WO2019172040A1 - 間仕切壁構造及びその施工方法 - Google Patents

間仕切壁構造及びその施工方法 Download PDF

Info

Publication number
WO2019172040A1
WO2019172040A1 PCT/JP2019/007545 JP2019007545W WO2019172040A1 WO 2019172040 A1 WO2019172040 A1 WO 2019172040A1 JP 2019007545 W JP2019007545 W JP 2019007545W WO 2019172040 A1 WO2019172040 A1 WO 2019172040A1
Authority
WO
WIPO (PCT)
Prior art keywords
wall
partition wall
runner
building
sound insulation
Prior art date
Application number
PCT/JP2019/007545
Other languages
English (en)
French (fr)
Inventor
知哉 長谷川
寛之 菅谷
幸輝 林
直樹 今泉
Original Assignee
吉野石膏株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 吉野石膏株式会社 filed Critical 吉野石膏株式会社
Priority to SG11202008445VA priority Critical patent/SG11202008445VA/en
Priority to JP2020504950A priority patent/JP7246749B2/ja
Priority to EP19764277.0A priority patent/EP3763893A4/en
Priority to US16/977,183 priority patent/US11492802B2/en
Priority to CA3093103A priority patent/CA3093103C/en
Publication of WO2019172040A1 publication Critical patent/WO2019172040A1/ja
Priority to PH12020500659A priority patent/PH12020500659A1/en

Links

Images

Classifications

    • EFIXED CONSTRUCTIONS
    • E04BUILDING
    • E04BGENERAL BUILDING CONSTRUCTIONS; WALLS, e.g. PARTITIONS; ROOFS; FLOORS; CEILINGS; INSULATION OR OTHER PROTECTION OF BUILDINGS
    • E04B2/00Walls, e.g. partitions, for buildings; Wall construction with regard to insulation; Connections specially adapted to walls
    • E04B2/74Removable non-load-bearing partitions; Partitions with a free upper edge
    • E04B2/7407Removable non-load-bearing partitions; Partitions with a free upper edge assembled using frames with infill panels or coverings only; made-up of panels and a support structure incorporating posts
    • E04B2/7409Removable non-load-bearing partitions; Partitions with a free upper edge assembled using frames with infill panels or coverings only; made-up of panels and a support structure incorporating posts special measures for sound or thermal insulation, including fire protection
    • EFIXED CONSTRUCTIONS
    • E04BUILDING
    • E04BGENERAL BUILDING CONSTRUCTIONS; WALLS, e.g. PARTITIONS; ROOFS; FLOORS; CEILINGS; INSULATION OR OTHER PROTECTION OF BUILDINGS
    • E04B2/00Walls, e.g. partitions, for buildings; Wall construction with regard to insulation; Connections specially adapted to walls
    • E04B2/74Removable non-load-bearing partitions; Partitions with a free upper edge
    • E04B2/7407Removable non-load-bearing partitions; Partitions with a free upper edge assembled using frames with infill panels or coverings only; made-up of panels and a support structure incorporating posts
    • E04B2/7409Removable non-load-bearing partitions; Partitions with a free upper edge assembled using frames with infill panels or coverings only; made-up of panels and a support structure incorporating posts special measures for sound or thermal insulation, including fire protection
    • E04B2/7412Posts or frame members specially adapted for reduced sound or heat transmission
    • EFIXED CONSTRUCTIONS
    • E04BUILDING
    • E04BGENERAL BUILDING CONSTRUCTIONS; WALLS, e.g. PARTITIONS; ROOFS; FLOORS; CEILINGS; INSULATION OR OTHER PROTECTION OF BUILDINGS
    • E04B1/00Constructions in general; Structures which are not restricted either to walls, e.g. partitions, or floors or ceilings or roofs
    • E04B1/62Insulation or other protection; Elements or use of specified material therefor
    • E04B1/74Heat, sound or noise insulation, absorption, or reflection; Other building methods affording favourable thermal or acoustical conditions, e.g. accumulating of heat within walls
    • E04B1/82Heat, sound or noise insulation, absorption, or reflection; Other building methods affording favourable thermal or acoustical conditions, e.g. accumulating of heat within walls specifically with respect to sound only
    • E04B1/84Sound-absorbing elements
    • E04B1/86Sound-absorbing elements slab-shaped
    • EFIXED CONSTRUCTIONS
    • E04BUILDING
    • E04BGENERAL BUILDING CONSTRUCTIONS; WALLS, e.g. PARTITIONS; ROOFS; FLOORS; CEILINGS; INSULATION OR OTHER PROTECTION OF BUILDINGS
    • E04B2/00Walls, e.g. partitions, for buildings; Wall construction with regard to insulation; Connections specially adapted to walls
    • E04B2/74Removable non-load-bearing partitions; Partitions with a free upper edge
    • E04B2/7407Removable non-load-bearing partitions; Partitions with a free upper edge assembled using frames with infill panels or coverings only; made-up of panels and a support structure incorporating posts
    • E04B2/7453Removable non-load-bearing partitions; Partitions with a free upper edge assembled using frames with infill panels or coverings only; made-up of panels and a support structure incorporating posts with panels and support posts, extending from floor to ceiling
    • E04B2/7457Removable non-load-bearing partitions; Partitions with a free upper edge assembled using frames with infill panels or coverings only; made-up of panels and a support structure incorporating posts with panels and support posts, extending from floor to ceiling with wallboards attached to the outer faces of the posts, parallel to the partition
    • EFIXED CONSTRUCTIONS
    • E04BUILDING
    • E04BGENERAL BUILDING CONSTRUCTIONS; WALLS, e.g. PARTITIONS; ROOFS; FLOORS; CEILINGS; INSULATION OR OTHER PROTECTION OF BUILDINGS
    • E04B2/00Walls, e.g. partitions, for buildings; Wall construction with regard to insulation; Connections specially adapted to walls
    • E04B2/74Removable non-load-bearing partitions; Partitions with a free upper edge
    • E04B2/76Removable non-load-bearing partitions; Partitions with a free upper edge with framework or posts of metal
    • EFIXED CONSTRUCTIONS
    • E04BUILDING
    • E04BGENERAL BUILDING CONSTRUCTIONS; WALLS, e.g. PARTITIONS; ROOFS; FLOORS; CEILINGS; INSULATION OR OTHER PROTECTION OF BUILDINGS
    • E04B2/00Walls, e.g. partitions, for buildings; Wall construction with regard to insulation; Connections specially adapted to walls
    • E04B2/74Removable non-load-bearing partitions; Partitions with a free upper edge
    • E04B2/82Removable non-load-bearing partitions; Partitions with a free upper edge characterised by the manner in which edges are connected to the building; Means therefor; Special details of easily-removable partitions as far as related to the connection with other parts of the building
    • E04B2/828Connections between partitions and structural walls
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02BCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO BUILDINGS, e.g. HOUSING, HOUSE APPLIANCES OR RELATED END-USER APPLICATIONS
    • Y02B30/00Energy efficient heating, ventilation or air conditioning [HVAC]
    • Y02B30/90Passive houses; Double facade technology

Definitions

  • the present invention relates to a partition wall structure and a construction method thereof, and more specifically, a single runner which is generally constructed as a door wall, a boundary wall or a fireproof partition wall of a medium-to-high-rise building and exhibits excellent sound insulation performance.
  • -It is related to the structure of the partition wall and the construction method (structure of partition wall and method for constructing partition wall).
  • the partition walls of buildings are required to have various performances such as fireproof performance, fireproof performance, sound insulation performance, vibration insulation performance, vibration insulation performance, heat insulation performance, crime prevention performance, etc.
  • various performances such as fireproof performance, fireproof performance, sound insulation performance, vibration insulation performance, vibration insulation performance, heat insulation performance, crime prevention performance, etc.
  • non-bearing wall As a non-bearing wall to be constructed as a partition wall in medium- and high-rise buildings such as apartment buildings, building interior materials (board materials for building interior work) such as gypsum board and calcium silicate board are made of lightweight shape steel (LGS) steel
  • LGS lightweight shape steel
  • Such a partition wall of the dry construction method is advantageous from the viewpoint of ease of construction and weight reduction of the building, and is widely spread as a wall body such as a door wall, a boundary wall, or a fire-resistant partition wall of a medium to high-rise building. .
  • a dry partition wall having a hollow structure using steel studs is a steel base material for construction (JIS A) including steel studs, steel runners, steady rests, spacers, and the like. 6517 standard products, equivalent products, compliant products, compatible products, etc.), and building studs made from steel, using fixing means such as screws, staples, adhesives, etc. It is a wall structure having a structure fixed to, and is widely known by names such as a lightweight partition wall and a light iron partition wall. This type of partition wall construction method can be roughly classified as follows based on the type or style of the stud arrangement.
  • the partition wall 100 that divides the building spaces R1 and R2 such as a room, a living room, and a corridor is mainly disposed in the lower runner 2 and the ceiling portion disposed on the floor portion. It is composed of an upper runner (not shown), a steel stud 4 (hereinafter referred to as “stud 4”) that constitutes a steel stud, an undersurface material 5 and an upper surface material 6 supported by the stud 4.
  • the studs 4 are arranged at a predetermined interval L1, and the interval L1 is generally set to about 150, about 230, about 300, about 450 mm or about 600 mm.
  • the wall end portion 100a of the partition wall 100 is abutted against the wall surface Wa of the wall W (or the vertical surface Ca of the column C), and the partition wall 100 is entirely centered on the wall core XX.
  • the classification of each construction method shown in FIG. 20 and FIG. 21 is interpreted as the classification method of wooden partition walls. be able to. Therefore, in the present specification, the term “intermediate column” in a broad sense includes a wooden intermediary column and the like, and the term “runner” in a broad sense includes a wooden underframe or a wooden horizontal member.
  • FIG. 20 (A) shows the partition wall structure of the single runner / common stud method.
  • the partition wall 1 has a configuration in which a runner 2, a stud 4, and the like are arranged in alignment with a wall core XX as a center, and face members 5 and 6 are integrally fastened to both sides of each stud 4.
  • a heat insulating and sound absorbing material such as glass wool is inserted or filled into the hollow area ⁇ of the partition wall 1.
  • the partition wall structure of this construction method is the most general and typical partition wall structure, and is described in Non-Patent Document 1, for example.
  • FIG. 20B as a modification of the partition wall structure shown in FIG. 20A, a mating plate 4a is inserted in a staggered arrangement between the stud 4 and the underlaying surface material 5, and the stud 4 and the underlaying are arranged.
  • a partition wall structure having a configuration in which gaps 4b are alternately formed between the face members 5 is shown (hereinafter, this method is referred to as “single runner / sheetboard staggered arrangement method”).
  • a heat insulating and sound absorbing material such as glass wool is inserted or filled into the hollow area ⁇ of the partition wall 1.
  • the partition wall having this structure is described in, for example, Japanese Patent Application Laid-Open No. 2010-242298.
  • the partition wall structure in which the siding plate 4a is interposed as a cushioning material and the gaps 4b are alternately arranged in this manner is advantageous in that it can block the propagation path of the solid propagation sound, it has a specific material and sound insulation characteristics.
  • FIG. 21 (A) shows the partition wall structure of the double runner / parallel column method.
  • This partition wall structure has a substantially double wall structure in which upper and lower steel runners (only the lower runner 2 is shown) and studs 4 are arranged in parallel in two rows.
  • the first row of studs 4 centered on the central axis X1-X1 supports only the face materials 5 and 6 on the building space R1 side, and the second row of studs 4 centered on the central axis X2-X2 Only the face materials 5 and 6 on the space R2 side are supported.
  • a heat insulating and sound absorbing material (not shown) such as glass wool is inserted or filled into the hollow area ⁇ of the partition wall 1.
  • the partition wall having this structure is described in, for example, Japanese Patent Application Laid-Open No. 2005-133414.
  • the studs 4 and runners 2 of each row are substantially completely independent, and the face materials 5 and 6 of each building space R1 and R2 are attached to the studs 4 of each row. Each is fastened.
  • the thickness of the air layer in the hollow region ⁇ corresponds to twice the width ⁇ 1 of the runner 2 and a considerably large air layer is formed in the hollow region ⁇ , heat insulation such as glass wool and rock wool
  • the sound absorbing material can be appropriately inserted or filled in the hollow region ⁇ , which is extremely advantageous in improving the sound insulation of the wall structure.
  • the partition wall structure of the double runner / parallel column construction method can reliably block the propagation path of solid-borne sound, thus preventing the sound insulation loss and designing the wall structure that exhibits good sound insulation performance. It is considered possible.
  • the wall thickness ⁇ 2 is doubled compared to the partition wall structure (FIG. 20A) of the single runner / common stud column method, so that the available room area or room space can be effectively used. There arises an architectural design or construction economic problem of a relatively large reduction or reduction.
  • Fig. 21 (B) shows the partition wall structure of the single runner / staggered column method.
  • the studs 4 are arranged in a staggered arrangement alternately eccentric to one side with respect to the wall core XX due to the arrangement of the spacers 9.
  • Each stud 4 supports only the face materials 5 and 6 of the building space on one side and is separated from the face materials 5 and 6 of the building space on the opposite side.
  • Patent Documents 2 to 4 Japanese Patent No. 497176, Japanese Patent No. 5663119, and Japanese Patent No. 5296600.
  • the partition wall structure of the single runner / staggered column method As with the partition wall structure (FIG. 20 (B)) of the single runner / saddle plate staggered array method, the propagation path of the solid propagation sound is not formed. If compared with the partition wall structure (FIG. 21A) of the double runner / parallel column construction method, the sound insulation performance is slightly inferior, but a sound insulation wall that exhibits relatively good sound insulation performance can be designed. In addition, the single runner / staggered column method does not require special considerations or considerations in terms of structure, detailed design, or construction due to the insertion of the siding plate 4a (FIG. 20B).
  • the studs 4 are merely arranged in a staggered manner, it is only necessary to slightly increase the wall thickness ⁇ 2 as compared with the partition wall structure (FIG. 20 (A)) of the single runner / common stud method, so that it can be effectively used.
  • the living room area or living room space is only slightly reduced or reduced as compared to the partition wall structure of the single runner / common column method.
  • the thickness ⁇ 2 about 200 mm
  • the wall end portion 100a of the partition wall 100 constitutes a stretched portion or a parting portion of the face materials 5 and 6, so that the stability of the support of the face materials 5 and 6 and the ease of construction are increased.
  • a C-shaped steel stud having a width ⁇ 3 having substantially the same or equivalent width as the runner 2 is erected on the end portion 100a as a steel stud 7.
  • This type of steel stud 7 is generally called by a name such as a vertical runner, an end runner, or an end stud, and hereinafter, this building element is called an “end pole”.
  • the applicant has developed a high-performance sound insulation wall (model A-2000 / WI) that has a partition structure (Fig. 21 (B)) with a single-runner / staggered column construction method and has already been put into practical use. ing.
  • This high-performance sound insulation wall (model A-2000 / WI) is preferably constructed as a boundary wall for apartment buildings and hotels that require high sound insulation performance, especially as a boundary wall for high-rise or super-high-rise apartment buildings or hotels, Due to its high sound insulation performance, it has a very significant advantage in combination with the effects of reducing the structural load due to the light weight of the partition walls and shortening the construction period.
  • the TLD value (D-Number of Sound Transmission Loss, TL D ) is the sound insulation effect or sound insulation of the partition wall, as measured by the sound transmission loss measured according to the measurement method specified in JIS A 1416 (ISO140-3). It is a numerical value shown as performance, and more specifically, is an index of the sound insulation effect or sound insulation performance of the partition wall and the like obtained by evaluating the measurement result based on the sound insulation reference curve defined by the Architectural Institute of Japan.
  • the partition wall structure of the double runner / parallel partition method exhibits excellent sound insulation performance, but if this partition wall structure is used, there is a problem that the wall thickness increases considerably.
  • the partition wall structure of the single runner / staggered column method or the single runner / staggered staggered array method the wall thickness is only slightly increased, and the problem of increased wall thickness can be substantially avoided.
  • the partition structure of the single runner / staggered column method or the single runner / plaid staggered array method is slightly inferior to the double runner / parallel column method partition wall structure in terms of sound insulation performance. There was room left to do.
  • the present inventors have increased the thickness and density of the heat insulating / sound absorbing material (glass wool, etc.) of the hollow part in the partition wall structure of the single runner / staggered column method, or a damping adhesive that exhibits damping performance, etc.
  • a number of sound-insulating walls with improved measures or countermeasures such as the use of adhesive as a face material were prototyped and tested for sound-insulating performance under various conditions.
  • In the frequency range of mid to high frequencies (500 to 2000 Hz) It is difficult to effectively increase the transmission loss. Therefore, such an improvement measure or countermeasure cannot improve the sound insulation performance as desired.
  • this sound insulation performance test there is no significant sound insulation defect at a specific frequency. For this reason, it has been considered that it is practically extremely difficult to further improve the sound insulation performance.
  • the present invention has been made in view of such circumstances, and the object of the present invention is to provide a medium-high frequency range in a partition wall structure of a single runner / staggered column method or a single runner / staggered plate staggered array method.
  • the purpose is to increase sound transmission loss with respect to noise and improve the sound insulation performance of the partition wall.
  • the present inventors have increased the thickness of the heat insulating / absorbing material such as glass wool inserted into the hollow portion of the wall.
  • a plurality of partition walls having different thicknesses or densities, a partition wall using a special adhesive such as a vibration-damping adhesive as an adhesive for bonding the lower surface material and the upper surface material, or the structure of the wall end A number of test specimens such as partition walls with different values were manufactured, and a number of sound insulation performance tests with different conditions were performed.
  • the present invention provides a single runner, staggered column method or single runner in which the wall end is abutted against another building structure, and the wall end connected to the building structure is at least partially exposed to the building space.
  • An end pillar disposed at the wall end and configured by first and second end pillar members;
  • the end pillar members are spaced apart from each other, and have a gap or an insulation band that blocks the propagation of solid vibration or insulates the propagation path of solid vibration
  • the building interior surface material that defines the building space on one side of the partition wall is fixed to the first end column member, and the building interior surface material that defines the building space on the opposite side of the partition wall serves as the second end column member.
  • a partition wall structure characterized by being fixed is provided.
  • the present invention also provides a single runner / staggered column method or a single runner / laying method in which a wall end is projected to another building structure and the wall end connected to the building structure is at least partially exposed to the building space.
  • the end columns arranged at the wall end portions are constituted by first and second end column members, The end column members are separated from each other, and a gap or an insulating band that blocks the propagation of solid vibration or insulates the propagation path of solid vibration is formed between the end column members,
  • the architectural interior surface material that defines the building space on one side of the partition wall is fixed to the first end column member, and the architectural interior surface material that defines the building space on the opposite side of the partition wall is fixed to the second end column member.
  • a partition wall construction method is provided.
  • the end columns arranged at the wall end portions are divided into first and second end column members.
  • the first and second end column members are separated from each other, and a gap or an insulating band that blocks the propagation of the solid propagation sound or insulates the propagation path is formed between the first and second end column members.
  • the gap is an air layer continuous with the air layer in the hollow area of the partition wall, and the insulating band is a fibrous material such as rock wool or rock wool felt inserted or filled in the gap, or a soft resin, rubber, elastomer Or it consists of vibration insulation materials, such as a porous foam material.
  • the wall end means a wall portion within a range of 200 mm, preferably within 150 mm, from other building structures to which the wall ends are connected.
  • the present invention has a partition wall structure of the above-described structure, to provide a partition wall, characterized in that the TL D value is the performance value of the sound insulation performance increases to 50 or more.
  • the present invention is a construction method of the above configuration, provides a method of constructing the partition wall, characterized in that to construct a high-performance sound insulation wall that increased TL D value is the performance value of the sound insulation performance over 50 values .
  • the present invention provides a single runner / staggered column method in which a wall end is projected to another building structure and the wall end connected to the building structure is at least partially exposed to the building space.
  • a sound insulation method for the partition wall that improves the sound insulation performance of the partition wall of the single runner / sheetboard staggered arrangement method, Dividing the end columns arranged at the wall end portions into first and second end column members; The end column members are separated from each other, and a gap or an insulating band that blocks the propagation of solid vibration or insulates the propagation path of solid vibration is formed between the end column members,
  • the architectural interior surface material that defines the building space on one side of the partition wall is fixed to the first end column member, and the architectural interior surface material that defines the building space on the opposite side of the partition wall is fixed to the second end column member.
  • a sound insulation method for a partition wall is provided.
  • the sound insulation method according to the present invention is applied to a partition wall whose TL D value, which is a performance value of the sound insulation performance, shows a value of 57 or less, and improves the TL D value to a value within the range of 58 to 65.
  • TL D value which is a performance value of the sound insulation performance
  • the first and second end column members are disposed at the wall end portions in a positional relationship that is relatively displaced in the wall core direction, and the gap or insulating band is the first and second end members. It extends in the wall thickness direction between the second end column members.
  • the wall end is connected to the vertical surface of another building structure such as a column or wall, and the first end column member is an interior finish surface (cross, painted, etc.) of the other building structure.
  • the second end column member is spaced apart from the first end column member via the gap or the insulation band, and is separated from the first end column member.
  • the edge of the building interior surface material is connected to an interior finishing surface of another building structure via a joint structure having airtightness.
  • “proximity” means a separated state of 15 mm or less, preferably 10 mm or less.
  • the first and second end column members are arranged in parallel to the wall end portion, and the gap or the insulation band is in the direction of the wall core between the first and second end column members.
  • the wall end portion is connected to the vertical form of another building structure such as a column or wall, and the first and second end column members are interior finish surfaces (cross, It is arranged so as to be close to or in contact with a surface-finished unfinished surface such as painting or an interior finishing ground surface.
  • the partition wall is a dry partition wall having a hollow structure using a steel stud, and includes a steel stud, a steel runner, a brace, a spacer, and the like.
  • Build a steel wall base composed of (JIS A 6517 standard products, equivalent products, compliant products, compatible products, etc.), and construct gypsum boards using fixing means such as screws, staples, adhesives, etc. It is a wall structure which has the structure which fixed the interior surface material to the steel stud.
  • the first and second end pillar members are steel members that are substantially the same as or equivalent to the partition pillars, for example, the studs are steel studs of C-65 mm ⁇ 45 mm ⁇ 0.8 mm. In some cases, the first and second end column members are also C-65 mm ⁇ 45 mm ⁇ 0.8 mm steel studs. According to such a configuration, in the construction of the partition wall, it is only necessary to prepare only a single type of steel stud in advance, thereby reducing the grade of construction materials and improving or improving the construction efficiency. Can be planned.
  • the building interior surface material comprises a lower surface material and an upper surface material
  • the lower surface material is a gypsum board having a thickness of 20 to 25 mm (for example, a reinforced gypsum board having a thickness of 21 mm).
  • the upper surface material is a gypsum board with a thickness of 8 to 13 mm (for example, a hard gypsum board with a thickness of 9.5 mm), and the lower surface material and the upper surface material are vinyl acetate resin adhesives. Bonded by (with staples).
  • the said embodiment of this invention which has arrange
  • the projecting dimensions (L5, L6) of the lower surface material and the upper surface material extending in the above are limited to 100 mm or less, preferably 85 mm or less, more preferably 75 mm or less. It is desirable to limit the dimension (L2) of ⁇ ) (or insulating band) to 55 mm or less, preferably 40 mm or less, and more preferably 30 mm or less.
  • the cushioning material is integrally attached to the outer surface of the first end post member.
  • the outer surface of the cushioning material is in contact with the back surface of the lower surface material, or is slightly separated from the rear surface of the lower surface material.
  • the cushioning material functions as a backing material for the lower surface material when the lower surface material is deformed toward the hollow region.
  • FIG. 1 is a horizontal sectional view schematically showing a configuration of a partition wall according to a preferred embodiment of the present invention.
  • FIG. 2 is a horizontal sectional view schematically showing a configuration of a partition wall according to another preferred embodiment of the present invention.
  • FIG. 3 is a perspective view showing a specific structure of the partition wall shown in FIG.
  • FIG. 4 is a vertical sectional view showing a specific structure of the partition wall shown in FIG.
  • FIG. 5 is a horizontal sectional view showing a specific structure of the partition wall shown in FIG.
  • FIG. 6 is a horizontal sectional view showing another usage pattern of the partition wall shown in FIGS.
  • FIG. 1 is a horizontal sectional view schematically showing a configuration of a partition wall according to a preferred embodiment of the present invention.
  • FIG. 2 is a horizontal sectional view schematically showing a configuration of a partition wall according to another preferred embodiment of the present invention.
  • FIG. 3 is a perspective view showing a specific structure of the partition wall shown in FIG.
  • FIG. 7 is a horizontal sectional view which shows the specific structure as a comparative example regarding the lightweight partition wall of the conventional single runner and staggered column method.
  • FIG. 8 is a front view schematically showing a state in which the test bodies of Examples 1 and 2 and Comparative Examples 1 to 4 are built in the structural enclosure for the sound insulation performance test.
  • FIG. 9 is a performance diagram showing test results of a sound insulation performance test using the specimens of Comparative Example 1 and Comparative Example 2.
  • FIG. 10 is a performance diagram showing test results of a sound insulation performance test using the specimens of Comparative Example 1 and Comparative Example 3.
  • FIG. 11 is a performance diagram showing test results of a sound insulation performance test using the specimens of Comparative Example 2 and Comparative Example 4.
  • FIG. 12 is a performance diagram showing test results of a sound insulation performance test using the test bodies of Example 1 and Comparative Example 1.
  • FIG. 13 is a performance diagram showing test results of a sound insulation performance test using the test bodies of Example 2 and Comparative Example 2.
  • FIG. 14 is a horizontal sectional view of the wall end portion showing a first modification of the partition wall according to the embodiment.
  • FIG. 15 is a horizontal sectional view of a wall end portion showing a second modification of the partition wall according to the embodiment.
  • FIG. 16 is a horizontal cross-sectional view of the wall end portion showing a third modification of the partition wall according to the embodiment.
  • FIG. 17 is a horizontal sectional view of a wall end portion showing a fourth modification of the partition wall according to the embodiment.
  • FIG. 18 is a horizontal sectional view of a wall end portion showing a fifth modification of the partition wall according to the embodiment.
  • FIG. 19 is a horizontal sectional view of a wall end portion showing a sixth modification of the partition wall according to the embodiment.
  • FIG. 20 is a horizontal sectional view schematically showing a configuration of a conventional partition wall structure according to the single runner / common stud method and the single runner / sheetboard staggered array method.
  • FIG. 21 is a horizontal sectional view schematically showing a configuration of a conventional partition wall structure according to the double runner / parallel stud column method and the single runner / staggered column method.
  • FIG. 1 is a horizontal sectional view schematically showing a configuration of a partition wall according to a preferred embodiment of the present invention.
  • the partition wall 1 shown in FIGS. 1 (A) and 1 (B) has a wall end 1a abutted against the wall surface Wa of the wall W (or the vertical surface Ca of the column C) and is centered on the wall core XX. It is a lightweight partition wall with an extended single runner and staggered column method. On both sides of the partition wall 1, architectural spaces R1 and R2 such as living rooms are formed.
  • the studs 4 constituting the studs are arranged in a staggered arrangement alternately decentered on one side with respect to the wall core XX by the alternate arrangement of the spacers 9.
  • the spacer 9 is a known metal product known by a name such as a runner spacer.
  • a thickness is used as the under-surface material 5 and the upper-surface material 6.
  • the wall thickness ⁇ 2 of the partition wall 1 is set to about 135 mm.
  • the spacer 9 can be any spacer such as a gypsum board spacer or a wooden or resin spacer.
  • a pair of end pillar members 11 and 12 are arranged symmetrically with respect to the wall core XX on the wall end 1a of the partition wall 1 shown in FIG.
  • steel studs having an arbitrary cross section such as square steel studs or C steel studs can be used.
  • a slight gap ⁇ of about 10 mm is formed between the end column members 11 and 12 spaced apart in a direction orthogonal to the wall core XX (hereinafter referred to as “wall thickness direction”).
  • the gap ⁇ extends in the wall core XX direction (hereinafter referred to as “wall core direction”) and extends over the entire height of the end pillar members 11 and 12.
  • the end column members 11 and 12 and the gap ⁇ constitute a composite end column 10.
  • the end column 10 corresponds to an end-to-end column, a vertical runner, an end runner, or the like that is generally disposed at the wall end 1a.
  • the “end pillar” is a pillar, a pillar, or a pillar, which is disposed at the end of the column of columns constituting the partition wall and is disposed in proximity to or in contact with another building structure such as a connected wall or pillar. It means a columnar member.
  • the end column members 13 and 14 of the wall end 1a are arranged at positions shifted from each other in the wall thickness direction and at positions shifted from each other in the wall core direction. Be placed.
  • the end column members 13 and 14 are spaced apart in the direction of the wall core with a slight gap of about 10 mm in width.
  • a gap ⁇ extending in the wall thickness direction and extending over the entire height of the end column members 13, 14 is formed between the end column members 13, 14.
  • steel studs having a square cross section or steel studs having an arbitrary cross section such as a C-shaped steel stud can be used.
  • the end column members 12 and 14 arranged eccentrically on the side of the building space R1 with respect to the wall core X-X include the building space R1.
  • the face members 5 and 6 that constitute the wall surface are fixed, and the end pillar members 11 and 13 that are eccentrically arranged on the side of the building space R2 with respect to the wall core XX constitute the wall surface of the building space R2.
  • the face materials 5 and 6 are fixed.
  • Noise Si (indicated by solid arrows) generated in the building space R1 propagates to the end column members 12 and 14 as solid propagation sound, but the propagation of solid vibration is caused by the gap ⁇ between the end column members 11 and 12, Alternatively, it is blocked or insulated by the gap ⁇ between the end column members 13 and 14. Therefore, the slight solid vibration propagated through the upper and lower runners or the like is merely propagated to the building space R2 as the solid propagation sound So (indicated by a broken arrow), and the sound insulation due to the structure of the wall end 1a. The phenomenon of decline can be avoided. In addition, the phenomenon of the sound insulation lowering due to the structure of the wall end 1a will be described later.
  • FIG. 2 is a horizontal sectional view schematically showing a configuration of a partition wall according to another preferred embodiment of the present invention.
  • the partition wall 1 shown in FIG. 2 has end column members 15 and 16 arranged at positions shifted from each other in the wall thickness direction and the wall core direction, like the partition wall 1 shown in FIG.
  • the end column members 15 and 16 are made of the same steel studs as the studs 4.
  • the end column members 15 and 16 are built between the lower runner 2 and the upper runner (not shown) using the spacers 19. Supported by runners.
  • the spacer 19 is a ready-made runner spacer that is the same as the spacer 9.
  • the end column members 15 and 16 are spaced apart from each other by a slight interval of about 10 mm in the wall core direction, and extend between the end column members 15 and 16 in the wall thickness direction and the end column members 15 and 16.
  • a gap ⁇ is formed extending over the entire height.
  • the noise Si generated in the building space R1 propagates to the end column member 16 as a solid propagation sound, but the propagation of the solid vibration is blocked or insulated by the gap ⁇ between the end column members 15 and 16. Therefore, the solid vibration propagated through the upper and lower runners only propagates to the building space R2 as the solid propagation sound So, and it is possible to avoid the phenomenon of sound insulation deterioration due to the structure of the wall end 1a. . In addition, the phenomenon of the sound insulation fall resulting from the structure of the wall edge part 1a is mentioned later.
  • 3 to 5 are a perspective view, a vertical sectional view, and a horizontal sectional view showing a specific structure of the partition wall 1 shown in FIG.
  • the partition wall 1 is a lightweight partition wall (partition wall of steel wall base (JASS26)) of a dry construction method constructed in an indoor space of a reinforced concrete structure building.
  • the structural frame of the building is composed of floor structures F1, F2, columns C, beams B, and walls W having a reinforced concrete structure.
  • the lower end portion of the partition wall 1 is supported or supported by the floor structure F1.
  • the upper end portion of the partition wall 1 is connected to the beam B or the floor structure F2.
  • the end portion of the partition wall 1 in the wall core direction, that is, the wall end portion 1 a is connected to the column C or the wall body W in a protruding form.
  • the wall end 1a means a wall portion within the distance L3 (FIG. 5) from the wall surface Wa (or the vertical surface Ca).
  • the distance L3 is 200 mm.
  • it is set to about 150 mm.
  • the interior side surfaces of the beam B, the column C, and the wall W are plastered with plastering materials Bc, Cc (FIG. 5), Wc (FIG. 5) such as cement mortar.
  • the side surface Bd, the vertical surface Ca of the column C, and the wall surface Wa of the wall body W are made of an interior base surface such as a paint base or a cloth base made of a plastering surface. It should be noted that the grade of building structure, the presence / absence of plastering, the presence / absence or type of interior finishing material, etc.
  • the vertical surface Ca and the wall surface Wa may be a steel frame surface, a reinforced concrete frame surface, a PC plate surface, a timber surface, or the like.
  • the lower end portion of the partition wall 1 is supported by the floor structure F1 on the floor that constructs the partition wall 1, and the upper end portion of the partition wall 1 is fixed to the beam B on the upper floor.
  • the wall end 1a is connected to the column C.
  • the upper end portion of the partition wall 1 may be fixed to the lower surface of a concrete floor slab or the like constituting the upper floor structure F2, and the wall end 1a of the partition wall 1 is connected to the wall body W. Also good.
  • joint material 20 for four-round joints (hereinafter referred to as “joint material 20”) constituting the four-round joints is continuously filled or inserted into joints (joint portions) at the upper end, lower end and end of partition wall 1. Is done.
  • the joint material 20 includes lower sealing materials 21 and 22 and an upper sealing material 23 (FIGS. 4 and 5).
  • an inorganic sealing material such as rock wool felt (for example, “Tiger Rock Felt (registered trademark)” (product of Yoshino Gypsum Co., Ltd.)) is used as the underlay sealing material 21, and the underlay sealing material 22 is used.
  • the upper seal material 23 for example, a urethane resin sealant (for example, trade name “Tiger U Tight” (product of Yoshino Gypsum Co., Ltd.)) is used.
  • a urethane resin sealant for example, trade name “Tiger U Tight” (product of Yoshino Gypsum Co., Ltd.)
  • the surface of the upper surface member 6 of the partition wall 1 is covered with an interior finishing material (coating or cloth) 8 by interior finishing work such as painting or cloth pasting.
  • the interior finishing material 8 is also applied to the lower end surface Ba of the beam B, the side surface Bd of the beam B, the vertical surface Ca of the column C, and the wall surface Wa of the wall body W. Therefore, the interior finishing material 8 extends over the entire surface of the upper surface member 6, the column C, the wall body W, and the beam B and is substantially continuous, and the lower end surface Ba of the beam B, the side surface Bd of the beam B,
  • the vertical surface Ca of the column C and the wall surface Wa of the wall body W constitute an indoor side surface or an indoor side surface of the building.
  • the partition wall 1 includes a lower runner 2 fixed on a floor structure F1 such as a floor slab, an upper runner 3 fixed on the lower surface Ba of the beam B, and upper and lower runners 2. 3 and a large number of studs 4 installed vertically between the two.
  • the studs 4 are made of light-weight steel studs (JIS A 6517 standard products, equivalent products, compliant products, compatible products, etc.), and are arranged in a staggered arrangement along the wall core.
  • a width ⁇ 1 of the stud 4 is smaller than a width ⁇ 3 of the runners 2 and 3, and a metal spacer 9 having a dimension of the width ⁇ 4 is interposed between the side walls of the runners 2 and 3 and the side surface of the stud 4.
  • the underlaying surface material 5 is fixed to the stud 4 with screw screws (tapping screws) 30, and the upside surface material 6 is fixed to the outer surface of the underlaying surface material 5 with staples and an adhesive (not shown).
  • the adhesive a vinyl acetate resin adhesive generally used as an adhesive for gypsum board construction can be suitably used.
  • the upper surface material 6 can be fixed to the lower surface material 5 using a combination of staples, adhesives, and screw screws, or the upper surface material 6 can be fixed to the lower surface material 5 only by screw screws. It is.
  • a substantially sealed concealing space is formed as a hollow region (hollow part) ⁇ between the underlaying surface members 5 on both sides of the wall body.
  • a heat insulating and sound absorbing material 40 (shown by a broken line) is disposed in the hollow region. The heat insulating / sound absorbing material 40 is filled or inserted between the studs 4 as shown in FIG.
  • Lower runner 2 Lightweight steel (steel runner) C-75mm ⁇ 40mm ⁇ 0.8mm ⁇
  • Upper runner 3 Lightweight shape steel (steel runner) C-75mm ⁇ 40mm ⁇ 0.8mm ⁇
  • Stud 4 Lightweight steel (steel stud) C-65mm ⁇ 45mm ⁇ 0.8mm ⁇
  • Various plaster boards having a thickness of 8 to 25 mm can be suitably used as the lower surface material 5 and the upper surface material 6.
  • a lightweight steel (steel runner) C—100 mm ⁇ 40 mm ⁇ 0.8 mm may be used as the lower runner 2 and the upper runner 3.
  • a metal stud having an arbitrary cross section, size and thickness can be used as the stud 4, for example, a C-shaped steel stud of various sizes such as 45, 50, 65, 75, 90, 100 mm in width,
  • metal studs of various thicknesses such as thickness 0.4, 0.5, 0.6 (general material), 0.8 (JIS material) may be adopted.
  • the thickness of the heat insulating / sound absorbing material 40 is set to a dimension such as 25, 40, 50, 75, 100 mm, or the density of the heat insulating / sound absorbing material 40 is 16, 24, 32, 40, 48 kg / m 3. It may be set to an arbitrary density such as.
  • the upper end of the partition wall 1 is abutted against the lower end surface Ba of the beam B.
  • the upper runner 3 disposed at the upper end portion of the partition wall 1 is fixed to the lower end surface Ba by a fixture (not shown) such as an anchor. Further, when the upper end portion of the partition wall 1 is abutted against the lower surface of the floor structure F2, substantially the same joining structure is employed.
  • the wall end 1a of the partition wall 1 is abutted against the vertical surface Ca of the column C of the reinforced concrete structure constituting the structural frame of the building. Note that, as described with reference numerals in parentheses in FIG. 5, substantially the same joining structure is also adopted when the end portion of the partition wall 1 is abutted against the wall surface Wa of the wall body W.
  • the pair of end column members 15 and 16 are disposed at positions relatively displaced in the wall core direction.
  • the end column members 15 and 16 constitute a composite end column 10.
  • the end column members 15 and 16 are made of light-weight steel (steel stud) C-65 mm ⁇ 45 mm ⁇ 0.8 mm, like the stud 4.
  • the lower runner 2 and the upper runner 3 are supported by the upper and lower runners 2 and 3.
  • the end column members 15 and 16 are separated from each other with a dimension L2 in the wall core direction, and a gap ⁇ is formed between the end column members 15 and 16.
  • the underlaying surface material 5 on the building space R1 side is fastened to the end column member 16 and the stud 4 eccentric to the building space R1 side by a screw screw 30, and the underlaying surface material 5 on the building space R2 side is screw screw. 30 is fastened to the end column member 15 and the stud 4 eccentric to the side of the building space R2.
  • the upper surface material 6 is fixed to the outer surface of each lower surface material 5 by staples and a vinyl acetate resin adhesive (not shown).
  • the end pillar member 15 supports the edge portions of the face materials 5 and 6 on the building space R2 side in a relatively stable state.
  • the edge portions of the face materials 5 and 6 on the building space R1 side protrude from the end pillar member 16 to the vertical surface Ca (or wall surface Wa) side, so the stability, rigidity and durability of the support of the face materials 5 and 6 are increased.
  • FIG. 6 is a horizontal sectional view showing another usage pattern of the partition wall 1.
  • the partition wall 1 shown in FIG. 6 is connected to the lightweight partition wall 1 ′ of the single runner / staggered column method orthogonal to this in a projecting form.
  • the partition wall 1 ′ has substantially the same structure as the partition wall 1, and the wall end portion 1 a of the partition wall 1 is connected to the upper surface member 6 of the partition wall 1 ′ via the joint material 20,
  • the column member 15 is close to or in contact with the upper surface member 6 of the partition wall 1 ′.
  • FIG. 7 is a horizontal sectional view showing a specific structure as a comparative example with respect to the lightweight partition wall 100 of the conventional single runner / staggered column method shown in FIG. 21 (B).
  • the wall end portion 100a of the partition wall 100 is connected to the column C or the wall body W in a protruding form. Since the wall end portion 100a of the partition wall 100 is also a tension finish or parting position of the face materials 5 and 6, the stability of the support or structure, the ease of construction, and the like are taken into consideration.
  • a C-shaped steel stud (C-75 mm ⁇ 45 mm ⁇ 0.8 mm) having a width ⁇ 3 having the same width is erected as the end column 7.
  • the inventors made a prototype of the partition wall 1 (FIGS. 3 to 5) according to the present embodiment as Examples 1 and 2, and prototyped the partition wall 100 of the conventional structure shown in FIG. 7 as Comparative Examples 1 to 4.
  • a sound insulation performance test was conducted on the test bodies of Examples 1 and 2 and Comparative Examples 1 to 4.
  • the width ⁇ 3 of the upper and lower runners 2 and 3 was set to 100 mm.
  • the end column 7 is made of a lightweight section steel (steel stud) C—100 mm ⁇ 45 mm ⁇ 0.8 mm.
  • the end column members 15 and 16 are Similarly, lightweight steel (steel stud) C-65 mm x 45 mm x 0.8 mm.
  • the upper surface material 6 was fixed to the outer surface of the lower surface material 5 with staples and a vinyl acetate resin adhesive. Also in the partition walls 100 of Comparative Examples 1 to 3, the upper surface material 6 was fixed to the outer surface of the lower surface material 5 with staples and a vinyl acetate resin adhesive.
  • Example 1 The difference between Example 1 and Example 2 is that (1) In Example 1, one glass wool having a density of 24 kg / m 3 and a thickness of 50 mm was filled or loaded into the hollow region ⁇ as the heat insulating and sound absorbing material 40. On the other hand, (2) in Example 2, only glass wool having a density of 24 kg / m 3 and a thickness of 50 mm is filled or loaded into the hollow space ⁇ as the heat insulating and sound absorbing material 40. Therefore, the difference in the sound insulation effect due to the difference in the thickness of the heat insulating and sound absorbing material 40 can be compared by the test of the specimens of Examples 1 and 2. In Examples 1 and 2, the dimension L2 of the gap ⁇ was set to about 10 mm.
  • Comparative Examples 1 to 4 The differences between Comparative Examples 1 to 4 are as follows: (1) In Comparative Example 1, one glass wool having a density of 24 kg / m 3 and a thickness of 50 mm was filled or loaded into the hollow region ⁇ as a heat insulating and sound absorbing material 40. (2) In Comparative Example 2, two glass wools having a density of 24 kg / m 3 and a thickness of 50 mm are filled or loaded into the hollow region ⁇ as the heat insulating and sound absorbing material 40, and (3) in Comparative Example 3, the density is 32 kg / m 3 ⁇ One glass wool with a thickness of 50 mm and one glass wool with a density of 32 kg / m 3 and one with a thickness of 25 mm are filled or loaded into the hollow region ⁇ .
  • Comparative Example 4 the density is 24 kg / m 3 and the thickness Two pieces of 50 mm glass wool are filled or loaded in the hollow space ⁇ as the heat insulating / sound absorbing material 40 and the upper surface material 6 is fixed to the outer surface of the lower surface material 5 by staples and vibration damping adhesive. . That is, according to the test of the specimens of Comparative Examples 1 to 4, it was caused by the difference in the sound insulation performance due to the difference in the thickness and density of the heat insulating / sound absorbing material 40 and the difference in the adhesive for bonding the face materials 5 and 6. Know the difference in sound insulation performance. In Comparative Example 4, “Sound Cut” (trade name) manufactured by Yoshino Gypsum Co., Ltd., which exhibits a relatively good damping effect in the high sound range, was used as the damping adhesive.
  • Example 1 and Comparative Example 1 or the difference between Example 2 and Comparative Example 2 is that the present invention adopts a two-part configuration (end column members 15 and 16) as the end column 10 and a single unit.
  • This is a difference from the prior art in which the steel stud 7 is used as an end column. Therefore, the comparison of the sound insulation performance of Example 1 and Comparative Example 1 (FIG. 12), or the sound insulation performance of Example 2 and Comparative Example 2 The comparison (FIG. 13) reveals the effect of the present invention over the prior art.
  • FIG. 8 is a front view showing a state in which the test bodies of Examples 1 and 2 and Comparative Examples 1 to 4 are installed in a structural enclosure for a sound insulation performance test.
  • test piece of the partition wall 1 was installed in the rectangular opening of the reinforced concrete structure E as shown in FIG.
  • the upper end or lower end ⁇ of the test body is joined to the frame E with a structure equivalent to the construction structure of the runners 2 and 3 shown in FIG. 4, and the wall end ⁇ of the test body is the end column 10 or the stud 7. It was joined to the frame E with a structure equivalent to the construction structure of the wall end portions 1a, 100a using the.
  • FIG. 9 shows the sound insulation test results of the partition walls 100 of Comparative Examples 1 and 2.
  • the difference in the sound insulation performance due to the difference in the thickness of the heat insulating and sound absorbing material 40 is shown in the sound insulation test results shown in FIG.
  • FIG. 10 the sound insulation test result of each partition wall 100 of Comparative Examples 1 and 3 is shown.
  • the difference in the sound insulation performance due to the difference in thickness and density of the heat insulating / sound absorbing material 40 appears in the sound insulation test results shown in FIG.
  • FIG. 11 the sound insulation test result of each partition wall 100 of the comparative examples 2 and 4 is shown.
  • Comparative Example 4 is a configuration using the vibration damping adhesive as an adhesive for bonding the face materials 5 and 6. Accordingly, FIG. 11 shows a change in sound insulation performance due to the use of the vibration damping adhesive. Appears in the sound insulation test results.
  • the thickness and density of the heat insulating / sound absorbing material 40 are increased to improve the sound insulation performance of the partition wall 100, or the adhesive for the face materials 5 and 6 is used. Even when a relatively special adhesive having a damping effect is used, the sound insulation performance is not improved as desired particularly in the frequency band of 500 to 2000 Hz, and therefore the performance value of the sound insulation performance (TL D value). ) was substantially the same or equivalent to the conventional value.
  • FIG. 12 shows the sound insulation test results of the partition walls 100 and 1 of Comparative Example 1 and Example 1.
  • Example 1 and Comparative Example 1 the difference between Example 1 and Comparative Example 1 is that the present invention adopting the two-part configuration (end pillar members 15 and 16) as the end pillar 10 and the single steel stud 7 are adopted as the end pillar. Therefore, the effect of the present invention over the prior art is revealed by comparing the sound insulation performance of Example 1 and Comparative Example 1.
  • the partition wall 1 of Example 1 has improved sound insulation performance in a wide frequency band ranging from 250 to 4000 Hz.
  • the test results of FIGS. 9 to 11 in which the effect of improving the sound insulation performance in the frequency band of 500 to 2000 Hz is hardly observed, the test results of FIG.
  • the effect of improving the sound insulation performance in the frequency band of 2000 Hz is noticeable.
  • FIG. 13 shows the sound insulation test results of the partition walls 100 and 1 of Comparative Example 2 and Example 2.
  • Example 1 and Comparative Example 1 the difference between Example 1 and Comparative Example 1 is that the present invention adopting the two-part configuration (end pillar members 15 and 16) as the end pillar 10 and the single steel stud 7 are adopted as the end pillar. Therefore, the effect of the present invention over the prior art is also found by comparing the sound insulation performance of Example 2 and Comparative Example 2.
  • the partition wall 1 of Example 2 has improved sound insulation performance over a wide frequency band ranging from 250 to 4000 Hz.
  • the effect of improving the sound insulation performance in the frequency band of 500 to 2000 Hz is noticeable with respect to the partition wall 1 of Example 2.
  • the present invention can improve the sound insulation of the entire partition wall 1 by adopting the configuration of the wall end portion 10a in which the end column 10 of the two-part configuration (end column members 15 and 16) is disposed. It is a thing.
  • the thickness or density of the heat insulating / sound absorbing material 40 such as glass wool inserted into the hollow region ⁇ of the partition wall 100 is changed, and the special adhesion such as the vibration damping adhesive is used as the adhesive for the face materials 5 and 6. Even if the agent was used, the performance value (TL D value) of the sound insulation performance was substantially the same value or a slightly increased value, and the sound insulation performance could not be easily improved.
  • the end column 10 of the partition wall 1 is divided into a plurality of end column members 15 and 16, and the end column members 15 and 16 are separated from each other by a gap ⁇ . It is possible to substantially improve the sound insulation performance in the frequency range) and increase the performance value (TL D value) of the sound insulation performance.
  • the end column members 15 and 16 of the partition wall 1 are made of the same lightweight steel (C-65 mm ⁇ 45 mm ⁇ 0.8 mm) as the stud 4.
  • the spacer 19 is also the same off-the-shelf product as the spacer 9, and therefore only one type of steel stud needs to be prepared for the construction of the partition wall 1, and therefore the number of construction materials is reduced. It becomes possible to improve or improve the efficiency of construction.
  • FIG. 14 to 19 are horizontal cross-sectional views of the wall end 1a showing a modification of the partition wall 1.
  • buffer materials 51 and 52 such as rock wool felt or resin foam are disposed at the end 1 a.
  • the buffer material 51 is a sheet-like member, and is interposed between the surfaces Wa and Ca of the wall W or the column C and the web portion 15a of the end column member 15, and the wall W or the column C and the end column member 15 Propagation of solid vibration sound between.
  • the thickness of the buffer material 51 is set to, for example, 10 mm, and the width of the buffer material 51 is, for example, the same or equivalent dimension as the width of the end column member 15 or the same or equivalent dimension to the width of the hollow region ⁇ .
  • Set to The cushioning material 51 is attached to the web portion 15a over the entire height of the end column member 15, or is partially attached to the web portion 15a with an interval in the vertical direction.
  • the cushioning material 52 is made of a relatively thick belt-like member, is integrally attached to the outer surface of the flange portion 15b of the end column member 15, and extends over the entire height of the end column member 15.
  • the surface of the cushioning material 52 is close to the underlaying surface material 5.
  • the thickness of the buffer material 52 is set to 10 mm, for example, and the width of the buffer material 52 is set to 10 to 30 mm, for example.
  • the outer surface of the cushioning material 52 is in contact with the back surface of the underlaying surface material 5 or is slightly separated.
  • the cushioning material 52 is attached to the flange portion 15b over the entire height of the end column member 15, or is partially attached to the flange portion 15b with an interval in the vertical direction.
  • the outer surface of the cushioning material 52 is in contact with the back surface of the underlaying surface material 5 or is slightly separated.
  • the cushioning material 52 functions as a backing material for the face materials 5 and 6, and the face material Prevent excessive deformation of 5 and 6.
  • a fibrous material having vibration insulation, a soft resin, rubber, an elastomer, a porous foam material, or the like can be suitably used.
  • end column members 15 and 16 having different cross-sectional sizes are disposed as end columns 10 on the wall end 1a.
  • the width ⁇ 5 of the end column member 15 is larger than the width ⁇ 1 of the stud 4 (FIG. 5)
  • the width ⁇ 6 of the end column member 16 is smaller than the width ⁇ 1 of the stud 4 (FIG. 5).
  • the gap ⁇ extending in the wall thickness direction is formed between the end column members 15 and 16 as in the above-described embodiments.
  • a heat insulating / sound absorbing material 41 (shown by a broken line) similar to the heat insulating / sound absorbing material 40 is interposed between the end column members 15 and 16, and an insulating band that partially closes the gap ⁇ is provided as the heat insulating / sound absorbing material 41. May be formed.
  • the partition wall 1 shown in FIG. 16 has the partition wall structure shown in FIG. 1 (A), and has a structure in which end column members 11 and 12 having a hollow structure and a square cross section are arranged as side columns 10 in parallel with the wall end 1a.
  • the end pillar members 11 and 12 have a symmetrical arrangement and cross section with respect to the wall core XX.
  • a gap ⁇ having a dimension T3 is formed between the end column members 11 and 12.
  • the dimension T3 is set to about 10 mm, for example.
  • steel studs having a square cross section can be suitably used.
  • the gap ⁇ extending in the wall core direction is formed between the end column members 11 and 12.
  • a fibrous material having vibration insulation, soft resin, rubber, elastomer, porous foam material, or the like is interposed between the end column members 11 and 12 as an insulating band 42 (shown by a broken line).
  • the partition wall 1 shown in FIG. 17 has the partition wall structure shown in FIG. 1 (B), and has a configuration in which the end column members 13 and 14 having a hollow structure and a rectangular cross section are disposed as end columns 10 on the wall end 1a.
  • the end column members 13 and 14 have a cross-sectional property in which the weak axis (major axis) is oriented in the wall thickness direction and the strong axis (minor axis) is oriented in the wall core direction, like the stud 4.
  • a gap ⁇ having a dimension L2 is formed between the end column members 13 and 14.
  • the dimension L2 is set to about 30 mm, for example.
  • steel studs having a square cross section can be suitably used.
  • the gap ⁇ extending in the wall thickness direction is formed between the end column members 13 and 14 as in the above-described embodiments.
  • a fibrous material having vibration insulation, a soft resin, rubber, an elastomer, a porous foam material, or the like is interposed between the end column members 13 and 14 as an insulating band 42 (shown by a broken line).
  • the partition wall 1 shown in FIGS. 18A and 18B has a configuration in which a steel stud member having a rectangular cross section is used as the end column members 13 and 14 and the stud 4 '.
  • Each steel stud member is arranged so that the weak axis (major axis) is oriented in the wall core direction and the strong axis (minor axis) is oriented in the wall thickness direction.
  • a gap ⁇ having a dimension T3 is formed between the end pillar members 11 and 12 shown in FIG. 18 (A), and the end pillar member shown in FIG. 18 (B). Between the gaps 13 and 14, a gap ⁇ having a dimension L2 is formed as in the partition wall structure shown in FIG.
  • the partition wall 1 shown in FIG. 19 (A) is a single-runner / staggered column method partition wall structure shown in FIGS. 2 to 5, and the mating plate 4a is arranged in a staggered arrangement between the stud 4 and the underlaying surface material 5. It has an inserted configuration.
  • the partition wall 1 shown in FIG. 19 (B) is similar to the partition wall structure of the single runner / sheet board staggered arrangement method shown in FIG. 20 (B). It has a configuration in which gaps 4b are alternately formed between the studs 4 and the undersurface material 5 while being inserted in a staggered arrangement between them. Similar to the partition wall structure shown in FIGS.
  • a pair of end column members 15 and 16 are arranged as end columns 10 on the wall end 1a, and a gap ⁇ is provided between the end column members 15 and 16. Is formed.
  • the dimension L2 of the gap ⁇ is set to 55 mm or less, preferably 30 mm or less (for example, 10 mm).
  • the configuration of the present invention may be applied to a wooden partition wall using a wooden system or wooden studs.
  • the partition wall structure shown in FIGS. 1 (A) and 1 (B) is made of wood. It may be applied to a partition wall of a shaft structure, and a solid and square woody member may be used as the end column members 11 to 14 shown in FIGS.
  • reinforced gypsum board and hard gypsum board are used as the building interior surface material of the partition wall.
  • gypsum board products such as structural gypsum board, sizing gypsum board and decorative gypsum board, glass fiber Non-woven gypsum board (trade name “Tiger Glass Rock (registered trademark)” (product of Yoshino Gypsum Co., Ltd.)), slag gypsum board (trade name “Asunon” (registered trademark), etc.), cement board (“Delacreet” (registered trademark)) ), Etc.), fiber-mixed gypsum board (trade name “FG Board”, etc.), extrusion molded board (trade names “Clion Studless Panel”, “SLP Panel”, etc.), ALC board, calcium silicate board, wood-based plywood, ceramics You may use siding etc. as a building interior surface material of a partition wall.
  • this invention is applied with respect to the partition wall installed in a steel structure, a steel frame reinforced concrete structure, or a wooden structure building. It may be applied.
  • the propagation of solid vibration is blocked or insulated by the air layer in the gap formed between the end column members, but the fibrous material, soft resin, rubber, A vibration insulating material such as an elastomer or a porous foam material may be filled or inserted into the gap, and the gap portion may be configured as an insulating band, or an end column member via a coupling or linkage that can be vibration-insulated They may be interconnected.
  • a vibration insulating material such as an elastomer or a porous foam material may be filled or inserted into the gap, and the gap portion may be configured as an insulating band, or an end column member via a coupling or linkage that can be vibration-insulated They may be interconnected.

Landscapes

  • Engineering & Computer Science (AREA)
  • Architecture (AREA)
  • Physics & Mathematics (AREA)
  • Electromagnetism (AREA)
  • Civil Engineering (AREA)
  • Structural Engineering (AREA)
  • Acoustics & Sound (AREA)
  • Thermal Sciences (AREA)
  • Building Environments (AREA)
  • Load-Bearing And Curtain Walls (AREA)

Abstract

本発明は、シングルランナ工法の間仕切壁構造において、中高音域の周波数帯域における壁体の遮音性能を向上することを目的とする。 間仕切壁(1)は、壁端部(1a)を他の建築構造体(C,W,1')に突付け、壁端部を建築空間に露出させた構造を有する。壁端部の端柱(10)は第1及び第2の端柱部材(11ー16)からなる。端柱部材は互いに離間し、固体振動の伝播を遮断し又は固体振動の伝播経路を絶縁する間隙(β,γ)又は絶縁帯(42)が端柱部材の間に形成される。片側の建築空間(R2)の内装面材(5,6)が第1端柱部材(11,13,15)に固定され、反対側の建築空間(R1)の内装面材が第2端柱部材(12,14,16)に固定される。

Description

間仕切壁構造及びその施工方法
 本発明は、間仕切壁構造及びその施工方法に関するものであり、より詳細には、中高層建築物の戸境壁、界壁又は耐火区画壁等として一般に施工され、優れた遮音性能を発揮するシングルランナ・千鳥間柱工法又はシングルランナ・敷目板千鳥配列工法の間仕切壁構造及びその施工方法(structure of partition wall and method for constructing partition wall)に関するものである。
 建築物の間仕切壁には、防火性能、耐火性能、遮音性能、防振性能、振動絶縁性能、断熱性能、防犯性能等の各種性能が要求されるが、間仕切壁の遮音性能は、各住居又は各室の独立性及び居住性を確保する上で近年殊に重視される傾向がある。
 集合住宅等の中高層建築物において間仕切壁として施工される非耐力壁として、石膏ボード、珪酸カルシウム板等の建築内装面材(建築内装工事用のボード材料)を軽量形鋼(LGS)の鋼製間柱に取付けてなる中空構造の乾式間仕切壁や、補強リブ等を有する建築内装面材を自立させ、鋼製間柱を省略した中空構造(一般にノンスタッド構造又はスタッドレス構造と呼ばれる。)の乾式間仕切壁が知られている。このような乾式工法の間仕切壁は、施工容易性及び建築物軽量化等の観点より有利であり、中高層建築物の戸境壁、界壁又は耐火区画壁等の壁体として広く普及している。
 一般に、鋼製間柱を使用した中空構造の乾式間仕切壁は、非特許文献1に記載される如く、鋼製スタッド、鋼製ランナ、振止め、スペーサ等を含む建築用鋼製下地材(JIS A 6517規格品、或いは、その同等品、準拠品又は互換品等)により構成される鋼製壁下地を構築し、ビス、ステープル、接着剤等の固定手段を用いて建築内装面材を鋼製スタッドに固定した構成を有する壁構造体であり、軽量間仕切壁、軽鉄間仕切壁等の名称で広く知られている。この種の間仕切壁の工法は、スタッド配列の形式又は様式に基づいて概ね以下の如く分類することができる。
(1)シングルランナ・共通間柱(シングルスタッド)工法
(2)ダブルランナ・並列間柱(ダブルスタッド)工法
(3)シングルランナ・千鳥間柱(千鳥スタッド)工法
  なお、本明細書において、「軽量形鋼」の用語は、JIS A 6517 (「建築用鋼製下地材(壁・天井) Steel furrings for wall and ceiling in buildings」)に記載された鋼製スタッド及び鋼製ランナを包含する。
 図20及び図21は、これら3種の工法に係る間仕切壁構造の構成を概略的に示す水平断面図である。図20及び図21の各図において、室、居室、廊下等の建築空間R1、R2を区画する間仕切壁100は、主として、床部分に配設された下部ランナ2、天井部分に配設された上部ランナ(図示せず)、鋼製間柱を構成する鋼製スタッド4(以下、「スタッド4」という。)、スタッド4に支持された下張り面材5及び上張り面材6より構成される。スタッド4は、所定間隔L1を隔てて配列され、間隔L1は、一般に、約150、約230、約300、約450mm又は約600mmに設定される。各図において、間仕切壁100の壁端部100aは、壁Wの壁面Wa(又は柱Cの垂直面Ca)に突付けられており、間仕切壁100は、全体的に壁芯XーXを中心に延在する。なお、例えば、鋼製間柱を木造間柱と読み替え、ランナを木造下枠又は横架材と読み替えることにより、図20及び図21に示す各工法の分類を木構造の間仕切壁の工法の分類として読み替えることができる。従って、本明細書においては、広義の「間柱」の用語は、木造間柱等を含み、広義の「ランナ」の用語は、木造下枠又は木造横架材等を包含するものとする。
 図20(A)には、シングルランナ・共通間柱工法の間仕切壁構造が示されている。間仕切壁1は、壁芯XーXを中心にランナ2、スタッド4等を整列配置し、面材5、6を各スタッド4の両側に一体的に留付けた構成を有する。所望により、グラスウール等の断熱・吸音材(図示せず)が間仕切壁1の中空域αに挿入又は充填される。この工法の間仕切壁構造は、最も汎用的且つ典型的な間仕切壁の構造であり、例えば、非特許文献1に記載されている。
 図20(A)に示すシングルランナ・共通間柱工法の間仕切壁構造では、両側の面材5、6が、共通のスタッド4に留付けられるので、面材5、6及びスタッド4からなる固体伝播音の伝搬経路が形成される。このため、間仕切壁1の片側の建築空間(室、廊下等)の騒音がこの伝播経路を介して間仕切壁1の反対側の建築空間に伝搬し易く、従って、間仕切壁1の遮音性能を所望の如く向上し難い事情がある。
 図20(B)には、図20(A)に示す間仕切壁構造の変形例として、敷目板4aをスタッド4及び下張り面材5の間に千鳥配列に介挿するとともに、スタッド4及び下張り面材5の間に交互に間隙4bを形成した構成を有する間仕切壁構造が示されている(以下、この工法を「シングルランナ・敷目板千鳥配列工法」という。)。所望により、グラスウール等の断熱・吸音材(図示せず)が間仕切壁1の中空域αに挿入又は充填される。この構造の間仕切壁は、例えば、特許文献1(特開2010ー242298号公報)に記載されている。このように敷目板4aを緩衝材として介挿し且つ間隙4bを交互に配設した間仕切壁構造は、固体伝播音の伝搬経路を遮断し得る点で有利であるものの、特定の材質及び遮音特性を有する敷目板4aの付加的な施工を要する。
 図21(A)には、ダブルランナ・並列間柱工法の間仕切壁構造が示されている。この間仕切壁構造は、上下の鋼製ランナ(下部ランナ2のみ示す)及びスタッド4を二列に並列配置した概ね二重壁の構成を有する。中心軸線X1ーX1に合芯した第1列のスタッド4は、建築空間R1側の面材5、6のみを支持し、中心軸線X2ーX2に合芯した第2列のスタッド4は、建築空間R2側の面材5、6のみを支持する。所望により、グラスウール等の断熱・吸音材(図示せず)が間仕切壁1の中空域αに挿入又は充填される。この構造の間仕切壁は、例えば、特許文献2(特開2005ー133414号公報)に記載されている。
 ダブルランナ・並列間柱工法の間仕切壁100では、各列のスタッド4及びランナ2等が実質的に完全に独立し、各建築空間R1、R2の面材5、6は、各列のスタッド4に夫々留付けられる。また、中空域αの空気層は、その厚さ寸法が、ランナ2の幅ω1の二倍に相当し、かなり大きな空気層が中空域αに形成されるので、グラスウールやロックウール等の断熱・吸音材を中空域αに適切に挿入又は充填することができ、これは、壁構造体の遮音性を向上する上で極めて有利である。加えて、ダブルランナ・並列間柱工法の間仕切壁構造によれば、固体伝播音の伝搬経路を確実に遮断し得るので、遮音欠損等を防止し、良好な遮音性能を発揮する壁構造体を設計し得ると考えられる。しかしながら、この構造の間仕切壁100においては、シングルランナ・共通間柱工法の間仕切壁構造(図20(A))に比べ、壁厚ω2が倍増するので、有効利用可能な居室面積又は居室空間等が比較的大きく減少又は縮小するという建築設計上又は建築経済上の問題が生じる。
 図21(B)には、シングルランナ・千鳥間柱工法の間仕切壁構造が示されている。この間仕切壁構造では、スタッド4は、スペーサ9の配設により、壁芯XーXに対して片側に交互に偏心した千鳥配列に配置される。各スタッド4は、片側の建築空間の面材5、6のみを支持し、反対側の建築空間の面材5、6から離間する。この構造の間仕切壁は、例えば、特許文献2~4(特許第4971876号公報、特許第5663119号公報、特許第5296600号公報)に記載されている。
 シングルランナ・千鳥間柱工法の間仕切壁構造によれば、シングルランナ・敷目板千鳥配列工法の間仕切壁構造(図20(B))と同じく、固体伝播音の伝搬経路が形成されず、従って、ダブルランナ・並列間柱工法の間仕切壁構造(図21(A))と対比すれば、その遮音性能は若干劣るものの、比較的良好な遮音性能を発揮する遮音壁を設計し得る。しかも、シングルランナ・千鳥間柱工法では、敷目板4a(図20(B))の介挿に起因した構造上、詳細設計上又は施工上の特殊な考慮又は配慮等は必要とされず、加えて、スタッド4が千鳥配列されるにすぎないので、シングルランナ・共通間柱工法の間仕切壁構造(図20(A))に比べて僅かに壁厚ω2を増大すれば良く、従って、有効利用可能な居室面積又は居室空間は、シングルランナ・共通間柱工法の間仕切壁構造よりも僅かに減少又は縮小するにすぎない。
 例えば、各工法の間仕切壁構造において、スタッド4として、幅ω1=65mmのC形鋼製スタッドを使用し、面材5、6として、厚さ21mm及び9.5mmの石膏ボードを夫々使用すると、各間仕切壁1の壁厚ω2は、シングルランナ・共通間柱工法(図20(A))では、壁厚ω2=約125mmであり、ダブルランナ・並列間柱工法(図21(A))では、壁厚ω2=約200mmであり、シングルランナ・千鳥間柱工法(図21(B))では、壁厚ω2=約135mm(ランナ2の幅ω3=75mmとした場合)である。
 但し、いずれの工法においても、間仕切壁100の壁端部100aは、面材5、6の張り仕舞い部又は見切り部を構成するので、面材5、6の支持の安定性や、施工の容易性等が考慮され、ランナ2と実質的に同一又は同等の幅を有する幅ω3のC形鋼製スタッド等が、鋼製スタッド7として端部100aに立設される。この種の鋼製スタッド7は、一般に、縦ランナ、端部ランナ、端部間柱等の名称で呼ばれており、以下、この建築要素を「端柱」と称する。
 本出願人は、シングルランナ・千鳥間柱工法の間仕切壁構造(図21(B))を有し、極めて遮音性が高い高性能遮音壁(型式Aー2000・WI)等を開発し、既に実用化している。この壁体は、壁厚約135mm程度の乾式間仕切壁であるにもかかわらず、厚さ260mmのコンクリート壁の遮音性能に匹敵する遮音性(遮音性能:TLD=56)を発揮することが知られている。この高性能遮音壁(型式Aー2000・WI)は、高い遮音性能を要する集合住宅やホテル等の界壁、殊に高層又は超高層の集合住宅又はホテル等の界壁として好ましく施工されており、その高い遮音性能故に、間仕切壁の軽量性による建築構造負荷の軽減や、工期の短縮等の効果と相俟って、極めて顕著な優位性を有する。なお、TLD値(D-Number of Sound Transmission Loss,TLD)は、JIS A 1416(ISO140-3)に規定された測定方法に従って測定された音響透過損失の測定結果を間仕切壁の遮音効果又は遮音性能として示す数値であり、より詳細には、日本建築学会が規定する遮音基準曲線に基づいて測定結果を評価することにより得られる間仕切壁等の遮音効果又は遮音性能の指標である。
特開2010ー242298号公報 特開2005ー133414号公報 特許第4971876号公報 特許第5663119号公報 特許第5296600号公報
日本建築学会・建築工事標準仕様書・同解説 JASS26 内装工事
 前述のとおり、ダブルランナ・並列間柱工法の間仕切壁構造は、優れた遮音性能を発揮するが、この間仕切壁構造の遮音壁を採用すると、壁厚がかなり増大するという問題が生じる。他方、シングルランナ・千鳥間柱工法又はシングルランナ・敷目板千鳥配列工法の間仕切壁構造では、壁厚が僅かに増大するにすぎず、壁厚増大の問題を実質的に回避し得る。しかし、シングルランナ・千鳥間柱工法又はシングルランナ・敷目板千鳥配列工法の間仕切壁構造は、遮音性能の点でダブルランナ・並列間柱工法の間仕切壁構造に若干劣るので、この点において、更に改良すべき余地が残されていた。
 本発明者等は、シングルランナ・千鳥間柱工法の間仕切壁構造において、中空部の断熱・吸音材(グラスウール等)の厚さや密度を増大し、或いは、制振性能を発揮する制振接着剤等を面材の接着剤として使用するといった改良策又は対策を施した多数の遮音壁を試作し、様々な条件で遮音性能試験を実施したが、中高音域(500~2000Hz)の周波数域において、音響透過損失を効果的に増大し難く、従って、このような改良策又は対策では遮音性能を所望の如く向上し得なかった。また、この遮音性能試験では、特定の周波数における顕著な遮音欠損等の存在も認められず、このため、更なる遮音性能の向上は、事実上、極めて困難であると考えられてきた。
 本発明は、このような事情に鑑みてなされたものであり、その目的とするところは、シングルランナ・千鳥間柱工法又はシングルランナ・敷目板千鳥配列工法の間仕切壁構造において、中高音域の騒音に対する音響透過損失を増大し、間仕切壁の遮音性能を向上することにある。
 本発明者等は、シングルランナ・千鳥間柱工法又はシングルランナ・敷目板千鳥配列工法の間仕切壁の遮音性能を向上すべく、壁の中空部に挿入されるグラスウール等の断熱・吸音材の厚さ又は密度が相違する複数の間仕切壁、下張り面材と上張り面材とを接着するための接着剤として制振接着剤等の特殊接着剤を使用した間仕切壁、或いは、壁端部の構造が相違する複数の間仕切壁等の試験体を製作し、条件が相違する多数の遮音性能試験を実施した。この結果、室内に露出した壁端部の構造が間仕切壁の遮音性に大きく影響する現象を知見し、このような知見に基づき鋭意研究を重ねた結果、壁端部に配置された端柱を複数の部材に分割し、各部材を相互離間させることにより、中高音域の騒音に対する音響透過損失を増大して間仕切壁の遮音性能を向上し得ることを見出し、本発明に係る以下の構成の間仕切壁構造及びその施工方法を提案するに至ったものである。
 即ち、本発明は、壁端部を他の建築構造体に突付けられ、該建築構造体に連接する壁端部が建築空間に少なくとも部分的に露出したシングルランナ・千鳥間柱工法又はシングルランナ・敷目板千鳥配列工法の間仕切壁構造において、
 前記壁端部に配置され、第1及び第2の端柱部材より構成される端柱と、
 該端柱部材を互いに離間させ、固体振動の伝播を遮断し又は固体振動の伝播経路を絶縁する間隙又は絶縁帯とを有し、
 間仕切壁の片側の建築空間を画成する建築内装面材が、第1端柱部材に固定され、間仕切壁の反対側の建築空間を画成する建築内装面材が、第2端柱部材に固定されたことを特徴とする間仕切壁構造を提供する。
 本発明は又、壁端部を他の建築構造体に突付け、該建築構造体に連接する壁端部を建築空間に少なくとも部分的に露出せしめたシングルランナ・千鳥間柱工法又はシングルランナ・敷目板千鳥配列工法の間仕切壁の施工方法において、
 前記壁端部に配置される端柱を第1及び第2の端柱部材により構成し、
 該端柱部材を互いに離間させ、固体振動の伝播を遮断し又は固体振動の伝播経路を絶縁する間隙又は絶縁帯を前記端柱部材の間に形成し、
 間仕切壁の片側の建築空間を画成する建築内装面材を第1端柱部材に固定し、間仕切壁の反対側の建築空間を画成する建築内装面材を第2端柱部材に固定することを特徴とする間仕切壁の施工方法を提供する。
 本発明の上記構成によれば、壁端部に配置された端柱は、第1及び第2端柱部材に分割される。第1及び第2端柱部材は互いに離間し、固体伝播音の伝播を遮断し又はその伝搬経路を絶縁する間隙又は絶縁帯が第1及び第2端柱部材の間に形成される。間隙は、間仕切壁の中空域の空気層と連続する空気層であり、絶縁帯は、間隙に挿入又は充填されたロックウール又はロックウールフェルト等の繊維質材料、或いは、軟質樹脂、ゴム、エラストマー又は多孔質発泡材料等の振動絶縁材料からなる。第1端柱部材の側の建築空間において発生した騒音は、固体振動として第1端柱部材に伝播するが、間隙又は絶縁帯が第1及び第2端柱部材の間に形成されているので、第1端柱部材の固体振動が第2端柱部材に伝播せず、従って、第2端柱部材の側の建築空間における固体伝播音の放出を防止することができる。好ましくは、壁端部は、壁端部が連接する他の建築構造体から200mm以内、好適には、150mm以内の範囲の壁部分を意味する。
 遮音性能の性能値(TLD値)=57の高性能遮音壁を試験体として使用した本発明者等の遮音性能試験によれば、断熱・吸音材の厚さ又は密度の増大や、制振接着剤の使用等によっても向上し得なかった中高音域(500~2000Hz)の遮音性能が、本発明の構成を採用することにより、TLD=58~61に向上することが判明した。従って、本発明によれば、更なる遮音性能の向上が極めて困難であると考えられてきたTLD=57の高性能遮音壁に関し、その遮音性能を更に向上することができる。
 他の観点より、本発明は、上記構成の間仕切壁構造を有し、遮音性能の性能値であるTLD値を50以上の値に増大したことを特徴とする間仕切壁を提供する。また、本発明は、上記構成の施工方法により、遮音性能の性能値であるTLD値を50以上の値に増大した高性能遮音壁を構築することを特徴とする間仕切壁の施工方法を提供する。好ましくは、本発明に係る間仕切壁は、TLD値=58以上の遮音性を発揮するように構築され又は施工される。
 更に他の観点より、本発明は、壁端部を他の建築構造体に突付け、該建築構造体に連接する壁端部を建築空間に少なくとも部分的に露出せしめたシングルランナ・千鳥間柱工法又はシングルランナ・敷目板千鳥配列工法の間仕切壁の遮音性能を向上させる間仕切壁の遮音方法であって、
 前記壁端部に配置される端柱を第1及び第2の端柱部材に分割し、
 該端柱部材を互いに離間させ、固体振動の伝播を遮断し又は固体振動の伝播経路を絶縁する間隙又は絶縁帯を前記端柱部材の間に形成し、
 間仕切壁の片側の建築空間を画成する建築内装面材を第1端柱部材に固定し、間仕切壁の反対側の建築空間を画成する建築内装面材を第2端柱部材に固定することを特徴とする間仕切壁の遮音方法を提供する。
 好ましくは、本発明に係る遮音方法は、遮音性能の性能値であるTLD値が57以下の値を示す間仕切壁に適用され、TLD値を58~65の範囲内の値に向上せしめる。
 本発明の好適な実施形態において、第1及び第2端柱部材は、壁芯方向に相対的にずれた位置関係をなして壁端部に配置され、上記間隙又は絶縁帯は、第1及び第2端柱部材の間において壁厚方向に延在する。壁端部は、柱又は壁等の他の建築構造体の鉛直表面に対して突付け形態に連接し、第1端柱部材は、他の建築構造体の内装仕上げ面(クロス、塗装等の表層仕上げの未施工面又は内装仕上げ下地面を含む)に近接し又は接触するように配置され、第2端柱部材は、上記間隙又は絶縁帯を介して第1端柱部材から離間して間仕切壁の中空域に配置される。好ましくは、上記建築内装面材の端縁は、他の建築構造体の内装仕上げ面に対し、気密性を有する目地構造を介して連接する。なお、本明細書において、「近接」は、15mm以下、好ましくは、10mm以下の離間状態を意味するものとする。
 本発明の他の好適な実施形態において、第1及び第2端柱部材は、壁端部に並列配置され、上記間隙又は絶縁帯は、第1及び第2端柱部材の間において壁芯方向に延在する。壁端部は、柱又は壁等の他の建築構造体の鉛直面に対して突付け形態に連接し、第1及び第2端柱部材は、他の建築構造体の内装仕上げ面(クロス、塗装等の表層仕上げの未施工面又は内装仕上げ下地面を含む)に近接し又は接触するように配置される。
 本発明の好ましい実施形態によれば、間仕切壁は、鋼製間柱を使用した中空構造の乾式間仕切壁であり、鋼製スタッド、鋼製ランナ、振止め、スペーサ等を含む建築用鋼製下地材(JIS A 6517規格品、或いは、その同等品、準拠品、互換品等)により構成される鋼製壁下地を構築し、ビス、ステープル、接着剤等の固定手段を用いて石膏ボード等の建築内装面材を鋼製スタッドに固定した構成を有する壁構造体である。好ましくは、第1及び第2端柱部材は、間仕切壁の間柱と実質的に同一又は同等の鋼製部材であり、例えば、間柱が、Cー65mm×45mm×0.8mmの鋼製スタッドである場合、第1及び第2端柱部材も又、Cー65mm×45mm×0.8mmの鋼製スタッドである。このような構成によれば、間仕切壁の施工において、実質的に単一品種の鋼製スタッドのみを予め用意すれば良く、これにより、建設資材の材種の減少、施工効率の改善又は向上を図ることができる。
 本発明の好適な実施形態において、上記建築内装面材は、下張り面材及び上張り面材からなり、下張り面材は、厚さ20~25mmの石膏ボード(例えば、厚さ21mmの強化石膏ボード)からなり、上張り面材は、厚さ8~13mmの石膏ボード(例えば、厚さ9.5mmの硬質石膏ボード)からなり、下張り面材及び上張り面材は、酢酸ビニル樹脂系接着剤(ステープル併用)によって接着される。なお、第1及び第2端柱部材を壁芯方向に相対的にずれた位置に配置した本発明の上記実施形態においては、間仕切壁の中空域に配置した第2端柱部材から壁端側に延出する下張り面材及び上張り面材の突出寸法(L5、L6)は、100mm以下、好ましくは、85mm以下、更に好ましくは、75mm以下に制限することが望ましく、このため、上記間隙(γ)(又は絶縁帯)の寸法(L2)は、55mm以下、好ましくは、40mm以下、更に好ましくは、30mm以下に制限することが望ましい。所望により、緩衝材が第1端柱部材の外側面に一体的に取付けられる。緩衝材の外面は、下張り面材の裏面に接触し、或いは、下張り面材の裏面から僅かに離間する。緩衝材は、下張り面材が中空域の側に変形したとき、下張り面材の裏当て材として機能する。
 本発明によれば、中高音域の周波数帯域における壁体の遮音性能を向上し得るシングルランナ・千鳥間柱工法又はシングルランナ・敷目板千鳥配列工法の間仕切壁構造及びその施工方法を提供することができる。
 また、本発明によれば、TLD値=58以上の遮音性能を保有するシングルランナ・千鳥間柱工法又はシングルランナ・敷目板千鳥配列工法の遮音壁を提供することが可能となる。
図1は、本発明の好適な実施形態に係る間仕切壁の構成を概略的に示す水平断面図である。 図2は、本発明の他の好適な実施形態に係る間仕切壁の構成を概略的に示す水平断面図である。 図3は、図2に示す間仕切壁の具体的な構造を示す斜視図である。 図4は、図2に示す間仕切壁の具体的な構造を示す鉛直断面図である。 図5は、図2に示す間仕切壁の具体的な構造を示す水平断面図である。 図6は、図3~図5に示す間仕切壁の他の使用形態を示す水平断面図である。 図7は、従来のシングルランナ・千鳥間柱工法の軽量間仕切壁に関し、その具体的な構造を比較例として示す水平断面図である。 図8は、実施例1、2及び比較例1~4の試験体を遮音性能試験用の構造躯体内に建込んだ状態を概略的に示す正面図である。 図9は、比較例1及び比較例2の試験体を使用した遮音性能試験の試験結果を示す性能線図である。 図10は、比較例1及び比較例3の試験体を使用した遮音性能試験の試験結果を示す性能線図である。 図11は、比較例2及び比較例4の試験体を使用した遮音性能試験の試験結果を示す性能線図である。 図12は、実施例1及び比較例1の試験体を使用した遮音性能試験の試験結果を示す性能線図である。 図13は、実施例2及び比較例2の試験体を使用した遮音性能試験の試験結果を示す性能線図である。 図14は、上記実施形態に係る間仕切壁の第1変形例を示す壁端部の水平断面図である。 図15は、上記実施形態に係る間仕切壁の第2変形例を示す壁端部の水平断面図である。 図16は、上記実施形態に係る間仕切壁の第3変形例を示す壁端部の水平断面図である。 図17は、上記実施形態に係る間仕切壁の第4変形例を示す壁端部の水平断面図である。 図18は、上記実施形態に係る間仕切壁の第5変形例を示す壁端部の水平断面図である。 図19は、上記実施形態に係る間仕切壁の第6変形例を示す壁端部の水平断面図である。 図20は、シングルランナ・共通間柱工法及びシングルランナ・敷目板千鳥配列工法に係る従来の間仕切壁構造の構成を概略的に示す水平断面図である。 図21は、ダブルランナ・並列間柱工法及びシングルランナ・千鳥間柱工法に係る従来の間仕切壁構造の構成を概略的に示す水平断面図である。
 以下、添付図面を参照して、本発明の好適な実施形態に係る間仕切壁構造について詳細に説明する。
 図1は、本発明の好適な実施形態に係る間仕切壁の構成を概略的に示す水平断面図である。
 図1(A)及び図1(B)に示す間仕切壁1は、壁端部1aを壁Wの壁面Wa(又は柱Cの垂直面Ca)に突付けられ、壁芯XーXを中心に延在するシングルランナ・千鳥間柱工法の軽量間仕切壁である。間仕切壁1の両側には、居室等の建築空間R1、R2が形成される。間柱を構成するスタッド4は、スペーサ9の交互の配設により、壁芯XーXに対して片側に交互に偏心した千鳥配列に配置される。スペーサ9は、ランナスペーサ等の名称で知られた既知の金属製品である。例えば、スタッド4として、幅ω1=65mmのC形鋼製スタッドが使用され、スペーサ9として、幅ω4=10mmの既製のランナスペーサが使用され、下張り面材5及び上張り面材6として、厚さ21mm及び9.5mmの石膏ボードが夫々使用され、下部ランナ2及び上部ランナ(図示せず)として幅ω3=75mmの鋼製ランナが使用される。間仕切壁1の壁厚ω2は、約135mmに設定される。なお、所望により、スペーサ9として、石膏ボード製スペーサや、木製又は樹脂製スペーサ等の任意のスペーサを使用し得る。
 図1(A)に示す間仕切壁1の壁端部1aには、一対の端柱部材11、12が壁芯XーXに対して左右対称に配置される。端柱部材11、12として、角形断面の鋼製スタッド、或いは、C形鋼製スタッド等の任意断面の鋼製スタッドを使用し得る。壁芯XーXと直交する方向(以下、「壁厚方向」という。)に離間した端柱部材11、12の間には、約10mm程度の僅かな間隙βが形成される。間隙βは、壁芯XーX方向(以下、「壁芯方向」という。)に延在するとともに、端柱部材11、12の全高に亘って延在する。端柱部材11、12及び間隙βは、複合的な端柱10を構成する。端柱10は、一般に壁端部1aに配設される端部間柱、縦ランナ又は端部ランナ等に相当する。本明細書において、「端柱」は、間仕切壁を構成する柱列の終端部に配置され、連接する壁、柱等の他の建築構造体に近接又は接触して配置される柱、支柱又は柱状部材を意味する。
 他方、図1(B)に示す間仕切壁1では、壁端部1aの端柱部材13、14は、壁厚方向において互いにずれた位置に配置されるとともに、壁芯方向において互いにずれた位置に配置される。端柱部材13、14は、幅約10mm程度の僅かな間隔を隔てて壁芯方向に離間する。端柱部材13、14の間には、壁厚方向に延在し且つ端柱部材13、14の全高に亘って延在する間隙γが形成される。端柱部材13、14として、角形断面の鋼製スタッド、或いは、C形鋼製スタッド等の任意断面の鋼製スタッドを使用し得る。
 図1(A)及び図1(B)に示す各間仕切壁1において、壁芯XーXに対して建築空間R1の側に偏心して配置された端柱部材12、14には、建築空間R1の壁面を構成する面材5、6が固定され、壁芯XーXに対して建築空間R2の側に偏心して配置された端柱部材11、13には、建築空間R2の壁面を構成する面材5、6が固定される。建築空間R1に発生した騒音Si(実線の矢印で示す)は、固体伝播音として端柱部材12、14に伝播するが、固体振動の伝播は、端柱部材11、12の間の間隙β、或いは、端柱部材13、14の間の間隙γによって遮断又は絶縁される。従って、上下のランナ等を介して伝播した僅かな固体振動が、固体伝播音So(破線の矢印で示す)として建築空間R2に伝播するにすぎず、壁端部1aの構造に起因した遮音性低下の現象を回避することができる。なお、このような壁端部1aの構造に起因した遮音性低下の現象については後述する。
 図2は、本発明の他の好適な実施形態に係る間仕切壁の構成を概略的に示す水平断面図である。
 図2に示す間仕切壁1は、図1(B)に示す間仕切壁1と同様、壁厚方向且つ壁芯方向に互いにずれた位置に配置された端柱部材15、16を有する。端柱部材15、16は、スタッド4と同一の鋼製スタッドからなり、スタッド4と同じく、スペーサ19を使用して下部ランナ2及び上部ランナ(図示せず)の間に建込まれ、上下のランナによって支持される。スペーサ19は、スペーサ9と同じ既製のランナスペーサである。
 端柱部材15、16は、壁芯方向に約10mm程度の僅かな間隔を隔てて離間し、端柱部材15、16の間には、壁厚方向に延在し且つ端柱部材15、16の全高に亘って延在する間隙γが形成される。建築空間R1に発生した騒音Siは、固体伝播音として端柱部材16に伝播するが、固体振動の伝播は、端柱部材15、16の間の間隙γによって遮断又は絶縁される。従って、上下のランナ等を介して伝播した固体振動が、固体伝播音Soとして建築空間R2に伝播するにすぎず、壁端部1aの構造に起因した遮音性低下の現象を回避することができる。なお、壁端部1aの構造に起因した遮音性低下の現象については後述する。
 図3~図5は、図2に示す間仕切壁1の具体的な構造を示す斜視図、鉛直断面図及び水平断面図である。
 図3に示す如く、間仕切壁1は、鉄筋コンクリート構造の建築物の屋内空間に構築される乾式工法の軽量間仕切壁(鋼製壁下地(JASS26)の間仕切壁)である。建築物の構造躯体は、鉄筋コンクリート構造の床構造体F1、F2、柱C、梁B及び壁Wより構成される。間仕切壁1の下端部は床構造体F1に支持又は支承される。間仕切壁1の上端部は、梁B又は床構造体F2に連接する。間仕切壁1の壁芯方向の終端部、即ち、壁端部1aは、柱C又は壁体Wに対して突付け形態に連接する。なお、壁端部1aは、壁面Wa(又垂直面Ca)から距離L3(図5)の範囲内の壁部分を意味し、図3~図5に示す間仕切壁1では、距離L3は、200mm以下、例えば、約150mmに設定される。
 梁B、柱C及び壁体Wの室内側面は、セメントモルタル等の左官材料Bc、Cc(図5)、Wc(図5)によって左官仕上げされており、梁Bの下端面Ba、梁Bの側面Bd、柱Cの垂直面Ca及び壁体Wの壁面Waは、左官仕上面からなる塗装下地又はクロス下地等の内装下地面からなる。なお、建築構造体の材種、左官仕上げの有無、内装仕上げ材の有無又は種類等については、建築設計上、任意の設計事項であることはいうまでもなく、例えば、下端面Ba、側面Bd、垂直面Ca、壁面Waは、鉄骨面、鉄筋コンクリート躯体面、PC版面、材木面等であっても良い。
 本例においては、間仕切壁1の下端部は、間仕切壁1を構築する階の床構造体F1に支持され、間仕切壁1の上端部は、上階の梁Bに固定され、間仕切壁1の壁端部1aは、柱Cに連接する。間仕切壁1の上端部は、上階の床構造体F2を構成するコンクリート床スラブ等の下面に固定しても良く、また、間仕切壁1の壁端部1aは、壁体Wに連接しても良い。
 四周目地を構成する四周目地用充填材20(以下、「目地材20」という。)が、間仕切壁1の上端部、下端部及び終端部の目地部(連接部)に連続的に充填又は挿入される。目地材20は、下張りシール材21、22及び上張りシール材23(図4、図5)からなる。本実施形態においては、下張りシール材21として無機質シーリング材、例えば、ロックウールフェルト(例えば、商品名「タイガーロックフェルト(登録商標)」(吉野石膏株式会社製品))が使用され、下張りシール材22及び上張りシール材23として、例えば、ウレタン樹脂系シーリング材(例えば、商品名「タイガーUタイト」(吉野石膏株式会社製品))が使用される。 
 なお、四周目地の各種施工形態として、例えば、以下の四周処理材又は四周処理方法を例示し得る。
(1)四周処理方法1
下張り目地処理:ロックウールフェルト(商品名「タイガーロックフェルト」)、無機質系シーリング材(商品名「タイガージプタイト」)、或いは、ウレタン系シーリング材(商品名「タイガーUタイト」)
上張り目地処理:無機質系シーリング材(商品名「タイガージプタイト」)又はウレタン系シーリング材(商品名「タイガーUタイト」)
(2)四周処理方法2
下張り目地処理:ロックウールフェルト(商品名「タイガーロックフェルト」)及びウレタン系シーリング材(商品名「タイガーUタイト」)
上張り目地処理:無機質系シーリング材(商品名「タイガージプタイト」)又はウレタン系シーリング材(商品名「タイガーUタイト」)
(3)四周処理方法3
下張り目地処理:突き付け(どん付け)
上張り目地処理:無機質系シーリング材(商品名「タイガージプタイト」)又はウレタン系シーリング材(商品名「タイガーUタイト」)
 図3~図5に示すように、間仕切壁1の上張り面材6の表面は、塗装又はクロス貼り等の内装仕上工事により、内装仕上材料(塗膜又はクロス等)8によって被覆される。内装仕上材料8は、梁Bの下端面Ba、梁Bの側面Bd、柱Cの垂直面Ca及び壁体Wの壁面Waにも施工される。従って、内装仕上材料8は、上張り面材6、柱C、壁体W及び梁Bの表面全域に延在し且つ実質的に連続し、梁Bの下端面Ba、梁Bの側面Bd、柱Cの垂直面Ca及び壁体Wの壁面Waは、建築物の屋内側表面又は室内側表面を構成する。
 図4及び図5に示す如く、間仕切壁1は、床スラブ等の床構造体F1上に固定された下部ランナ2と、梁Bの下面Baに固定された上部ランナ3と、上下のランナ2、3の間に垂直に建込まれた多数のスタッド4とから構成される。スタッド4は、軽量形鋼の鋼製スタッド(JIS A 6517規格品、同等品、準拠品、互換品等)からなり、壁芯に沿って千鳥配列に配置される。スタッド4の幅ω1は、ランナ2、3の幅ω3よりも小さく、幅ω4の寸法を有する金属製スペーサ9が、ランナ2、3の側壁とスタッド4の側面との間に介挿される。
 下張り面材5がスクリュービス(タッピングネジ)30によってスタッド4に固定され、上張り面材6がステープル及び接着剤(図示せず)によって下張り面材5の外側面に固定される。接着剤として、石膏ボード施工用の接着剤として一般に使用される酢酸ビニル樹脂系接着剤を好適に使用し得る。所望により、ステープル、接着剤及びスクリュービスを併用して上張り面材6を下張り面材5に固定し、或いは、スクリュービスのみによって上張り面材6を下張り面材5に固定することも可能である。壁体両側の下張り面材5の間には、実質的に密閉された隠蔽空間が中空域(中空部)αとして形成される。中空域には、断熱・吸音材40(破線で示す)が配設される。断熱・吸音材40は、図5に示す如くスタッド4の間に充填又は挿入される。
 間仕切壁1を構成する部材として、例えば、以下の建築材料が使用される。
・下部ランナ2:軽量形鋼(鋼製ランナ)Cー75mm×40mm×0.8mm
・上部ランナ3:軽量形鋼(鋼製ランナ)Cー75mm×40mm×0.8mm
・スタッド4 :軽量形鋼(鋼製スタッド)Cー65mm×45mm×0.8mm
・下張り面材5:強化石膏ボード・厚さT1=21mm(吉野石膏株式会社製品「タイガーボード(登録商標)・タイプZ」)
・上張り面材6:硬質石膏ボード・厚さT2=9.5mm(吉野石膏株式会社製品「タイガースーパーハード(登録商標)」)
・断熱・吸音材40:グラスウール密度24kg/m3・厚さ50mm
 下張り面材5及び上張り面材6として、厚さ8~25mmの各種石膏ボードを好適に使用し得る。所望により、下部ランナ2及び上部ランナ3として、軽量形鋼(鋼製ランナ)Cー100mm×40mm×0.8mmを使用しても良い。また、スタッド4として、任意の断面、寸法及び厚さの金属製スタッドを使用することができ、例えば、幅45、50、65、75、90、100mm等の各種サイズのC形鋼製スタッドや、厚さ0.4、0.5、0.6(一般材)、0.8(JIS材)等の各種厚さの金属製スタッドを採用しても良い。更には、断熱・吸音材40の厚さを25、40、50、75、100mm等の寸法に設定し、或いは、断熱・吸音材40の密度を16、24、32、40、48kg/m3等の任意の密度に設定しても良い。
 図4に示す如く、間仕切壁1の上端部は、梁Bの下端面Baに突付けられる。間仕切壁1の上端部に配置された上部ランナ3は、アンカー等の固定具(図示せず)によって下端面Baに固定される。また、間仕切壁1の上端部を床構造体F2の下面に突付ける場合にも、実質的に同じ接合構造が採用される。
 図5に示す如く、間仕切壁1の壁端部1aは、建築物の構造躯体を構成する鉄筋コンクリート構造の柱Cの垂直面Caに突付けられる。なお、図5に括弧内符号で記載したとおり、間仕切壁1の終端部を壁体Wの壁面Waに突付ける場合にも、実質的に同じ接合構造が採用される。
 図5に示す如く、一対の端柱部材15、16が、壁芯方向に相対的にずれた位置に配置される。端柱部材15、16は、複合的な端柱10を構成する。端柱部材15、16は、スタッド4と同じく、軽量形鋼(鋼製スタッド)Cー65mm×45mm×0.8mmからなり、図4に示すように、スタッド4と同様、スペーサ19を使用して下部ランナ2及び上部ランナ3の間に建込まれ、上下ランナ2、3によって支持される。図5に示す如く、端柱部材15、16は、壁芯方向に寸法L2を隔てて離間し、端柱部材15、16の間には、間隙γが形成される。
 建築空間R1側の下張り面材5は、スクリュービス30によって端柱部材16と、建築空間R1の側に偏心したスタッド4とに留付けられ、建築空間R2側の下張り面材5は、スクリュービス30によって端柱部材15と、建築空間R2の側に偏心したスタッド4とに留付けられる。上張り面材6は、前述のとおり、ステープル及び酢酸ビニル樹脂系接着剤(図示せず)によって各下張り面材5の外側面に固定される。端柱部材15は、建築空間R2側の面材5、6の縁部を比較的安定した状態で支持する。他方、建築空間R1側の面材5、6の縁部は、端柱部材16から垂直面Ca(又は壁面Wa)側に突出するので、面材5、6の支持の安定性、剛性、耐久性等を考慮し、端柱部材16から壁端側に延出する面材5、6の突出寸法L5、L6を100mm以下、好ましくは、75mm以下に制限することが望ましく、このため、間隙γの寸法L2を55mm以下、好ましくは、30mm以下に制限することが望ましい。
 図6は、間仕切壁1の他の使用形態を示す水平断面図である。図6に示す間仕切壁1は、これと直交するシングルランナ・千鳥間柱工法の軽量間仕切壁1’に対して突付け形態に連接する。間仕切壁1’は、間仕切壁1と実質的に同じ構造を有し、間仕切壁1の壁端部1aは、目地材20を介して間仕切壁1’の上張り面材6に連接し、端柱部材15は、間仕切壁1’の上張り面材6に近接又は接触する。
 図7は、図21(B)に示す従来のシングルランナ・千鳥間柱工法の軽量間仕切壁100に関し、その具体的な構造を比較例として示す水平断面図である。間仕切壁100の壁端部100aは、柱C又は壁体Wに対して突付け形態に連接する。間仕切壁100の壁端部100aは、面材5、6の張り仕舞い又は見切り位置でもあるので、支持又は構造の安定性や、施工の容易性等が考慮され、ランナ2と実質的に同一又は同等の幅を有する幅ω3のC形鋼製スタッド(Cー75mm×45mm×0.8mm)が、端柱7として立設される。
 本発明者等は、本実施形態に係る間仕切壁1(図3~図5)を実施例1及び2として試作するとともに、図7に示す従来構造の間仕切壁100を比較例1~4として試作し、実施例1、2及び比較例1~4の試験体について遮音性能試験を実施した。但し、各実施例及び各比較例では、上下のランナ2、3の幅ω3は、100mmに設定された。
 実施例1、2及び比較例1~4の間仕切壁1、100において共通する構成は、次のとおりである。
・ランナ2、3:軽量形鋼(鋼製ランナ)Cー100mm×40mm×0.8mm
・スタッド4 :軽量形鋼(鋼製スタッド)Cー65mm×45mm×0.8mm
・下張り面材5:強化石膏ボード・厚さT1=21mm(吉野石膏株式会社製品「タイガーボード(登録商標)・タイプZ」)
・上張り面材6:硬質石膏ボード・厚さT2=9.5mm(吉野石膏株式会社製品「タイガースーパーハード(登録商標)」)
 比較例1~4において、端柱7は、軽量形鋼(鋼製スタッド)Cー100mm×45mm×0.8mmからなり、実施例1及び2において、端柱部材15、16は、スタッド4と同じく、軽量形鋼(鋼製スタッド)Cー65mm×45mm×0.8mmからなる。
 実施例1、2及び比較例1~4の間仕切壁1、100において、各部の寸法は、ω1=65mm、ω2=161mm、ω3=100mm、ω4=35mmに設定された。実施例1、2及び比較例1~4の間仕切壁1、100において、下張り面材5はスクリュービス(タッピングネジ)30によってスタッド4、端柱7及び端柱部材15、16に固定された。
 実施例1及び実施例2の間仕切壁1では、上張り面材6はステープル及び酢酸ビニル樹脂系接着剤によって下張り面材5の外側面に固定された。比較例1~3の間仕切壁100においても、上張り面材6はステープル及び酢酸ビニル樹脂系接着剤によって下張り面材5の外側面に固定された。
 実施例1及び実施例2の相違は、(1)実施例1において、密度24kg/m3・厚さ50mmのグラスウール1枚が断熱・吸音材40として中空域αに充填又は装填されたのに対し、(2)実施例2では、密度24kg/m3・厚さ50mmのグラスウール2枚が断熱・吸音材40として中空域αに充填又は装填された点のみである。従って、実施例1及び2の試験体の試験により、断熱・吸音材40の厚さの相違による遮音効果の相違を対比することができる。なお、実施例1及び2において、間隙γの寸法L2は、約10mmに設定された。
 比較例1~4の相違は、(1)比較例1において、密度24kg/m3・厚さ50mmのグラスウール1枚が断熱・吸音材40として中空域αに充填又は装填されたのに対し、(2)比較例2において、密度24kg/m3・厚さ50mmのグラスウール2枚が断熱・吸音材40として中空域αに充填又は装填され、(3)比較例3において、密度32kg/m3・厚さ50mmのグラスウール1枚と、密度32kg/m3・厚さ25mmのグラスウール1枚とが中空域αに充填又は装填され、(4)比較例4において、密度24kg/m3・厚さ50mmのグラスウール2枚が断熱・吸音材40として中空域αに充填又は装填されるとともに、上張り面材6がステープル及び制振接着剤によって下張り面材5の外側面に固定された点にある。即ち、比較例1~4の試験体の試験により、断熱・吸音材40の厚さ及び密度の相違に起因した遮音性能の相違と、面材5、6を接着する接着剤の相違に起因した遮音性能の相違を知り得る。なお、比較例4においては、制振接着剤として、高音域において比較的良好な制振効果を発揮する吉野石膏株式会社製品「サウンドカット」(商品名)が使用された。
 また、実施例1及び比較例1の相違、或いは、実施例2及び比較例2の相違は、端柱10として二部品構成(端柱部材15、16)を採用した本発明と、単一の鋼製スタッド7を端柱として採用した従来技術との相違であり、従って、実施例1及び比較例1の遮音性能の対比(図12)、或いは、実施例2及び比較例2の遮音性能の対比(図13)により、従来技術に対する本発明の効果が判明する。
 図8は、実施例1、2及び比較例1~4の試験体を遮音性能試験用の構造躯体内に建込んだ状態を示す正面図であり、図9~図13は、遮音性能試験の試験結果を示す性能線図である。なお、図9~図13には、遮音性能TLD=40、45、50、55、60の各基準曲線が細い破線で示されている。この基準曲線は、日本建築学会が規定する遮音基準曲線である。TLD値は、1dB単位で求められる性能値であるが、図9~図13には、図を簡略化すべく、5dBごとの基準曲線のみが示されており、従って、図示された基準曲線の間には、実際には、4本の基準曲線が1dB間隔に存在するものと理解すべきである。図9~図13には、遮音性能試験の試験結果を指示するプロット(点)が表示されている。プロットが下側に顕れることがない基準曲線であって、最も高いTLD値の基準曲線が、間仕切壁の遮音性能を示す基準曲線として特定される。かくして特定された基準曲線のTLD値が、間仕切壁のTLD値である。
 遮音性能試験において、間仕切壁1の試験体は、図8に示すように鉄筋コンクリート構造の躯体Eの方形開口部内に建込まれた。試験体の上端部又は下端部ηは、図4に示すランナ2、3廻りの建築取合い構造と同等の構造で躯体Eに接合され、試験体の壁端部δは、端柱10又はスタッド7を用いた壁端部1a、100aの建築取合い構造と同等の構造で躯体Eに接合された。
 図9には、比較例1及び2の各間仕切壁100の遮音試験結果が示されている。断熱・吸音材40の厚さの相違に起因した遮音性能の相違が、図9に示す遮音試験結果に示されている。図9の試験結果より明らかなとおり、従来構造の間仕切壁100において断熱・吸音材40の厚さを2倍に増大した場合、125~500Hzの周波数帯域において遮音性能が向上するが、1000~2000Hzの周波数帯域においては、遮音性能が実質的に向上せず、従って、比較例1及び2の各間仕切壁100の遮音性能値は、いずれもTLD=57である。
 図10には、比較例1及び3の各間仕切壁100の遮音試験結果が示されている。断熱・吸音材40の厚さ及び密度の相違に起因した遮音性能の相違が、図10に示す遮音試験結果に顕れている。図10の試験結果より明らかなとおり、従来構造の間仕切壁100において断熱・吸音材40の厚さを1.5倍、密度を約1.3倍に増大した場合、125~500Hzの周波数帯域において遮音性能が向上するが、1000~2000Hzの周波数帯域においては、実質的な遮音性能の向上は達成されず、従って、比較例1及び3の各間仕切壁100では、比較例1遮音性能値は、TLD=57であるのに対し、比較例3の遮音性能値は、TLD=56であるにすぎない。
 図11には、比較例2及び4の各間仕切壁100の遮音試験結果が示されている。比較例4は、面材5、6を接着する接着剤として上記制振接着剤を使用した構成のものであり、従って、図11には、制振接着剤の使用に起因した遮音性能の変化が遮音試験結果に顕れている。図11の試験結果より明らかなとおり、従来構造の間仕切壁100において制振接着剤で面材5、6を接着すると、4000Hzの周波数帯域において遮音性能が比較的顕著に向上するが、2000Hz以下の周波数帯域においては、遮音性能が実質的に向上せず、従って、比較例2及び4の各間仕切壁100の遮音性能値は、いずれもTLD=57である。
 図9~図11に示す試験結果より明らかなとおり、間仕切壁100の遮音性能の向上を企図して断熱・吸音材40の厚さ及び密度を増大し、或いは、面材5、6の接着剤として、制振効果を有する比較的特殊な接着剤を採用した場合においても、殊に500~2000Hzの周波数帯域において遮音性能が所望の如く向上せず、従って、遮音性能の性能値(TLD値)としては、実質的に従来と同一又は同等の値が得られるにすぎなかった。
 図12には、比較例1及び実施例1の各間仕切壁100、1の遮音試験結果が示されている。前述のとおり、実施例1及び比較例1の相違は、端柱10として二部品構成(端柱部材15、16)を採用した本発明と、単一の鋼製スタッド7を端柱として採用した従来技術との相違であり、従って、従来技術に対する本発明の効果は、実施例1及び比較例1の遮音性能を対比することにより判明する。
 図12に示された遮音試験結果より明らかなとおり、実施例1の間仕切壁1では、250~4000Hzに亘る広範な周波数帯域において、その遮音性能が向上している。殊に、500~2000Hzの周波数帯域における遮音性能向上の効果が殆ど観られない図9~図11の試験結果と比較すると、図12の試験結果では、実施例1の間仕切壁1に関し、500~2000Hzの周波数帯域における遮音性能向上の効果が顕著に顕れている。間仕切壁1(実施例1)の遮音性能は、TLD=58であり、間仕切壁100(比較例1)の遮音性能(TLD=57)に比べ、向上している。
 図13には、比較例2及び実施例2の各間仕切壁100、1の遮音試験結果が示されている。前述のとおり、実施例1及び比較例1の相違も又、端柱10として二部品構成(端柱部材15、16)を採用した本発明と、単一の鋼製スタッド7を端柱として採用した従来技術との相違であり、従って、実施例2及び比較例2の遮音性能の対比によっても、従来技術に対する本発明の効果が判明する。
 図13に示された遮音試験結果より明らかなとおり、実施例2の間仕切壁1では、250~4000Hzに亘る広範な周波数帯域において、その遮音性能が向上している。殊に、図12に示す試験結果と同様、図13の試験結果では、実施例2の間仕切壁1に関し、500~2000Hzの周波数帯域における遮音性能向上の効果が顕著に顕れており、間仕切壁1(実施例2)の遮音性能は、TLD=61であり、間仕切壁100(比較例2)の遮音性能(TLD=57)に比べ、著しく向上している。
 従って、図9~図13の試験結果を参照する限り、従来技術に係る比較例1~4の間仕切壁100では、単一の鋼製スタッド7を端柱として配設した壁端部100aの構造がその遮音性の向上を妨げる原因となっていたことは明白である。これに対し、本発明は、二部品構成(端柱部材15、16)の端柱10を配設した壁端部10aの構成を採用することにより、間仕切壁1全体の遮音性を向上し得たものである。
 以上説明したとおり、間仕切壁100の中空域αに挿入されるグラスウール等の断熱・吸音材40の厚さ又は密度を変化させ、面材5、6の接着剤として制振接着剤等の特殊接着剤を使用したとしても、遮音性能の性能値(TLD値)は実質的に同一の値、或いは、僅かに増大した数値であるにすぎず、遮音性能を容易に向上し得なかったのに対し、本発明に従って間仕切壁1の端柱10を複数の端柱部材15、16に分割し、端柱部材15、16を間隙γで相互離間させることより、殊に中高音域(500~2000Hz周波数域)の遮音性能を実質的に向上し、遮音性能の性能値(TLD値)を高めることが可能である。
 また、従来の間仕切壁100では、スタッド4としてCー65mm×45mm×0.8mmの鋼製スタッドを用意し、端柱7としてCー100mm×45mm×0.8mmの鋼製スタッドを用意し、従って、2種類の鋼製スタッドを用意する必要があったのに対し、間仕切壁1の端柱部材15、16は、スタッド4と同じ軽量形鋼(Cー65mm×45mm×0.8mm)からなり、スペーサ19も又、スペーサ9と同一の既製品であり、従って、間仕切壁1の施工においては、1種類の鋼製スタッドのみを用意すれば良く、従って、建設資材の材種を減少し、施工の効率性を改善又は向上することが可能となる。
 図14~図19は、間仕切壁1の変形例を示す壁端部1aの水平断面図である。各図において、図4及び図5に示す各構成要素又は構成部材と実質的に同一又は同等の構成要素又は構成部材については、同一の参照符号が付されている。
 図14に示す間仕切壁1においては、ロックウールフェルト、或いは、樹脂発泡体等の緩衝材51、52が端部1aに配設される。緩衝材51は、シート状の部材であり、壁W又は柱Cの表面Wa、Caと端柱部材15のウェブ部15aとの間に介挿され、壁W又は柱Cと端柱部材15との間の固体振動音の伝播を防止する。緩衝材51の厚さは、例えば、10mmに設定され、緩衝材51の幅は、例えば、端柱部材15の幅と同一又は同等の寸法、或いは、中空域αの幅と同一又は同等の寸法に設定される。緩衝材51は、端柱部材15の全高に亘ってウェブ部15aに取付けられ、或いは、上下方向に間隔を隔ててウェブ部15aに部分的に取付けられる。
 緩衝材52は、比較的厚い帯状部材からなり、端柱部材15のフランジ部15bの外側面に一体的に取付けられ、端柱部材15の概ね全高に亘って延在する。緩衝材52の表面は下張り面材5に近接する。緩衝材52の厚さは、例えば、10mmに設定され、緩衝材52の幅は、例えば、10~30mmに設定される。緩衝材52の外面は、下張り面材5の裏面に接触し、或いは、僅かに離間する。緩衝材52は、端柱部材15の全高に亘ってフランジ部15bに取付けられ、或いは、上下方向に間隔を隔ててフランジ部15bに部分的に取付けられる。緩衝材52の外面は、下張り面材5の裏面に接触し、或いは、僅かに離間する。例えば、外力Pが壁端部1aの壁面に作用し、面材5、6が外力Pによって内側に変形した場合、緩衝材52は、面材5、6の裏当て材として機能し、面材5、6の過剰な変形を阻止する。緩衝材51、52として、振動絶縁性を有する繊維質材料、軟質樹脂、ゴム、エラストマー又は多孔質発泡材料等を好適に使用し得る。
 図15に示す間仕切壁1では、断面サイズが相違する端柱部材15、16が端柱10として壁端部1aに配設される。例えば、端柱部材15の幅ω5は、スタッド4の幅ω1(図5)よりも大きく、端柱部材16の幅ω6は、スタッド4の幅ω1(図5)よりも小さい。
 図14及び図15に示す間仕切壁1の端部構造によれば、前述の各実施例と同様、壁厚方向に延在する間隙γが端柱部材15、16の間に形成される。所望により、断熱・吸音材40と同様の断熱・吸音材41(破線で示す)を端柱部材15、16の間に介挿し、間隙γを部分的に閉塞する絶縁帯を断熱・吸音材41によって形成しても良い。
 図16に示す間仕切壁1は、図1(A)に示す間仕切壁構造のものであり、中空構造且つ正方形断面の端柱部材11、12を端柱10として壁端部1aに並列配置した構成を有する。端柱部材11、12は、壁芯XーXに対して対称の配置及び断面を有する。端柱部材11、12の間には、寸法T3の間隙βが形成される。寸法T3は、例えば、約10mmに設定される。端柱部材11、12として、角形断面の鋼製スタッドを好適に使用し得る。
 図16に示す間仕切壁1の端部構造によれば、壁芯方向に延在する間隙βが端柱部材11、12の間に形成される。所望により、振動絶縁性を有する繊維質材料、軟質樹脂、ゴム、エラストマー又は多孔質発泡材料等が絶縁帯42(破線で示す)として端柱部材11、12の間に介挿される。
 図17に示す間仕切壁1は、図1(B)に示す間仕切壁構造のものであり、中空構造且つ長方形断面の端柱部材13、14を端柱10として壁端部1aに配設した構成を有する。端柱部材13、14は、スタッド4と同様、壁厚方向に弱軸(長軸)を配向し且つ壁芯方向に強軸(短軸)を配向した断面性状を有する。端柱部材13、14の間には、寸法L2の間隙γが形成される。寸法L2は、例えば、約30mmに設定される。端柱部材11、12として、角形断面の鋼製スタッドを好適に使用し得る。
 図17に示す間仕切壁1の端部構造によれば、前述の各実施例と同様、壁厚方向に延在する間隙γが端柱部材13、14の間に形成される。所望により、振動絶縁性を有する繊維質材料、軟質樹脂、ゴム、エラストマー又は多孔質発泡材料等が絶縁帯42(破線で示す)として端柱部材13、14の間に介挿される。
 図18(A)及び図18(B)に示す間仕切壁1は、長方形断面の鋼製スタッド部材を端柱部材13、14及びスタッド4’として使用した構成を有する。各鋼製スタッド部材は、壁芯方向に弱軸(長軸)を配向し且つ壁厚方向に強軸(短軸)を配向するように配置される。図18(A)に示す端柱部材11、12の間には、図1(A)に示す間仕切壁構造と同様、寸法T3の間隙βが形成され、図18(B)に示す端柱部材13、14の間には、図1(B)に示す間仕切壁構造と同様、寸法L2の間隙γが形成される。
 図19(A)に示す間仕切壁1は、図2~図5に示すシングルランナ・千鳥間柱工法の間仕切壁構造において、敷目板4aをスタッド4及び下張り面材5の間に千鳥配列に介挿した構成を有する。また、図19(B)に示す間仕切壁1は、図20(B)に示すシングルランナ・敷目板千鳥配列工法の間仕切壁構造と同様、敷目板4aをスタッド4及び下張り面材5の間に千鳥配列に介挿するとともに、スタッド4及び下張り面材5の間に交互に間隙4bを形成した構成を有する。図1(B)~図5に示す間仕切壁構造と同様、一対の端柱部材15、16が端柱10として壁端部1aに配置され、端柱部材15、16の間には、間隙γが形成される。間隙γの寸法L2は、55mm以下、好ましくは、30mm以下(例えば、10mm)に設定される。
 更なる変形例として、本発明の構成は、木質系又は木製間柱を使用した木造間仕切壁に適用しても良く、例えば、図1(A)及び図1(B)に示す間仕切壁構造を木造軸組構造の間仕切壁に適用し、図16~図18に示す端柱部材11~14として中実且つ角形断面の木質系部材を使用しても良い。
 以上、本発明の好適な実施例について詳細に説明したが、本発明は上記実施例に限定されるものではなく、特許請求の範囲に記載された本発明の範囲内で種々の変形又は変更が可能であることはいうまでもない。
 例えば、上記実施例では、間仕切壁の建築内装面材として、強化石膏ボード及び硬質石膏ボードを使用しているが、構造用石膏ボード、シージング石膏ボード、化粧石膏ボード等の石膏ボード製品、ガラス繊維不織布入り石膏板(商品名「タイガーグラスロック(登録商標)」(吉野石膏株式会社製品))、スラグ石膏板(商品名「アスノン」(登録商標)等)、セメント板(「デラクリート」(登録商標)等)、繊維混入石膏板(商品名「エフジーボード」等)、押し出し成型板(商品名「クリオンスタッドレスパネル」、「SLPパネル」等)、ALC板、珪酸カルシウム板、木質系合板、窯業系サイディング等を間仕切壁の建築内装面材として使用しても良い。
 また、上記実施形態においては、鉄筋コンクリート構造の建築物に設置される間仕切壁について説明したが、鉄骨構造、鉄骨鉄筋コンクリート構造、或いは、木構造の建築物に設置される間仕切壁に対して本発明を適用しても良い。
 更に、上記実施形態においては、TLD=50以上の遮音性能を有する間仕切壁について説明したが、TLD=50未満の遮音性能の間仕切壁、例えば、TLD=40の遮音性能を有する間仕切壁に対して本発明を適用しても良い。また、本発明の構成は、TLD=20又は30程度の間仕切壁に対しても同様に適用し得るものである。
 また、図1~図6に示す実施形態においては、端柱部材の間に形成された間隙の空気層によって固体振動の伝播を遮断又は絶縁しているが、繊維質材料、軟質樹脂、ゴム、エラストマー又は多孔質発泡材料等の振動絶縁材料を間隙に充填又は挿入し、間隙の部分を絶縁帯として構成しても良く、或いは、振動絶縁可能な連結具又は連携具等を介して端柱部材同士を相互連結しても良い。
 本発明は、一般に中高層建築物の戸境壁、界壁又は耐火区画壁等として施工されるシングルランナ・千鳥間柱工法又はシングルランナ・敷目板千鳥配列工法の間仕切壁構造及びその施工方法に適用され、中高音域の騒音に対する音響透過損失を増大し、間仕切壁の遮音性能を向上するのに使用される。本発明によれば、遮音性能の性能値(TLD値)がTLD=50を超える高性能遮音壁の遮音性能を比較的簡単な構成で更に向上することができるので、その実用的効果は、顕著である。
1 間仕切壁
1a 壁端部
2 下部ランナ
3 上部ランナ
4 鋼製スタッド
5 下張り面材
6 上張り面材
8 内装仕上材料
9、19 金属製スペーサ
10 端柱
11、13、15 第1端柱部材
12、14、16 第2端柱部材
20 四周目地用充填材
30 スクリュービス
40、41 断熱・吸音材
42 絶縁帯
51、52 緩衝材
α 中空域
β、γ 間隙
L2、T3 間隙寸法
L5、L6 突出寸法
R1 建築空間
R2 建築空間
Si 騒音
So 固体伝播音
X 壁芯
B 梁
Ba 下端面
C 柱
Ca 垂直面
W 壁体
Wa 壁面
F1 床構造体
F2 床構造体

Claims (19)

  1.  壁端部を他の建築構造体に突付けられ、該建築構造体に連接する壁端部が建築空間に少なくとも部分的に露出したシングルランナ・千鳥間柱工法又はシングルランナ・敷目板千鳥配列工法の間仕切壁構造において、
     前記壁端部に配置され、第1及び第2の端柱部材より構成される端柱と、
     該端柱部材を互いに離間させ、固体振動の伝播を遮断し又は固体振動の伝播経路を絶縁する間隙又は絶縁帯とを有し、
     間仕切壁の片側の建築空間を画成する建築内装面材が、第1端柱部材に固定され、間仕切壁の反対側の建築空間を画成する建築内装面材が、第2端柱部材に固定されたことを特徴とする間仕切壁構造。
  2.  第1及び第2端柱部材は、壁芯方向に相対的にずれた位置関係をなして前記壁端部に配置され、前記間隙又は絶縁帯は、第1及び第2端柱部材の間において壁厚方向に延在し、前記壁端部は、他の建築構造体の鉛直面に対して突付け形態に連接し、第1端柱部材は、前記他の建築構造体の内装仕上げ面又は内装仕上げ下地面に近接し又は接触し、第2端柱部材は、前記壁端部の中空域に配置されることを特徴とする請求項1に記載の間仕切壁構造。
  3.  第1及び第2端柱部材は、前記壁端部に並列配置され、前記間隙又は絶縁帯は、第1及び第2端柱部材の間において壁芯方向に延在し、前記壁端部は、他の建築構造体の鉛直面に対して突付け形態に連接し、第1及び第2端柱部材は、前記他の建築構造体の内装仕上げ面又は内装仕上げ下地面に近接し又は接触することを特徴とする請求項1に記載の間仕切壁構造。
  4.  前記間仕切壁は、鋼製壁下地を有する中空構造の軽量間仕切壁であり、該間仕切壁を構成するランナは、鋼製ランナであり、第1及び第2端柱部材は、前記間仕切壁の間柱を構成する鋼製スタッドと実質的に同じ断面外形寸法を有する鋼製スタッドであり、前記間柱は、鋼製スタッド用のランナスペーサを使用して千鳥配列に建込まれ、第1及び第2端柱部材は、該ランナスペーサと同一又は同等のランナスペーサを使用して前記壁端部に立設されることを特徴とする請求項1又は2に記載の間仕切壁構造。
  5.  前記間隙又は絶縁帯における第1及び第2端柱部材の離間距離は、55mm以下の寸法に設定されることを特徴とする請求項1乃至4のいずれか1項に記載の間仕切壁構造。
  6.  前記建築内装面材は、一体的に接着された下張り面材及び上張り面材からなり、下張り面材は、厚さ20~25mmの石膏ボードであり、上張り面材は、厚さ8~13mmの石膏ボードであることを特徴とする請求項1乃至5のいずれか1項に記載の間仕切壁構造。
  7.  前記第2端柱部材から壁端側に延出する下張り面材及び上張り面材の突出寸法は、80mm以下の寸法に設定され、前記間隙又は絶縁帯の寸法は、40mm以下の寸法に設定され、緩衝材が第1端柱部材の外側面に一体的に取付けられ、該緩衝材の外面は、下張り面材の裏面に接触し、或いは、下張り面材の裏面から僅かに離間することを特徴とする請求項2に記載の間仕切壁構造。
  8.  壁端部を他の建築構造体に突付け、該建築構造体に連接する壁端部を建築空間に少なくとも部分的に露出せしめたシングルランナ・千鳥間柱工法又はシングルランナ・敷目板千鳥配列工法の間仕切壁の施工方法において、
     前記壁端部に配置される端柱を第1及び第2の端柱部材により構成し、
     該端柱部材を互いに離間させ、固体振動の伝播を遮断し又は固体振動の伝播経路を絶縁する間隙又は絶縁帯を前記端柱部材の間に形成し、
     間仕切壁の片側の建築空間を画成する建築内装面材を第1端柱部材に固定し、間仕切壁の反対側の建築空間を画成する建築内装面材を第2端柱部材に固定することを特徴とする間仕切壁の施工方法。
  9.  第1及び第2端柱部材は、壁芯方向に相対的にずれた位置関係をなして前記壁端部に配置され、前記間隙又は絶縁帯は、第1及び第2端柱部材の間において壁厚方向に延在し、前記壁端部は、他の建築構造体の鉛直面に対して突付け形態に連接し、第1端柱部材は、前記他の建築構造体の内装仕上げ面又は内装仕上げ下地面に近接し又は接触し、第2端柱部材は、前記壁端部の中空域に配置されることを特徴とする請求項8に記載の施工方法。
  10.  第1及び第2端柱部材は、前記壁端部に並列配置され、前記間隙又は絶縁帯は、第1及び第2端柱部材の間において壁芯方向に延在し、第1及び第2端柱部材は、他の建築構造体の内装仕上げ面又は内装仕上げ下地面に近接し又は接触することを特徴とする請求項8に記載の施工方法。
  11.  前記間仕切壁は、鋼製壁下地を有する中空構造の軽量間仕切壁であり、該間仕切壁を構成するランナは、鋼製ランナであり、第1及び第2端柱部材は、前記間仕切壁の間柱を構成する鋼製スタッドと実質的に同じ断面外形寸法を有する鋼製スタッドであり、前記間柱は、鋼製スタッド用のランナスペーサを使用して千鳥配列に建込まれ、第1及び第2端柱部材は、該ランナスペーサと同一又は同等のランナスペーサを使用して前記壁端部に立設されることを特徴とする請求項8又は9に記載の施工方法。
  12.  前記間隙又は絶縁帯における第1及び第2端柱部材の離間距離は、55mm以下の寸法に設定されることを特徴とする請求項8乃至11のいずれか1項に記載の施工方法。
  13.  前記建築内装面材を構成する下張り面材として、厚さ20~25mmの石膏ボードを使用し、前記建築内装面材を構成する上張り面材として、厚さ8~13mmの石膏ボードを使用し、下張り面材を前記端柱部材に固定するとともに、上張り面材を下張り面材に接着することを特徴とする請求項8乃至12のいずれか1項に記載の施工方法。
  14.  前記第2端柱部材から壁端側に延出する下張り面材及び上張り面材の突出寸法を80mm以下の寸法に設定し、前記間隙又は絶縁帯の寸法を40mm以下の寸法に設定し、緩衝材を第1端柱部材の外側面に一体的に取付け、該緩衝材の外面を下張り面材の裏面に接触せしめ、或いは、下張り面材の裏面から僅かに離間させることを特徴とする請求項9に記載の施工方法。
  15.  請求項1乃至7のいずれか1項に記載の間仕切壁構造を有し、遮音性能の性能値であるTLD値=50以上の遮音性を有することを特徴とする間仕切壁。
  16.  請求項8乃至14のいずれか1項に記載の施工方法により、遮音性能の性能値であるTLD値=50以上の遮音性を有する高性能遮音壁を構築することを特徴とする間仕切壁の施工方法。
  17.  壁端部を他の建築構造体に突付け、該建築構造体に連接する壁端部を建築空間に少なくとも部分的に露出せしめたシングルランナ・千鳥間柱工法又はシングルランナ・敷目板千鳥配列工法の間仕切壁の遮音性能を向上させる間仕切壁の遮音方法であって、
     前記壁端部に配置される端柱を第1及び第2の端柱部材に分割し、
     該端柱部材を互いに離間させ、固体振動の伝播を遮断し又は固体振動の伝播経路を絶縁する間隙又は絶縁帯を前記端柱部材の間に形成し、
     間仕切壁の片側の建築空間を画成する建築内装面材を第1端柱部材に固定し、間仕切壁の反対側の建築空間を画成する建築内装面材を第2端柱部材に固定することを特徴とする間仕切壁の遮音方法。
  18.  遮音性能の性能値であるTLD値が57以下の値を示す間仕切壁に適用され、TLD値を58~65の範囲内の値に向上せしめることを特徴とする請求項17に記載の遮音方法。
  19.  前記間隙又は絶縁帯における第1及び第2端柱部材の離間距離を55mm以下の寸法に設定することを特徴とする請求項17又は18に記載の遮音方法。
PCT/JP2019/007545 2018-03-04 2019-02-27 間仕切壁構造及びその施工方法 WO2019172040A1 (ja)

Priority Applications (6)

Application Number Priority Date Filing Date Title
SG11202008445VA SG11202008445VA (en) 2018-03-04 2019-02-27 Partition wall structure and method for constructing same
JP2020504950A JP7246749B2 (ja) 2018-03-04 2019-02-27 間仕切壁構造及びその施工方法
EP19764277.0A EP3763893A4 (en) 2018-03-04 2019-02-27 PARTITION WALL STRUCTURE AND METHOD OF MANUFACTURING IT
US16/977,183 US11492802B2 (en) 2018-03-04 2019-02-27 Partition wall structure and method for constructing same
CA3093103A CA3093103C (en) 2018-03-04 2019-02-27 Partition wall structure and method for constructing same
PH12020500659A PH12020500659A1 (en) 2018-03-04 2020-08-27 Partition wall structure and method for constructing same

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2018-038125 2018-03-04
JP2018038125 2018-03-04

Publications (1)

Publication Number Publication Date
WO2019172040A1 true WO2019172040A1 (ja) 2019-09-12

Family

ID=67846486

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2019/007545 WO2019172040A1 (ja) 2018-03-04 2019-02-27 間仕切壁構造及びその施工方法

Country Status (8)

Country Link
US (1) US11492802B2 (ja)
EP (1) EP3763893A4 (ja)
JP (1) JP7246749B2 (ja)
CA (1) CA3093103C (ja)
PH (1) PH12020500659A1 (ja)
SG (1) SG11202008445VA (ja)
TW (1) TWI791780B (ja)
WO (1) WO2019172040A1 (ja)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2021116645A (ja) * 2020-01-29 2021-08-10 積水ハウス株式会社 建物の遮音構造
US20230008578A1 (en) * 2019-12-16 2023-01-12 Knauf Gips Kg Drywall as Well as a Kit and a Method for Constructing a Drywall
WO2023282076A1 (ja) * 2021-07-07 2023-01-12 吉野石膏株式会社 フェルト系四周処理材及び該処理材の製造方法
US20230042728A1 (en) * 2020-01-29 2023-02-09 Sekisui House, Ltd. Partition wall sound-insulation structure and sound-insulation member for partition wall
WO2024047941A1 (ja) * 2022-08-31 2024-03-07 吉野石膏株式会社 建物壁の交差部構造

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2021021633A1 (en) * 2019-07-26 2021-02-04 Viken Ohanesian Structural wall panel system
AU2020436409B2 (en) * 2020-03-19 2023-11-23 Yoshino Gypsum Co., Ltd. Connection structure between partition wall and floor and construction method therefor

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2005133414A (ja) 2003-10-30 2005-05-26 Toho Zinc Co Ltd 間仕切壁
JP2010242298A (ja) 2009-04-01 2010-10-28 Takenaka Komuten Co Ltd 軽量鉄骨間仕切り壁
JP2012017644A (ja) * 2010-06-10 2012-01-26 Yoshino Gypsum Co Ltd 間仕切壁の目透し目地構造及びその施工方法
JP4971876B2 (ja) 2007-06-05 2012-07-11 大和ハウス工業株式会社 千鳥スタッド間仕切り構造
JP5296600B2 (ja) 2009-05-13 2013-09-25 吉野石膏株式会社 間仕切壁構造

Family Cites Families (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US1654030A (en) * 1926-03-06 1927-12-27 Insulex Corp Sound-proof wall
US2132032A (en) * 1936-07-08 1938-10-04 Jacobsen Aage Alex Partition wall
US2341305A (en) * 1940-10-16 1944-02-08 Gladding Mcbean & Co Sound deadening wall construction
US3611653A (en) * 1970-04-13 1971-10-12 Daniel L Zinn Sound attenuation wall partition
FR2622617A1 (fr) * 1987-10-30 1989-05-05 Maurice Lombardo Panneau prefabrique a ossature bois pour mur de maison
US5297369A (en) * 1993-05-05 1994-03-29 Dickinson Sydney L Building structure with improved soundproofing characteristics
US6125608A (en) * 1997-04-07 2000-10-03 United States Building Technology, Inc. Composite insulated framing members and envelope extension system for buildings
DE102008051696A1 (de) * 2008-10-15 2010-04-22 Knauf Gips Kg Schalltrennwandkonstruktion
KR20110113881A (ko) * 2010-04-12 2011-10-19 (주)엘지하우시스 흡차음 성능이 개선된 조립식 벽체 및 그 조립식 구조물
JP2011236671A (ja) * 2010-05-12 2011-11-24 Mikio Tashiro 乾式間仕切り下地構造
WO2012035108A1 (en) * 2010-09-15 2012-03-22 Saint-Gobain Performance Plastics Chaineux Stud for a partition wall
US20130078422A1 (en) * 2011-09-23 2013-03-28 Frank Warren Bishop, JR. Acoustic insulation with performance enhancing sub-structure
US9523197B2 (en) * 2014-06-11 2016-12-20 Jon Sessler Sound dampening wall

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2005133414A (ja) 2003-10-30 2005-05-26 Toho Zinc Co Ltd 間仕切壁
JP4971876B2 (ja) 2007-06-05 2012-07-11 大和ハウス工業株式会社 千鳥スタッド間仕切り構造
JP2010242298A (ja) 2009-04-01 2010-10-28 Takenaka Komuten Co Ltd 軽量鉄骨間仕切り壁
JP5296600B2 (ja) 2009-05-13 2013-09-25 吉野石膏株式会社 間仕切壁構造
JP2012017644A (ja) * 2010-06-10 2012-01-26 Yoshino Gypsum Co Ltd 間仕切壁の目透し目地構造及びその施工方法
JP5663119B2 (ja) 2010-06-10 2015-02-04 吉野石膏株式会社 間仕切壁の目透し目地構造及びその施工方法

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
THE ACOUSTICAL SOCIETY OF JAPAN: "Effect of gypsum board laminating method on the sound insulation performance of the double wall - About bonding method of laminated board", 2015 AUTUMN RESEARCH CONFERENCE OF THE ACOUSTICAL SOCIETY OF JAPAN, 18 September 2015 (2015-09-18), JP, pages 885 - 886, XP009523131, ISSN: 1880-7658 *

Cited By (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20230008578A1 (en) * 2019-12-16 2023-01-12 Knauf Gips Kg Drywall as Well as a Kit and a Method for Constructing a Drywall
JP2021116645A (ja) * 2020-01-29 2021-08-10 積水ハウス株式会社 建物の遮音構造
US20230042728A1 (en) * 2020-01-29 2023-02-09 Sekisui House, Ltd. Partition wall sound-insulation structure and sound-insulation member for partition wall
US20230051426A1 (en) * 2020-01-29 2023-02-16 Sekisui House, Ltd. Sound-insulating structure for building
US11866930B2 (en) * 2020-01-29 2024-01-09 Sekisui House, Ltd. Partition wall sound-insulation structure and sound-insulation member for partition wall
US11933041B2 (en) * 2020-01-29 2024-03-19 Sekisui House, Ltd. Sound-insulating structure for building
JP7467942B2 (ja) 2020-01-29 2024-04-16 積水ハウス株式会社 建物の遮音構造
WO2023282076A1 (ja) * 2021-07-07 2023-01-12 吉野石膏株式会社 フェルト系四周処理材及び該処理材の製造方法
WO2024047941A1 (ja) * 2022-08-31 2024-03-07 吉野石膏株式会社 建物壁の交差部構造

Also Published As

Publication number Publication date
EP3763893A4 (en) 2021-11-24
US11492802B2 (en) 2022-11-08
CA3093103A1 (en) 2019-09-12
TWI791780B (zh) 2023-02-11
EP3763893A1 (en) 2021-01-13
PH12020500659A1 (en) 2021-06-07
SG11202008445VA (en) 2020-10-29
JPWO2019172040A1 (ja) 2021-02-12
JP7246749B2 (ja) 2023-03-28
CA3093103C (en) 2023-08-29
TW201938888A (zh) 2019-10-01
US20210040735A1 (en) 2021-02-11

Similar Documents

Publication Publication Date Title
WO2019172040A1 (ja) 間仕切壁構造及びその施工方法
US9771715B2 (en) Sound dampening wall
US6789645B1 (en) Sound-insulating sandwich element
US8572914B2 (en) Interior wall cap for use with an exterior wall of a building structure
US6715241B2 (en) Lightweight sound-deadening board
JP7315328B2 (ja) ばねレールを備えた乾式壁構造システム
AU771473B2 (en) Sound-insulating sandwich element
US20160289961A1 (en) Structural member comprising sound insulating layer
JP5663119B2 (ja) 間仕切壁の目透し目地構造及びその施工方法
AU2017264502A1 (en) Panel and method for fabricating, installing, and utilizing a panel
Ljunggren et al. Elastic layers to reduce sound transmission in lightweight buildings
GB2420355A (en) Joist with adhered acoustic insulating material
JP5522934B2 (ja) 遮音内装構造
JPH0720248Y2 (ja) 建築物の遮音構造
CA2893390C (en) Sound dampening wall
JP5406399B2 (ja) 遮音内装構造
WO2024047941A1 (ja) 建物壁の交差部構造
JP2023120775A (ja) 間仕切壁
KR100407870B1 (ko) 차음 성능과 기밀성능이 향상된 경량 벽체 구조
JP2024029435A (ja) 木造遮音床
JPH085204Y2 (ja) 耐火遮音パネル部材と耐火遮音壁及び耐火遮音床
JP2022114959A (ja) 間仕切壁の遮音構造及び間仕切壁の施工方法
JP2024062517A (ja) 乾式二重床及び壁側床支持具
KR20090008284U (ko) 건축물의 층간소음 저감재
JPH11324205A (ja) 建物の床衝撃音遮断構造

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 19764277

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2020504950

Country of ref document: JP

Kind code of ref document: A

ENP Entry into the national phase

Ref document number: 3093103

Country of ref document: CA

NENP Non-entry into the national phase

Ref country code: DE

ENP Entry into the national phase

Ref document number: 2019764277

Country of ref document: EP

Effective date: 20201005