WO2019171465A1 - 熱利用デバイス - Google Patents

熱利用デバイス Download PDF

Info

Publication number
WO2019171465A1
WO2019171465A1 PCT/JP2018/008556 JP2018008556W WO2019171465A1 WO 2019171465 A1 WO2019171465 A1 WO 2019171465A1 JP 2018008556 W JP2018008556 W JP 2018008556W WO 2019171465 A1 WO2019171465 A1 WO 2019171465A1
Authority
WO
WIPO (PCT)
Prior art keywords
wiring layer
thermistor
layer
utilization device
heat utilization
Prior art date
Application number
PCT/JP2018/008556
Other languages
English (en)
French (fr)
Inventor
晋治 原
尚城 太田
青木 進
英嗣 小村
明政 海津
Original Assignee
Tdk株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Tdk株式会社 filed Critical Tdk株式会社
Priority to CN201880090904.4A priority Critical patent/CN111819425B/zh
Priority to US16/969,015 priority patent/US11480477B2/en
Priority to PCT/JP2018/008556 priority patent/WO2019171465A1/ja
Priority to JP2020504526A priority patent/JP7173125B2/ja
Publication of WO2019171465A1 publication Critical patent/WO2019171465A1/ja

Links

Images

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01KMEASURING TEMPERATURE; MEASURING QUANTITY OF HEAT; THERMALLY-SENSITIVE ELEMENTS NOT OTHERWISE PROVIDED FOR
    • G01K7/00Measuring temperature based on the use of electric or magnetic elements directly sensitive to heat ; Power supply therefor, e.g. using thermoelectric elements
    • G01K7/16Measuring temperature based on the use of electric or magnetic elements directly sensitive to heat ; Power supply therefor, e.g. using thermoelectric elements using resistive elements
    • G01K7/22Measuring temperature based on the use of electric or magnetic elements directly sensitive to heat ; Power supply therefor, e.g. using thermoelectric elements using resistive elements the element being a non-linear resistance, e.g. thermistor
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01CRESISTORS
    • H01C1/00Details
    • H01C1/01Mounting; Supporting
    • H01C1/012Mounting; Supporting the base extending along and imparting rigidity or reinforcement to the resistive element
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01JMEASUREMENT OF INTENSITY, VELOCITY, SPECTRAL CONTENT, POLARISATION, PHASE OR PULSE CHARACTERISTICS OF INFRARED, VISIBLE OR ULTRAVIOLET LIGHT; COLORIMETRY; RADIATION PYROMETRY
    • G01J1/00Photometry, e.g. photographic exposure meter
    • G01J1/02Details
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01CRESISTORS
    • H01C7/00Non-adjustable resistors formed as one or more layers or coatings; Non-adjustable resistors made from powdered conducting material or powdered semi-conducting material with or without insulating material
    • H01C7/008Thermistors
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01CRESISTORS
    • H01C7/00Non-adjustable resistors formed as one or more layers or coatings; Non-adjustable resistors made from powdered conducting material or powdered semi-conducting material with or without insulating material
    • H01C7/06Non-adjustable resistors formed as one or more layers or coatings; Non-adjustable resistors made from powdered conducting material or powdered semi-conducting material with or without insulating material including means to minimise changes in resistance with changes in temperature
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01CRESISTORS
    • H01C1/00Details
    • H01C1/08Cooling, heating or ventilating arrangements

Definitions

  • the present invention relates to a heat utilization device, and more particularly, to a heat utilization device including a thermistor whose electric resistance changes according to temperature.
  • Thermistors used as thermal elements in various temperature sensors change their electrical resistance depending on the temperature. For this reason, the temperature around the thermistor can be detected by detecting a change in the electrical resistance of the thermistor.
  • the temperature change of the thermistor is caused by radiant heat, the temperature of an object that radiates radiant heat can be detected based on the Stefan-Boltzmann law.
  • Japanese Patent Nos. 5866881 and 60302732 disclose infrared temperature sensors in which leads connected to a thermal element for detecting infrared rays are formed in a meander pattern.
  • the infrared detecting thermal element and the lead are installed on the substrate, and the lead is formed on the substrate as a wiring pattern.
  • the sensitivity of the infrared temperature sensor is enhanced by the heat collecting effect of the lead.
  • the thermistor is housed in a vacuum vessel, and further installed so as to float in the vacuum vessel with an arm-shaped support. This suppresses heat dissipation from the thermistor through the atmosphere and heat dissipation from the thermistor to the container due to heat conduction.
  • the support portion also has a function of holding a wiring layer that supplies current to the thermistor.
  • the support portion is generally formed of an insulating material having high physical strength, but the wiring layer is formed of a conductive material.
  • electrical resistance and thermal resistance Wideemann-Franz rule
  • the thermal resistance of the insulating material is large, but the thermal resistance of the conductive material is small.
  • heat conduction in the support portion is suppressed, heat conduction in the wiring layer may be at a level that cannot be ignored.
  • the wiring layer is formed of a material having low conductivity, heat conduction can be suppressed, but an increase in electric resistance leads to an increase in power consumption. As a result, the amount of heat generated in the wiring layer increases, which may increase the measurement error of the thermistor.
  • An object of the present invention is to provide a heat utilization device in which the thermal resistance of a wiring layer is increased while suppressing an increase in electrical resistance of the wiring layer.
  • the heat utilization device of the present invention has a thermistor whose electrical resistance changes according to temperature, and a wiring layer connected to the thermistor.
  • the mean free path of phonons in the wiring layer is smaller than the mean free path of phonons in an infinite medium made of the material of the wiring layer.
  • FIG. 2B is a cross-sectional view of the wiring layer along the line AA in FIG. 2A.
  • 2 is a cross-sectional view of a wiring layer 10 as viewed from the X direction.
  • FIG. 4B is a cross-sectional view of the wiring layer along the line AA in FIG. 4A.
  • FIG. 5B is a cross-sectional view of the wiring layer along the line AA in FIG. 5A. It is a side view of the edge part of wiring layer, and the vicinity of a pillar. It is a schematic plan view of the vicinity of the thermistor film
  • FIG. 6B is a cross-sectional view of the wiring layer along the line AA in FIG. 6A. It is sectional drawing of the wiring layer seen from the X direction.
  • the X direction and the Y direction are parallel to the main surfaces of the first substrate 2 and the second substrate 3.
  • the Z direction is a direction orthogonal to the X direction and the Y direction, and is a direction perpendicular to the main surfaces of the first substrate 2 and the second substrate 3.
  • the heat utilization device of the present invention includes a thermistor whose electrical resistance changes according to temperature.
  • the heat utilization device of each embodiment is an infrared sensor including only one thermistor film, but the heat utilization device may include an array of thermistor films arranged in a two-dimensional manner.
  • a heat utilization device including such an array of thermistor films is used as an image sensor of an infrared camera. Infrared cameras can be used as night vision scopes and night vision goggles in the dark, and can also be used to measure the temperature of people and objects.
  • An infrared sensor in which a plurality of thermistor films are arranged one-dimensionally can be used as a sensor for measuring various temperatures or temperature distributions.
  • An infrared sensor in which a plurality of thermistor films are arranged one-dimensionally is also included in the scope of the present invention.
  • FIG. 1 is a schematic side view of the infrared sensor 1 according to the first embodiment of the present invention
  • FIG. 2A is a schematic plan view in the vicinity of the thermistor film
  • FIG. 2C shows a cross-sectional view of the wiring layer 10 as viewed from the X direction.
  • a portion of the thermistor film 7 is omitted to show the central portion 91 of the support layer 9.
  • the infrared sensor 1 includes a first substrate 2, a second substrate 3 positioned opposite to the first substrate 2, and a side wall 4 connecting the first substrate 2 and the second substrate 3.
  • the second substrate 3 is a window substrate on which infrared rays are incident.
  • the first substrate 2, the second substrate 3 and the side wall 4 form a sealed internal space 5.
  • a thermistor film 7 is accommodated in the internal space 5.
  • the internal space 5 is evacuated or evacuated. That is, the first substrate 2, the second substrate 3 and the side wall 4 form a sealed vacuum vessel 6. Thereby, the convection of the gas in the internal space 5 is prevented or suppressed, and the thermal influence on the thermistor film 7 can be reduced.
  • the thermistor film 7 has a silicon substrate (not shown) and a vanadium oxide (VOx) film (not shown) formed on the silicon substrate.
  • VOx vanadium oxide
  • an amorphous silicon (a-Si), TiOx, NiOx, or CoMnNiOx film may be used.
  • the thermistor film 7 has a light receiving surface 7 a that is approximately square or rectangular, and the light receiving surface 7 a faces the second substrate 3.
  • An infrared absorption film 8 is formed on the light receiving surface 7 a of the thermistor film 7.
  • the infrared absorption film 8 is provided to increase the amount of infrared heat input to the thermistor film 7.
  • the infrared absorption film 8 is formed of SiOx, but can also be formed of SiN, AlOx, TaOx, NbOx, AlN, SiON, AlON, soot carbon, organic matter, or the like.
  • the thermistor film 7 is supported by a support layer 9.
  • the material of the support layer 9 is not limited as long as it has a lower thermal conductivity than the wiring layer 10 described later and has the strength to support the thermistor film 7, but the support layer 9 is preferably an insulator such as AlN, AlOx. , Diamond-like carbon, SiNx, SiOx, TaOx, TiO 2 , and Si (x means an arbitrary composition).
  • the support layer 9 includes a substantially square central portion 91 that supports the thermistor film 7 and a pair of arm portions 92 (hereinafter referred to as a first arm portion 92a and a second arm portion) that extend from two corners on the diagonal line of the central portion 91. Part 92b).
  • the arm portion 92 connects the central portion 91 to the pillar 11 (described later). Further, the arm portion 92 is connected to the thermistor film 7 through the central portion 91.
  • the central portion 91 and the arm portion 92 are formed of the same material, but may be formed of different materials.
  • the central portion 91 has a slightly larger planar dimension than the thermistor film 7, and the thermistor film 7 is surrounded by four sides of the central portion 91 when viewed from the direction perpendicular to the thermistor film 7 (Z direction).
  • a pair of wiring layers 10 (hereinafter referred to as a first wiring layer 10a and a second wiring layer 10b) are supported on a pair of arm portions 92 of the support layer 9.
  • the wiring layer 10 is provided on the support layer 9, but the configuration of the wiring layer 10, in which a part of the wiring layer 10 may be provided on the thermistor film 7, will be described later.
  • the first arm portion 92 a and the second arm portion 92 b have the same configuration, and have a point-symmetric shape with respect to the center of the thermistor film 7. Therefore, here, the first arm portion 92a will be described.
  • the first arm portion 92 a is a substantially L-shaped member composed of a first portion 93 and a second portion 94.
  • the first portion 93 extends along the first side 72a of the thermistor film 7 from the first corner 71a of the thermistor film 7 to the vicinity of the second corner 71b adjacent to the first corner 71a. It extends.
  • the second portion 94 is connected to the first portion 93 in the vicinity of the second corner portion 71b of the thermistor film 7, and from the second corner portion 71b to the third corner portion adjacent to the second corner portion 71b. It extends along the second side 72b adjacent to the first side 72a of the thermistor film 7 to the vicinity of 71c.
  • the first arm portion 92 a is separated from the thermistor film 7 except for the connection portion between the first portion 93 and the thermistor film 7. For this reason, heat conduction from the thermistor film 7 to the first arm portion 92a is limited.
  • the vicinity of the third corner portion 71 c of the second portion 94 is connected to the pillar 11.
  • the support layer 9 is supported by a pair of pillars 11 extending from the first substrate 2 toward the second substrate 3.
  • the pillar 11 is a column having a circular cross section.
  • the pillar 11 also has a function as an electrode for supplying a sense current to the thermistor film 7, and is formed of a conductive material such as Ta, Cu, Ru, W, Au, Ni, Fe, and is formed by plating, for example. be able to.
  • the two pillars 11 are connected to the end portions of the first arm portion 92a and the second arm portion 92b, respectively.
  • the thermistor film 7 and the support layer 9 are arranged so as to float in the internal space 5, and are connected to the first substrate 2 of the vacuum vessel 6 through only the pillar 11. Thereby, the influence of heat from the first substrate 2 and the second substrate 3 is suppressed.
  • the first substrate 2 is composed of a silicon substrate and various elements and wirings formed thereon. Elements include ROIC (Read Out Out Integrated Circuit), regulator, A / D converter, multiplexer, and the like.
  • the ROIC is an integrated circuit that converts resistance changes of a plurality of thermistor films 7 into electric signals. These elements are connected to the pillar 11 via, for example, the wiring 13 and the pillar 12 in the first substrate 2.
  • the second substrate 3 is a window substrate that transmits long-wavelength infrared light, and is formed of a silicon substrate, a germanium substrate, or the like. The wavelength of the long-wavelength infrared is approximately 8 to 14 ⁇ m.
  • an antireflection film is formed on the inner and outer surfaces of the second substrate 3.
  • the wiring layer 10 is formed of a conductive material such as Au, B 4 C, Co, Cu, Fe, Mo, NbC, Ni, Rh, Ru, Ta, TaC, TiN, W, and ZrN.
  • the wiring layer 10 is supported by the support layer 9 as described above, and the surface opposite to the surface supported by the support layer 9, that is, the surface facing the second substrate 3 is covered with the first insulating layer 15.
  • the side surfaces are covered with the second insulating layer 16.
  • the first insulating layer 15 and the second insulating layer 16 are made of one or more materials selected from the group consisting of AlN, AlOx, diamond-like carbon, SiNx, SiOx, TaOx, TiO 2 and Si.
  • the second insulating layer 16 is located between the support layer 9 and the first insulating layer 15 and protrudes alternately from both sides in a comb blade shape.
  • the wiring layer 10 forms a meander pattern in the arm portion 92.
  • the pattern of the wiring layer 10 is not limited to the meander pattern. As long as the center line C of the wiring layer 10 intersects the extending direction D of the arm portion 92 in at least a part of the arm portion 92, the pattern is zigzag. Any non-linear pattern such as a pattern, a curved line pattern, or a polygonal line pattern can be adopted.
  • the center line C of the wiring layer 10 means a center line along the bent path of the wiring layer 10 and is different from the X direction and the Y direction.
  • Such a pattern is preferably formed over the entire length of the arm portion 92, but may be formed only on a part of the arm portion 92. A part of the arm portion 92 and another part may be formed in different patterns. It is also possible to combine the various patterns described above (for example, a curved zigzag pattern).
  • the heat radiation from the wiring layer 10 is caused by the heat conduction of the wiring layer 10.
  • Thermal conduction in solids is borne by atomic vibrations.
  • energy transfer by vibration phonon / lattice vibration
  • energy transfer based on movement of conduction electrons it is considered that there are two mechanisms: energy transfer by vibration (phonon / lattice vibration) transmitted between crystal lattices and energy transfer based on movement of conduction electrons.
  • the distance (free path) that particles such as molecules and electrons can travel without being disturbed by scattering (collision) by a scattering source Is called the mean free path.
  • the particles perform a ballistic linear motion, change direction when they collide with a scattering source, and then perform a ballistic linear motion again.
  • a particle moves a distance equal to the mean free path, on average it collides with another particle once.
  • Such a way of thinking can be applied to phonons.
  • the travel distance until the phonon collides with another substance has a stochastic distribution, and the average travel distance (mean free path) is an index of the ease of phonon conduction. That is, reducing the thermal conductivity due to phonons is synonymous with reducing the mean free path of phonons.
  • FIG. 3 is a schematic diagram showing the principle of the present invention. Since the mean free path of electrons is based on an infinite medium, the mean free path of electrons in the wiring layer 10 is smaller than the value based on the assumption of an infinite medium. However, since the mean free path of electrons is short (up to several hundred nm), the mean free path of electrons in the wiring layer 10 is considered to be almost the same as the value assuming an infinite medium regardless of the structure of the wiring layer 10. Can do. On the other hand, it is known that the mean free path of phonons at room temperature is evaluated by (3 ⁇ thermal conductivity) / (heat capacity ⁇ sonic velocity).
  • the phonon mean free path MFP1 in the wiring layer 10 is smaller than the phonon mean free path MFP2 in the infinite medium. Since the phonon mean free path is several ⁇ m and longer than the electron mean free path, the phonon mean free path is more susceptible to the structure of the wiring layer 10 than the electron mean free path. Therefore, by adopting a structure in which the mean free path of phonons is shortened, it is possible to realize the wiring layer 10 with reduced thermal conductivity while suppressing the decrease in conductivity.
  • This embodiment provides a wiring layer structure based on such a basic principle, in which the mean free path of electrons is substantially unaffected and only the mean free path of phonons is shortened.
  • 4A is a schematic plan view of the vicinity of the thermistor film 7 of the infrared sensor having the wiring layer 110 of the comparative example
  • FIG. 4B is a cross-sectional view of the wiring layer 110 along the line AA in FIG. 4A
  • FIG. A cross-sectional view of the wiring layer 110 viewed from the direction is shown.
  • the wiring layer 110 is formed of a linear conductive layer, and is bent at a right angle once in the middle according to the shape of the arm portion 92.
  • the phonon reaches the pillar 11 at the end by three times of ballistic phonon transport (that is, only reflected twice at the interface of the wiring layer 110).
  • the phonon moves along the meander structure, and therefore reaches the pillar 11 at the end after a very large number of ballistic phonon transports (41 times in the example shown in FIG. 2A).
  • the arrows in FIGS. 2A and 4A indicate one ballistic phonon transport.
  • the linear wiring layer 110 is scattered many times in the middle, and the number of times is the meander.
  • the mean free path of phonons in the wiring layer 10 is preferably smaller than the mean free path of phonons in an infinite medium made of the material of the wiring layer 10.
  • a single band-like region 18 extending along the arm portion 92 is formed (FIGS. 2C and 4C). At least a part of each edge 18a in the width direction (Y direction in the first portion 93, X direction in the second portion 94) of the band-shaped region 18 and each edge 18b in the thickness direction (Z direction). At least a part of is formed of a conductor. This conductor forms wiring layers 10 and 110 extending continuously along the arm portion 92 from one end connected to the thermistor film 7 to the other end connected to the pillar 11.
  • the conductor does not have an interface with a substance having a lower thermal conductivity than the conductor inside the single band-shaped region 18.
  • the inside of the single band-shaped region 18 means a region that does not include the boundary surface of the single band-shaped region 18 and is inside the boundary surface of the single band-shaped region 18.
  • the conductor has an interface with a substance having a lower thermal conductivity than the conductor inside the single band-shaped region 18. This interface is a new phonon scattering source.
  • FIG. 5A is a schematic plan view of the vicinity of the thermistor film 7 of the infrared sensor of the second embodiment
  • FIG. 5B is a cross-sectional view of the wiring layer 20 along the line AA in FIG.
  • differences from the first embodiment will be mainly described.
  • omitted description it is the same as that of 1st Embodiment.
  • the wiring layer 20 is separated or divided in the thickness direction (Z direction) by the separation layer 17.
  • the first wiring layer 21 is formed on the support layer 9 (first arm portion 92a and second arm portion 92b), the separation layer 17 is formed on the first wiring layer 21, and the separation layer 17 is formed.
  • a second wiring layer 22 is formed thereon, and the second wiring layer 22 is covered with the first insulating layer 15.
  • Isolation layer 17 is AlN, AlOx, diamond-like carbon, SiNx, SiOx, TaOx, is formed from one or more materials selected from the group consisting of TiO 2.
  • the separation layer 17 may be formed of the same material as that of the support layer 9 or may be formed of a material different from that of the support layer 9.
  • the number of divided wiring layers 20 or the number of separation layers 17 is not particularly limited, and a plurality of separation layers 17 may be inserted into the wiring layer 20 to divide the wiring layer 20 into three or more. That is, it is sufficient that at least one separation layer 17 is inserted into the wiring layer 20.
  • FIG. 5C shows a side view of the end of the wiring layer 20 and the vicinity of the pillar 11.
  • the phonon not only moves in parallel with the wiring layer 20, but also moves diagonally (that is, with a Z-direction component) with respect to the wiring layer 20. Therefore, by inserting the separation layer 17, the interface of the wiring layer 20 increases and the number of phonon scattering sources increases. For this reason, also in this embodiment, the wiring layer 20 with reduced thermal conductivity can be realized while suppressing the decrease in conductivity. Furthermore, the wiring layer 20 can be easily formed by a wafer process. That is, since the separation layer 17 and the wiring layer 20 divided by the separation layer 17 are parallel to the first substrate 2, the wiring layer 20 having a desired structure can be obtained by simply repeating a simple process.
  • the wiring layer is larger in width (X-direction dimension or Y-direction dimension) than thickness (Z-direction dimension)
  • dividing the wiring layer in the thickness direction rather than dividing the wiring layer in the width direction reduces the surface area of the separation layer. Easy to secure. As a result, the number of phonon scattering sources can be increased efficiently.
  • FIG. 6A is a schematic plan view of the vicinity of the thermistor film 7 of the infrared sensor according to the third embodiment
  • FIG. 6B is an enlarged view of a portion A in FIG. 6
  • FIG. 6C is a sectional view of the portion A viewed from the X direction.
  • differences from the first embodiment will be mainly described. About the structure and effect which abbreviate
  • the wiring layer 30 is separated or divided in the width direction by the separation layer 31. More specifically, the wiring layer 30 is separated or divided in the Y direction by the separation layer 31 in the first portion 93 of the first arm portion 92a, and in the X direction by the separation layer 31 in the second portion 94. Separated or divided.
  • First to fourth wiring layers 30a to 30d extending in parallel to each other are formed on the support layer 9 (first arm portion 92a), and the first wiring layer 30a and the second wiring layer 30b are provided between the first wiring layer 30a and the second wiring layer 30b.
  • One isolation layer 31a is provided between the second wiring layer 30b and the third wiring layer 30c, and the second isolation layer 31b is provided between the third wiring layer 30c and the fourth wiring layer 30d.
  • a separation layer 31c is provided.
  • the first to fourth wiring layers 30a to 30d and the first to third separation layers 31a to 31c are covered with the first insulating layer 15.
  • the first to third separation layers 31a to 31c are formed of one or more materials selected from the group consisting of AlN, AlOx, diamond-like carbon, SiNx, SiOx, TaOx, TiO 2 and Si.
  • the first to third separation layers 31 a to 31 c may be formed of the same material as the support layer 9 or may be formed of a material different from that of the support layer 9 as long as the thermal conductivity is lower than that of the wiring layer 30.
  • the number in which the wiring layer 30 is separated or divided or the number of the separation layers 31 is not particularly limited, and the wiring layer 30 can be separated or divided by inserting an arbitrary number of separation layers 31 into the wiring layer 30. That is, it is only necessary that at least one separation layer 31 is inserted in the wiring layer 30.
  • the phonon not only moves in parallel with the wiring layer 30 but also obliquely with respect to the wiring layer 30 (that is, the Y-direction component in the first portion 93). Therefore, the second portion 94 may move (with an X-direction component). Therefore, by inserting the separation layer 31, the interface of the wiring layer 30 increases and the number of phonon scattering sources increases. For this reason, also in this embodiment, it is possible to realize the wiring layer 30 with reduced thermal conductivity while suppressing the decrease in conductivity.
  • FIG. 7 shows a cross-sectional view of the wiring layer 40 of the infrared sensor of the fourth embodiment.
  • differences from the first embodiment will be mainly described.
  • omitted description it is the same as that of 1st Embodiment.
  • Dispersions 41 having thermal conductivity lower than that of the wiring layer 40 are distributed in the wiring layer 40. Since the conductive portion of the wiring layer 40 is continuous from one end to the other end of the wiring layer 40, the wiring layer 40 is not divided by the dispersion body 41 in the extending direction.
  • the dispersion 41 is made of one or more materials selected from the group consisting of AlN, AlOx, diamond-like carbon, SiNx, SiOx, TaOx, TiO 2 and Si.
  • the shape of the dispersion 41 is not particularly limited, and may be a block shape, a linear shape, or the like.
  • an organic sacrificial layer 51 is formed on the first substrate 2 on which an element such as ROIC is formed, an opening is formed by a photoresist process and a milling process, and the pillar 11 is formed by plating in the opening.
  • the support layer 9 is formed on the organic sacrificial layer 51 and the pillar 11 by sputtering.
  • the wiring layer 10 is formed on the support layer 9 by sputtering, and the wiring layer 10 is formed into a predetermined shape by patterning.
  • a set of the separation layer 17 and the conductive layer is further laminated a desired number of times.
  • an opening is formed in the wiring layer 30 by a photoresist process and a milling process, and an insulating layer 31 is formed in the opening.
  • the wiring layer 40 is formed by a method such as simultaneous sputtering of the conductor and the dispersion 41 or sputtering of a mixture of the conductor and the dispersion 41.
  • the thermistor film 7 and the infrared absorption film 8 are formed on the support layer 9 by sputtering.
  • the organic sacrificial layer 51 is removed by a dry process. Then, the infrared sensor 1 shown in FIG. 1 is obtained by joining the 1st board
  • first to fourth embodiments can be combined with each other.
  • a separation layer 31 that separates the wiring layer in the thickness direction as in the second embodiment can be provided.

Landscapes

  • Physics & Mathematics (AREA)
  • Engineering & Computer Science (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Electromagnetism (AREA)
  • General Physics & Mathematics (AREA)
  • Nonlinear Science (AREA)
  • Spectroscopy & Molecular Physics (AREA)
  • Photometry And Measurement Of Optical Pulse Characteristics (AREA)
  • Radiation Pyrometers (AREA)

Abstract

配線層の電気抵抗の増加を抑制しつつ配線層10の熱抵抗が増加した熱利用デバイスが提供される。 熱利用デバイス1は、温度に応じて電気抵抗が変化するサーミスタ7と、サーミスタ7に接続された配線層10と、を有している。配線層10におけるフォノンの平均自由行程は、配線層10の材料からなる無限媒質におけるフォノンの平均自由行程より小さい。

Description

熱利用デバイス
 本発明は熱利用デバイスに関し、特に温度に応じて電気抵抗が変化するサーミスタを備えた熱利用デバイスに関する。
 各種の温度センサで感熱素子として用いられるサーミスタは、温度に応じて電気抵抗が変化する。このため、サーミスタの電気抵抗の変化を検出することによってサーミスタの周辺の温度を検知することができる。サーミスタの温度変化が輻射熱によって生じるときは、Stefan-Boltzmannの法則に基づき、輻射熱を放射する物体の温度を検知することができる。
 サーミスタの感度を向上させるためには、サーミスタの熱吸収効率を改善することが有効である。特許第5866881号明細書及び特許第60302732号明細書には、赤外線検知用感熱素子に接続されるリードがミアンダパターンで形成された赤外線温度センサが開示されている。赤外線検知用感熱素子とリードは基板上に設置され、リードは基板上に配線パターンとして形成される。リードの集熱効果により赤外線温度センサの感度が高められる。
 対象物の輻射熱を測定し、対象物の表面温度を測定する用途では、対象物からの輻射熱だけを検出し、それ以外の物体からの輻射熱の影響を抑制することが必要である。対象物から放射される電磁波を、サーミスタまたはサーミスタ近傍で熱に変換して観測するセンサにおいては、電磁波の入射量に対するサーミスタの温度上昇効率を高めるためにサーミスタからの放熱を抑制することが必要となる。この目的で、サーミスタは真空容器に収容され、さらに、アーム状の支持部で真空容器中に浮くように設置される。これによって、雰囲気を介したサーミスタからの放熱と、熱伝導によるサーミスタから容器への放熱が抑制される。
 しかしながら、この構成では、支持部はサーミスタに電流を供給する配線層を保持する機能を併せ持つ。支持部は一般的に物理的強度の高い絶縁材料で形成されるが、配線層は導電材料から形成される。一般に電気抵抗と熱抵抗との間には正の相関関係があり(ヴィーデマン・フランツ則)、絶縁材料の熱抵抗は大きいが、導電材料の熱抵抗は小さい。このため、支持部における熱伝導は抑制されるが、配線層における熱伝導は無視できないレベルとなることがある。配線層を導電性の低い材料で形成すれば熱伝導は抑えられが、電気抵抗の増加により消費電力の増加につながる。これに伴い配線層の発熱量が増えるため、サーミスタの測定誤差が増大する可能性もある。
 本発明は、配線層の電気抵抗の増加を抑制しつつ配線層の熱抵抗が増加した熱利用デバイスを提供することを目的とする。
 本発明の熱利用デバイスは、温度に応じて電気抵抗が変化するサーミスタと、サーミスタに接続された配線層と、を有している。配線層におけるフォノンの平均自由行程は、配線層の材料からなる無限媒質におけるフォノンの平均自由行程より小さい。
 上述した、およびその他の、本出願の目的、特徴、および利点は、本出願を例示した添付の図面を参照する以下に述べる詳細な説明によって明らかとなろう。
本発明の第1の実施形態に係る赤外線センサの概略断面図である。 図1に示す赤外線センサのサーミスタ膜の近傍の概略平面図である。 図2AのA-A線に沿った配線層の断面図である。 X方向からみた配線層10の断面図である。 本発明の原理を示す模式図である。 比較例の赤外線センサのサーミスタ膜の近傍の概略平面図である。 図4AのA-A線に沿った配線層の断面図である。 X方向からみた配線層の断面図である。 本発明の第2の実施形態に係る赤外線センサのサーミスタ膜の近傍の概略平面図である。 図5AのA-A線に沿った配線層の断面図である。 配線層の端部とピラーの近傍の側面図である。 本発明の第3の実施形態に係る赤外線センサのサーミスタ膜の近傍の概略平面図である。 図6AのA-A線に沿った配線層の断面図である。 X方向からみた配線層の断面図である。 本発明の第4の実施形態に係る赤外線センサの配線層の部分断面図である。 本発明の赤外線センサの製造方法の一例のステップを示す図である。 本発明の赤外線センサの製造方法の一例のステップを示す図である。 本発明の赤外線センサの製造方法の一例のステップを示す図である。 本発明の赤外線センサの製造方法の一例のステップを示す図である。 本発明の赤外線センサの製造方法の一例のステップを示す図である。
 1 赤外線センサ
 2 第1の基板
 3 第2の基板
 5 内部空間
 6 真空容器
 7 サーミスタ膜
 8 赤外線吸収膜
 9 支持層
 10,20,30,40,110 配線層
 10a 第1の配線層
 10b 第2の配線層
 11 ピラー
 15 第1の絶縁層
 16 第2の絶縁層
 17 分離層
 18 単一の帯状領域
 20 配線層
 21 第1の配線層
 22 第2の配線層
 30a~30d 第1~第4の配線層
 31 分離層
 31a~31c 第1~第3の分離層
 41 分散体
 91 中央部
 92 腕部
 92a 第1の腕部
 92b 第2の腕部
 93 第1の部分
 94 第2の部分
 以下、図面を参照して本発明の熱利用デバイスの様々な実施形態を説明する。以下の説明及び図面において、X方向及びY方向は第1の基板2及び第2の基板3の主面と平行な向きである。Z方向はX方向及びY方向と直交する方向であり、第1の基板2及び第2の基板3の主面と垂直な方向である。
 本発明の熱利用デバイスは温度に応じて電気抵抗が変化するサーミスタを備えている。説明の便宜上、各実施形態の熱利用デバイスは一つのサーミスタ膜だけを備えた赤外線センサであるが、熱利用デバイスは2次元状に配列したサーミスタ膜のアレイを備えていてもよい。このようなサーミスタ膜のアレイを備えた熱利用デバイスは赤外線カメラの撮像素子として利用される。赤外線カメラは暗所での暗視スコープ、暗視ゴーグルとして利用できるほか、人や物の温度測定などに利用可能である。また、複数のサーミスタ膜が1次元状に配列した赤外線センサは、各種の温度ないし温度分布を測定するセンサとして利用することができる。複数のサーミスタ膜が1次元状に配列した赤外線センサも本発明の範囲に含まれる。
 (第1の実施形態)
 図1は本発明の第1の実施形態の赤外線センサ1の概略側面図、図2Aはサーミスタ膜の近傍の概略平面図、図2Bは図2AのA-A線に沿った配線層10の断面図を、図2CはX方向からみた配線層10の断面図を示している。図2Aでは支持層9の中央部91を示すため、サーミスタ膜7の一部を省略している。
 赤外線センサ1は、第1の基板2と、第1の基板2に対向して位置する第2の基板3と、第1の基板2と第2の基板3とを接続する側壁4と、を有している。第2の基板3は赤外線が入射する窓基板である。第1の基板2と第2の基板3と側壁4は密閉された内部空間5を形成している。内部空間5にはサーミスタ膜7が収容されている。内部空間5は負圧ないしは真空にされている。すなわち、第1の基板2と第2の基板3と側壁4は密閉された真空容器6を形成している。これによって、内部空間5での気体の対流が防止または抑制され、サーミスタ膜7への熱的影響を軽減することができる。
 サーミスタ膜7はシリコン基板(図示せず)と、シリコン基板上に形成された酸化バナジウム(VOx)の膜(図示せず)とを有している。VOxの膜の代わりにアモルファスシリコン(a-Si),TiOx,NiOx,CoMnNiOxの膜を用いてもよい。サーミスタ膜7は概ね正方形または長方形の受光面7aを有し、受光面7aが第2の基板3と対向している。サーミスタ膜7の受光面7aには赤外線吸収膜8が形成されている。赤外線吸収膜8はサーミスタ膜7に入力される赤外線の熱量を増加させるために設けられている。赤外線吸収膜8はSiOxで形成されるが、SiN,AlOx,TaOx,NbOx,AlN,SiON,AlON, カーボン,有機物などで形成することもできる。
 サーミスタ膜7は支持層9で支持されている。支持層9の材料は、後述する配線層10より低い熱伝導率を有し、且つサーミスタ膜7を支持する強度を有する限り限定されないが、支持層9は好ましくは絶縁体、例えば、AlN,AlOx,ダイヤモンドライクカーボン,SiNx,SiOx,TaOx,TiO,Siからなる群(xは任意組成を意味する)から選択された1または2以上の材料から形成される。支持層9はサーミスタ膜7を支持する概ね正方形の中央部91と、中央部91の対角線上の2つの角部から延びる一対の腕部92(以下、第1の腕部92a、第2の腕部92bという)とを有している。腕部92は中央部91をピラー11(後述)に接続する。また、腕部92は中央部91を介してサーミスタ膜7に接続されている。中央部91と腕部92は同じ材料で形成されているが、互いに異なる材料で形成されてもよい。中央部91はサーミスタ膜7よりわずかに平面寸法が大きく、サーミスタ膜7と垂直な方向(Z方向)からみたときに、サーミスタ膜7は中央部91の四辺に取り囲まれている。支持層9の一対の腕部92には一対の配線層10(以下、第1の配線層10a、第2の配線層10bという)が支持されている。本実施形態では配線層10は支持層9に設けられているが、配線層10の一部がサーミスタ膜7に設けられていてもよい、配線層10の構成については後述する。
 第1の腕部92aと第2の腕部92bは同一の構成を有し、且つサーミスタ膜7の中心に関し点対称の形状を有している。従って、ここでは第1の腕部92aについて説明する。第1の腕部92aは、第1の部分93と第2の部分94とからなる概ねL字形状の部材である。第1の部分93は、サーミスタ膜7の第1の角部71aから、第1の角部71aに隣接する第2の角部71bの近傍まで、サーミスタ膜7の第1の辺72aに沿って延びている。第2の部分94はサーミスタ膜7の第2の角部71bの近傍で第1の部分93に接続され、第2の角部71bから、第2の角部71bに隣接する第3の角部71cの近傍まで、サーミスタ膜7の第1の辺72aに隣接する第2の辺72bに沿って延びている。第1の腕部92aは、第1の部分93のサーミスタ膜7との接続部を除きサーミスタ膜7から離隔している。このため、サーミスタ膜7から第1の腕部92aへの熱伝導が制限されている。第2の部分94の第3の角部71cの近傍はピラー11に接続されている。
 支持層9は第1の基板2から第2の基板3に向けて延びる一対のピラー11で支持されている。ピラー11は円形断面の柱体である。ピラー11はサーミスタ膜7にセンス電流を供給する電極としての機能も有しており、Ta,Cu,Ru,W,Au,Ni,Feなどの導電性の材料で形成され、例えばめっきによって作成することができる。2つのピラー11はそれぞれ第1の腕部92aと第2の腕部92bの端部に接続される。サーミスタ膜7と支持層9は内部空間5に浮くように配置され、ピラー11のみを介して真空容器6の第1の基板2に接続される。これにより、第1の基板2や第2の基板3からの熱の影響が抑えられる。
 第1の基板2はシリコン基板とその上に形成された様々な素子や配線から構成されている。素子としては、ROIC(Read Out Integrated Circuit)、レギュレータ、A/Dコンバータ、マルチプレクサなどが含まれる。ROICは複数のサーミスタ膜7の抵抗変化を電気信号に変換する集積回路である。これらの素子は例えば第1の基板2内の配線13やピラー12を介してピラー11に接続されている。第2の基板3は長波長赤外線を透過させる窓基板であり、シリコン基板、ゲルマニウム基板などから形成される。長波長赤外線の波長は概ね8~14μmである。図示は省略するが、第2の基板3の内外面に反射防止膜が形成されている。
 配線層10はAu,BC,Co,Cu,Fe,Mo,NbC,Ni,Rh,Ru,Ta,TaC,TiN,W,ZrNなどの導電性の材料で形成されている。配線層10は上述の通り支持層9で支持されており、さらに支持層9で支持されている面の反対面、すなわち第2の基板3と対向する面が第1の絶縁層15で被覆され、側面が第2の絶縁層16で被覆されている。第1の絶縁層15と第2の絶縁層16はAlN,AlOx,ダイヤモンドライクカーボン,SiNx,SiOx,TaOx,TiO,Siからなる群から選択された1または2以上の材料から形成される。
 第2の絶縁層16は支持層9と第1の絶縁層15との間に位置し、両側から櫛刃状に交互に突き出している。この結果、配線層10は腕部92の中でミアンダパターンを形成している。配線層10のパターンはミアンダパターンに限定されず、配線層10の中心線Cが、腕部92の少なくとも一部の区間で、腕部92の延在する方向Dと交差している限り、ジグザグパターン、曲線パターン、折れ線パターンなど、非直線のあらゆるパターンが採用可能である。なお、配線層10の中心線Cとは配線層10の折れ曲がった経路に沿った中心線を意味し、X方向、Y方向とは異なる。このようなパターンは好ましくは腕部92の全長に渡って形成されるが、腕部92の一部のみに形成されてもよい。腕部92の一部と他の一部が互いに異なるパターンで形成されてもよい。また、上述の様々なパターンを組み合わせる(例えば、曲線状のジグザグパターンなど)ことも可能である。
 サーミスタ膜7に入射した輻射熱エネルギーが配線層10を通って放熱すると赤外線センサ1の感度の低下につながる。このため、本発明では赤外線センサ1の感度を向上させるため、配線層10からの放熱を抑制することを目的としている。配線層10からの放熱は配線層10の熱伝導によって引き起こされる。固体中での熱伝導は原子の振動が担う。特に、金属における熱伝導では、結晶格子間を伝わる振動(フォノン・格子振動)によるエネルギー伝達と、伝導電子に移動に基づくエネルギー伝達の2つの機構があると考えられている。導電性の金属におけるエネルギー伝達では伝導電子による寄与が大きいので、一般に導電性の金属は電気の良導体であるとともに熱の良導体でもある(ヴィーデマン=フランツ則)。従って、導電体からなる配線層10は、絶縁体からなる支持層9と比べて容積が小さいにも拘らず、熱の伝達経路として無視できない。しかし、導電性の金属においてもフォノンを介した熱伝導性の寄与が一定程度存在するため、フォノンによる熱伝導性を低下させることで、配線層10からの放熱を抑制することができる。
 気体分子運動論において、分子や電子などの粒子が散乱源(同じ粒子の場合もあれば、異なる粒子の場合もある)による散乱(衝突)で妨害されることなく進むことのできる距離(自由行程という)の平均値を平均自由行程という。粒子は弾道的な直線運動を行い、散乱源に衝突すると方向を変え、再び弾道的な直線運動を行う。粒子が平均自由行程に等しい距離を運動すると、平均して他の粒子と1回衝突する。フォノンにおいてもこのような考え方を取ることが可能である。フォノンが他の物質と衝突するまでの移動距離は確率的な分布を取り、その平均移動距離(平均自由行程)はフォノンの伝導のしやすさの指標となる。すなわち、フォノンによる熱伝導性を低下させることはフォノンの平均自由行程を減少させることと同義である。
 図3は、本発明の原理を示す模式図である。電子の平均自由行程は無限媒質を前提としたものであるため、配線層10における電子の平均自由行程は無限媒質を前提にした値よりも小さくなる。しかし、電子の平均自由行程は短いため(~数百nm)、配線層10における電子の平均自由行程は、配線層10の構造によらず、無限媒質を前提にした値とほぼ同じとみなすことができる。一方、室温におけるフォノンの平均自由行程は(3×熱伝導率)/(熱容量×音速)で評価されることが知られている。フォノンの平均自由行程も無限媒質を前提としたものであるため、配線層10におけるフォノンの平均自由行程MFP1は無限媒質におけるフォノンの平均自由行程MFP2よりも小さくなる。そして、フォノンの平均自由行程は数μmであり電子の平均自由行程よりも長いため、フォノンの平均自由行程は、電子の平均自由行程と比べて、配線層10の構造から影響を受けやすい。従って、フォノンの平均自由行程が短くなる構造を採用することで、導電性の低下を抑えつつ、熱伝導性が低下した配線層10を実現することができる。
 本実施形態は、このような基本原理に基づき、電子の平均自由行程はほぼ影響を受けず、フォノンの平均自由行程だけが短くなる配線層構造を提供する。図4Aは比較例の配線層110を備えた赤外線センサのサーミスタ膜7の近傍の概略平面図、図4Bは図4AのA-A線に沿った配線層110の断面図を、図4CはX方向からみた配線層110の断面図を示している。配線層110は直線状の導電層からなり、腕部92の形状に従い途中で1回だけ直角に曲がっている。このため、極端な場合、フォノンは3回の弾道性フォノン輸送で(つまり、配線層110の界面に2回反射しただけで)端部のピラー11に到達する。これに対し、本実施形態では、フォノンはミアンダ構造に沿って運動するため、非常に多くの回数の弾道性フォノン輸送の後に(図2Aに示す例では41回)端部のピラー11に到達する。なお、図2Aと図4Aの矢印は1回の弾道性フォノン輸送を示している。これに対し、図示は省略するが、電子の平均自由行程はフォノンの平均自由行程よりはるかに短いため、直線状の配線層110においても途中で多数回の散乱を受け、しかも、その回数はミアンダパターンの配線層10で受ける回数と大きく変わらない。つまり、ミアンダパターンによって生じる経路途中の壁が、フォノンの新たな散乱源、すなわちフォノン伝導に対する新たな阻害要素となり、フォノン伝導性だけが低下する。図3においてはAより大きな自由行程の発生頻度がほぼゼロとなっている。これは、Aがミアンダパターンにおいて幾何学的に決まる、弾道性フォノン輸送の最長行程に対応しているためである。配線層10におけるフォノンの平均自由行程は、配線層10の材料からなる無限媒質におけるフォノンの平均自由行程より小さいことが望ましい。
 本実施形態と比較例のいずれにおいても、腕部92に沿って延びる単一の帯状領域18が形成されている(図2C,図4C)。帯状領域18の幅方向(第1の部分93におけるY方向、第2の部分94におけるX方向)におけるそれぞれの縁部18aの少なくとも一部と、厚さ方向(Z方向)におけるそれぞれの縁部18bの少なくとも一部は導電体で形成されている。この導電体はサーミスタ膜7に接続された一端からピラー11に接続された他端まで、腕部92に沿って連続して延びる配線層10,110を形成している。比較例では単一の帯状領域18はすべて配線層110で埋められており、導電体は単一の帯状領域18の内側に、導電体より熱伝導率が低い物質との界面を有していない。単一の帯状領域18の内側とは、単一の帯状領域18の境界面を含まず、単一の帯状領域18の境界面よりも内側の領域を意味する。これに対して、本実施形態では、導電体は単一の帯状領域18の内側に、導電体より熱伝導率が低い物質との界面を有している。この界面がフォノンの新たな散乱源である。
 (第2の実施形態)
 図5Aは第2の実施形態の赤外線センサのサーミスタ膜7の近傍の概略平面図、図5Bは図5のA-A線に沿った配線層20の断面図を示している。ここでは主に第1の実施形態との違いを説明する。説明を省略した構成及び効果については第1の実施形態と同様である。
 本実施形態では、配線層20は分離層17によって厚さ方向(Z方向)に分離ないし分割されている。支持層9(第1の腕部92a及び第2の腕部92b)の上に第1の配線層21が形成され、第1の配線層21の上に分離層17が形成され、分離層17の上に第2の配線層22が形成され、第2の配線層22が第1の絶縁層15で被覆されている。分離層17はAlN,AlOx,ダイヤモンドライクカーボン,SiNx,SiOx,TaOx,TiOからなる群から選択された1または2以上の材料から形成される。分離層17は配線層20より熱伝導率が低い限り、支持層9と同じ材料から形成されてもよいし、支持層9と異なる材料から形成されてもよい。配線層20が分割される数ないし分離層17の数は特に制限されず、配線層20に複数の分離層17を挿入して、配線層20を3つ以上に分割してもよい。つまり、配線層20には少なくとも1つの分離層17が挿入されていればよい。
 図5Cは配線層20の端部とピラー11の近傍の側面図を示している。支持層9の上に第1の配線層21と分離層17と第2の配線層22を形成する際に、スパッタリングの角度を調整してこれらの層21,16,22を支持層9の側面にも付着させている。これによって、厚さ方向(Z方向)に分割された配線層20をピラー11に電気接続させることができる。
 図5Bに示すように、フォノンは配線層20と平行に運動するだけでなく、配線層20に対し斜めに(つまりZ方向成分をもって)運動することもある。従って、分離層17を挿入することによって配線層20の界面が増加し、フォノンの散乱源が増加する。このため、本実施形態においても導電性の低下を抑えつつ、熱伝導性が低下した配線層20を実現することができる。さらに、配線層20はウエハプロセスによって容易に作成することができる。すなわち、分離層17と、分離層17によって分割された配線層20は第1の基板2と平行であるため、単純なプロセスを繰り返すだけで所望の構造の配線層20が得られる。また、一般に配線層は厚さ(Z方向寸法)より幅(X方向寸法またはY方向寸法)のほうが大きいため、配線層を幅方向に分割するより厚さ方向に分割するほうが分離層の表面積を確保しやすい。これにより、フォノンの散乱源を効率的に増加させることができる。
 (第3の実施形態)
 図6Aは第3の実施形態の赤外線センサのサーミスタ膜7の近傍の概略平面図を、図6Bは図6のA部拡大図を、図6CはX方向からみたA部断面図を示している。ここでは主に第1の実施形態との違いを説明する。説明を省略した構成及び効果については第1の実施形態と同様である。
 本実施形態では、配線層30は分離層31によって幅方向に分離ないし分割されている。より詳細には、配線層30は、第1の腕部92aの第1の部分93においては分離層31によってY方向に分離ないし分割され、第2の部分94においては分離層31によってX方向に分離ないし分割されている。支持層9(第1の腕部92a)の上に互いに平行に延びる第1~第4の配線層30a~30dが形成され、第1の配線層30aと第2の配線層30bの間に第1の分離層31aが、第2の配線層30bと第3の配線層30cの間に第2の分離層31bが、第3の配線層30cと第4の配線層30dの間に第3の分離層31cが設けられている。第1~第4の配線層30a~30dと第1~第3の分離層31a~31cは第1の絶縁層15で被覆されている。第1~第3の分離層31a~31cはAlN,AlOx,ダイヤモンドライクカーボン,SiNx,SiOx,TaOx,TiO,Siからなる群から選択された1または2以上の材料から形成される。第1~第3の分離層31a~31cは配線層30より熱伝導率が低い限り、支持層9と同じ材料から形成されてもよいし、支持層9と異なる材料から形成されてもよい。配線層30が分離ないし分割される数ないし分離層31の数は特に制限されず、配線層30に任意の数の分離層31を挿入して、配線層30を分離ないし分割することができる。つまり、配線層30には少なくとも1つの分離層31が挿入されていればよい。
 図示は省略するが、第2の実施形態で述べたとおり、フォノンは配線層30と平行に運動するだけでなく、配線層30に対し斜めに(すなわち、第1の部分93においてはY方向成分をもって、第2の部分94においてはX方向成分をもって)運動することもある。従って、分離層31を挿入することによって配線層30の界面が増加し、フォノンの散乱源が増加する。このため、本実施形態においても導電性の低下を抑えつつ、熱伝導性が低下した配線層30を実現することができる。
 (第4の実施形態)
 図7は第4の実施形態の赤外線センサの配線層40の断面図を示している。ここでは主に第1の実施形態との違いを説明する。説明を省略した構成及び効果については第1の実施形態と同様である。
 配線層40には配線層40より低い熱伝導率を有する分散体41が分散配置されている。配線層40の導電部は配線層40の一端から他端まで連続しているため、配線層40がその延在方向に分散体41によって分断されることはない。分散体41はAlN,AlOx,ダイヤモンドライクカーボン,SiNx,SiOx,TaOx,TiO,Siからなる群から選択された1または2以上の材料から形成される。分散体41の形状は特に限定されず、塊状、線状などであってよい。分散体41を設けることによって、他の実施形態と同様、配線層40の界面が増加し、フォノンの散乱源が増加する。このため、本実施形態においても導電性の低下を抑えつつ、熱伝導性が低下した配線層40を実現することができる。
 (赤外線センサ1の製造方法)
 次に、図8A~8Eを参照して本発明の赤外線センサ1の製造方法の一例を示す。赤外線センサ1はウエハプロセスによって製造されるため、以下の説明において、第1の基板2、第2の基板3はウエハを意味する。ここでは第1の実施形態を例に説明し、他の実施形態については第1の実施形態との違いを説明する。
 まず、図8Aに示すように、ROICなどの素子が形成された第1の基板2上に有機犠牲層51を形成し、フォトレジスト工程及びミリング工程によって開口を形成し、開口にめっきでピラー11を形成する。次に、図8Bに示すように、有機犠牲層51及びピラー11の上にスパッタリングで支持層9を形成する。次に、図8Cに示すように、支持層9の上にスパッタリングで配線層10を形成し、パターニングによって配線層10を所定の形状に成形する。第2の実施形態の場合は、さらに分離層17と導電層の組を所望の回数だけ積層する。第3の実施形態の場合は、フォトレジスト工程及びミリング工程によって配線層30に開口を形成し、開口に絶縁層31を形成する。第4の実施形態の場合は、導電体と分散体41の同時スパッタリング、導電体と分散体41の混合物のスパッタリングなどの方法で配線層40を作成する。次に、図8Dに示すように、支持層9の上にスパッタリングでサーミスタ膜7と赤外線吸収膜8を形成する。次に、図8Eに示すように、ドライプロセスにより有機犠牲層51を除去する。その後、真空雰囲気中で第1の基板2と第2の基板3を接合することで図1に示す赤外センサ1が得られる。
 本発明のいくつかの好ましい実施形態を詳細に示し、説明したが、添付された請求項の趣旨または範囲から逸脱せずに様々な変更および修正が可能であることを理解されたい。例えば、第1~第4の実施形態は互いに組み合わせることが可能である。一例として、第1の実施形態のように配線層をミアンダパターンに形成した上で、第2の実施形態のように配線層を厚さ方向に分離する分離層31を設けることができる。

Claims (10)

  1.  温度に応じて電気抵抗が変化するサーミスタと、
     前記サーミスタに接続された配線層と、を有し、
     前記配線層におけるフォノンの平均自由行程は、前記配線層の材料からなる無限媒質におけるフォノンの平均自由行程より小さい、熱利用デバイス。
  2.  前記サーミスタと前記配線層とを支持し、前記配線層より低い熱伝導率を有する支持層を有している、請求項1に記載の熱利用デバイス。
  3.  外部に対して負圧にされた内部空間を形成する容器と、前記内部空間で前記容器に支持された複数のピラーと、を有し、前記サーミスタと前記配線層と前記支持層は前記内部空間に収容され、前記支持層は前記複数のピラーのみを介して前記容器に接続されている、請求項2に記載の熱利用デバイス。
  4.  前記支持層は、前記サーミスタを支持する中央部と、前記配線層の少なくとも一部を保持し、前記中央部と前記ピラーとを接続する腕部と、を有している、請求項3に記載の熱利用デバイス。
  5.  前記配線層の中心線が前記腕部の延在する方向と交差する、請求項4に記載の熱利用デバイス。
  6.  前記配線層を当該配線層の厚さ方向に分離する、前記配線層より熱伝導率が低い分離層を有している、請求項1から5のいずれか1項に記載の熱利用デバイス。
  7.  前記配線層を当該配線層の幅方向に分離する、前記配線層より熱伝導率が低い分離層を有している、請求項1から6のいずれか1項に記載の熱利用デバイス。
  8.  前記分離層はAlN,AlOx,ダイヤモンドライクカーボン,SiNx,SiOx,TaOx,TiO,Siからなる群から選択された1または2以上の材料からなる、請求項6または7に記載の熱利用デバイス。
  9.  前記配線層に分散配置され、前記配線層より熱伝導率が低い分散体を有する、請求項4から8のいずれか1項に記載の熱利用デバイス。
  10.  温度に応じて電気抵抗が変化するサーミスタと、
     前記サーミスタに接続された腕部と、
     前記腕部に沿って延び、幅方向と厚さ方向の縁部の少なくとも一部を導電体が形成する帯状領域と、を有し、
     前記導電体は前記サーミスタに接続された一端から他端まで連続して延び、前記帯状領域の内側に前記導電体より熱伝導率が低い物質との界面を有している、熱利用デバイス。
PCT/JP2018/008556 2018-03-06 2018-03-06 熱利用デバイス WO2019171465A1 (ja)

Priority Applications (4)

Application Number Priority Date Filing Date Title
CN201880090904.4A CN111819425B (zh) 2018-03-06 2018-03-06 热利用装置
US16/969,015 US11480477B2 (en) 2018-03-06 2018-03-06 Heat utilizing device
PCT/JP2018/008556 WO2019171465A1 (ja) 2018-03-06 2018-03-06 熱利用デバイス
JP2020504526A JP7173125B2 (ja) 2018-03-06 2018-03-06 熱利用デバイス

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/JP2018/008556 WO2019171465A1 (ja) 2018-03-06 2018-03-06 熱利用デバイス

Publications (1)

Publication Number Publication Date
WO2019171465A1 true WO2019171465A1 (ja) 2019-09-12

Family

ID=67846497

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2018/008556 WO2019171465A1 (ja) 2018-03-06 2018-03-06 熱利用デバイス

Country Status (4)

Country Link
US (1) US11480477B2 (ja)
JP (1) JP7173125B2 (ja)
CN (1) CN111819425B (ja)
WO (1) WO2019171465A1 (ja)

Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH10332480A (ja) * 1997-05-29 1998-12-18 Mitsubishi Electric Corp 赤外線固体撮像素子
JP2007316076A (ja) * 2007-06-08 2007-12-06 Matsushita Electric Works Ltd 赤外線センサ
WO2008068386A1 (en) * 2006-12-05 2008-06-12 Jyväskylän Yliopisto An elongated nanofiber with an improved prevention of thermal conductance and method to prevent thermal conductance in the nanofiber
JP2009194085A (ja) * 2008-02-13 2009-08-27 Toyota Motor Corp 熱電変換素子及びその製造方法
JP2009229260A (ja) * 2008-03-24 2009-10-08 Toshiba Corp 赤外線センサ素子
JP2011237256A (ja) * 2010-05-10 2011-11-24 Seiko Epson Corp 熱型光検出器、熱型光検出装置および電子機器
JP2013050365A (ja) * 2011-08-31 2013-03-14 Tdk Corp 赤外線温度センサ
US20170199082A1 (en) * 2015-11-30 2017-07-13 International Business Machines Corporation Sensors for detecting incident signals having disturbance elements
JP2017223644A (ja) * 2016-06-13 2017-12-21 パナソニックIpマネジメント株式会社 赤外線センサ

Family Cites Families (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6030273B2 (ja) 1980-08-13 1985-07-15 昭和製袋工業株式会社 紙袋の製造方法
US6239431B1 (en) * 1998-11-24 2001-05-29 The United States Of America As Represented By The Secretary Of Commerce Superconducting transition-edge sensor with weak links
US6829269B2 (en) * 2002-05-21 2004-12-07 University Of Massachusetts Systems and methods using phonon mediated intersubband laser
JP2014173850A (ja) * 2013-03-05 2014-09-22 Ricoh Co Ltd 熱型赤外線センサー
US20200191655A1 (en) * 2018-12-15 2020-06-18 William N. Carr Photonic- and Phononic-structured pixel for electromagnetic radiation and detection
US9006857B1 (en) * 2013-04-04 2015-04-14 William N. Carr Platform comprising an infrared sensor
WO2016152222A1 (ja) 2015-03-25 2016-09-29 Semitec株式会社 赤外線温度センサ及び赤外線温度センサを用いた装置
JP6638269B2 (ja) * 2015-09-10 2020-01-29 富士通株式会社 ナノ構造素子及びその製造方法、並びに熱電変換装置
US11300453B2 (en) * 2017-06-18 2022-04-12 William N. Carr Photonic- and phononic-structured pixel for electromagnetic radiation and detection
US11378467B2 (en) * 2018-07-24 2022-07-05 Indian Institute Of Science Highly sensitive reduced graphene oxide-nickel composite based cryogenic temperature sensor

Patent Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH10332480A (ja) * 1997-05-29 1998-12-18 Mitsubishi Electric Corp 赤外線固体撮像素子
WO2008068386A1 (en) * 2006-12-05 2008-06-12 Jyväskylän Yliopisto An elongated nanofiber with an improved prevention of thermal conductance and method to prevent thermal conductance in the nanofiber
JP2007316076A (ja) * 2007-06-08 2007-12-06 Matsushita Electric Works Ltd 赤外線センサ
JP2009194085A (ja) * 2008-02-13 2009-08-27 Toyota Motor Corp 熱電変換素子及びその製造方法
JP2009229260A (ja) * 2008-03-24 2009-10-08 Toshiba Corp 赤外線センサ素子
JP2011237256A (ja) * 2010-05-10 2011-11-24 Seiko Epson Corp 熱型光検出器、熱型光検出装置および電子機器
JP2013050365A (ja) * 2011-08-31 2013-03-14 Tdk Corp 赤外線温度センサ
US20170199082A1 (en) * 2015-11-30 2017-07-13 International Business Machines Corporation Sensors for detecting incident signals having disturbance elements
JP2017223644A (ja) * 2016-06-13 2017-12-21 パナソニックIpマネジメント株式会社 赤外線センサ

Also Published As

Publication number Publication date
JP7173125B2 (ja) 2022-11-16
US20210025765A1 (en) 2021-01-28
CN111819425B (zh) 2023-12-12
JPWO2019171465A1 (ja) 2021-03-04
US11480477B2 (en) 2022-10-25
CN111819425A (zh) 2020-10-23

Similar Documents

Publication Publication Date Title
US9638582B2 (en) Terahertz wave detection device, camera, imaging device, and measuring device
KR101910573B1 (ko) 광대역 광 흡수체를 포함하는 적외선 검출기
CN111947788B (zh) 红外探测器及其制备方法
US9121761B2 (en) Infrared detectors
US9163998B2 (en) Infrared detector
US20140319357A1 (en) Electromagnetic wave detector and electromagnetic wave detector array
CN111947787B (zh) 红外探测器及其制备方法
WO2011078004A1 (ja) 赤外線センサ
JP2015152597A (ja) 温度測定要素を有するmim構造体を備えた放射検出器
JPWO2019171488A1 (ja) 電磁波センサ
WO2011139327A2 (en) Pixel structure for microbolometer detector
US20140361170A1 (en) Terahertz wave detecting device, camera, imaging apparatus and measuring apparatus
JP2014224810A (ja) 電磁波センサ装置
EP3933357B1 (en) Infrared sensor and infrared sensor array
EP0645001B1 (en) Use of vanadium oxide in microbolometer sensors
JP5706174B2 (ja) 赤外線センサおよび赤外線センサアレイ
WO2019171465A1 (ja) 熱利用デバイス
JPH11211558A (ja) センサ及びセンサアレイ
US10663350B1 (en) Two-dimensional phononic metamaterial filter structure for ultra-low-background detectors
US10018511B2 (en) Infrared detector including broadband surface plasmon resonator
JP2013083651A (ja) 赤外線サーマルディテクタ及びその製造方法
US12007283B2 (en) Infrared sensor and infrared sensor array
US7633065B2 (en) Conduction structure for infrared microbolometer sensors

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 18909112

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2020504526

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 18909112

Country of ref document: EP

Kind code of ref document: A1