being selected. Therefore, this state can also be considered as one of the work modes.
  • step 233 If the determination result in step 233 is NO, that is, if the currently set work mode is other than the standard mode, the current operation of the excavator 1 is the currently set work mode (for example, the MG mode). Or the soil volume measurement mode), that is, whether the current work is a judgment condition for judging whether the work content different from the work content of the selected work mode is being performed. It is determined according to the mode (step 234).
  • the currently set work mode for example, the MG mode.
  • the soil volume measurement mode that is, whether the current work is a judgment condition for judging whether the work content different from the work content of the selected work mode is being performed. It is determined according to the mode (step 234).
  • the determination conditions used in step 234 are preset for each type of work mode, and are stored in the information storage unit 261 of the storage unit 260A. For example, in the MG mode, it is determined that the traveling and turning operations have continued for a certain time or more. In the soil amount measurement mode, the traveling operation or the turning operation is not performed for a certain time or more. And so on.
  • the work determination unit 230 performs operation identification based on the detection results (output values) of the pilot pressure sensors 9a to 9d in parallel with the identification of the work mode in Step 232 (Step 231).
  • a pilot pressure is changed by operating an operation lever device by an operator (that is, an operation signal is generated), a boom cylinder 3a, an arm cylinder 3b, a bucket cylinder 3c, a swing motor (not shown), and Since the flow rate of the oil that drives the actuators of the left and right traveling hydraulic motors 3e (only one shown) is controlled, it is possible to identify the operation content of the machine from the pilot pressure (operation signal).
  • the operation is classified and defined into five operations: a boom operation, an arm operation, a bucket operation, a turning operation, and a traveling operation.
  • step 236 It is determined whether or not the operation of the hydraulic excavator 1 identified in step 231 matches the determination condition determined in step 234 (step 236). If the determination result is NO, that is, if the determination result does not match, the selection is made. The work flag is set to False (step 237), and the work flag (False) is output to the minimum notification area determination unit 240 as the output of the work determination unit 230. To do.
  • step 236 If the determination result in step 236 is YES, that is, if the operation of the excavator 1 matches the determination condition, the work flag is set to True (step 236), and the work flag is output as the output of the work determination unit 230. (True) is output to the minimum notification area determination unit 240.
  • step 233 If the determination result in step 233 is YES, that is, if the currently set work mode is the standard mode, the work flag is set to False (step 237), and the work flag is output as the work determination unit 230. (False) is output to the minimum notification area determination unit 240.
  • the work flag is set to False as in the case where it is determined that a work having a work content different from the work content in the selected work mode is being performed.
  • FIG. 8 is a diagram showing a flow of processing of the minimum notification area determination unit.
  • the minimum notification area determination unit 240 determines the hydraulic excavator 1 according to the calculation results of the visibility characteristic calculation unit 210 and the dynamic characteristic calculation unit 220, the determination result of the work determination unit 230, the work mode selected by the mode selection device 16a, and the like.
  • the minimum notification area set around is calculated.
  • the minimum notification area is an area that is set for each notification area corresponding to each work mode and cannot be changed by an operator or the like, which will be described later.
  • the minimum notification area determination unit 240 first calculates the visibility level for the area around the hydraulic excavator 1 based on the visual field characteristic data of the excavator 1 calculated by the visual characteristic calculation unit 210 (step 241). ).
  • the visibility level is an index indicating the visibility from the operator, and indicates that the region with the higher visibility level is easier for the operator to see and the region with the lower visibility level is less visible for the operator.
  • the visual field characteristic data is information on each area of the direct visual field area, the indirect visual field area, and the blind spot area around the hydraulic excavator 1, and in step 241, level 3 is set in the direct visual field area and level 2 is set in the indirect visual field area.
  • the level 1 is determined (calculated) as the visibility level in the blind spot area.
  • the dynamic characteristic level of the hydraulic excavator 1 is calculated based on the dynamic characteristic data of the hydraulic excavator 1 calculated by the dynamic characteristic calculation unit 220 (step 242).
  • the dynamic characteristic data represents the shortest collision prediction time in the area around the hydraulic excavator 1, and in step 241, the dynamic characteristic level is determined (calculated) according to the length of the shortest collision prediction time. .
  • FIG. 9 is a diagram showing an example of determining the dynamic characteristic level for the dynamic characteristic data.
  • level 1 is set in the area 901 having the shortest collision time of 1 [s] or less, and the area having the shortest collision time of 1 to 3 [s].
  • Level 2 is determined (calculated) as the dynamic characteristic level in level 902, and level 3 in the region 903 where the shortest collision time is 3 [s] or more.
  • the total level is calculated based on the visibility level calculated in step 241 and the dynamic characteristic level calculated in step 242.
  • the total level is calculated by, for example, the product of the visibility level and the dynamic characteristic level, and the lower the total level, the higher the need to notify the operator of the entry of obstacles such as workers. Indicates.
  • the above calculation method for example, when the visibility level of the area for which the overall level is to be calculated is level 2 and the dynamic characteristic level is level 3, the overall level of the area is the level. 6 is determined.
  • the method for determining each of the visibility level, the dynamic characteristic level, and the overall level is not limited to the example described above, but the type of work machine to which the present invention is applied and its work environment. It is possible to appropriately change in consideration of factors such as.
  • the minimum notification area when the work mode is the standard mode is read from the information storage unit 261 of the storage unit 260A and set (step 244). Since the lower the total level obtained by the product of the visibility level and the dynamic characteristic level, the harder it is to see from the operator of the cab 1f and the shorter the time until the collision, it is set as the minimum notification area. The need becomes higher.
  • an area where the total level is 1 is set as the minimum notification area, but the range of an additional notification area (described later) that can be arbitrarily determined by the operator is determined by setting the threshold here. The operation may be performed with an arbitrary threshold according to the judgment of the administrator or the like.
  • step 245 it is determined whether or not the current work mode is the standard mode. If the work mode is other than the standard mode, the determination result of the work determination unit 230 is determined. Based on the above, it is confirmed whether or not a work having a work content different from the work content in the selected work mode is performed, that is, whether or not the work flag is False (step 246). In step S246, when the work flag is not False (that is, when the work flag is True), that is, when the work of the work content of the selected work mode is being performed, the minimum notification corresponding to the work mode is performed. The area is read from the information storage unit 261 of the storage unit 260A and set (step 247), and the set minimum notification area is output to the notification area determination unit 250.
  • the minimum notification area is set in consideration of the characteristics in each work mode. For example, in the MG mode, the operation of the front work apparatus 1A is mainly performed. Therefore, the minimum notification area is set with respect to the area near the front end position of the bucket 1c, and the frequency of performing the traveling operation is low. In consideration, the minimum notification area behind the vehicle body (vehicle main body 1B) is set narrower than the standard mode. Similarly, since the turning operation is mainly performed in the soil amount measurement mode, the minimum notification area with respect to the turning direction of the front work device 1A and the turning direction of the rear end of the vehicle main body 1B is expanded, and the traveling frequency / distance is reduced. Accordingly, the operation of reducing the minimum notification area to the rear of the vehicle main body 1B is effective.
  • step 245 determines whether the work mode is the standard mode. If the determination result in step 245 is YES, that is, if the work mode is the standard mode, the minimum notification area (standard mode) set in step 244 is output to the notification area determination unit 250.
  • step 246 determines whether the work flag from the work determination unit 230 is False and work with work content different from the work content of the selected work mode is being performed. Even in the case where it is set, the minimum notification area (standard mode) set in step 244 is output to the notification area determination unit 250. That is, when a work with a work content different from the work content of the selected work mode is being performed, it is difficult to estimate the operation of the hydraulic excavator 1 that is a work machine, so the minimum notification area in the standard mode is applied. .
  • FIG. 10 is a diagram illustrating a process flow of the notification area determination unit.
  • the notification area determination unit 250 uses the minimum notification area determination unit 240 to display a current work mode (standard mode, MG mode, soil volume measurement mode, work mode (mode) indicating work of work content different from the work content of the selected work mode.
  • the notification area set around the excavator 1 is calculated with respect to the minimum notification area determined for the external work).
  • the notification area is an area in which a minimum notification area set for each work mode and an additional notification area set by an operator or the like for each work mode are combined. That is, the notification area is changed to the work mode when the work mode including the work with the work content different from the work content of the selected work mode is changed (that is, when the minimum notification area is changed). Switch to match.
  • FIG. 8 the case where the same minimum notification area is used when the work of the work content different from the work content of the standard mode and the selected work mode is performed is illustrated. is doing.
  • the notification area determination unit 250 first determines whether or not the minimum notification area has been changed (step 251). If the determination result is YES, a notification area (additional notification) is notified from the notification area setting storage unit 260. Area) is read (step 252), and a notification area including the minimum notification area from the minimum notification area determination unit 240 and the previous setting value of the additional notification area is output to the touch panel monitor 15a (step 253). If the determination result is NO, the minimum notification area and the additional notification area are output to the touch panel monitor 15a as they are (step 253).
  • FIG. 11 is a diagram illustrating an example of a notification area displayed on the touch panel monitor.
  • a minimum notification area 1101 and an arbitrarily set additional notification area 1102 are displayed on the touch panel monitor 15 a centering on the excavator 1 as a work machine, and the operator forms the additional notification area 1102.
  • the additional notification area 1102 is set to an arbitrary range by performing addition or deletion of the variable point 1103 to be performed, position change, and the like by a touch operation.
  • the work in the work mode selected by the operator is displayed together with the display 1104 notifying the currently set work mode.
  • a display 1104a is displayed for notifying that the notification area has been switched by performing work with work content different from the content.
  • step 253 it is determined whether the operator has set the notification area output to the touch panel monitor 15a, that is, whether the additional notification area has been changed (step 254). If the determination result is NO, The set notification area (minimum notification area 1101 and additional notification area 1102) is output to the notification determination unit 280 as a determination result of the notification area determination unit 250.
  • step 254 When the determination result in step 254 is YES, that is, when the additional notification area is changed, the notification area is set (minimum notification area 1101 and additional notification area 1102 or additional notification area 1102 only). Is output to the notification area setting storage unit 260 and stored as the previous set value (step 255), and the notification area is displayed again on the touch panel monitor 15a (step 253).
  • the notification area setting storage unit 260 stores a notification area in each work mode set by the operator, and a notification range by changing the work mode (including a shift to work with work contents different from the work contents of the selected work mode). When the switch occurs, it is output as the previous set value. By performing such processing, even in an environment where the work mode is frequently switched, it is possible to reduce time and effort for the operator to reset the notification range each time.
  • the obstacle position calculation unit 270 detects the presence of an obstacle such as a worker through image processing based on the two images respectively acquired by the stereo cameras 13a to 13d, and calculates the position. First, feature points are extracted from images acquired by the stereo cameras 13a to 13d, and workers are detected based on pre-stored learning data. Next, the detected position of the obstacle such as a worker on the image is converted into the three-dimensional coordinates of the stereo camera coordinate system based on the parallax image generated from the two images. The obstacle position calculation unit 270 stores the positions and angles at which the stereo cameras 13a to 13d are mounted on the vehicle body coordinate system, and converts the detected position of the worker from the stereo camera coordinate system to the vehicle body coordinate system.
  • the relative position of the excavator 1 and the worker is grasped.
  • the form of worker detection using the stereo cameras 13a to 13d is shown.
  • LIDAR Laser Imaging Detection and Ranging
  • GNSS Global Navigation Satellite System
  • the notification determination unit 280 determines whether there is an obstacle such as a worker in the notification region based on the outputs from the notification region determination unit 250 and the obstacle position calculation unit 270, and there is an obstacle. When doing so, a notification signal is output to a notification device (for example, buzzer 15b).
  • a notification device for example, buzzer 15b
  • FIG. 12 is a diagram schematically showing the relationship between the excavator 1 which is a work machine and the position where each work is performed.
  • the excavator 1 moves from the parking point A to the work point B where excavation and loading work is performed, and then moves to the work point C where the slope shaping (leveling) work is performed. And then return to parking point A.
  • the excavator 1 When moving from parking point A to work point B, travel in standard mode and move. At this time, the excavator 1 takes a running posture as shown in FIG. In the traveling posture, the right front of the excavator 1 becomes a blind spot from the cab 1f, so that area is automatically set as the minimum notification area. At this time, the minimum notification area is set as a minimum notification area 1301 shown in FIG. 13, for example.
  • FIG. 15 shows an example of the minimum notification area in the soil volume measurement mode.
  • FIG. 15 illustrates a case where the minimum notification area 1501 is set.
  • the work flag becomes True.
  • the minimum notification area is switched to the same minimum notification area as in the standard mode. Note that since the previous setting value is stored in the notification area setting storage unit 260 for the notification area, if the operator arbitrarily sets a notification area (additional notification area) in the standard mode in advance, the notification at that time The area setting is reflected.
  • FIG. 16 is a diagram illustrating an example of the minimum notification area in the MG mode.
  • the leveling work is repeated while moving the work machine to the right. Therefore, the operator performs a work by setting a wide notification area (that is, an additional notification area) in the right direction as shown in FIG.
  • a wide notification area that is, an additional notification area
  • the operator switches the work mode to the standard mode and performs a traveling operation to parking point A.
  • the operator can set a notification area suitable for basic work contents only by switching the work mode, and only when it is determined that a wider notification area is required, Thus, since the operation of setting the notification area by arbitrarily setting the additional notification area is performed, it is possible to reduce the setting effort performed by the operator.
  • a minimum notification area is defined for each work mode, and the minimum notification area suitable for the work mode selected in the hydraulic excavator 1 which is a work machine is automatically set. Since the switching is performed, it is possible to reduce the trouble for the operator to reset the notification area for each work.
  • the vehicle main body 1B, the front work device 1A (work machine) attached to the vehicle main body 1B, and the pilot pressure sensors 9a to 9b for detecting operation signals for driving the front work device 1A An obstacle that is present around a hydraulic excavator 1 (work machine) having a vehicle main body 1B and a front work device 1A is detected, and a relative position of the detected obstacle to the hydraulic excavator 1 is calculated.
  • the hydraulic excavator 1 includes a mode selection device 16a for selecting a work mode of the hydraulic excavator 1, and the information processing controller 200 indicates that the work content of the excavator 1 is selected based on the detection results of the pilot pressure sensors 9a to 9b.
  • the work determination unit 230 determines whether or not the work content different from the work content of the work mode selected by the device 16a is being performed, the selection result of the mode selection device 16a, and the determination result of the work determination unit 230.
  • the relative position of the obstacle calculated by the obstacle position calculation unit 270 with respect to the hydraulic excavator 1 is determined by a minimum notification area determination unit 240 that determines one of a plurality of minimum notification areas set in advance around the hydraulic excavator 1. And a notification determination unit 280 that outputs a notification signal to the buzzer 15b (notification device) when inside the notification region set to include the minimum notification region determined by the minimum notification region determination unit 240. did.
  • the work machine includes the notification area determination unit 250 for an operator to determine an arbitrary area including the minimum notification area determined by the minimum notification area determination unit 240 as a notification area.
  • the work machine of (2) includes a notification region setting storage unit 260 that stores the notification region determined by the notification region determination unit 250 for each minimum notification region, and the notification region determination unit 250 includes the minimum notification region. Based on the minimum notification area determined by the determination unit 240, the notification area is read from the notification area setting storage unit 260.
  • the hydraulic excavator has been described as an example.
  • the present invention can be applied to any working machine (for example, a wheel loader or a crane) including a working device that may block the operator's view from the cab. It is.
  • each configuration related to the information processing controller (control device) 200, functions and execution processing of the configurations, etc. are partly or entirely designed by hardware (for example, logic for executing each function is an integrated circuit) Or the like).
  • the configuration related to the information processing controller 200 may be a program (software) that realizes each function related to the configuration of the information processing controller 200 by being read and executed by an arithmetic processing device (for example, a CPU).
  • Information related to the program can be stored in, for example, a semiconductor memory (flash memory, SSD, etc.), a magnetic storage device (hard disk drive, etc.), a recording medium (magnetic disk, optical disc, etc.), and the like.
  • control line and the information line are shown to be understood as necessary for the description of the embodiment, but all the control lines and information lines related to the product are not necessarily included. It does not always indicate. In practice, it can be considered that almost all the components are connected to each other.

Landscapes

  • Engineering & Computer Science (AREA)
  • Mining & Mineral Resources (AREA)
  • Civil Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Structural Engineering (AREA)
  • Physics & Mathematics (AREA)
  • Acoustics & Sound (AREA)
  • Mechanical Engineering (AREA)
  • Component Parts Of Construction Machinery (AREA)
  • Operation Control Of Excavators (AREA)

Abstract

油圧ショベル1の作業モードを選択するモード選択装置16aと、パイロット圧センサ9a~9bの検出結果に基づいて、油圧ショベル1の作業内容が選択した作業モード以外の作業内容であるかどうかを判定する作業判定部230と、モード選択装置16aの選択結果と作業判定部230の判定結果とに基づいて油圧ショベル1の周辺に予め設定された複数の最小報知領域から1つを決定する最小報知領域決定部240と、障害物位置演算部270で算出された障害物の相対位置が最小報知領域決定部240で決定された最小報知領域を含むように設定された報知領域の内側である場合に報知信号をブザー15bに出力する報知判定部280とを有する。これにより、オペレータの負担増大を抑制することにより、作業機械の周囲に存在する障害物に関して過不足の無い適切な制御を行いつつ、作業効率の低下を抑制することができる。

Description

作業機械
 本発明は、作業機械に関する。
 油圧ショベルなどの作業機械には、接触事故を防止するために、作業機械の周囲に存在する人または物体等の障害物を検出し、作業機械のオペレータに対してその存在を報知したり、検出結果に応じて作業機械の動作を制限する制御を行ったりする周囲監視装置を搭載したものがある。しかし、実際の作業現場においては、作業員が作業機械の近傍で作業を行っていることを知りながら作業機械を意図的に動作させるケースも多い。こうした環境下では、作業員が近傍にいることを知っているにも係わらず周囲監視装置によってその報知や作業機械の動作制限が行われてしまう。
 このような問題の解決を試みた装置の1つとして、例えば、特許文献1に記載のものがある。この装置は、作業車両の周囲に設定された侵入禁止領域内で作業者などの侵入物が検知されたときに作業車両の停止制御を行う際に、侵入物の作業内容に応じて侵入禁止領域を設定可能とすることで、不必要な停止制御の介入を抑制し、作業効率低下の防止を図っている。
特開2003-105807号公報
 しかしながら、上記従来技術においては、侵入物の作業内容に応じて侵入禁止領域を設定できるものの、作業機械の作業が変わる場合には、その都度オペレータが進入禁止領域を設定する必要があるため、頻繁に作業が切り替わるような状況では、オペレータの作業負荷が増大してしまう。このようなオペレータの作業負荷の増大は、作業効率の低下を招くことが考えられる。
 また、オペレータの作業負荷が増大することに伴って、侵入禁止領域の設定操作に対する煩わしさも生じるため、侵入禁止領域の設定し忘れや作業機械の作業が変わった場合でも侵入禁止領域を固定したまま作業機械を動作させるといったような、本来想定された運用がなされない可能性がある。このような想定外の運用では、不必要な報知や作業機械の動作制限の抑制が十分になされず、結果として作業効率の低下を招くことが考えられる。
 本発明は上記に鑑みて成されたものであり、オペレータの負担増大を抑制することにより、作業機械の周囲に存在する障害物に関して過不足の無い適切な制御を行いつつ、作業効率の低下を抑制することができる作業機械を提供することを目的とする。
 本願は上記課題を解決する手段を複数含んでいるが、その一例を挙げるならば、車両本体と、前記車両本体に取り付けられた作業機と、前記作業機を駆動するための操作信号を検出する操作信号検出装置と、前記車両本体と前記作業機とを有する作業機械の周囲に存在する障害物を検出し、検出された前記障害物の前記作業機械に対する相対位置を算出する障害物位置演算部を有する制御装置とを備えた作業機械において、前記作業機械は、前記作業機械の作業モードを選択する作業モード選択装置を備え、前記制御装置は、前記操作信号検出装置の検出結果に基づいて、前記作業機械の作業内容が前記作業モード選択装置で選択された作業モードの作業内容とは異なる作業内容の作業が実施されているかどうかを判定する作業判定部と、前記作業モード選択装置の選択結果と前記作業判定部の判定結果とに基づいて前記作業機械の周辺に予め設定された複数の最小報知領域から1つを選択する最小報知領域決定部と、前記障害物位置演算部で算出された前記障害物の前記作業機械に対する相対位置が、前記最小報知領域決定部で決定された最小報知領域を含むように設定された報知領域の内側である場合に報知信号を報知装置に出力する報知判定部と
を有するものとする。
 本発明によれば、オペレータの負担増大を抑制することにより、作業機械の周囲に存在する障害物に関して過不足の無い適切な制御を行いつつ、作業効率の低下を抑制することができる。
本発明の一実施の形態に係る作業機械の一例である油圧ショベルの構成を概略的に示す図である。 油圧ショベルにおける周囲監視装置の処理機能の一部を関連構成とともに示す機能ブロック図である。 視界特性演算部の処理の流れを示す図である。 油圧ショベルの作業時における姿勢の一例を示す側面図である。 図4の姿勢における油圧ショベルの周囲における直接視界領域、間接視界領域、及び、死角領域の一例を示す図である。 動特性演算部の処理の流れを示す図である。 作業判定部の処理の流れを示す図である。 最小報知領域決定部の処理の流れを示す図である。 動特性データに対する動特性レベルの決定例を示す図である。 報知領域決定部の処理の流れを示す図である。 タッチパネルモニタに表示される報知領域の一例を示す図である。 作業機械である油圧ショベル1と各作業を行う位置の関係を概略的に示す図である。 標準モード時の最小報知領域の一例を示す図である。 走行姿勢の一例を示す側面図である。 土量計測モード時の最小報知領域の一例を示す図である。 MGモード時の最小報知領域の一例を示す図である。 MGモード時の追加報知領域の一例を示す図である。
 以下、本発明の実施の形態について図面を参照しつつ説明する。
 図1は、本発明の一実施の形態に係る作業機械の一例である油圧ショベルの構成を概略的に示す図である。
 図1において、作業機械である油圧ショベル1は、クローラ式の下部走行体1eと、下部走行体1eの上部に旋回可能に取り付けられ、下部走行体1eとともに作業機械の車両本体1Bを構成する上部旋回体1dとを備えている。下部走行体1eは、左右の走行油圧モータ3e(図1では一方のみ図示する)によって駆動される。上部旋回体1dは、旋回油圧モータ(図示せず)の発生するトルクによって駆動され、左右方向に旋回する。
 上部旋回体1d上には運転室1fが設置され、上部旋回体1dの前方の運転室1fの脇には目標地形等の形成作業を行う多関節型のフロント作業装置1A(作業装置)が取り付けられている。
 フロント作業装置1A(作業装置)は、垂直方向にそれぞれ回動するブーム1a、アーム1b、及び、バケット1cを連結して構成されており、それぞれ、ブームシリンダ3a、アームシリンダ3b、及び、バケットシリンダ3cによって駆動される。ブーム1a、アーム1b、バケット1c、及び、上部旋回体1dには、それぞれの姿勢情報として相対角度を検出する角度センサ8a,8b,8c,8d(姿勢情報取得装置)が設けられている。なお、角度センサ8a,8b,8c,8dに代えて角速度及び加速度を計測するIMU(Inertial Measurement Unit:慣性計測装置)を用い、その計測値から相対角度を求めるように構成してもよい。
 運転室1fには、ブームシリンダ3a、アームシリンダ3b、バケットシリンダ3c、走行油圧モータ3e及び旋回油圧モータ(図示せず)を駆動するための操作信号(油圧駆動方式の場合にはパイロット圧)を操作方向及び操作量に応じて発生し、その操作信号によってブーム1a、アーム1b、バケット1c、上部旋回体1d及び下部走行体1eを動作させるための操作レバー(図示せず)と、オペレータへの情報表示やオペレータによる各種設定(入力)を行うためのタッチパネルモニタ15a(後の図2参照)と、作業モードを選択して切り換えるためのモード選択装置16a(後の図2参照)と、オペレータに対して油圧ショベルの周囲で障害物が検出されたことを報知するためのブザー15b(報知装置:後の図2参照)と、油圧ショベル1の全体の動作を制御する制御装置としての情報処理コントローラ200(後の図2参照)とが配置されている。操作レバーには、オペレータによる操作レバーから出力される操作信号(ここでは、パイロット圧)を検出するためのパイロット圧センサ9a,9b、9c、9d(操作信号検出装置)が設けれている。なお、モード選択装置16aは、運転室1f内に設けられたスイッチなどで構成しても良く、また、タッチパネルモニタ15aへの入力によって作業モードを選択することによりモード選択装置16aの機能を実現するように構成しても良い。
 上部旋回体1dの後方、右側方、左側方、及び、前方には、それぞれ、各方向の動画の撮影を行うためのステレオカメラ13a,13b,13c,13dが設置されている。
 図2は、油圧ショベルにおける周囲監視装置の処理機能の一部を関連構成とともに示す機能ブロック図である。
 図2において、周囲監視装置は、情報処理コントローラ200に実装されている。情報処理コントローラ200は、油圧ショベル1の各デバイスと接続されており、一定の周期で処理動作を繰り返している。
 情報処理コントローラ200は、周囲監視装置の処理機能として、視界特性演算部210、動特性演算部220、作業判定部230、最小報知領域決定部240、報知領域決定部250、記憶部260A、障害物位置演算部270、及び、報知判定部280を備えており、油圧ショベル1周辺に設定された報知領域の内側で作業員などの障害物が検知された場合に、報知信号を報知装置(例えば、ブザー15b)に出力することによって障害物の接近をオペレータに報知するものである。
 視界特性演算部210は、フロント作業装置1A(ブーム1a、アーム1b、バケット1c)の姿勢に応じて、油圧ショベル1の周囲においてオペレータが運転室1fから視認可能な領域(直接視界領域、間接視界領域)の演算を行う。図1に示したように、本実施の形態で作業機械の一例として示す油圧ショベル1は、運転室1fから右前方にフロント作業装置1Aが配置されているため、フロント作業装置1Aの姿勢によってオペレータが運転室1fから視認可能な領域が変化する。そのため、油圧ショベル1における視界特性を求めるには、フロント作業装置1Aの姿勢を考慮する必要がある。
 図3は、視界特性演算部の処理の流れを示す図である。
 図3において、視界特性演算部210は、まず、角度センサ8a~8cからの検出結果(出力値)及び予め記憶部260Aの情報記憶部261に記憶されたフロント作業装置1A(ブーム1a、アーム1b、バケット1c)のフロント形状データ211を基に、車体座標系(上部旋回体1dに対して設定される座標系)におけるブーム1a、アーム1b、バケット1cのそれぞれの位置と大きさの情報を有した演算用のフロント作業装置1Aのモデルを生成する(ステップ212)。次に、油圧ショベル1の操作レバー装置による操作時におけるオペレータの頭部位置を所定の演算方法(例えば、ISOにより定められる標準的な位置)により決定し(ステップ213)、そのオペレータの頭部位置を原点として地表面上に任意の代表点を決定し(ステップ214)、決定した代表点へ向かう3次元ベクトル(オペレータの視線ベクトル)を定める(ステップ215)。ここで、フロント作業装置1Aのモデルとの交差判定を行うことによって、運転室1fのオペレータが右前方領域(すなわち、フロント作業装置1A方向の領域)の代表点を視認できているかを判定する(ステップ216)。ここで、ステップ214~ステップ216の処理を地表面の全ての代表点に対して行うまで繰り返し実施し(ステップ217)、全ての代表点についてステップ214~ステップ216の処理を終了すると、得られた結果を統合することによって、油圧ショベル1の外部において運転室1fからオペレータの死角となる領域などのオペレータの視界に関する情報である視界特性データを決定する(ステップ218)。視界特性演算部210で演算された視界特性データは、最小報知領域決定部240に出力される。
 なお、オペレータの頭部位置の計算手法については特に上記の方法に限定されるものではなく、何らかの計測手段を用いることによって精度の高い頭部位置の計算を行い、より精度の高い視認判定を実施することも可能である。
 また、フロント作業装置1Aの姿勢に影響されない領域の視界特性についてはあらかじめ記憶し、視界特性演算部210の処理によって算出された視界特性データとともに、オペレータの直視によって視認が可能である直接視界領域、ミラーやモニタ(すなわち、ステレオカメラ13a~13dによる撮像)による視認が可能である間接視界領域、視認が不可能である死角領域の3種類の領域に分類し、それぞれの領域を表す点群データとして最小報知領域決定部240へ出力する。なお、図4に、油圧ショベル1の作業時における姿勢の一例を示し、図4の姿勢における油圧ショベル1の周囲における直接視界領域401、間接視界領域402、死角領域403の一例を図5に示す。
 動特性演算部220は、最短衝突予測時間を算出する。最短衝突予測時間とは、油圧ショベル1の周囲の各領域に対して油圧ショベル1の少なくとも一部分が到達するまでの最短時間を予測したものであり、油圧ショベル1がその時点での姿勢から最大速度かつ最短経路で動作した場合にその目標とする領域まで到達する時間である。
 図6は、動特性演算部の処理の流れを示す図である。
 図6において、動特性演算部220は、まず、角度センサ8a~8cからの検出結果(出力値)及び予め記憶部260Aの情報記憶部261に記憶されたフロント作業装置1A(ブーム1a、アーム1b、バケット1c)のフロント形状データ211に基づき、車体座標系におけるバケット1cの先端位置を算出する(ステップ221)。次に、ステップ221において得られたバケット1cの先端位置(以降、バケット先端位置と称する)に基づいて、フロント作業装置1A及び車両本体1Bを含む油圧ショベル1全体のモデル車体モデルを生成する(ステップ222)。続いて、予め記憶部260Aの情報記憶部261に記憶された基本特性データ226を用いて現在のバケット先端位置を初期位置としたときの最短衝突予測時間を算出する(ステップ223)。基本動特性データ505は、各アクチュエータの基本的な動特性として、例えば、最大動作速度(最大旋回角速度や最大走行速度など)が記憶されており、ブームシリンダ3a、アームシリンダ3b、バケットシリンダ3c、旋回モータ(図示せず)、及び、左右の走行油圧モータ3e(一方のみ図示)を単独で各動作方向へ作動させたときの最大速度を基に、最短衝突予測時間を算出する。なお、実際には、フロント作業装置1Aの初期姿勢や作動油温度、複合動作の有無によって各アクチュエータの動特性は変化するが、ここではそれぞれのアクチュエータが最大動作速度で動作した場合を想定する。続いて、ステップ223での算出結果を統合して動特性データを生成する(ステップ224)。動特性演算部220で生成された動特性データは、最小報知領域決定部240に出力される。
 作業判定部230は、油圧ショベル1に対して選択されている作業モードにおいて想定された作業を実施しているか、言い換えると、モード選択装置16aで選択された作業モードの作業内容と異なる作業内容の作業が実施されているかどうかを判定する。
 図7は、作業判定部の処理の流れを示す図である。
 図7において、作業判定部230は、まず、モード選択装置16aにより現在選択されている作業モードを識別し(ステップ232)、現在選択されている作業モードが標準モードかどうかを判定する(ステップ233)。
 ここで、本実施の形態で定義する標準モード、MGモード、土量計測モードの3つの作業モードについて説明する。
 標準モードは、基本的な作業を行う場合の作業モードである。標準モードでは、通常の掘削放土作業や走行操作等を行う場合に選択される。油圧ショベル1の動作は、大きくブーム動作、アーム動作、バケット動作、旋回動作、走行動作の5つの動作に分類することができる。標準モードでは、掘削放土や走行を基本として、作業内容に応じて様々な動きを求められることが想定されるため、上記の5つのいずれの動作も行われる可能性がある。
 MGモード(マシンガイダンスモード)は、主に均し作業を行う場合に選択される作業モードである。MGモードでは、運転室1f内に設置されたタッチパネルモニタ15aなどの表示装置上に目標とする地表面とバケット1cの先端の相対位置の情報が表示される。オペレータは、表示装置(例えば、タッチパネルモニタ15a)上に表示された情報に基づいて、バケット1cの先端位置を目標面に合わせるように操作を行うことにより、バケット1cの先端を直視しながら操作を行うよりも容易にバケット1cの位置合わせを行うことが可能となる。なお、MGモードでは均し作業が中心となるため、油圧ショベル1の動作としては、主にブーム動作、アーム動作、バケット動作が行われ、旋回動作や走行動作などの動作の頻度や動作量は共に小さいことが想定される。
 土量計測モードは、掘削した土の重さを計測するためのモードであり、掘削した土をダンプトラックに積み込む際など、過積載とならないようにオペレータがモニタ表示された積み込み量を確認しながら作業を行う。土量計測モードでは掘削積み込み作業が中心となるため、主にブーム動作、アーム動作、バケット動作、旋回動作が行われると想定される。
 なお、選択された作業モードの作業内容と異なる作業内容の作業が実施されている状態も、モード選択装置16aにより選択される3つの作業モード以外の作業モードが選択されていると考えることができ、したがって、この状態も作業モードの一つと考えることができる。
 ステップ233での判定結果がNOの場合、すなわち、現在設定されている作業モードが標準モード以外である場合には、油圧ショベル1の現在の動作が現在設定されている作業モード(例えば、MGモードや土量測定モード)として行われる動作以外であるかどうか、すなわち、選択された作業モードの作業内容と異なる作業内容の作業が実施されているかどうかを判定するための判定条件を、現在の作業モードに応じて決定する(ステップ234)。
 ステップ234で用いる判定条件は作業モードの種類ごとに予め設定されており、記憶部260Aの情報記憶部261に記憶されている。例えば、MGモードについては、走行、旋回動作が一定時間以上継続していることを判定条件とし、また、土量計測モードについては、走行動作を行う場合や旋回動作が一定時間以上行われていないことなどを判定条件とする。
 作業判定部230は、ステップ232の作業モードの識別と並行して、パイロット圧センサ9a~9dの検出結果(出力値)に基づいて動作識別を行う(ステップ231)。油圧ショベル1では、オペレータによって操作レバー装置を操作することによりパイロット圧を変化させ(すなわち、操作信号を生成し)、ブームシリンダ3a、アームシリンダ3b、バケットシリンダ3c、旋回モータ(図示せず)及び左右の走行油圧モータ3e(一方のみ図示)の各アクチュエータを駆動する油の流量を制御しているため、パイロット圧(操作信号)から機械の動作内容を識別することが可能である。本実施の形態では、前述のように、識別対象の動作の一例としてブーム動作、アーム動作、バケット動作、旋回動作、走行動作の5つの動作に分類して定義している。
 ステップ231で識別された油圧ショベル1の動作とステップ234で決定された判定条件とが一致したかどうかを判定し(ステップ236)、判定結果がNOの場合、すなわち、一致しない場合には、選択された作業モードの作業内容と異なる作業内容の作業が実施されているとして作業フラグをFalseとし(ステップ237)、作業判定部230の出力として作業フラグ(False)を最小報知領域決定部240に出力する。
 また、ステップ236での判定結果がYESの場合、すなわち、油圧ショベル1の動作と判定条件とが一致した場合には、作業フラグをTrueとし(ステップ236)、作業判定部230の出力として作業フラグ(True)を最小報知領域決定部240に出力する。
 また、ステップ233での判定結果がYESの場合、すなわち、現在設定されている作業モードが標準モードである場合には、作業フラグをFalseとし(ステップ237)、作業判定部230の出力として作業フラグ(False)を最小報知領域決定部240に出力する。このように、作業モードが標準モードである場合には、油圧ショベルの動作を推定することが困難であり、また、選択された作業モードの作業内容と異なる作業内容の作業が実施されているかどうかの判定(作業判定)が不要であるため、選択された作業モードの作業内容と異なる作業内容の作業が実施されていると判定した場合と同様に作業フラグをFalseとする。
 図8は、最小報知領域決定部の処理の流れを示す図である。
 最小報知領域決定部240は、視界特性演算部210及び動特性演算部220の演算結果や作業判定部230の判定結果、モード選択装置16aにより選択された作業モードなどに応じて、油圧ショベル1の周辺に設定される最小報知領域を演算する。最小報知領域とは、各作業モードに応じた報知領域のそれぞれについて設定される、後述するオペレータなどによる変更を不可とする領域のことである。
 図8において、最小報知領域決定部240は、まず、視界特性演算部210で演算された油圧ショベル1の視界特性データに基づき、油圧ショベル1の周囲の領域に対する視認性レベルを算出する(ステップ241)。ここで、視認性レベルとは、オペレータからの見やすさを示す指標であり、視認性レベルが高い領域ほどオペレータから見やすく、視認性レベルが低い領域ほどオペレータから見にくいことを表している。視界特性データは、油圧ショベル1の周囲における直接視界領域、間接視界領域、及び、死角領域の各領域の情報であり、ステップ241では、直接視界領域にレベル3を、間接視界領域にレベル2を、死角領域にレベル1をそれぞれ視認性レベルとして決定(算出)する。
 また、ステップ241の視認性レベルの算出と並行して、動特性演算部220で演算された油圧ショベル1の動特性データに基づき、油圧ショベル1の動特性レベルを算出する(ステップ242)。前述のように、動特性データは油圧ショベル1の周囲の領域における最短衝突予測時間を表すものであり、ステップ241では、最短衝突予測時間の長さに応じて動特性レベルを決定(算出)する。
 図9は、動特性データに対する動特性レベルの決定例を示す図である。
 図9においては、動特性レベルを設定する油圧ショベル1の周囲の領域900について、最短衝突時間が1[s]以下の領域901にレベル1を、最短衝突時間が1~3[s]の領域902にレベル2を、最短衝突時間が3[s]以上の領域903にレベル3をそれぞれ動特性レベルとして決定(算出)する。
 続いて、ステップ241で算出された視認性レベルとステップ242で算出された動特性レベルとに基づいて総合レベルの算出を行う。ここで、総合レベルとは、例えば、視認性レベルと動特性レベルの積によって算出されるものであり、総合レベルが低いほど作業員等の障害物の侵入をオペレータに報知する必要性が高いことを示す。上記の算出方法を用いた場合、例えば、総合レベルの算出対象となる領域の視認性レベルがレベル2であり、かつ、動特性レベルがレベル3である場合には、その領域の総合レベルはレベル6として決定される。
 なお、視認性レベル、動特性レベル、及び、総合レベルの各レベルの決定方法は、上記に示した例に限定されるものではなく、本願発明の適用対象となる作業機械の種類やその作業環境などの要因を考慮して適宜変更することが可能である。
 続いて、ステップ243で算出した総合レベルに応じて、まず、作業モードが標準モードである場合における最小報知領域を記憶部260Aの情報記憶部261から読み出して設定する(ステップ244)。視認性レベルと動特性レベルの積によって求められた総合レベルが低いほど、運転室1fのオペレータから見えにくく、衝突までの時間が短い領域であることを表しているため、最小報知領域として設定する必要性が高くなる。なお、本実施の形態においては、総合レベルが1となる領域を最小報知領域として設定するが、ここでの閾値設定によってオペレータが任意に決めることができる追加報知領域(後述)の範囲が決まるため、管理者等の判断により任意の閾値での運用を行ってもよい。
 続いて、モード選択装置16aの選択結果に基づいて、現在の作業モードが標準モードか否かの判定を行い(ステップ245)、標準モード以外の作業モードの場合は、作業判定部230の判定結果に基づいて、選択された作業モードの作業内容と異なる作業内容の作業が実施されているかどうか、すなわち、作業フラグがFalseであるかどうかを確認する(ステップ246)。ステップS246において作業フラグがFalseでは無い場合(すなわち、作業フラグがTrueである場合)、すなわち、選択された作業モードの作業内容の作業が実施されている場合には、作業モードに応じた最小報知領域を記憶部260Aの情報記憶部261から読み出して設定し(ステップ247)、設定した最小報知領域を報知領域決定部250に出力する。
 最小報知領域は、各作業モードにおける特性を考慮して設定されている。例えば、MGモードでは、フロント作業装置1Aの操作が主となるため、バケット1cの先端位置を中心にその近傍の領域に対して最小報知領域を設定し、走行操作が行われる頻度は低いことを考慮して車体(車両本体1B)後方の最小報知領域は標準モードよりも狭く設定する。同様に、土量計測モードでは旋回操作が主となるため、フロント作業装置1Aの旋回方向及び車両本体1Bの後端の旋回方向に対する最小報知領域を拡大し、また、走行頻度・距離の低下に伴い、車両本体1Bの後方への最小報知領域を縮小するといった運用が有効である。また、MGモード、土量計測モード等ではオペレータがモニタを注視しながら操作を行う運用が想定されるため、直接視界が確保されている領域にも関わらず、オペレータが物体の存在に気が付かないケースが懸念される。そのため、モニタへの表示を伴うような作業モードにおいては、直接視界の有無に関わらず、車体(車両本体1B)直近の領域については最小報知領域として設定するといった運用が効果的である。
 また、ステップ245での判定結果がYESの場合、すなわち、作業モードが標準モードである場合には、ステップ244で設定した最小報知領域(標準モード)を報知領域決定部250に出力する。
 また、ステップ246での判定結果がYESの場合、すなわち、作業判定部230からの作業フラグがFalseであって、選択された作業モードの作業内容と異なる作業内容の作業が実施されていると判定されている場合にも、ステップ244で設定した最小報知領域(標準モード)を報知領域決定部250に出力する。つまり、選択された作業モードの作業内容と異なる作業内容の作業が実施されている時には、作業機械である油圧ショベル1の動作の推定が困難であるため、標準モード時の最小報知領域を適用する。
 図10は、報知領域決定部の処理の流れを示す図である。
 報知領域決定部250は、最小報知領域決定部240で現在の作業モード(標準モード、MGモード、土量計測モード、選択された作業モードの作業内容と異なる作業内容の作業を示す作業モード(モード外作業)、など)について決定された最小報知領域に対して、油圧ショベル1の周辺に設定される報知領域を演算する。報知領域は、作業モード毎に設定される最小報知領域と、作業モード毎にそれぞれオペレータなどによって設定される追加報知領域とを合わせた領域である。つまり、報知領域は、選択された作業モードの作業内容と異なる作業内容の作業を含む作業モードが変更された場合(すなわち、最小報知領域が変更された場合)には、報知領域が作業モードに合わせて切り替わる。なお、本実施の形態では、図8で示したように、標準モードと選択された作業モードの作業内容と異なる作業内容の作業が実施されている場合とにおいて同じ最小報知領域を用いる場合を例示している。
 図10において、報知領域決定部250は、まず、最小報知領域が変更されたかどうかを判定し(ステップ251)、判定結果がYESの場合には、報知領域設定記憶部260から報知領域(追加報知領域)の前回設定値を読み出し(ステップ252)、最小報知領域決定部240からの最小報知領域と追加報知領域の前回設定値とを含む報知領域をタッチパネルモニタ15aへ出力する(ステップ253)。また、判定結果がNOの場合には、最小報知領域と追加報知領域をそのままタッチパネルモニタ15aへ出力する(ステップ253)。
 図11は、タッチパネルモニタに表示される報知領域の一例を示す図である。
 図11に示すように、タッチパネルモニタ15aには、作業機械である油圧ショベル1を中心に最小報知領域1101および任意に設定した追加報知領域1102が表示されており、オペレータは追加報知領域1102を形成する可変点1103の追加や削除、位置の変更等をタッチ操作によって行うことで追加報知領域1102を任意の範囲に設定する。なお、選択された作業モードの作業内容と異なる作業内容の作業が実施されている場合には、現在設定されている作業モードを報知する表示1104に併せて、オペレータが選択された作業モードの作業内容と異なる作業内容の作業が実施していることによって報知領域が切り替わっていることを通知するための表示1104aを表示する。
 ステップ253でタッチパネルモニタ15aに出力された報知領域に対してオペレータによる設定がなされたかどうか、すなわち、追加報知領域の変更がなされたかどうかを判定し(ステップ254)、判定結果がNOの場合には、設定された報知領域(最小報知領域1101及び追加報知領域1102)を報知領域決定部250の決定結果として報知判定部280に出力する。
 また、ステップ254での判定結果がYESの場合、すなわち、追加報知領域の変更がなされた場合には、報知領域の設定(最小報知領域1101及び追加報知領域1102、又は、追加報知領域1102のみ)を報知領域設定記憶部260に出力して前回設定値として記憶し(ステップ255)、報知領域を再度タッチパネルモニタ15a上に表示させる(ステップ253)。
 報知領域設定記憶部260では、オペレータが設定した各作業モードにおける報知領域を記憶し、作業モードの変更(選択された作業モードの作業内容と異なる作業内容の作業への移行を含む)で報知範囲の切り替わりが生じた際に、前回設定値として出力する。こうした処理を行うことで、頻繁に作業モードが切り替わるような環境下であっても、その都度オペレータが報知範囲を設定し直す手間を低減することが可能となる。
 障害物位置演算部270は、ステレオカメラ13a~13dでそれぞれ取得した2つの画像を基に画像処理を通じて作業員などの障害物の存在を検出し、その位置を算出する。まず、ステレオカメラ13a~13dで取得した画像に対して特徴点の抽出を行い、あらかじめ記憶している学習データに基づき、作業員の検出を行う。次に、検出された作業員などの障害物の画像上の位置を2つの画像から生成した視差画像を基に、ステレオカメラ座標系の3次元座標へと変換する。障害物位置演算部270は、車体座標系上におけるステレオカメラ13a~13dが取り付けられている位置と角度を記憶しており、検出した作業員の位置をステレオカメラ座標系から車体座標系へと変換することで、油圧ショベル1と作業員の相対位置を把握する。なお、本実施例においてはステレオカメラ13a~13dを用いた作業員検出の形態を示したが、作業機械である油圧ショベル1と作業員の相対位置を計測できればよいため、LIDAR(Laser Imaging Detection and Ranging)やGNSS(Global Navigation Satellite System)を用いた構成としても良い。
 報知判定部280は、報知領域決定部250及び障害物位置演算部270からの出力に基づいて、報知領域内に作業員などの障害物が存在するか否かの判定を行い、障害物が存在する場合には、報知装置(例えば、ブザー15b)に対して報知信号の出力を行う。
 以上のように構成した本実施の形態における動作を説明する。
 図12は、作業機械である油圧ショベル1と各作業を行う位置の関係を概略的に示す図である。
 図12において、油圧ショベル1は、駐機地点Aから掘削積み込み作業を行う作業地点Bまで移動して作業を行い、その後、法面整形(均し)作業を行う作業地点Cまで移動して作業を行い、その後、駐機地点Aまで戻るという一連の作業を想定する。
 駐機地点Aから作業地点Bまでの移動では、標準モードにて走行し、移動する。このとき、油圧ショベル1は図14に示すような走行姿勢をとる。走行姿勢時では、油圧ショベル1の右前方が運転室1fからの死角となるため、その領域が最小報知領域として自動的に設定される。このとき、最小報知領域は、例えば、図13に示す最小報知領域1301のように設定される。
 作業地点Bに到着後、オペレータが掘削積み込み操作を行うために作業モードを土量計測モードに設定すると、土量計測モードに適した最小報知領域が決定される。図15は、土量計測モード時の最小報知領域の一例を示したものである。図15においては、最小報知領域1501が設定されている場合を例示している。前述のように、土量計測モードでは、旋回操作が中心となるため、旋回操作時に危険となる領域が最小報知領域として設定されており、オペレータは自ら報知領域設定を行う必要がなく、設定操作の手間を低減することが可能である。
 ここで、作業地点Bでの作業掘削積み込み作業終了後、作業地点Cへ移動する際に、オペレータが作業モードの切り替えを忘れたまま走行操作を開始した場合には、作業フラグがTrueとなるため、最小報知領は標準モード時と同様の最小報知領域に切り替わる。なお、報知領域は報知領域設定記憶部260に前回設定値が記憶されているため、オペレータが事前に標準モード時の報知領域(追加報知領域)を任意に設定していれば、そのときの報知領域設定が反映される。
 作業地点Cに到着後、オペレータが作業モードをMGモードへ切り替えると、最小報知領域がMGモードに適した範囲に自動的に切り替わる。図16は、MGモード時の最小報知領域の一例を示す図である。作業地点Cにおける作業では、右方向へ作業機械を移動させながら均し作業を繰り返し行う。そのため、オペレータは図17のように右方向に対する報知領域(すなわち、追加報知領域)を広く設定し、作業を行う。このように、予定している作業における報知領域の設定が最小報知領域だけでは十分でない場合は、オペレータが任意に追加報知領域を設定し、作業を行う。
 作業地点Cにおける作業終了後、オペレータは作業モードを標準モードへと切替え、駐機地点Aまで走行操作を行う。
 このように、オペレータは作業モードの切り替えのみで、基本的な作業内容に適した報知領域を設定することができ、さらに広範囲の報知領域が必要であると判断した場合のみ、最小報知領域に対して任意に追加報知領域を設定することによって報知領域を設定するといった運用となるため、オペレータが行う設定の手間を低減することが可能である。
 以上のように構成した本実施の形態においては、作業モードごとに最小報知領域を規定するとともに、作業機械である油圧ショベル1において選択されている作業モードに適した最小報知領域へと自動的に切替えるので、オペレータが作業ごとに報知領域を設定し直す手間を低減することができる。
 以上のように構成した本実施の形態の特徴についてまとめる。
 (1)上記においては、車両本体1Bと、車両本体1Bに取り付けられたフロント作業装置1A(作業機)と、フロント作業装置1Aを駆動するための操作信号を検出するパイロット圧センサ9a~9b(操作信号検出装置)と、車両本体1Bとフロント作業装置1Aとを有する油圧ショベル1(作業機械)の周囲に存在する障害物を検出し、検出された障害物の油圧ショベル1に対する相対位置を算出する障害物位置演算部270を有する情報処理コントローラ200(制御装置)とを備えた油圧ショベル1において、油圧ショベル1は、油圧ショベル1の作業モードを選択するモード選択装置16aを備え、情報処理コントローラ200は、パイロット圧センサ9a~9bの検出結果に基づいて、油圧ショベル1の作業内容がモード選択装置16aで選択された作業モードの作業内容と異なる作業内容の作業が実施されているかどうかを判定する作業判定部230と、モード選択装置16aの選択結果と作業判定部230の判定結果とに基づいて油圧ショベル1の周辺に予め設定された複数の最小報知領域から1つを決定する最小報知領域決定部240と、障害物位置演算部270で算出された障害物の油圧ショベル1に対する相対位置が、最小報知領域決定部240で決定された最小報知領域を含むように設定された報知領域の内側である場合に報知信号をブザー15b(報知装置)に出力する報知判定部280とを有するものとした。
 このような構成により、オペレータの負担増大を抑制することにより、作業機械の周囲に存在する障害物に関して過不足の無い適切な制御を行いつつ、作業効率の低下を抑制することができる。
 (2)上記(1)の作業機械において、最小報知領域決定部240で決定された最小報知領域を含む任意の領域を報知領域としてオペレータが決定する報知領域決定部250を備えるものとした。
 これにより、予定している作業における報知領域の設定が最小報知領域だけでは十分でない場合にオペレータが任意に追加報知領域を設定することができるので、より作業内容に適した障害物検知の報知が可能となる。
 (3)上記(2)の作業機械において、報知領域決定部250で決定された報知領域を最小報知領域ごとに記憶する報知領域設定記憶部260を備え、報知領域決定部250は、最小報知領域決定部240で決定された最小報知領域に基づいて、報知領域設定記憶部260から報知領域を読み出すものとした。
 (4)上記(1)の作業機械において、油圧ショベル1の姿勢情報を取得する角度センサ8a~8b(機械姿勢取得装置)と、角度センサ8a~8bで取得した姿勢情報に基づいて、油圧ショベル1におけるオペレータの視界特性を演算する視界特性演算部210とを備え、最小報知領域決定部240は、視界特性演算部210で演算された油圧ショベル1の視界特性に基づいて、複数の最小報知領域をそれぞれ設定するものとした。
 これにより、オペレータの視界や油圧ショベル1の作業内容に基づいて、より適切な最小報知領域を設定することができるので、より作業内容に適した障害物検知の報知が可能となる。
 <その他>
 なお、本発明は、上記の実施の形態に限定されるものではなく、その要旨を逸脱しない範囲内の様々な変形例が含まれる。例えば、本発明は、上記の実施の形態で説明した全ての構成を備えるものに限定されず、その構成の一部を削除したものも含まれる。また、ある実施の形態に係る構成の一部を、他の実施の形態に係る構成に追加又は置換することが可能である。
 また、上記では油圧ショベルを例に挙げて説明したが、運転室からのオペレータの視界を遮る可能性のある作業装置を備える作業機械(例えば、ホイールローダ、クレーン)であれば本発明は適用可能である。
 また、上記の情報処理コントローラ(制御装置)200に係る各構成や当該各構成の機能及び実行処理等は、それらの一部又は全部をハードウェア(例えば各機能を実行するロジックを集積回路で設計する等)で実現しても良い。また、上記の情報処理コントローラ200に係る構成は、演算処理装置(例えばCPU)によって読み出し・実行されることで当該情報処理コントローラ200の構成に係る各機能が実現されるプログラム(ソフトウェア)としてもよい。当該プログラムに係る情報は、例えば、半導体メモリ(フラッシュメモリ、SSD等)、磁気記憶装置(ハードディスクドライブ等)及び記録媒体(磁気ディスク、光ディスク等)等に記憶することができる。
 また、上記の各実施の形態の説明では、制御線や情報線は、当該実施の形態の説明に必要であると解されるものを示したが、必ずしも製品に係る全ての制御線や情報線を示しているとは限らない。実際には殆ど全ての構成が相互に接続されていると考えて良い。
 1…油圧ショベル、1a…ブーム、1A…フロント作業装置、1b…アーム、1B…車両本体、1c…バケット、1d…上部旋回体、1e…下部走行体、1f…運転室、3a…ブームシリンダ、3b…アームシリンダ、3c…バケットシリンダ、3e…走行油圧モータ、8a~8d…角度センサ、9a~9d…パイロット圧センサ、13a~13d…ステレオカメラ、15a…タッチパネルモニタ、15b…ブザー、16a…モード選択装置、200…情報処理コントローラ(制御装置)、210…視界特性演算部、211…フロント形状データ、220…動特性演算部、226…基本特性データ、230…作業判定部、240…最小報知領域決定部、250…報知領域決定部、260…報知領域設定記憶部、260A…記憶部、261…情報記憶部、270…障害物位置演算部、280…報知判定部、401…直接視界領域、402…間接視界領域、403…死角領域、505…基本動特性データ、900~903…領域、1101…最小報知領域、1102…追加報知領域、1103…可変点、1301,1501…最小報知領域

Claims (4)

  1.  車両本体と、
     前記車両本体に取り付けられた作業機と、
     前記作業機を駆動するための操作信号を検出する操作信号検出装置と、
     前記車両本体と前記作業機とを有する作業機械の周囲に存在する障害物を検出し、検出された前記障害物の前記作業機械に対する相対位置を算出する障害物位置演算部を有する制御装置とを備えた作業機械において、
     前記作業機械は、前記作業機械の作業モードを選択する作業モード選択装置を備え、
     前記制御装置は、
     前記操作信号検出装置の検出結果に基づいて、前記作業機械の作業内容が前記作業モード選択装置で選択された作業モードの作業内容とは異なる作業内容の作業が実施されているかどうかを判定する作業判定部と、
     前記作業モード選択装置の選択結果と前記作業判定部の判定結果とに基づいて前記作業機械の周辺に予め設定された複数の最小報知領域から1つを選択する最小報知領域決定部と、
     前記障害物位置演算部で算出された前記障害物の前記作業機械に対する相対位置が、前記最小報知領域決定部で決定された最小報知領域を含むように設定された報知領域の内側である場合に報知信号を報知装置に出力する報知判定部と
    を有することを特徴とする作業機械。
  2.  請求項1に記載の作業機械において、
     前記最小報知領域決定部で決定された最小報知領域を含む任意の領域を前記報知領域としてオペレータが決定する報知領域決定部を備えたことを特徴とする作業機械。
  3.  請求項2に記載の作業機械において、
     前記報知領域決定部で決定された前記報知領域を前記最小報知領域ごとに記憶する報知領域設定記憶部を備え、
     前記報知領域決定部は、前記最小報知領域決定部で決定された前記最小報知領域に基づいて、前記報知領域設定記憶部から前記報知領域を読み出すことを特徴とする作業機械。
  4.  請求項1に記載の作業機械において、
     前記作業機械の姿勢情報を取得する機械姿勢取得装置と、
     前記機械姿勢取得装置で取得した姿勢情報に基づいて、前記作業機械におけるオペレータの視界特性を演算する視界特性演算部とを備え、
     前記最小報知領域決定部は、前記視界特性演算部で演算された前記作業機械の視界特性に基づいて、前記複数の最小報知領域をそれぞれ設定することを特徴とする作業機械。
PCT/JP2018/010084 2018-03-14 2018-03-14 作業機械 WO2019176036A1 (ja)

Priority Applications (6)

Application Number Priority Date Filing Date Title
EP18905890.2A EP3572590B1 (en) 2018-03-14 2018-03-14 Work machine
PCT/JP2018/010084 WO2019176036A1 (ja) 2018-03-14 2018-03-14 作業機械
KR1020197024293A KR102243677B1 (ko) 2018-03-14 2018-03-14 작업 기계
CN201880013759.XA CN110494613B (zh) 2018-03-14 2018-03-14 工作机械
US16/486,915 US11225777B2 (en) 2018-03-14 2018-03-14 Work machine
JP2019546416A JP6734485B2 (ja) 2018-03-14 2018-03-14 作業機械

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/JP2018/010084 WO2019176036A1 (ja) 2018-03-14 2018-03-14 作業機械

Publications (1)

Publication Number Publication Date
WO2019176036A1 true WO2019176036A1 (ja) 2019-09-19

Family

ID=67906495

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2018/010084 WO2019176036A1 (ja) 2018-03-14 2018-03-14 作業機械

Country Status (6)

Country Link
US (1) US11225777B2 (ja)
EP (1) EP3572590B1 (ja)
JP (1) JP6734485B2 (ja)
KR (1) KR102243677B1 (ja)
CN (1) CN110494613B (ja)
WO (1) WO2019176036A1 (ja)

Families Citing this family (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP7123573B2 (ja) * 2018-02-28 2022-08-23 株式会社小松製作所 周辺監視装置、作業機械、周辺監視の制御方法及び表示装置
JP7141843B2 (ja) * 2018-03-30 2022-09-26 株式会社小松製作所 作業機械の制御装置及び作業機械の制御方法
JP7188940B2 (ja) * 2018-08-31 2022-12-13 株式会社小松製作所 制御装置、積込機械、および制御方法
JP7239291B2 (ja) * 2018-09-28 2023-03-14 株式会社小松製作所 作業車両の周辺監視システム及び作業車両の周辺監視方法
KR102708735B1 (ko) * 2018-11-19 2024-09-20 스미토모 겐키 가부시키가이샤 쇼벨, 쇼벨의 제어장치
JP7318258B2 (ja) * 2019-03-26 2023-08-01 コベルコ建機株式会社 遠隔操作システムおよび遠隔操作サーバ
JP7287821B2 (ja) * 2019-04-04 2023-06-06 株式会社小松製作所 作業機制御装置、作業車両、および作業機制御方法
EP3722522B1 (en) * 2019-04-11 2024-03-27 Mitsubishi Logisnext Co., Ltd. Control device, control method, and program
EP3865895A1 (en) 2020-02-17 2021-08-18 Leica Geosystems Technology A/S Construction machine with measuring system and construction site measuring system
US11898331B2 (en) * 2020-12-02 2024-02-13 Caterpillar Sarl System and method for detecting objects within a working area
CN113931251A (zh) * 2021-10-22 2022-01-14 徐州徐工挖掘机械有限公司 一种挖掘机视频辅助系统及其控制方法
US20240011244A1 (en) * 2022-07-05 2024-01-11 Caterpillar Inc. Systems and methods for collision avoidance for shape changing machines

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2003105807A (ja) 2001-09-27 2003-04-09 Komatsu Ltd 作業車両の侵入禁止領域での停止制御方法及びその制御装置
JP2010198519A (ja) * 2009-02-27 2010-09-09 Hitachi Constr Mach Co Ltd 周囲監視装置
WO2011158955A1 (ja) * 2010-06-18 2011-12-22 日立建機株式会社 作業機械の周囲監視装置
WO2012053105A1 (ja) * 2010-10-22 2012-04-26 日立建機株式会社 作業機械の周辺監視装置
JP2014215039A (ja) * 2013-04-22 2014-11-17 日立建機株式会社 建設機械
WO2016174754A1 (ja) * 2015-04-28 2016-11-03 株式会社小松製作所 作業機械の周辺監視装置及び作業機械の周辺監視方法
JP2016211149A (ja) * 2015-04-29 2016-12-15 日立建機株式会社 建設機械

Family Cites Families (15)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3155722B2 (ja) * 1997-03-06 2001-04-16 住友建機株式会社 建設機械のエンジン及び油圧ポンプ制御装置
JP2006257724A (ja) * 2005-03-16 2006-09-28 Hitachi Constr Mach Co Ltd 作業機械の安全装置
JP5269026B2 (ja) * 2010-09-29 2013-08-21 日立建機株式会社 作業機械の周囲監視装置
AU2012268476B2 (en) * 2011-06-07 2014-05-15 Komatsu Ltd. Perimeter monitoring device for work vehicle
JP5124672B2 (ja) * 2011-06-07 2013-01-23 株式会社小松製作所 作業車両の周辺監視装置
JP5722127B2 (ja) * 2011-06-07 2015-05-20 株式会社小松製作所 作業車両の周辺監視装置
JP5667594B2 (ja) * 2012-03-15 2015-02-12 株式会社小松製作所 障害物検出機構付きダンプトラックおよびその障害物検出方法
JP5456123B1 (ja) * 2012-09-20 2014-03-26 株式会社小松製作所 作業車両用周辺監視システム及び作業車両
JP5529943B2 (ja) * 2012-09-21 2014-06-25 株式会社小松製作所 作業車両用周辺監視システム及び作業車両
US9556583B2 (en) * 2012-09-25 2017-01-31 Volvo Construction Equipment Ab Automatic grading system for construction machine and method for controlling the same
KR102123127B1 (ko) * 2013-12-06 2020-06-15 두산인프라코어 주식회사 화면모드 선택 장치 및 방법
JP6267972B2 (ja) * 2014-01-23 2018-01-24 日立建機株式会社 作業機械の周囲監視装置
DE112015000190B4 (de) * 2015-12-18 2021-06-17 Komatsu Ltd. Baukonstruktionsinformationsanzeigevorrichtung und Verfahren zum Anzeigen von Baukonstruktionsinformationen
JP6391656B2 (ja) * 2016-11-29 2018-09-19 住友重機械工業株式会社 作業機械用周辺監視装置及び作業機械
JP6581139B2 (ja) * 2017-03-31 2019-09-25 日立建機株式会社 作業機械の周囲監視装置

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2003105807A (ja) 2001-09-27 2003-04-09 Komatsu Ltd 作業車両の侵入禁止領域での停止制御方法及びその制御装置
JP2010198519A (ja) * 2009-02-27 2010-09-09 Hitachi Constr Mach Co Ltd 周囲監視装置
WO2011158955A1 (ja) * 2010-06-18 2011-12-22 日立建機株式会社 作業機械の周囲監視装置
WO2012053105A1 (ja) * 2010-10-22 2012-04-26 日立建機株式会社 作業機械の周辺監視装置
JP2014215039A (ja) * 2013-04-22 2014-11-17 日立建機株式会社 建設機械
WO2016174754A1 (ja) * 2015-04-28 2016-11-03 株式会社小松製作所 作業機械の周辺監視装置及び作業機械の周辺監視方法
JP2016211149A (ja) * 2015-04-29 2016-12-15 日立建機株式会社 建設機械

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP3572590A4

Also Published As

Publication number Publication date
KR102243677B1 (ko) 2021-04-23
EP3572590A4 (en) 2020-12-09
KR20190109472A (ko) 2019-09-25
CN110494613A (zh) 2019-11-22
CN110494613B (zh) 2022-03-08
US11225777B2 (en) 2022-01-18
JPWO2019176036A1 (ja) 2020-04-16
JP6734485B2 (ja) 2020-08-05
EP3572590A1 (en) 2019-11-27
EP3572590B1 (en) 2022-02-09
US20200277757A1 (en) 2020-09-03

Similar Documents

Publication Publication Date Title
WO2019176036A1 (ja) 作業機械
JP7058569B2 (ja) 作業機械
CN109689983B (zh) 工程机械的周围监视装置
EP3919688B1 (en) Work machinery
AU2011242919B2 (en) Integrated object detection and warning system
JP6886258B2 (ja) ホイールローダおよびホイールローダの制御方法
JP6703942B2 (ja) 作業車両の制御システム、制御方法、及び作業車両
JP6757759B2 (ja) 作業車両
JP7450083B2 (ja) 周辺監視システム及び周辺監視方法
US11898331B2 (en) System and method for detecting objects within a working area
US10793166B1 (en) Method and system for providing object detection warning
EP4012116A1 (en) Construction machine
US20210363732A1 (en) System and method for selectively displaying image data in a working machine
US20240011251A1 (en) Work machine
JP6581519B2 (ja) 建設機械の周囲障害物検知システム
KR102682768B1 (ko) 건설장비의 후방안전시스템
WO2022091838A1 (ja) 安全評価システムおよび安全評価方法
CN114402111B (zh) 侵入监视控制系统以及作业机械
US20240011244A1 (en) Systems and methods for collision avoidance for shape changing machines
US20230151583A1 (en) Collision avoidance system and method for avoiding collision of work machine with obstacles

Legal Events

Date Code Title Description
ENP Entry into the national phase

Ref document number: 20197024293

Country of ref document: KR

Kind code of ref document: A

ENP Entry into the national phase

Ref document number: 2019546416

Country of ref document: JP

Kind code of ref document: A

ENP Entry into the national phase

Ref document number: 2018905890

Country of ref document: EP

Effective date: 20190819

NENP Non-entry into the national phase

Ref country code: DE