WO2019174109A1 - 纳米碳微粒子的制造方法 - Google Patents

纳米碳微粒子的制造方法 Download PDF

Info

Publication number
WO2019174109A1
WO2019174109A1 PCT/CN2018/084495 CN2018084495W WO2019174109A1 WO 2019174109 A1 WO2019174109 A1 WO 2019174109A1 CN 2018084495 W CN2018084495 W CN 2018084495W WO 2019174109 A1 WO2019174109 A1 WO 2019174109A1
Authority
WO
WIPO (PCT)
Prior art keywords
lignin
carbon
carbide
carbon microparticles
fine particles
Prior art date
Application number
PCT/CN2018/084495
Other languages
English (en)
French (fr)
Inventor
伍鹏
蔡艳婷
Original Assignee
伍鹏
蔡艳婷
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 伍鹏, 蔡艳婷 filed Critical 伍鹏
Priority to US16/614,875 priority Critical patent/US11261094B2/en
Priority to EP18910187.6A priority patent/EP3680215B1/en
Publication of WO2019174109A1 publication Critical patent/WO2019174109A1/zh

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B32/00Carbon; Compounds thereof
    • C01B32/90Carbides
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08HDERIVATIVES OF NATURAL MACROMOLECULAR COMPOUNDS
    • C08H6/00Macromolecular compounds derived from lignin, e.g. tannins, humic acids
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B82NANOTECHNOLOGY
    • B82YSPECIFIC USES OR APPLICATIONS OF NANOSTRUCTURES; MEASUREMENT OR ANALYSIS OF NANOSTRUCTURES; MANUFACTURE OR TREATMENT OF NANOSTRUCTURES
    • B82Y40/00Manufacture or treatment of nanostructures
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B32/00Carbon; Compounds thereof
    • C01B32/05Preparation or purification of carbon not covered by groups C01B32/15, C01B32/20, C01B32/25, C01B32/30
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B32/00Carbon; Compounds thereof
    • C01B32/15Nano-sized carbon materials
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L97/00Compositions of lignin-containing materials
    • C08L97/005Lignin
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01PINDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
    • C01P2004/00Particle morphology
    • C01P2004/01Particle morphology depicted by an image
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01PINDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
    • C01P2004/00Particle morphology
    • C01P2004/60Particles characterised by their size
    • C01P2004/61Micrometer sized, i.e. from 1-100 micrometer
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01PINDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
    • C01P2004/00Particle morphology
    • C01P2004/60Particles characterised by their size
    • C01P2004/62Submicrometer sized, i.e. from 0.1-1 micrometer
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01PINDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
    • C01P2004/00Particle morphology
    • C01P2004/60Particles characterised by their size
    • C01P2004/64Nanometer sized, i.e. from 1-100 nanometer

Definitions

  • the invention relates to the technical field of manufacturing nano carbon microparticles, and uses the malvaceae plant as a raw material to produce carbon microparticles by a specific processing and separation method, in particular, a method for producing carbon microparticles.
  • the raw material of carbon microbes is a family of mallows. According to the structure of flowers and fruits, the family is divided into the mallow family, the Brahma flower family and the Mudu family. The family is about 50 genera. 1000 species, distributed in the tropics to the temperate zone. There are 16 genera in China, with 81 species and 36 varieties or variants. They are produced throughout the country and are widely used in tropical and subtropical regions.
  • Malvaceae plants are widely known for many uses such as hemp rope, paper making, and heat preservation. It has low requirements on growing soil quality and can be planted in large quantities only with good sunshine. It is a plant resource that can be used in a large amount and is not used as an food material by animals.
  • Malvaceae plants are known for their richness in fiber, such as cotton is the most important raw material in the textile industry worldwide.
  • the morphological traits of Malvaceae are similar to those of Tiliales, which is a type of eucalyptus that has been fixed.
  • the hibiscus in the Malvaceae is an annual herbaceous bast fiber crop, which can be used anywhere. As a raw material.
  • lignin and black by-products are produced in the pulp manufacturing process, and these black liquids are generally discarded as waste, and in the present invention, The lignin-containing black liquid is effectively recycled.
  • the application publication number is CN 102910613A, and a method for preparing highly dispersed nano carbon particles is disclosed, which is characterized by the following steps: (1) at 60-65 Add a solution containing 5-10 mmol of cationic surfactant to a suspension containing 10 g of bentonite in a water bath at °C to make the concentration of the surfactant solution 1 to 4 mol/L, and continuously stir and add dropwise during the dropwise addition.
  • the hydrofluoric acid solution having a concentration of 20-40% is stirred for 2 to 3 hours, and the solid and liquid are separated, and the separated solid is added to 10 to 15 mL of a hydrochloric acid solution having a concentration of 20 to 40%; (4) solid-liquid separation, It is washed with deionized water and dried at 60-70 ° C for 5-6 h to obtain nano carbon particles.
  • This method uses a tube furnace to carbonize the powder under the protection of an inert gas, which has the disadvantage of a small amount of carbon particles formed in a single time, and different surfactants have limitations on the diameter of the carbon particles formed.
  • Step 1 Cleaning the water hyacinth; Step 2 Air-dried water hyacinth; Step 3, drying water hyacinth; Step 4, pulverizing and drying the water hyacinth, and screening; Step 5, preparing sludge, so that the sludge water content is 65%-75%; Step 6, mixing step 5 The sludge prepared in step and the water hyacinth powder prepared in step 4; step 7, the mixture is made into granular sludge; step 8, pyrolysis reaction of the sludge particles into biochar particles; step 9, soaking the organism with dilute hydrochloric acid Carbon particles; Step 10, washing the biochar particles with deionized water to neutral; Step 11, baking the biochar particles.
  • the method actually prepares larger biochar particles from water hyacinth and sludge, and cannot prepare nano-
  • the object of the present invention is to solve the problem of producing high-purity lignin by using the Malvaceae plant as a raw material, and to manufacture a high-purity carbon microparticle based on the method, thereby overcoming the deficiencies in the prior art.
  • the method for manufacturing the nano carbon microparticles comprising:
  • Step 1 Digesting the Malvaceae plants to produce a solution containing lignin
  • Step two extracting lignin aggregates from the solution containing lignin, and then removing the salt in the lignin aggregate to form a lignin content;
  • Step 3 carbonizing the lignin content to form a carbide
  • Step 4 crushing the carbide
  • Step 5 High-frequency heat treatment of the pulverized carbide to obtain carbon microparticles.
  • the present invention further comprises a step 6 in which the carbon microparticles are again pulverized under the condition that the size of the carbon microparticles obtained in the step 5 is required to be finer, so that the carbon microparticles are subjected to nano-fine pulverization treatment.
  • the Malvaceae plant is stirred and heated in an alkaline solution at 15 to 120 ° C for 4 to 96 hours.
  • the second step comprises adding an acidic substance to the solution containing lignin to adjust the pH value, adding a coagulating agent to extract the lignin aggregate, and then drying, washing, drying, etc. the extracted lignin aggregate. Manufacturing process.
  • the carbonization is required to be heated to 110 to 950 ° C in an inert or inert gas atmosphere.
  • the average particle size of the carbide is pulverized to 5 to 50 um.
  • the carbon fine particles are repulverized in a medium such as a liquid or a gas.
  • the present invention has the following advantageous effects: the high-purity carbon microparticles obtained by the present invention have excellent properties in many aspects such as conductivity, abrasion resistance, heat resistance, corrosion resistance, etc.; Electromagnetic sealing materials, wear-resistant materials, heating elements, heat-resistant materials, and corrosion-resistant materials are widely used; in the synthetic lubricating oil with high chemical stability, carbon microparticles can be dispersed at a high concentration, and the carbon microparticles are dispersed.
  • the role of the lubricant additive is to add significant amounts of carbon particles to the existing engine oil to provide significant lubrication to the engine oil.
  • FIG. 1 is a process flow diagram of a method for producing nanocarbon fine particles of the present invention.
  • the method for producing the nano carbon microparticles comprises the steps of: S1, distilling a maltaceae plant to produce a solution containing lignin; S2, extracting lignin aggregates from a solution containing lignin, and then extracting the lignin aggregates
  • the salt is removed to form a lignin content; S3, the lignin content is carbonized to form a carbide; S4, the carbide is pulverized; and S5, the pulverized carbide is subjected to high-frequency heat treatment to obtain carbon fine particles.
  • S6 If the size of the carbon microparticles is required to be finer, the obtained carbon microparticles are pulverized again, so that the carbon microparticles are subjected to nanofine refining treatment.
  • the raw material of the Malvaceae plant used in the present invention can be used as a plant after harvesting or a plant after drying, and there is no limitation on the size, as long as it can be placed in a working tank for full evaporation, if necessary, placed in a tank. It can be cut into smaller and smaller sizes before.
  • the step S1 includes a step of hydrolyzing the Malvaceae plant and a step of taking a solution containing lignin.
  • the evaporation tank used in the steaming process is made of a metal material, and the solution used for isolating and filtering the solid malvaceae plants and the steaming solution through the mesh, soaking the steamed material during the steaming, and the objects in the tank are stirred by the jig Stir.
  • the raw material of the Malvaceae plant is put into the inner tank, so that the raw material can be submerged into the liquid composed of the solution and the medicament, and then heated to a certain temperature for stirring, so that the raw material is slowly evaporated, and after the distillation is completed, two can be obtained.
  • a substance one is a mallow plant material that has been distilled, and the other is a black liquid containing lignin produced after evaporation.
  • the agent for digesting may use a solid or liquid dissolved substance dissolved in water, and the concentration of the agent to be used is appropriately adjusted according to the type of the agent, and the general concentration is controlled at 2 to 50%, and the concentration is less than 2%.
  • the efficiency will be relatively low, and higher than 50% concentration will lead to the modulation and cleaning work of the subsequent process become larger, and the impurities are too much, resulting in waste of the subsequent process, such as the amount of the nitrate solution, according to the agent
  • the type is appropriately adjusted. If the concentration is too low, the efficiency will be relatively low, and if the concentration is too high, the modulation and cleaning workload of subsequent projects will become large, resulting in waste of the subsequent process.
  • the recovered black liquid is recovered and used as a digested solution, and then the distilling step is repeated, and the reciprocating use is repeated one or more times.
  • the number of times of repeated use is such that the black liquid is relatively saturated, and the solution supersaturation affects the evaporation efficiency. When the concentration is too saturated, it is necessary to replace the solution and the reagent, and then repeat the distillation process.
  • the distillation step is required to be carried out at a temperature of 15 to 180 ° C for 1 hour or longer.
  • the distillation temperature is less than 15 ° C and the distillation time is less than 1 hour, the liquefaction content of the lignin is not good, and the distillation temperature is over 180 ° C and the evaporation time is too long, resulting in a decrease in the distillation efficiency.
  • the solid substance mainly composed of cellulose and the black liquid whose main component is lignin are separated, and the present invention uses the black liquid whose main component is lignin to produce carbon microparticles, and A solid substance containing cellulose as a main component can be used for other purposes, such as fiber production.
  • the step S2 includes the steps of adding an acid for adjusting the pH, adding a coagulant, extracting a substance containing lignin, drying, washing with water, and drying.
  • the aggregating agent used herein may be a polymer aggregating agent or an inorganic aggregating agent.
  • the step S3 includes a step of carbonizing the lignin-containing material after salt removal, the carbonization step is carried out in a carbonization furnace, and the carbonization furnace is a rotary high-temperature baking furnace.
  • the impurities such as salt are removed, and the dried lignin content is placed in a rotary high-temperature firing furnace (non-combustible container), and carbonized at 110 to 950 ° C to remove organic matter.
  • Step S4 in the method for producing carbon microparticles of the present invention is a step of pulverizing carbides, which includes rough processing of carbide pulverization, that is, a coarse crushing treatment step, and finishing of carbide pulverization, that is, a fine pulverization step.
  • carbide coarse crushing treatment step is performed, the average particle size diameter of the coarse pulverization machine is 0.02 to 1 mm, and the coarse pulverization machine can select a drum type pulverizer, an impact pulverizer, or a knife-cut type pulverizer.
  • the pulverized material after the coarse crushing is further subjected to fine pulverization processing so that the average particle size diameter reaches 10 to 40 um, and the pulverizer in the fine pulverization step uses a high-pressure gas turbine pulverizer to cause the particles to collide with each other to achieve the pulverization purpose.
  • a pulverizer does not have the addition of other kinds of media, which ensures the purity of the material.
  • step S5 of the method for producing carbon microparticles of the present invention an ion heating device is used, and a plasma gas is charged into a cavity of the ion heating device to generate plasma after being energized; first, the pulverized carbide is introduced into the cavity and discharged. The carbide is heated to 2000 ° C to 10000 ° C so that the carbide is sublimated by heating, followed by cooling and solidification, thereby obtaining carbon fine particles. Since the lignin content in the step S3 is not necessarily sufficiently carbonized, and the carbide pulverized in the step S5 is subjected to plasma heat treatment, the lignin content which is not sufficiently carbonized can be sufficiently carbonized, and thus can be obtained. Carbon particles with a higher degree of carbonization.
  • the carbon fine particles generated in step S5 are repulverized in step S6 to obtain nano fine grinding treatment of the carbon fine particles, and preferably, the extracted carbon fine particles are obtained. It is pulverized again in a pulverizer to have an average particle diameter of 5 to 500 nm or a finer 5 to 400 nm.
  • the carbon microparticles are sufficiently sized to be nano-sized in size, so that the generated nano-scale carbon microparticles can be stably and stably dispersed in the liquid to reach the fine gaps of the liquid molecules. The effect of fusion and diffusion with liquid.
  • the pulverizer In order to pulverize the carbon microparticles to the extent of the nanoparticles, the pulverizer needs to have a pulverizing ability capable of reducing the carbon microparticles to a size of 5 to 500 nm.
  • the pulverizer can select a pulverizer driven by a star gear.
  • the step of pulverizing again may be carried out in a state where the carbon fine particles are dispersed in the liquid, or may be carried out in a vacuum or a gas atmosphere.
  • the carbon microparticles extracted by the present invention are composed of amorphous (amorphous) carbon, and the structure of the carbon microparticles can be confirmed by an electron microscope or a Raman spectrometer.
  • Carbon microparticles are extracted from the raw material of the Malvaceae plant by a series of processes described below.
  • S1 The plant is treated with a medicament to evaporate the Malvaceae plant to produce a lignin-containing solution.
  • the steaming tank is made of temperature-resistant steel, and can be carbon steel or stainless steel.
  • the mesh structure is used to isolate and filter the solution of the malvaceae plant and the steaming solution.
  • the steaming tank is also equipped with a stirring component.
  • the solution to which the evaporating agent is added is injected into the decontamination tank, and the raw material of the malvaceae plant within 50kg is placed, and the raw material of the malvaceae plant is cut into small pieces, and the mallow plant is soaked into the solution to be evaporated.
  • the tank is heated to a temperature between 20 ° C and 30 ° C, and continuously stirred for more than 1 hour.
  • the malvaceae plants in the inner tank are taken out, packaged separately, and refilled with less than 50 kg of new Malvaceae plant raw materials.
  • the pieces were slurried to a distillation tank, and the mixture was subjected to a distillation treatment at a temperature 5 ° C higher than the previous distillation temperature, so that the resulting solution appeared black and stopped.
  • the black solution containing lignin (referred to as “black liquor") is stirred, and then the acidic solvent is added until the pH falls below 6, and then an appropriate amount of aggregating agent is added.
  • the amount of the aggregating agent is not limited, so that it can be in the black liquor.
  • the surface produces agglomerated solid matter and these agglomerated solid materials are easily collected, and then the collected lignin aggregates are placed in a container, and then extruded to extrude the water, and then the water is removed.
  • the lignin aggregates were compressed into a block, left to dry for several days, and the dried lignin aggregates were washed with water and then blown dry again.
  • S3 a carbonization step of removing the lignin content after the salt.
  • the dried lignin-containing solid matter is placed in a metal vessel and then placed in a carbonization furnace.
  • An inert gas is supplied to the carbonization furnace, heated to 180 ° C, and the organic component therein is removed, and then the carbonization furnace is cooled, the supply of gas is stopped, and then the carbide is taken out.
  • the obtained carbonized solid material was placed in a pulverizer for coarse pulverization, and the carbide particles were coarsely pulverized to a state of coarse particles having an average diameter of 1 mm or less, and then placed in a nanopulverizer, and pulverization was continued until the average diameter was 40 ⁇ m or less.
  • S5 a step of heat-treating the pulverized carbide to obtain carbon fine particles.
  • An inert gas is introduced into the cavity of the high-frequency heating device to generate plasma, and then the pulverized carbide is introduced into the cavity of the high-frequency heating device, and is heated to 2000 ° C by discharge, so that the carbon microparticles are thermally decomposed, and then It is solidified by cooling to obtain carbon microparticles.
  • S6 a step of re-pulverizing the obtained carbon fine particles and subjecting the carbon fine particles to a nano fine grinding step.
  • the carbon microparticles after the high-frequency heat treatment are placed in a nanopulver to perform nano-fine pulverization processing, and the carbon microparticles may be melted in a liquid medium and then transferred to a nanopulverizer for nano-fine pulverization processing.
  • the structure of the finally obtained carbon microparticles was confirmed by an electron microscope or a Raman spectrometer, and the average diameter was between 20 and 500 nm.
  • Carbon microparticles are extracted from the raw material of the Malvaceae plant by a series of processes described below.
  • S1 The plant is treated with a medicament to evaporate the Malvaceae plant to produce a lignin-containing solution.
  • the steaming tank is made of temperature-resistant steel, and can be carbon steel or stainless steel.
  • the mesh structure is used to isolate and filter the solution of the malvaceae plant and the steaming solution.
  • the steaming tank is also equipped with a stirring component.
  • the solution to which the evaporating agent is added is injected into the decontamination tank, and the raw material of the malvaceae plant within 50kg is placed, and the raw material of the malvaceae plant is cut into small pieces, and the mallow plant is soaked into the solution to be evaporated.
  • the tank is heated to a temperature between 150 ° C and 160 ° C, and continuously stirred for more than 1 hour.
  • the malvaceae plants in the inner tank are taken out, packaged separately, and refilled with less than 50 kg of new Malvaceae plant raw materials.
  • the pieces were slurried to a distillation tank, and the mixture was subjected to a distillation treatment at a temperature 5 ° C higher than the previous distillation temperature, so that the resulting solution appeared black and stopped.
  • the black solution containing lignin (referred to as “black liquor") is stirred, and then the acidic solvent is added until the pH falls below 6, and then an appropriate amount of aggregating agent is added.
  • the amount of the aggregating agent is not limited, so that it can be in the black liquor.
  • the surface produces agglomerated solid matter and these agglomerated solid materials are easily collected, and then the collected lignin aggregates are placed in a container, and then extruded to extrude the water, and then the water is removed.
  • the lignin aggregates were compressed into a block, left to dry for several days, and the dried lignin aggregates were washed with water and then blown dry again.
  • S3 a carbonization step of removing the lignin content after the salt.
  • the dried lignin-containing solid matter is placed in a metal vessel and then placed in a carbonization furnace.
  • An inert gas was supplied to the carbonization furnace, heated to 900 ° C, and the organic component was removed, and then the carbonization furnace was cooled, the supply of gas was stopped, and then the carbide was taken out.
  • the obtained carbonized solid matter was placed in a pulverizer for coarse pulverization, and the carbide particles were coarsely pulverized to a state of coarse particles having an average diameter of 1 mm or less, and then placed in a nanopulverizer to continue pulverization to a state in which the average diameter was 40 ⁇ m or less.
  • S5 a step of heat-treating the pulverized carbide to obtain carbon fine particles.
  • An inert gas is introduced into the cavity of the high-frequency heating device to generate plasma, and then the pulverized carbide is introduced into the cavity of the high-frequency heating device, and is heated to 10000 ° C by discharge, so that the carbon microparticles are thermally decomposed, and then It is solidified by cooling to obtain carbon microparticles.
  • S6 a step of re-pulverizing the obtained carbon fine particles and subjecting the carbon fine particles to a nano fine grinding step.
  • the carbon microparticles after the high-frequency heat treatment are placed in a nanopulver to perform nano-fine pulverization processing, and the carbon microparticles may be melted in a liquid medium and then transferred to a nanopulverizer for nano-fine pulverization processing.
  • the structure of the finally obtained carbon microparticles was confirmed by an electron microscope or a Raman spectrometer, and the average diameter thereof was between 5 and 400 nm.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Engineering & Computer Science (AREA)
  • Inorganic Chemistry (AREA)
  • Materials Engineering (AREA)
  • Nanotechnology (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Health & Medical Sciences (AREA)
  • Medicinal Chemistry (AREA)
  • Polymers & Plastics (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • General Physics & Mathematics (AREA)
  • Manufacturing & Machinery (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Physics & Mathematics (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Biochemistry (AREA)
  • Carbon And Carbon Compounds (AREA)

Abstract

提供一种纳米碳微粒子的制造方法,其特征在于,包括:步骤一:对锦葵科植物进行蒸解、产生含有木质素的溶液;步骤二:从含有木质素的溶液中提取木质素凝聚物、然后将该木质素凝聚物中的盐分除去,形成木质素含有物;步骤三:将木质素含有物进行碳化,形成碳化物;步骤四:将碳化物进行粉碎;步骤五:对粉碎后的碳化物进行高频热处理,从而获得碳微粒子;还包括步骤六,所述步骤六对碳微粒子再次粉碎加工,从而使碳微粒子得到纳米微细化粉碎处理。获得的高纯度的碳微粒子,在导电性、耐磨性、耐热性、耐腐蚀性等多方面具备优异的性能;可作为电磁密封材料、耐磨材料、发热体、耐热材料、耐腐蚀材料,用途极为广泛。

Description

纳米碳微粒子的制造方法 技术领域
本发明涉及纳米碳微粒子的制造技术领域,以锦葵科植物作为原材料,通过特定的加工及分离方法制造碳微粒子,具体地说是一种制造碳微粒子的方法。
背景技术
碳微粒子的原料锦葵科植物(学名:Malvaceae)是锦葵目的一个科,根据花和果实的构造,该科分为锦葵族、梵天花族和木槿族,该科约有50属,约1000种,分布于热带至温带。中国有16属,计81种和36变种或变型,产于全国各地,以热带和亚热带地区种类较多。
锦葵科植物作为麻绳、制纸、保温等诸多用途广为人知。其对生长土质要求不高,只需要日照较好即可大量种植,是一种可以大量应用的植物资源,并且也不被动物作为食料使用。
锦葵科植物以富含纤维而著称,如棉属是全世界纺织工业最主要的原料。木槿属、梵天花属、苘麻属、黄花稔属等的茎皮纤维,供纺织或制绳索。锦葵科的形态性状和椴树目(Tiliales)亲缘相近,是已固定了的椴树一支的类型,比如锦葵科中的木槿族植物是一年生草本韧皮纤维作物,其任何部位都可以作为原料。
锦葵科植物中的木槿类植物作为非木材纸浆原料使用时、在纸浆制造过程中会产生含有木质素和黑色副产物,一般人们都把这些黑色液体当作废料废弃,而在本发明中能将该含有木质素的黑色液体有效地回收利用。
申请公布号为CN 102910613A,申请公布日为2013年2月6日的中国发明申请中,公开了一种高分散纳米碳粒的制备方法,其特征是采用如下步骤:(1)在60~65℃水浴下向含有10g膨润土的悬浊液中滴加含5~10mmol的阳离子表面活性剂的溶液,使表面活性剂溶液的浓度为1~4 mol/L,滴加过程中连续搅拌,滴加完毕后于相同条件下继续搅拌2h,离心分离,将得到的固体物用去离子水洗涤4~5次,100~105℃下烘干,碾磨成50~80目的粉末;(2)将粉末置于管式炉中通N2保护,在500~800℃下碳化4~6h,再持续通N2冷却至室温;(3)将碳化后的固体物2~4g放入瓶中,加入10~15mL浓度为20~40%的氢氟酸溶液,搅拌2~3h,固液分离,再将该分离的固体加入到10~15mL浓度为20~40%的盐酸溶液中;(4)固液分离,用去离子水清洗,在60~70℃恒温干燥5~6h,即得纳米碳粒。该方法使用管式炉在惰性气体的保护下,使粉末碳化,存在单次形成碳粒少的缺点,且不同的表面活性剂对所形成的碳粒的直径存在限制。
申请公布号为CN 107364842A,申请公布日为2017年11月21的中国发明申请中,公开了一种生物碳粒制备方法,其特征在于,包括以下步骤:步骤1、清洗水葫芦;步骤2、风干水葫芦;步骤3、烘干水葫芦;步骤4、粉碎烘干的水葫芦,并筛选;步骤5、制备污泥,使污泥含水量在65%-75%;步骤6、混合步骤5中制备的污泥和步骤4制备的水葫芦粉末;步骤7、将混合物制成颗粒状污泥;步骤8、将污泥颗粒热解反应制成生物炭粒;步骤9、用稀盐酸浸泡生物炭粒;步骤10、用去离子水洗涤生物炭粒至中性;步骤11、烘烤生物炭粒。该方法实际上是以水葫芦和污泥为原料制备较大的生物炭粒,而不能制备纳米级的碳微粒子。
发明内容
本发明的目的是以锦葵科植物为原料,解决制造高纯度的木质素的难题,并且以此为基础制造高纯度碳微粒子的一种方法,克服了现有技术中的不足。
本发明解决上述问题所采用的技术方案是:该纳米碳微粒子的制造方法,其特征在于,包括:
步骤一:对锦葵科植物进行蒸解、产生含有木质素的溶液;
步骤二:从含有木质素的溶液中提取木质素凝聚物、然后将该木质素 凝聚物中的盐分除去,形成木质素含有物;
步骤三:将木质素含有物进行碳化,形成碳化物;
步骤四:将碳化物的进行粉碎;
步骤五:对粉碎后的碳化物进行高频热处理,从而获得碳微粒子。
作为优选,本发明还包括步骤六,在对步骤五中获得的碳微粒子的尺寸要求更加微细的条件下,所述步骤六对碳微粒子再次粉碎加工,从而使碳微粒子得到纳米微细化粉碎处理。
作为优选,所述步骤一中,将锦葵科植物在碱性溶液,15~120℃的条件下搅拌并加热4~96小时。
作为优选,所述步骤二包括在含有木质素的溶液中加入酸性物质调整pH值、再加入凝集剂提取出木质素凝聚物,然后将提取到的木质素凝聚物进行干燥、水洗、再干燥等的制造过程。
作为优选,所述步骤三中,碳化要求在非活性或惰性气体氛围中加热至110~950℃。
作为优选,所述步骤四中,将碳化物平均粒度粉碎至5~50um。
作为优选,所述步骤六中,碳微粒子在液体或气体等介质中进行再次粉碎加工。
本发明与现有技术相比,具有以下有益效果:通过本发明获得的高纯度的碳微粒子,在导电性、耐磨性、耐热性、耐腐蚀性等多方面具备优异的性能;可作为电磁密封材料、耐磨材料、发热体、耐热材料、耐腐蚀材料,用途极为广泛;应用在化学安定性高的合成润滑油中碳微粒子能进行高浓度地分散,该碳微粒子分散后起到润滑油添加剂的作用,只需要在现有的发动机润滑油中加入极其少量的碳微粒子,就能够对发动机润滑油起到明显的润滑效果。
附图说明
为了更清楚地说明本发明实施例或现有技术中的技术方案,下面将对实施例或现有技术描述中所需要使用的附图作简单地介绍,显而易见地,下面描述中的附图仅仅是本发明的一些实施例,对于本领域普通技术人员来讲,在不付出创造性劳动的前提下,还可以根据这些附图获得其他的附图。
图1是本发明的纳米碳微粒子的制造方法的工艺流程图。
具体实施方式
该纳米碳微粒子的制造方法包括以下步骤:S1、对锦葵科植物进行蒸解、产生含有木质素的溶液;S2、从含有木质素的溶液中提取木质素凝聚物、然后将该木质素凝聚物中的盐分除去,形成木质素含有物;S3、将木质素含有物进行碳化,形成碳化物;S4、将碳化物进行粉碎;S5、对粉碎后的碳化物进行高频热处理,从而获得碳微粒子;S6、如需要碳微粒子的尺寸更加微细,则对获得的碳微粒子再次粉碎加工,从而使碳微粒子得到纳米微细化粉碎处理。
本发明使用的原料锦葵科植物,采用刚收割后植物或干燥后的植物皆可,对尺寸方面也没有限制,只要能放置到工作槽内进行充分蒸解即可,必要的话,放入槽中之前可先截断成较短小的尺寸。
本发明的碳微粒子的制造方法,其中的步骤S1包括锦葵科植物的蒸解工序和採取含有木质素的溶液的工序。蒸解工序所用的蒸解槽采用金属材料制成,通过网状物隔离及过滤固态锦葵科植物和蒸解所用的溶液,在蒸解时,将被蒸解的材料浸泡,通过搅拌治具将槽中的物体进行搅动。
在蒸解时,在内槽中投入锦葵科植物原材料,使原材料能沉入到由溶液和药剂构成的液体中,然后加热到一定温度进行搅拌,使得原材料慢慢蒸解,蒸解完成后能获得两种物质,一种是被蒸解后的锦葵科植物材料,另一种是蒸解后产生的含有木质素的黑色液体。其中,用于蒸解的药剂可以使用溶于水的固态或液态的溶解物质,使用的药剂浓度,根据药剂的种类来进行适当调整,一般浓度控制在2~50%,低于2%则浓度过低,效率 会比较低,而高于50%浓度会导致后续工序的调制和清洗工作量变大,不纯物也过多,造成后续工序的成本浪费,例如硝酸类溶液的量,需根据药剂的种类进行适当地调整,如浓度过低,效率则会比较低,而浓度过高会导致后续工程的调制和清洗工作量变大,造成后续工序的成本浪费。
回收得到的黑色液体并继续作为蒸解的溶液使用,然后重复蒸解的工序,如此往复利用一次或多次,具体重复利用的次数以黑色液体相对达到饱和状态为止,溶液过饱和会影响蒸解效率,当浓度过于饱和时,需要重新更换溶液及药剂,然后再重复蒸解的工序。
蒸解工序要求在15~180℃条件下,1小时以上的时间进行。蒸解温度小于15℃且蒸解时间低于1小时,会导致木质素含有物的蒸解效果不佳,同时,蒸解温度超过180℃且蒸解时间太长,则会导致蒸解效率降低。
采用上述的方法对锦葵科植物原材料蒸解后,分离出主要成分为纤维素的固态物质和主要成分为木质素的黑色液体,本发明使用主要成分为木质素的黑色液体来制造碳微粒子,而以纤维素为主要成分的固态物质可另作它用,如制造纤维等。
本发明的碳微粒子的制造方法,其中的步骤S2包括添加调整PH值的酸、添加凝集剂、提取含有木质素的物质、干燥、水洗、再干燥等工序。
在黑色液体中加入水和硫酸,搅拌并观察其PH值,使得其pH值在6以下,然后加入凝集剂收集木质素凝聚物,并将该木质素凝聚物中的水分过滤,继而将除去了水分的木质素凝聚物干燥,将含有木质素的物质干燥后,S1的加工工序中的盐分将会析出,此时将木质素凝聚物进行水洗,分离洗去盐分,再进行干燥,如此便形成木质素含有物,其中,干燥的方式采用风干或者自然干燥皆可。分离出盐分后的木质素含有物进行下一步提纯处理,且其干燥后有利于提高后续碳化工序中的反应效率。这里所采用的凝集剂可采用高分子凝集剂或无机类凝集剂。
本发明的碳微粒子的制造方法,其中的步骤S3包括将去除盐分后的木 质素含有物进行碳化的工序,碳化工序在碳化炉中进行,碳化炉采用回转式高温烧成炉。在碳化时,将除去了盐分等不纯物、干燥后的木质素含有物放入回转式高温烧成炉(不燃性容器),在110~950℃的条件下进行碳化处理,除去其中的有机物成分、最终提高碳微粒子的纯度,形成碳化物,在提纯的过程中需要注入惰性气体,碳化的温度控制在180~900℃,时间控制在1小时以上,这样可保证碳化较为充分,其中被除去的有机物成分,包括脂类、蛋白质、糖分等。
本发明的碳微粒子的制造方法中的步骤S4是将碳化物进行粉碎的工序,其包括碳化物粉碎的粗加工,即粗碎处理工序;碳化物粉碎的精加工,即微细粉碎工序。进行碳化物的粗碎处理工序时,粗粉碎机器加工后平均粒子的粒度直径达到0.02~1mm,粗粉碎机器可选择滚筒式粉粹机、冲击式粉碎机或刀切方式的粉碎机等。粗碎处理后的粉碎物进行进一步的微细粉碎加工,使平均粒子的粒度直径达到10~40um,微细粉碎工序中的粉碎机采用高压气流涡轮粉碎机,使粒子之间进行相互撞击而达到粉碎目的,这样的粉碎机没有其它种类介质的加入,保证了材料的纯度。
本发明的碳微粒子的制造方法中的步骤S5采用离子加热装置,在离子加热装置的腔体内充入等离子气体,通电后使其产生等离子;先将粉碎后的碳化物导入到腔体内,通过放电将碳化物加热至2000℃~10000℃,使得碳化物受热升华后,继而冷却后固化,由此得到碳微粒子。由于步骤S3中的木质素含有物不一定能被充分碳化,而经步骤S5粉碎后的碳化物经过了等离子热处理,未被充分碳化的木质素含有物则能够得到充分的碳化处理,因此能获得碳化程度更高的碳微粒子。
本发明中,如需要获得尺寸更加微细的碳微粒子,则通过步骤S6对步骤S5产生的碳微粒子进行再次粉碎加工,从而使碳微粒子得到纳米微细化粉碎处理,优选的,将提取得到的碳微粒子,在粉碎机中再次粉碎加工使平均颗粒直径达到5~500nm或更加微细的5~400nm。通过该工序,使得 碳微粒子在尺寸上得到纳米级的充分粉碎,如此一来,便使产生的纳米级的碳微粒子能够在液体中平稳、安定地分散,使其达到在液体分子的微细间隙中与液体共同融合、扩散的效果。为了使碳微粒子粉碎至纳米粒子程度,粉碎机需要达到能使碳微粒子碎化到5~500nm尺寸的粉碎能力,优选的,粉碎机可选择游星齿轮驱动的粉碎机。
此外,再次粉碎的工序也可以在碳微粒子分散于液体中的状态下开展,也可以在真空或气体的环境中开展。
从解析上讲,本发明提取的碳微粒子由非结晶性(无定形)碳素构成,而碳微粒子的构造能通过电子显微镜或者拉曼光谱仪进行分析得到确认。
为使本发明实施例的目的、技术方案和优点更加清楚,下面将结合本发明实施例中的附图,对本发明实施例中的技术方案进行清楚、完整地描述,显然,所描述的实施例是本发明一部分实施例,而不是全部的实施例。基于本发明中的实施例,本领域普通技术人员在没有做出创造性劳动前提下所获得的所有其他实施例,都属于本发明保护的范围。
实施例1。
通过下述一系列工序,从锦葵科植物原材料提取碳微粒子。
S1:采用药剂对锦葵科植物进行蒸解、产生含有木质素溶液。
蒸解槽采用耐温钢材,采用碳钢、不锈钢均可,通过其网状结构进行锦葵科植物和蒸解所用溶液的隔离及过滤,蒸解槽还配备有搅拌组件。
将添加了蒸解药剂的溶液约100kg注入蒸解槽中,并放入50kg以内的锦葵科植物原材料,将锦葵科植物原材料切割成小碎块后将锦葵科植物浸泡至溶液中,将蒸解槽加热至20℃~30℃之间的温度,并且连续搅拌1小时以上,将内槽中的锦葵科植物取出,另行包装好,再重新装入50kg以内的新的锦葵科植物原材料小碎块至蒸解槽,采用比前次蒸解温度高5℃的温度进行蒸解处理,使得得到的溶液呈现黑色而停止。
S2:从含有木质素的溶液中提取木质素凝聚物,然后将该木质素凝聚 物中的盐分除去。
将含有木质素的黑色溶液(简称“黑液”)进行搅拌,然后加入酸性溶剂,直至PH值降至6以下,然后加入适量的凝集剂,凝集剂的用量不做限定,以能在黑液表面产生凝集固态状物质且这些被凝集的固态状物质易被採集为准,然后将被採集到的木质素凝聚物放置至容器中,然后进行挤压将水分挤出,再将被除去水分的木质素凝聚物压缩成块状,放置数日吹干,再将吹干后的木质素凝聚物水洗,然后再次吹干。
S3:除去盐分后的木质素含有物的碳化工序。
将干燥后的含有木质素的固态物质放入金属器皿,然后将其放入到碳化炉。在碳化炉中供入惰性气体,加热到180℃,去除其中的有机物成分,然后对碳化炉进行冷却,停止供气,然后取出碳化物。
S4:碳化物的粉碎工序。
将得到的碳化固态物质放入粉碎机进行粗粉碎,将碳化物颗粒粗粉碎至平均直径为1mm以下的粗粒子状态,然后放置到纳米粉碎机中,继续粉碎至平均直径为40um以下的状态。
S5:对粉碎后的碳化物进行热处理,获得碳微粒子的工序。
向高频加热装置的腔体中通入惰性气体,产生等离子,然后将粉碎后的碳化物导入到高频加热装置的腔体中,通过放电加热至2000℃,使得碳微粒子进行热分解,继而冷却固化,获得碳微粒子。
S6:对获得的碳微粒子再粉碎加工、使碳微粒子进行纳米微细粉碎工序。
将高频热处理后的碳微粒子投至纳米粉碎机中进行纳米微细粉碎加工,也可以将碳微粒子融于液体介质中再投至纳米粉碎机中进行纳米微细粉碎加工。
最终得到的碳微粒子的构造通过电子显微镜或拉曼光谱仪进行分析得到确认,其平均直径在20-500nm之间。
实施例2。
通过下述一系列工序,从锦葵科植物原材料提取碳微粒子。
S1:采用药剂对锦葵科植物进行蒸解、产生含有木质素溶液。
蒸解槽采用耐温钢材,采用碳钢、不锈钢均可,通过其网状结构进行锦葵科植物和蒸解所用溶液的隔离及过滤,蒸解槽还配备有搅拌组件。
将添加了蒸解药剂的溶液约100kg注入蒸解槽中,并放入50kg以内的锦葵科植物原材料,将锦葵科植物原材料切割成小碎块后将锦葵科植物浸泡至溶液中,将蒸解槽加热至150℃~160℃之间的温度,并且连续搅拌1小时以上,将内槽中的锦葵科植物取出,另行包装好,再重新装入50kg以内的新的锦葵科植物原材料小碎块至蒸解槽,采用比前次蒸解温度高5℃的温度进行蒸解处理,使得得到的溶液呈现黑色而停止。
S2:从含有木质素的溶液中提取木质素凝聚物,然后将该木质素凝聚物中的盐分除去。
将含有木质素的黑色溶液(简称“黑液”)进行搅拌,然后加入酸性溶剂,直至PH值降至6以下,然后加入适量的凝集剂,凝集剂的用量不做限定,以能在黑液表面产生凝集固态状物质且这些被凝集的固态状物质易被採集为准,然后将被採集到的木质素凝聚物放置至容器中,然后进行挤压将水分挤出,再将被除去水分的木质素凝聚物压缩成块状,放置数日吹干,再将吹干后的木质素凝聚物水洗,然后再次吹干。
S3:除去盐分后的木质素含有物的碳化工序。
将干燥后的含有木质素的固态物质放入金属器皿,然后将其放入到碳化炉。在碳化炉中供入惰性气体,加热到900℃,去除其中的有机物成分,然后对碳化炉进行冷却,停止供气,然后取出碳化物。
S4:碳化物的粉碎工序。
将得到的碳化固态物质放入粉碎机进行粗粉碎,将碳化物颗粒粗粉碎至平均直径为1mm以下的粗粒子状态,然后放置到纳米粉碎机中,继续粉 碎至平均直径为40um以下的状态。
S5:对粉碎后的碳化物进行热处理,获得碳微粒子的工序。
向高频加热装置的腔体中通入惰性气体,产生等离子,然后将粉碎后的碳化物导入到高频加热装置的腔体中,通过放电加热至10000℃,使得碳微粒子进行热分解,继而冷却固化,获得碳微粒子。
S6:对获得的碳微粒子再粉碎加工、使碳微粒子进行纳米微细粉碎工序。
将高频热处理后的碳微粒子投至纳米粉碎机中进行纳米微细粉碎加工,也可以将碳微粒子融于液体介质中再投至纳米粉碎机中进行纳米微细粉碎加工。
最终得到的碳微粒子的构造通过电子显微镜或拉曼光谱仪进行分析得到确认,其平均直径在5-400nm之间。
应当指出,以上借助优选实施例对本发明的技术方案进行的详细说明是示意性的而非限制性的。本领域的普通技术人员在阅读本发明说明书的基础上可以对实施例所记载的技术方案进行修改,或者对其中部分技术特征进行等同替换,而这些修改或者替换,并不使相应技术方案的本质脱离本发明实施例技术方案的范围。

Claims (7)

  1. 纳米碳微粒子的制造方法,其特征在于,包括:
    步骤一:对锦葵科植物进行蒸解、产生含有木质素的溶液;
    步骤二:从含有木质素的溶液中提取木质素凝聚物、然后将该木质素凝聚物中的盐分除去,形成木质素含有物;
    步骤三:将木质素含有物进行碳化,形成碳化物;
    步骤四:将碳化物进行粉碎;
    步骤五:对粉碎后的碳化物进行高频热处理,从而获得碳微粒子。
  2. 根据权利要求1所述的纳米碳微粒子的制造方法,其特征在于:还包括步骤六,在对步骤五中获得的碳微粒子的尺寸要求更加微细的条件下,所述步骤六对碳微粒子再次粉碎加工,从而使碳微粒子得到纳米微细化粉碎处理。
  3. 根据权利要求1所述的纳米碳微粒子的制造方法,其特征在于:所述步骤一中,将锦葵科植物在碱性溶液,15~180℃的条件下搅拌并加热1小时以上。
  4. 根据权利要求1所述的纳米碳微粒子的制造方法,其特征在于:所述步骤二包括在含有木质素的溶液中加入酸性物质调整pH值、再加入凝集剂提取出木质素凝聚物,然后将提取到的木质素凝聚物进行一次或多次的水洗及干燥。
  5. 根据权利要求1所述的纳米碳微粒子的制造方法,其特征在于:所述步骤三中,碳化要求在非活性或惰性气体氛围中加热至110~950℃。
  6. 根据权利要求1所述的纳米碳微粒子的制造方法,其特征在于:所述步骤四中,将碳化物平均粒度粉碎至5~50um。
  7. 根据权利要求2所述的纳米碳微粒子的制造方法,其特征在于:所述步骤六中,碳微粒子在液体、气体或真空等环境中进行再次粉碎加工。
PCT/CN2018/084495 2018-03-16 2018-04-25 纳米碳微粒子的制造方法 WO2019174109A1 (zh)

Priority Applications (2)

Application Number Priority Date Filing Date Title
US16/614,875 US11261094B2 (en) 2018-03-16 2018-04-25 Method for manufacturing nano-carbon microparticle
EP18910187.6A EP3680215B1 (en) 2018-03-16 2018-04-25 Method for manufacturing nano-carbon microparticle

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201810218716.7A CN108217625B (zh) 2018-03-16 2018-03-16 纳米碳微粒子的制造方法
CN201810218716.7 2018-03-16

Publications (1)

Publication Number Publication Date
WO2019174109A1 true WO2019174109A1 (zh) 2019-09-19

Family

ID=62659539

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2018/084495 WO2019174109A1 (zh) 2018-03-16 2018-04-25 纳米碳微粒子的制造方法

Country Status (4)

Country Link
US (1) US11261094B2 (zh)
EP (1) EP3680215B1 (zh)
CN (1) CN108217625B (zh)
WO (1) WO2019174109A1 (zh)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN116565199A (zh) * 2023-04-18 2023-08-08 湖南钠能时代科技发展有限公司 一种钠离子电池碳负极材料复合颗粒及其制备方法和装置

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110436442A (zh) * 2019-09-06 2019-11-12 成都道启弘环境科技有限公司 一种纳米碳材料的生产方法及装置
CN116375392A (zh) * 2023-04-07 2023-07-04 广东长鑫环保科技有限公司 一种应用纳米碳化植物改性活化技术的材料的制备工艺

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1587077A (zh) * 2003-08-26 2005-03-02 山东泉林纸业有限责任公司 一种酸析木质素提取工艺
CN101910060A (zh) * 2007-12-03 2010-12-08 独立行政法人产业技术综合研究所 以木质素为原料的碳微粒及其制造方法
CN102910613A (zh) 2012-10-25 2013-02-06 常州大学 一种高分散纳米碳粒的制备方法
CN105555793A (zh) * 2013-08-19 2016-05-04 维美德技术有限公司 用于处理木质素的方法和系统
CN105819426A (zh) * 2016-04-06 2016-08-03 华南理工大学 一种碱木质素碳纳米微球及其制备方法与应用
CN106366330A (zh) * 2016-10-14 2017-02-01 安徽格义循环经济产业园有限公司 高活性生物质木质素的提取方法
CN107364842A (zh) 2017-08-03 2017-11-21 安徽工程大学 生物碳粒制备方法

Family Cites Families (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2005289666A (ja) * 2004-03-31 2005-10-20 Toyota Boshoku Corp 炭化物の製造方法
US8167973B2 (en) * 2008-06-18 2012-05-01 Board Of Trustees Of The University Of Arkansas Microwave-assisted synthesis of carbon and carbon-metal composites from lignin, tannin and asphalt derivatives
US8409403B2 (en) * 2009-10-23 2013-04-02 David H. Blount Production of amino lignin and amino lignin cellulose resins and adhesives
CN102464802A (zh) * 2010-11-19 2012-05-23 北京林业大学 一种木质素的制备方法
JP6406540B2 (ja) * 2014-07-23 2018-10-17 大王製紙株式会社 炭素微粒子の製造方法
FI126818B (en) * 2015-02-06 2017-06-15 Valmet Technologies Oy A method for treating lignin-based material
US10259714B2 (en) * 2015-03-19 2019-04-16 The University Of Akron Method of making mesoporous carbon from natural wood and mesoporous carbon hollow tubes made thereby
FI129778B (en) * 2015-06-26 2022-08-31 Teknologian Tutkimuskeskus Vtt Oy Procedure for activation and precipitation of lignin
DE102016202458A1 (de) * 2016-02-17 2017-08-17 Wacker Chemie Ag Verfahren zur Herstellung von Si/C-Kompositpartikeln
CN107628618B (zh) * 2017-11-09 2020-04-07 长江师范学院 一种木质素基高比表面积碳材料的制备方法

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1587077A (zh) * 2003-08-26 2005-03-02 山东泉林纸业有限责任公司 一种酸析木质素提取工艺
CN101910060A (zh) * 2007-12-03 2010-12-08 独立行政法人产业技术综合研究所 以木质素为原料的碳微粒及其制造方法
CN102910613A (zh) 2012-10-25 2013-02-06 常州大学 一种高分散纳米碳粒的制备方法
CN105555793A (zh) * 2013-08-19 2016-05-04 维美德技术有限公司 用于处理木质素的方法和系统
CN105819426A (zh) * 2016-04-06 2016-08-03 华南理工大学 一种碱木质素碳纳米微球及其制备方法与应用
CN106366330A (zh) * 2016-10-14 2017-02-01 安徽格义循环经济产业园有限公司 高活性生物质木质素的提取方法
CN107364842A (zh) 2017-08-03 2017-11-21 安徽工程大学 生物碳粒制备方法

Non-Patent Citations (2)

* Cited by examiner, † Cited by third party
Title
See also references of EP3680215A4
XU, ZHIHONG ET AL.: "Study on Active Carbon Made from Lignin Separated from Kraft Mill Black Liquor", JOURNAL OF SICHUAN AGRICULTURAL UNIVERSITY, vol. 17, no. 3, 30 September 1999 (1999-09-30), pages 309 - 312, XP009517494, ISSN: 1000-2650, DOI: 10.16036/j.issn.1000-2650.1999.03.015 *

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN116565199A (zh) * 2023-04-18 2023-08-08 湖南钠能时代科技发展有限公司 一种钠离子电池碳负极材料复合颗粒及其制备方法和装置
CN116565199B (zh) * 2023-04-18 2024-02-13 湖南钠能时代科技发展有限公司 一种钠离子电池碳负极材料复合颗粒及其制备方法和装置

Also Published As

Publication number Publication date
US20210155485A1 (en) 2021-05-27
EP3680215A4 (en) 2021-08-11
US11261094B2 (en) 2022-03-01
EP3680215B1 (en) 2022-12-14
EP3680215A1 (en) 2020-07-15
CN108217625B (zh) 2020-01-24
CN108217625A (zh) 2018-06-29

Similar Documents

Publication Publication Date Title
WO2019174109A1 (zh) 纳米碳微粒子的制造方法
JP4045229B2 (ja) 無灰炭の製造方法
JP7461889B2 (ja) マスターバッチの重合に含有させるためのバイオ炭の高温炭化、ミクロン研削および分級
KR101048410B1 (ko) 미세구조의 고순도 실리카 및 섬유를 동시에 제조하는 방법
JP6663991B2 (ja) 機能性再生セルロース繊維及びその調製方法と使用
CN102363930A (zh) 一种造纸黑液碱回收同时制备活性炭的方法
CA2712778A1 (en) Nanodiamonds and diamond-like particles from carbonaceous material
CN109701493A (zh) 一种氮掺杂生物炭的制备方法
JP6453985B1 (ja) カーボン微粒子の製造方法
CN106916589A (zh) 一种由废料桂圆壳制备荧光碳点的方法
CN108675420A (zh) 一种秸秆、生物炭复合制备磁性絮凝剂的方法
CN110615452A (zh) 一种分段式处理硫酸钠废盐渣并回收硫酸钠的方法
CN1151893C (zh) 人造金刚石无污染气相氧化分离提纯方法
CN108589393A (zh) 一种禾本科植物环保制浆回收工艺
Jamil et al. Extraction of silica from rice husk via acid leaching treatment
CN112023877A (zh) 一种磁改性棉花秸秆生物炭的方法及溶液中去除重金属铅的应用
JPH11323752A (ja) シリカ、セルロースおよびリグニン高含有素材の製造法
CN113620287B (zh) 一种以木质素为碳的前躯体采用“内浸-外包”技术的氮掺杂电容炭及其制备方法
CN111874935A (zh) 大颗粒碳酸钙的制备方法
CN109650370A (zh) 一种常压水热制备蔗渣生物炭的方法
CN103087204A (zh) 一种制取微粉纤维素的方法
CN106987259A (zh) 一种利用柳编制品的回收秸秆制备生物碳的方法
CN107949540A (zh) 植物原料来源的碳前体
CN215162387U (zh) 一种木醋液和生物质焦油的高值化综合利用装置
CN110565210B (zh) 一种利用油泥制取超细无机纤维的方法

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 18910187

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2018910187

Country of ref document: EP

Effective date: 20200407

NENP Non-entry into the national phase

Ref country code: DE