JP2014224810A - 電磁波センサ装置 - Google Patents

電磁波センサ装置 Download PDF

Info

Publication number
JP2014224810A
JP2014224810A JP2014088263A JP2014088263A JP2014224810A JP 2014224810 A JP2014224810 A JP 2014224810A JP 2014088263 A JP2014088263 A JP 2014088263A JP 2014088263 A JP2014088263 A JP 2014088263A JP 2014224810 A JP2014224810 A JP 2014224810A
Authority
JP
Japan
Prior art keywords
electromagnetic wave
plate
isolated
isolated plate
sensor device
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2014088263A
Other languages
English (en)
Other versions
JP6184366B2 (ja
Inventor
新平 小川
Shinpei Ogawa
新平 小川
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Electric Corp
Original Assignee
Mitsubishi Electric Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Electric Corp filed Critical Mitsubishi Electric Corp
Priority to JP2014088263A priority Critical patent/JP6184366B2/ja
Publication of JP2014224810A publication Critical patent/JP2014224810A/ja
Application granted granted Critical
Publication of JP6184366B2 publication Critical patent/JP6184366B2/ja
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Investigating Or Analysing Materials By Optical Means (AREA)
  • Photometry And Measurement Of Optical Pulse Characteristics (AREA)
  • Solid State Image Pick-Up Elements (AREA)
  • Transforming Light Signals Into Electric Signals (AREA)

Abstract

【課題】応答速度が速く、波長選択性に優れた電磁波センサを提供する。
【解決手段】電磁波センサ装置は、1つまたは複数個の電磁波センサ100を備える。電磁波センサ100は、温度検知部4と、温度検知部に熱的に接続された電磁波吸収部10とを備える。電磁波吸収部は、周期的に隔てられて配置された、金属を含む複数の孤立板11と、孤立板に対向配置され、少なくとも表面が金属である反射板13と、孤立板の面内方向での表面プラズモン共鳴が生じるように孤立板と反射板との間を接続する接続柱12とを有する。孤立板の面内方向寸法Lは、電磁波吸収部に入射した電磁波に含まれる特定波長の電磁波と結合する表面プラズモンを誘起するように選択される。
【選択図】図3

Description

本発明は、1つまたは複数個の電磁波センサを備えた電磁波センサ装置に関し、特に熱型の赤外線センサを備えた赤外線センサ装置に関する。
従来の熱型(非冷却型)の赤外線センサ装置では、検出する赤外線の波長を選択するために、赤外線センサの前方に光学フィルタが装着されていた。しかし、構造が複雑になる、検出効率が低下するなどの理由により、光学フィルタを用いず赤外線センサのみで検出波長を選択する熱型赤外線センサ装置が開発されている。
例えば、特許文献1では、赤外線吸収体に曲面からなる波型構造を設け、この波型構造の周期と等しい波長の赤外線のみを選択的に吸収する赤外線センサ装置が開示されている。赤外線吸収体を構成する材料としては、金属でなくカーボンが用いられている。
また、非特許文献1,2では、平坦な金属上に形成した絶縁膜上に周期的に隔てられて配置された金属板(金属板/絶縁膜/金属構造を順に積層した多層構造)によって検出波長を選択する光吸収体が開示されている。具体的には、金属板の大きさによって検出波長が選択されるようになっている。
特開平1−142418号公報
J. Hao, J. Wang, X. Liu, W. J. Padilla, L. Zhou, and M. Qiu, Appl. Phys. Lett. vol. 96, p. 251104 (2010). T. Maier and H. Brueckl, Opt. Lett. vol. 35 p. 3766 (2010).
しかし、特許文献1に記載の赤外線センサ装置の場合、第1に、赤外線吸収体が有する周期構造の周期の大きさを検出波長より小さくすることができないため、吸収体を小型化することが難しいという問題があった。第2に、吸収体を構成する材料としてカーボンが用いられる結果、当該材料自体が検出波長以外の波長の赤外線も吸収してしまい、波長選択性が悪化するという問題があった。
一方、非特許文献1,2に記載の、絶縁膜を含んだ多層構造の吸収体の場合、第1に、絶縁膜自体が検出波長以外の波長の赤外線を吸収してしまい、波長選択性が悪化するという問題があった。第2に、多層構造であるため、全体の体積が大きくなり、したがって熱容量も大きくなって、応答速度が小さくなるという問題があった。
これらの問題は、赤外線以外の波長域の電磁波でも同様に当てはまる。
本発明は、本発明は、応答速度が大きく、波長選択性に優れた電磁波センサ装置を提供することを目的とする。
上記目的を達成するために、本発明の第1の態様は、1つまたは複数個の電磁波センサを備えた電磁波センサ装置に関する。電磁波センサは、温度検知部と、温度検知部に熱的に接続された電磁波吸収部とを備える。電磁波吸収部は、周期的に隔てられて配置された、金属を含む複数の孤立板と、孤立板に対向配置され、少なくとも表面が金属である反射板と、孤立板の面内方向での表面プラズモン共鳴が生じるように孤立板と反射板との間を接続する接続柱とを有する。孤立板の面内方向寸法は、電磁波吸収部に入射した電磁波に含まれる特定波長の電磁波と結合する表面プラズモンを誘起するように選択される。
ところで、先行技術による電磁波吸収体では、一画素内に周期構造を設ける必要があり、一画素のサイズを充分に低下させることができず、したがって電磁波センサ装置の画素分解能を向上させることができなかった。
そこで、本発明の第2の態様は、複数個の電磁波センサを備えた電磁波センサ装置に関する。複数個の電磁波センサはそれぞれ、温度検知部と、温度検知部に熱的に接続された電磁波吸収部とを備える。電磁波吸収部は、金属を含む孤立板と、孤立板に対向配置され、少なくとも表面が金属である反射板と、孤立板の面内方向での表面プラズモン共鳴が生じるように孤立板と反射板との間を接続する接続柱とを有する。孤立板の面内方向寸法は、電磁波吸収部に入射した電磁波に含まれる特定波長の電磁波と結合する表面プラズモンを誘起するように選択される。また、複数個の電磁波センサにわたって、孤立板が、1方向または互いに交差する2方向にそれぞれ一定の周期で配置されている。
本発明の第2の態様による電磁波センサ装置において、電磁波吸収部は、孤立板を例えば1つまたは2つ有する。
本発明の第1の態様によれば、孤立板の面内方向寸法によって決定される波長に応じた表面プラズモン共鳴が主に孤立板の面内方向で生じ、電磁波吸収部により特定波長の電磁波を選択的にかつ効率的に吸収可能である。また、表面プラズモン共鳴を利用することにより、孤立板の周期を当該特定波長より小さくすることができ、センサを小型化できる。
また、第1の態様によれば、電磁波吸収部の少なくとも一部が金属で構成されることになる。特に、孤立板および接続柱の少なくとも表面が金属である場合には、電磁波吸収部の少なくとも表面が金属で構成されることになる。これにより、電磁波吸収部を構成する材料自体による電磁波の吸収を防止できる。また、孤立板と反射板との間が接続柱によって接続されることにより、全体の体積を小さくすることができる。このようにして、応答速度が大きく、波長選択性に優れた電磁波センサが実現する。
本発明の第2の態様によれば、孤立板が、複数個の電磁波センサにわたって周期的に配置されることになる。これにより、第1の態様と同様の効果が得られる。
また、第2の態様によれば、複数個の電磁波センサにわたって周期構造が設けられることになり、一画素(1つの電磁波センサ)内に周期構造を設ける必要がなく、したがって一画素のサイズを低下させることができる。特に、電磁波吸収部に孤立板を1つだけ設けた場合には、一画素のサイズを孤立板の周期よりも小さくすることができる。このようにして、電磁波センサ装置の画素分解能を向上させることができる。
本発明の一実施形態による赤外線センサ装置の斜視図である。 本発明の実施の形態1による赤外線センサの、吸収体がない状態での上面図である。 吸収体がある状態での図2のI−I線断面図である。 本発明の実施の形態1による吸収体の斜視図である。 本発明の実施の形態1による吸収体の上面図である。 図4bのII−II線断面図である。 図5の一部を示し、表面プラズモン共鳴を説明するための図である。 本発明の実施の形態1による吸収体の吸収特性を示すグラフである。 本発明の実施の形態1による吸収体の吸収特性を示すグラフである。 本発明の実施の形態1による吸収体の吸収特性を示すグラフである。 本発明の実施の形態1による吸収体の吸収特性を示すグラフである。 本発明の実施の形態1による吸収体の吸収特性を示すグラフである。 本発明の実施の形態1の第1変形例による吸収体の上面図である。 本発明の実施の形態1の第1変形例による吸収体の吸収特性を示すグラフである。 本発明の実施の形態1の第2変形例による吸収体の断面図である。 本発明の実施の形態1の第2変形例による吸収体の吸収特性を示すグラフである。 図13の吸収体の製造方法の各製造工程(a)〜(d)を示す図である。 本発明の実施の形態2による吸収体の斜視図である。 本発明の実施の形態2による吸収体の図5に相当する断面図である。 貫通孔を形成可能な領域を示す説明図である。 本発明の実施の形態2による吸収体の上面図である。 本発明の実施の形態2による別の吸収体の上面図である。 本発明の実施の形態2による吸収体の吸収特性を示すグラフである。 本発明の実施の形態2の変形例による吸収体の上面図である。 図22のIV−IV線断面図である。 本発明の実施の形態3による吸収体の上面図である。 図24のV−V線断面図である。 本発明の実施の形態5による吸収体の断面図であり、孤立板の表面全体に被覆層が設けられている。 本発明の実施の形態5による吸収体の断面図であり、孤立板の上面(a)、側面(b)、下面(c)に被覆層が設けられている。 本発明の実施の形態5による吸収体の吸収特性を示すグラフである。 図23の構造に被覆層を設けた図である。 図25の構造に被覆層を設けた図である。 本発明の実施の形態6による赤外線センサアレイの上面図である。 本発明の実施の形態7による赤外線センサアレイの上面図である。 図32のVI−VI線断面図である。 本発明の実施の形態8による赤外線センサの、図3の一部に相当する要部断面図である。 本発明の実施の形態9による、各赤外線センサが孤立板を2つ有する赤外線センサアレイの上面図である。 図35のVII−VII線断面図である。 本発明の実施の形態9による、各赤外線センサが孤立板を1つ有する赤外線センサアレイの上面図である。 図37のVIII−VIII線断面図である。 図37,38の赤外線センサアレイによる吸収特性を示すグラフである。
以下、本発明の実施の形態による熱型の赤外線センサ装置について、図を参照して説明する。各実施の形態において、同一の構成には同一の符号を付して、説明を省略する。
まず、表面プラズモン共鳴について簡単に説明する。
一般に、電磁波が境界面で全反射する際に発生するエバネセント波の波長が表面プラズモン波と結合する場合に、表面プラズモンが励起される。表面プラズモンは、その分散関係から導かれるように、可視〜近赤外域の領域における現象が一般的である。一方、表面に周期構造を導入することによって、可視〜近赤外波長域以外の波長域、例えば可視、中波長赤外、長波長赤外、遠赤外、テラヘルツ(THz)、マイクロ波領域においても近似的に同様の現象が生じる。これは、近似的に表面プラズモンとして扱うことが可能であるため、擬似表面プラズモンとも呼ばれる。それゆえ、本発明は、以下で説明する赤外線センサに限定されることなく、赤外線以外の波長域用のセンサにも適用可能である。
上記の現象は、金属表面における強い共鳴という意味も含めて、波長域によらず表面プラズモン共鳴、プラズモニクスに分類される場合が多い。あるいは上記のように、メタマテリアル、疑似表面プラズモンなどと呼ばれることもあるが、吸収における本質的な現象は同じである。本明細書では、これらを区別せず、表面プラズモン、プラズモン共鳴または単に共鳴と表記する。
実施の形態1.
赤外線センサ装置の構成について説明する。
図1は、本発明の一実施形態による赤外線センサ装置を示す斜視図である。赤外線センサ装置1000では、基板1の上に複数個の赤外線センサ100が互いに直交する2方向(x方向、y方向)にマトリックス状(アレイ状)に配置されており、z軸に平行な方向から光を入射させる。赤外線センサ100の周囲には、赤外線センサ100により検出した信号を処理して画像を検出する検出回路1010が設けられている。
赤外線センサ装置1000には、赤外線センサ100が2次元的に配置されているが、1次元的に配置された構成でもよい。
次に、赤外線センサの構成について説明する。
図2は、本発明の実施の形態1による赤外線センサの、吸収体がない状態での上面図である。図2では、明確化のために、配線上の保護膜、反射膜は省略して図示している。図3は、吸収体がある状態での図2のI−I線断面図である。なお、吸収体10は、特許請求の範囲では電磁波吸収部に相当する。
図3に示すように、赤外線センサ100は、例えばシリコンからなる基板1を含む。基板1には中空部2が設けられている。また、中空部2の上側には、温度検知機能を有する温度検知部4が設けられている。温度検知部4は、2本の支持脚3により支持されている。支持脚3は、図2に示すように、上方から見るとL字型に折れ曲がったブリッジ形状を有する。支持脚3は、薄膜金属配線6と、配線6を支える絶縁層14とを含む。絶縁層14は、例えば酸化シリコンからなる。
温度検知部4は、温度によってその電気抵抗の値が変化する検知膜5と上記の薄膜金属配線6とを含む。検知膜5は、例えば、結晶シリコンを用いたシリコンダイオードからなる。上記の通り、薄膜金属配線6は支持脚3にも設けられ、絶縁層17で覆われたアルミニウム配線7と検知膜5とを電気的に接続している。薄膜金属配線6は、例えば、厚さが約100nmのチタン合金からなる。検知膜5が出力した電気信号は、支持脚3に形成された薄膜金属配線6を経由してアルミニウム配線7に伝わり、検出回路(図1の1010)により取り出される。薄膜金属配線6と検知膜5との間、および薄膜金属配線6とアルミニウム配線7との間の電気的接続は、必要に応じて上下方向に延在する導電体(図示せず)を介して行ってもよい。
反射膜8は、入射した光を反射する機能を有し、中空部2を覆うように配置されている。ただし、反射膜8は、温度検知部4と熱的に接続されない状態で、支持脚3の少なくとも一部を覆うように配置されている。
図3に示すように、温度検知部4の上側には支持柱9が設けられ、支持柱9の上に吸収体10が支持されている。つまり、吸収体10は、温度検知部4の上側で支持柱9によって接続されている。また、吸収体10は、温度検知部4と熱的に接続されており、吸収体10で生じた温度変化が温度検知部4に伝わる構成を有する。
一方、吸収体10は、反射膜8と熱的に接続されない状態で、反射膜8より上方に保持され、反射膜8の少なくとも一部を覆うように側方に広がっている。そのため、赤外線センサ100は、上方から見ると、後述する図4bに示すように吸収体10のみが見える。本発明の実施形態の構成では、吸収体10により特定波長の入射光を充分に吸収できるため、反射膜8は必須ではない。特に裏面における吸収を防止するためには反射膜8が無い方がよい場合がある。中空構造の製造における歩留まりなどを考慮して、反射膜8を設けるか否かは、必要に応じて選択できる。
赤外線センサ100では、入射した赤外線(電磁波)は主に吸収体10で吸収される。吸収体10に吸収された赤外線は熱に変換され、支持柱9を経由して温度検知部4に伝わる。温度検知部4では、検知膜5の電気抵抗が温度により変化するため、外部に設けた検出回路1010で電気抵抗の値の変化を検出することにより、吸収体10に吸収された赤外線の量を検出できる。
次に、吸収体10の構造について詳しく説明する。
図4a,4bは、本発明の実施の形態1による吸収体10の斜視図、上面図である。図5は、図4bのII−II線断面図である。なお、図4aと図16の斜視図では、図を見やすくするために、他の図より周期pを大きくして描いている。
図4a,4b,5に示すように、吸収体10は、互いに直交する(或いは交差する)2方向(x方向、y方向)にそれぞれ一定の周期pで隔てられて配置された複数個の孤立板11と、孤立板11に対向配置された平坦な反射板13と、孤立板11と反射板13との間をそれぞれ接続するとともに孤立板11を支持する接続柱12とを有する。
孤立板11は、図4aに示すように正方格子状に配置される。ただし、後述するような偏光依存性を有しないようにするためには、二次元周期的に配置されればよく、例えば三角格子状または六方格子状に配置されてもよい。また、偏光依存性をなくす観点では、周期数(1方向の孤立板11の数)が直交する2方向で等しいことが好ましい。ただし、例えば周期数が両方向ともに充分に大きければ、偏光依存性をほぼ無視できる場合がある。また、周期数が異なっても吸収は生じるため、周期数が両方向で等しいことは必須ではない。直交する2方向の各周期数は、必要となる吸収体10の形状、大きさ、偏光依存性などに応じて適宜選択すればよい。
周期pより小さい波長の入射赤外線は、回折されるため吸収体10により反射され、ほとんど吸収が生じない。それゆえ周期pは、検出波長の赤外線吸収量を大きくするために、当該波長以下に設定されることが好ましい。このように、表面プラズモン共鳴を利用する吸収体10の構成によれば、周期p以上の波長を吸収可能である。また、入射光のうち、共鳴波長以外の波長の光は、吸収体10によって反射される。
孤立板11は、円形の板である。ただし、直交する2方向に対称な形状であれば偏光依存性をなくすことができ、例えば正方形板、十字板でもよい。さらに、ある点から複数の羽根が放射状に延びる形状でもよい。接続柱12は、例えば円柱、四角柱である。図5などに示すように、孤立板11の面内方向寸法をL、厚さをt、接続柱12の高さをh、太さをwとする。「孤立板11の面内方向寸法」とは、孤立板11の面内方向の代表的な寸法を表し、孤立板11が円板であれば円の直径であり、正方形板であれば一辺の長さであるとする。また、「接続柱12の太さ」とは、円柱の場合には柱の底面(断面)の円の直径、四角柱の場合は底面の一辺の長さであるとする。
以下で詳しく説明するように、接続柱12は、孤立板11の面内方向での表面プラズモン共鳴が支配的に生じるように孤立板11と反射板13とを接続している。そして、孤立板11の面内方向寸法Lを好適に選択することにより、吸収体10に入射した光に含まれる特定波長の赤外線と結合する表面プラズモンが誘起されるようになっている。
孤立板11は、通常用途の熱型赤外線センサに用いる場合には、円板、正方形板または十字板など、直交する2方向に対称な形状として偏光依存性をなくすことが好ましい。ただし、設計時に正方形であっても、以下で説明する吸収体10の製造工程において、孤立板11の角を丸まらせる工程を含むことがある。その場合、孤立板11を予め円形で設計することにより、設計通りの形状とすることができる。ただし、吸収体10の構成によれば、孤立板11が円板であっても正方形板であっても、面内方向寸法Lによって吸収波長(検出波長)が決定されることに変わりはない。
本実施形態1では、孤立板11、接続柱12、反射板13は、すべて同じ金属からなるが、本発明はこれに限定されることはない。そして、この金属は、表面プラズモンを発生させる金属であることが好ましい。当該金属は、例えば、Au,Ag,Cu,Al,Cr,Niなどの負の誘電率をもつ金属である。ただし、これらの材料の中には、共鳴の半値幅が大きく、吸収波長が広帯域化しうるもの、あるいは、表面が酸化しやすく、赤外波長域においてブロードな吸収を生じうるものが含まれる。これらが問題とならないように、吸収体10の製造工程、および検出波長を考慮して、表面プラズモンによる波長選択に適する金属が適宜選択される。本明細書において「表面プラズモンを発生する金属」は、このように吸収体10の製造工程、および検出波長を考慮して選択された金属を指す。
以上で説明した構成では、直交する2方向で孤立板11の周期数を等しくpとすることにより、吸収における入射光の偏光依存性が低下する。また、孤立板11を正方格子状に(2次元周期的に)配置し、孤立板11の面内方向寸法を直交する2方向で同一としたことにより、特に主要な光入射方向である、吸収体10に対する垂直入射方向(z方向)において、偏光依存性が低下する。
このように偏光依存性を低下させることにより、入射光に対する全体的な吸収量を増加させ、結果的に出力を増加させることができる。また、赤外線センサ100でイメージセンサを構成した場合には、偏光が反映されないため有利である。
一方、直交する2方向(x方向、y方向)の孤立板11の周期数を異ならせ、あるいは孤立板11を楕円板、長方形板、三角形板など、直交する2方向に非対称な形状とすることにより、共鳴方向にも非対称性が生じるため偏光依存性が生じ、特定の偏光のみの吸収が大きくなる。このようにして、特定の偏光を検出するセンサを構成することも可能である。なお、孤立板11を楕円板、長方形板、三角形板としたとき、孤立板11の面内方向寸法は、それぞれ楕円の長径、長方形の長辺、三角形の一辺とすることができる。特定の偏光の検出(偏光イメージング)により、例えば反射光の偏光特性が自然物と人工物とで異なることを利用して、両者を識別することもできる。
続いて、孤立板11の寸法(面内方向寸法Lと厚さt)と接続柱12の寸法(高さhと太さw)について詳しく説明する。これらは、吸収体10におけるプラズモン共鳴の成立と吸収波長の決定に重要である。前提として、まず、一般的な表面プラズモン共鳴について説明する。
一般に、吸収体の表面(赤外線吸収面)に微細かつ周期的な凹凸を設けた場合、通常の入射光において表面プラズモンが励起され、表面に結合することが知られている。この結合により、共鳴波長の赤外線が表面に強く局在し、結果的に吸収されることになる。これにより、共鳴波長において吸収が増加する。凹凸の周期をp、その場合の逆格子ベクトルをG、誘起される表面プラズモンの波数ベクトルをKsp、入射光の吸収体表面方向への波数ベクトルをK、mを整数とすると、下記の式(1)が成立する。なお、式(1)において、ベクトルには上矢印を付している。
Figure 2014224810
また、凹凸が1次元(スリット構造)の場合は、ベクトル表示を省略して下記の式(2)のように表すことができる。
Figure 2014224810
なお、入射光の波数ベクトルをK、入射角をθ(吸収体平面に対して垂直な方向を0°とする)としてK=Ksinθと表すことができる。
このように、凹凸の周期pによって決定される波長が表面に強く局在し、結果的に吸収されることがわかる。2次元周期構造の場合は、上記式(1)における逆格子ベクトルGが2次元ベクトルとなる。孤立した凹凸が2次元周期的に配置された場合、表面プラズモン共鳴は、面内方向と高さ方向に生じるが、面内方向の表面プラズモン共鳴が支配的であり、主要な吸収波長は周期pによって決定される。
これに対し、吸収体10のように表面プラズモンを生じる金属からなる孤立板11が周期的に配置され、孤立板11に対向して反射板13が配置される構造の場合、表面プラズモン共鳴は、孤立板11の面内(xy面内)方向と接続柱12の高さh方向とで3次元的に共鳴が生じる。この3次元的共鳴により孤立板11近傍に局在する電磁界の様子を図6に示している。しかし、後述するように、接続柱12の高さ方向の共鳴は支配的とならない。一方、この高さ方向の共鳴は、孤立板11における面内に強く局在する共鳴光を閉じ込める役割を果たす。それゆえ、吸収体10において赤外線の波長選択的な吸収につながるのは、主として、孤立板11の面内方向で生じる表面プラズモン共鳴である。
以下で説明するように、孤立板11と接続柱12の寸法を調整することにより、孤立板11と、反射板13のうち孤立板11の直下の領域との間でキャビティが形成される。そして、表面プラズモン共鳴が孤立板11の面内方向(xy面内)で支配的に生じるとともに、主として孤立板11の面内方向寸法Lにより吸収体10の吸収波長を選択できるようになる。
以下では、上記孤立板11の寸法(厚さt)と接続柱12の寸法(高さhと太さw)について、孤立板11の面内方向寸法Lとの関係で説明する。
まず、孤立板11の厚さtについて説明する。
孤立板11の厚さtが大きくなると、吸収体10の熱容量が増加してセンサ100の応答速度が小さくなる。それゆえ、応答速度の観点では、可能な限り厚さtを小さくすることが好ましい。
また、孤立板11の厚さtが大きくなると、厚さ方向にも共鳴が生じるため、波長選択効果が弱くなり吸収自体が弱まるか、広い波長範囲でブロードな吸収が生じてしまう。つまり、接続柱12の高さ方向の共鳴に加え、孤立板11の厚さ方向の共鳴が生じることになり、垂直方向(z方向)の共鳴が面内方向の共鳴より支配的になる可能性がある。この場合、吸収の入射角度依存性が大きくなるため、検出波長がシフトする可能性がある。また、所望の検出波長における光の吸収量が低下し、出力が低下する。厚さ方向、高さ方向の共鳴を抑制するために、t<Lを満たすことが好ましい。
さらに、孤立板11の面内方向での共鳴を支配的にし、吸収の入射角度依存性を充分に小さくするために、t<L/4を満たすことが好ましい。
次に、接続柱12の高さhについて説明する。
吸収体10は、孤立板11の面内方向において生じる共鳴によって赤外線を吸収する。この孤立板11の面内方向で生じる共鳴は、反射板13によって高さ方向に閉じ込められ、保持される。それゆえ、接続柱12の高さ方向(h方向)の共鳴が支配的であってはいけない。高さhが大きすぎる場合、高さ方向の共鳴が孤立板11の面内方向の共鳴と競合する。これにより、面内方向で強い共鳴が生じず、吸収率が大きく低下し、あるいは広い波長域にわたるブロードな吸収が生じ、波長選択的な吸収が難しくなる。波長選択的な吸収を生じさせるために、h<Lを満たすことが好ましい。
さらに、一般に波長の1/4より小さい寸法であることが、共鳴あるいは共振を生じさせない条件であることから、高さ方向(h方向)の共鳴が生じないようにするために、h<L/4を満たすことが好ましい。
次に、接続柱12の太さwについて説明する。
太さwが孤立板11の面内方向寸法Lに近づくと、特に接続柱12が金属の場合には、金属中には光が存在できないことから、孤立板11とその下部の反射板13との間の表面プラズモン共鳴が生じにくくなり、検出波長の赤外線吸収量が大きく低下する。共鳴による吸収を充分に成立させるために、少なくともw<Lを満たすことが好ましい。
さらに、接続柱12が孤立板11の面内方向の共鳴に与える影響を無視するために、w<L/4を満たすことが好ましい。
以上で説明したように、孤立板11と接続柱12の寸法を調整することにより、面内方向寸法Lによって決定された波長の赤外線と結合する表面プラズモンによる共鳴が孤立板11の面内方向で支配的に生じるようになる。
また、電磁界解析の結果、孤立板11の面内方向寸法Lの他、周期p、孤立板11の厚さt、接続柱12の高さhを変更することにより、表面プラズモン共鳴が生じる波長を若干変更できることがわかっている。
以上、孤立板11の厚さt、接続柱12の高さhと太さwの好ましい値の上限について説明した。次に、これらの好ましい値の下限について説明する。
吸収体10による検出波長の赤外線の吸収率を向上させるには、検出波長の赤外線がほぼ吸収体10を透過しないことが好ましい。孤立板11の厚さt、接続柱12の高さhと太さwが検出波長に対して、下記の式(3)で表される表皮効果の厚さδ(skin depth)の2倍以上の程度の厚さを有すれば、一般に光の漏れ出しが充分に小さく、吸収率を向上させることができると言える。逆に、この値以下であれば、光が漏れ出して充分な反射効果が得られず、したがって共鳴効果が低下するため、充分な吸収を得ることができないことがある。
δ=(2/μσω)1/2 …(3)
また、接続柱12の高さhについては、表皮効果の厚さδの2倍以上の程度の厚さとすることが、孤立板11と、反射板13のうち孤立板11の直下の領域との間にキャビティを形成するための好ましい条件であることがわかっている。
ここで、μ,σは、それぞれ孤立板11、接続柱12、反射板13を構成する金属の透磁率、電気伝導率であり、ωは検出波長の赤外線の角振動数である。
上記式(3)からわかるように、δの大きさは波長によって変化するが、tについては、赤外波長域では数10nm〜数100nm程度が好ましい。また、以下の電磁界解析に示すように、赤外波長域においては50〜100nm程度以上であれば充分な吸収が生じ、200nm程度であればさらに充分である。
また、電磁界解析により、接続柱12の高さhは数100nm程度以下が好ましいことがわかっている。また、赤外波長域においては、数10nm程度から数100nm程度、中波長、長波長赤外域においては50nm〜250nm程度であれば、充分に強い吸収が生じることがわかっている。
次に、反射板13の厚さについて説明する。
反射板13の厚さは、検出波長の赤外線が透過しない程度の大きさであればよい。これにより、充分な反射を得ることができる。この大きさは、上記表皮効果の厚さδの2倍程度の大きさであり、赤外波長域では数10nm程度〜数100nm程度であり、中波長赤外〜長波長赤外の波長域では200nm程度が望ましいが、これは強度を考慮した値であり、本質的には表皮効果の厚さδによって最小限の厚さが求まる。
また、孤立板11の厚さtの説明と同様に、反射板13の厚さについても、応答速度の観点からは可能な限り小さいことが好ましい。最終的には、当該厚さは中空部2の機械的強度も考慮して決定される。
また、互いに面内方向寸法Lの異なる複数個の孤立板11を周期的に配置した場合、各面内方向寸法に対応した複数の波長で共鳴が生じ、これにより複数の波長で吸収が生じるため、ブロードな波長域での吸収が生じてしまう。この場合、独立した画素(センサ)に含まれる各孤立板11の面内方向寸法Lを一定にすることが、単色性に優れた波長選択機能を実現するために重要である。
次に、吸収体10の例示的な製造方法について説明する。この製造方法は、以下の工程S1〜S10を含む。
まず、反射板13をスパッタ装置などの成膜装置で成膜する(S1)。その上にレジスト、酸化膜などの犠牲層を塗布または成膜する(S2)。犠牲層において接続柱12を設ける位置に、接続柱12に相当する孔を形成する。孔の形成には、通常の写真製版、電子線露光などを用いる(S3)。その孔にスパッタなどで金属を充填し、かつ犠牲層の表面全体に金属膜を形成する(S4)。その金属膜にフォトレジストを塗布する(S5)。そのフォトレジストに光照射して孤立板11のマスクパターンを金属膜に転写する(S6)。フォトレジストを現像する(S7)。ハロゲン系ガスを用いたドライエッチングにより露出した金属部分を加工する(S8)。レジストを有機溶剤で除去する(S9)。最後に、犠牲層を有機溶剤またはドライエッチングによって除去する(S10)。
上記工程S10は、エッチング液を用いたウェットエッチングで行ってもよい。あるいは、S3,S4の接続柱12と孤立板11に対して、金属エッチングでなく、予めレジストによって金属部分を除去した構造をフォトリソグラフィで形成し、次に金属層をスパッタ形成(またはメッキ)し、最後にレジストを除去するリフトオフ法を用いてもよい。あるいは、スパッタまたはメッキで充填することにより接続柱12を形成した後、研磨工程を実施して接続柱12の上面部分を平坦にしてもよい。
その後、孤立板11については、上記と同様に形成できる。最適な製造方法は、吸収体10の寸法、吸収体10を構成する材料などによって適宜選択できる。
次に、本実施形態1による赤外線センサ100により得られる効果について説明する。
まず、吸収体10における、吸収特性の電磁界解析の結果について、図7〜11を用いて説明する。図7〜11は、本発明の実施の形態1による吸収体の吸収特性を示すグラフ(吸収スペクトル)である。グラフの横軸は入射光の波長を、縦軸は吸収率をそれぞれ表す。これらの解析において、周期pを4μm、孤立板11の厚さtを100nm、反射板13の厚さを200nmとし、吸収体10を構成する金属をAuとし、接続柱12を円柱とした。
まず、孤立板11の面内方向寸法Lを変化させた図7について説明する。
図7では、h=0.15μm、w=200nmとした。L=2.0μm(実線)、3.5μm(破線)の場合の結果をそれぞれ示す。以降、特に断わらない限り、本明細書においては、孤立板11、接続柱12および反射板13が金属である場合には、材料はAuとして解析している。
ピークでの吸収波長をλabとすると、それぞれのLに対して、λab=4.8μm、8.6μmであった。つまり、図7の条件では、粗い近似でλab=2.5×Lと表すことができる。ここで示した値2.5は、図7で解析した構造における値であり、全構造に適用すべき値ではない。ただし、他の条件でも、Lを連続的に変化させた場合に、nを正の実数とすると、λab=n×Lと表せることがわかっている。このように、吸収波長λabとLとは、ほぼ比例関係にあることがわかる。これにより、吸収体10による吸収波長λabは、周期pでなく孤立板11の面内方向寸法Lによって決定されると言える。
つまり、吸収体10では、下記の式(4)(5)で表される条件が満たされる。
λab=n×L …(4)
λab>p …(5)
次に、接続柱の高さhを変化させた図8,9について説明する。
図8,9では、L=2.0μmとした。h=150nm(図8)、200nm(図9)とした。図8,9から、hが大きい方が吸収率を若干低下させることができるが、吸収波長λabはほとんど変化していないことがわかる。
次に、接続柱の太さwを変化させた図10,11について説明する。
図10,11では、h=0.15μm、L=2.0μmとした。w=200nm(図10)、500nm(図11)とした。図10と図11とでは、吸収率、吸収波長について顕著な差は認められなかった。
また、同様の電磁界解析によって求めた結果、p=4μm、L=2.0μmの場合、接続柱の高さhが100〜250nm程度の範囲であれば、80%以上の吸収率を保持し、吸収波長はほぼ変化がないことがわかっている。ただし、条件によっては、高さhを変化させることで吸収波長λabが若干変化することもわかっている。また同様に、接続柱の太さwが20〜500nm程度であれば、80%以上の高い吸収率を保持し、吸収波長はほぼ変化がないことがわかっている。
以上、電磁界解析の結果を基に説明したように、赤外線センサ100によれば、主として孤立板11の面内方向寸法Lによって決定される波長に応じた表面プラズモン共鳴が生じ、赤外線の選択的な吸収が可能になる。つまり、赤外線センサ100としては、この吸収波長λabにおいて検出波長が選択される。また、孤立板11の面内方向での表面プラズモン共鳴を支配的とすることができ、検出波長の赤外線を効率的に吸収可能である。
次に、先行技術と本実施形態1とを対比し、本実施形態1により得られる効果について説明する。
特許文献1のような波型の周期構造を有する吸収体の場合、第1に、吸収体が有する周期構造の周期の大きさを検出波長より小さくすることができないため、吸収体を小型化することが難しいという問題があった。第2に、吸収体を構成する材料としてカーボンが用いられる結果、当該材料自体が検出対象の波長以外の波長も吸収してしまい、波長選択性が悪化するという問題があった。第3に、波型構造を製造するには、グレースケールマスクなど特殊なマスク形成、エッチング工程が必要となり製造が困難であるという問題があった。
一方、非特許文献1,2に記載の、絶縁膜を含んだ多層構造の吸収体の場合、第1に、絶縁膜自体が検出波長以外の波長の赤外線を吸収してしまい、波長選択性が悪化するという問題があった。第2に、特定波長における吸収率を最大化するためには、絶縁膜の厚さを制御する必要があり、つまり検出対象の波長によって絶縁膜の厚さを変えなければならず、したがって検出波長範囲が異なる画素を集積化する場合には、画素毎に厚さの制御が必要になるため、集積化が困難になるという問題があった。第3に、多層構造であるため、接続柱12に相当する部分が平坦な膜となるため全体の体積が大きくなり、したがって熱容量も大きくなって、応答速度が小さくなるという問題があった。
また、例えばフォトニック結晶を用いた周期的な屈折率分布構造を赤外線吸収体に設け、これにより波長選択性を実現する場合にも、次の問題が生じる。つまり、吸収体材料である誘電体膜、例えば酸化シリコンの吸収波長は、8μm〜14μm付近に存在する。それゆえ、例えば6μmに吸収ピーク波長を設定した場合には、周期的屈折率分布、フォトニックバンドギャップの構造によって、材料である酸化シリコンの吸収波長(8μm〜14μm)を同時に検出してしまう。このように、吸収波長が多波長化することで波長選択性が悪化する。
これらの問題に対して、本実施形態1では、表面プラズモン共鳴を利用しており、周期p以上の波長を吸収可能である。換言すると、孤立板11の周期pを検出波長より小さくすることができる。したがって、特許文献1のような周期と吸収波長が一致する構造に比べて、吸収体10の面積を縮小できる。したがって、赤外線センサ100のサイズ、更には複数個の赤外線センサにより熱画像イメージャを構成した場合には、その画素を縮小することが可能となる。
また、吸収体10が表面プラズモンを発生させる金属からなることにより、絶縁膜などを用いた場合の絶縁体材料自体による吸収が防止され、波長選択性が向上する。これは、吸収体10の少なくとも表面が当該金属で覆われた場合も同様の効果が得られる。
また、吸収体10は、波型のような特殊な形状を有さないため、製造がより容易になる。
また、吸収体10では、接続柱12の高さhによって吸収波長が大きくは変化しないため、検出波長の異なるセンサ(画素)を集積化する場合に、画素毎に高さhを変える必要がなく、集積化が容易な構造である。
また、非特許文献1,2のように孤立板11と反射板13との間に層を設けるのでなく、接続柱12によって接続し、さらに接続柱12の高さh、太さwを小さくすることで吸収体10の体積を充分に減少させることができ、したがって、赤外線センサ100の応答速度を大きくすることができる。
また、応答速度に関しては、特に次の効果がある。一般に、吸収体表面の凹凸構造によって波長を選択する場合、凹部の深さ(凸部の高さ)が少なくとも検出波長の1/4程度は必要である。吸収体10の厚み(z方向の寸法)は、孤立板11の厚さt、接続柱12の高さh、反射板13の厚さを足し合わせても、100nm+150nm+200nm=450nm程度(図7の例)と非常に薄くできる。このように、一般的な周期的凹凸構造の場合と比較して薄厚化が可能であるため、熱時定数を小さくすることができ、これにより応答速度を大きくすることができる。
さらに、非特許文献1,2に記載の金属/絶縁膜/金属構造(多層構造)と比較して以下の効果が得られる。
絶縁膜を用いた場合、絶縁膜の厚さが変化すると吸収率、吸収波長がシフトするため、製造上の誤差範囲が狭くなるが、吸収体10のように接続柱12を用いた構造の場合、高さhが変化しても吸収率、吸収波長はほとんど変わらないため、製造誤差範囲が広くなる効果がある。
このように、本実施形態1のように接続柱12を導入することで高さhの吸収率、吸収波長に対する変化が小さくなるのは、接続柱12により接続される孤立板11と反射板13との間を主として空気が占めるからであると考えられる。空気は絶縁体に比べて屈折率が小さいため、光学長も小さくなる。それゆえ、空気層の厚さ、つまり接続柱12の高さhの変化に対する共鳴波長の変化も小さくなるのである。
次に、吸収体10の変形例について説明する。
図12aは、本発明の実施の形態1の第1変形例による吸収体の上面図である。この第1変形例では、孤立板11が2次元周期的でなく1次元周期的(例えばx方向のみに周期的)に配置される。図12aに示すように、それぞれ長方形状を有する孤立板11がストライプ状に配置された場合には、長方形の長辺に対して垂直な方向(x方向に平行な方向)の電界成分を有する電磁界のみが吸収されることになるため、特定の偏光のみを吸収(検出)することが可能になる。なお、図12aは図4bに対応する上面図であり、図12aのIII−III線断面図は、図5と同様の図となる。
図12bは、本発明の実施の形態1の第1変形例による吸収体の吸収特性を示すグラフである。グラフの横軸は、最大吸収率を与える波長で規格化された入射光の波長を示し、縦軸は吸収率を示す。吸収体10を構成する金属はAuとしている。上記の通り、最大吸収率を与える波長は、主として面内方向寸法(長方形の場合には短辺の長さ)によって選択される。
図12bから、長方形の長手方向に平行な電界成分(破線)はほぼ吸収されないことがわかる。このようにして、孤立板11が1次元周期的(例えばx方向のみに周期的)に配置された場合には、偏光方向を検知できる。1次元的な配置の場合の特定の偏光検知と特性は、本明細書で説明する全実施の形態に当てはまる。孤立板11の配列方向のみが異なるため、本明細書では代表例として2次元的な配置について説明する。
図13は、本発明の実施の形態1の第2変形例による吸収体の断面図である。表面プラズモン共鳴が生じて孤立板11近傍に局在する電磁界(図6を参照)では、孤立板11のエッジ部分に電磁界が集中することがわかっている。それゆえ、接続柱12近傍の電磁界がプラズモン共鳴に与える影響は小さいと言える。そこで、第2変形例では、図13に示すように、接続柱12の中心付近に中空領域26が設けられる。この第2変形例による吸収体の吸収特性を図14に示している。図14では、p=3μm、h=0.15μm、L=2.0μm、w=500nmとした。また、中空領域26は直径が250nmの円柱とした。図14から、接続柱12の中心付近に中空領域26が設けられた場合であっても、波長選択的な吸収が生じることがわかる。
接続柱12の中心付近に中空領域26が設けられた場合には、さらに以下の効果が得られる。第1に、中空領域26の分だけ吸収体10の中実部分の体積が減少するため、熱容量が低下して応答速度が大きくなる。第2に、容易に吸収体10を製造できる。この第2の効果について、図15を用いて具体的に説明する。
図15(a)は上記製造方法の工程S1〜S3後の状態に対応し、犠牲層24において接続柱12に相当する孔が形成される。図15(b)では、犠牲層に形成された上記孔と犠牲層表面の上に金属層25が設けられる。図15(c)では、フォトリソグラフィ技術により、孤立板11の面内方向寸法Lに合わせて犠牲層表面の上の金属層25がエッチング除去される。図15(d)では、酸素アッシング、ウェットエッチング等により犠牲層24が除去され、図13に相当する吸収体10が製造される。
説明した製造方法によれば、接続柱12を充填する必要がないため、金属材料を節約できる。また、接続柱12部分を個別に製造する必要も研磨工程等を実施する必要もないため、工程数を減らして吸収体10を容易に製造できる。
次に、実施形態1の第3変形例について説明する。
この第3変形例で、接続柱12は、絶縁体、半導体または誘電体からなる。接続柱12の体積は充分に小さくされ、これらの材料による吸収の影響をほぼ無視できるようになっている。この構造では、体積熱容量(単位体積当たりの熱容量)を低減させることができるため、非特許文献1,2の構造よりも高速な応答が可能になる。
例えば、接続柱12が半導体たるシリコンからなる場合にも、波長選択的な吸収が生じることがわかっている。しかし、孤立板11と反射板13との間を非特許文献1,2のような平坦な層で接続した構造で解析を行った場合、シリコンは絶縁体でないことから、孤立板11と反射板13との間でプラズモン共鳴を生じさせかつ充分な吸収を得るためには、300nm程度の厚さが必要であることがわかった。一方、接続柱12を柱状とする場合、孤立板11と反射板13との間にはシリコンに加えて絶縁体たる空気が存在するため、絶縁性が高くなりプラズモン共鳴が大きくなる。このため接続柱12の高さを100nm程度まで小さくすることができる。つまり、接続柱12が絶縁体、半導体または誘電体からなる場合、充分な吸収を得るために必要な高さを、平坦な層の場合と比較して低く(薄く)することができる。
このように柱形状の接続柱12とすることで、体積熱容量の低減が可能となり、材料自体の吸収を抑制するとともに、応答速度を大きくする効果がある。
以下の実施の形態2〜6では、実施形態1と異なる構成についてのみ説明し、同様の構成については説明を省略する。
実施の形態2.
前述のように、吸収体10では、孤立板11と、反射板13のうち孤立板11の直下の領域との間で主として表面プラズモン共鳴が生じる。それゆえ、反射板13においては、孤立板11直下の領域以外には金属が設けられていなくても、赤外線の吸収に与える影響を無視できる。
図16は、本発明の実施の形態2による吸収体の斜視図であり、図17は、同吸収体の図5に相当する断面図である。また、図18は、貫通孔を形成可能な領域を示す説明図である。本実施形態2では、上記特性を利用して、反射板13において、当該孤立板11直下の領域以外の位置、換言すると、反射板13の面内方向で孤立板11と重複しない範囲に貫通孔19を形成する。
上記の通り、原理的には、孤立板11直下の領域以外の位置であれば、貫通孔19が形成されても、孤立板11の面内方向の表面プラズモン共鳴は影響を受けず、吸収特性は劣化しない。
このように、貫通孔19を形成することにより、反射板13の面積(体積)を低下させて熱容量を低下させ、応答速度を大きくすることができる。反射板13の面積を低下させる観点からは、貫通孔19が形成される面積を可能な限り増加させることが好ましい。
ただし、孤立板11と接続柱12を保持するには、周期的な孤立板11を反射板13の面内で互いに接続する骨組み領域を、ある程度の面積で反射板13に設ける必要がある。
図19は、本発明の実施の形態2による吸収体の上面図である。図19は、図16の構成に対応する。貫通孔19を形成する面積の増加と骨組み領域の必要性とを両立させるために、例えば二次元周期的に貫通孔19を形成できる。例えば図19に示したように、互いに直交する2方向に孤立板11と同じ周期pで隔てて形成してもよい。また、図20に示すように、孤立板11とは異なる周期で隔てて形成してもよい。図19,20において、点線で囲まれた部分は単位周期ユニットを示す。ただし、非周期的な配置、ランダムな配置でも吸収特性に影響は与えない。このように、貫通孔19は様々な周期的な配置が可能である。また、貫通孔19の大きさは、それぞれ同一でなくても吸収特性に影響はなく、貫通孔19の形状は、四角形、長方形などの多角形、楕円形など任意の形状でもよい。
貫通孔19の配置、大きさ、周期は、吸収体10の材料、厚さ、大きさ、吸収体10を中空に保持した場合の反りなどのパラメータを考慮して決定すればよい。
図21は、本発明の実施の形態2による吸収体の吸収特性を示すグラフである。図21では、t=100nm、L=2.0μm、d=1.0μm、h=150nm、反射板13の厚さを200nmとした。貫通孔19は反射板13の主面から見て円形とした。貫通孔19の直径をdとする。
図21に示すように、貫通孔19を形成しない場合の吸収特性(図7)と比較して、貫通孔19を形成した場合でも、ピークの吸収波長λab(約5μm)はほとんど変化しないことがわかる。吸収波長λabでは吸収率=1であり、100%入射光を吸収することが示された。
また、本実施形態2においても、前述の表面プラズモン共鳴の原理により、孤立板11の大きさLを変化させることで、検出波長を選択可能である。
一般に、吸収率がAの吸収体10に貫通孔19を形成し、吸収体10の体積を80%にした場合、吸収量はA×80%となり減少し、感度が低下する。しかし、吸収体10では、孤立板11の面内方向で生じる表面プラズモン共鳴により吸収波長が決定されるので、孤立板11直下以外の領域の反射板13は表面プラズモン共鳴に関わらず、吸収に寄与しない。それゆえ、貫通孔19を形成して体積が減少した場合でも、吸収率は変化しないことになる。
つまり、本実施形態2の構成によれば、反射板13に貫通孔19を形成した場合でも、感度を低下させることなく熱容量を低下させ、応答速度を大きくすることができる。
このような開口率に依存しない吸収現象は、プラズモン共鳴固有の特殊な効果である。従来、赤外線センサの吸収体には酸化膜、金属薄膜が用いられていたが、これらにエッチングホールなどを形成した場合、体積の低下分だけ必ず吸収量が減少し感度が低下していた。
一方、吸収体10のようにプラズモン共鳴を用いることで、感度の低下を招くことなく体積を減少させ、応答速度を大きくすることができる。
また、吸収体10では、貫通孔19の大きさ、形状に関して光学特性に与える影響をほぼ無視できるため、中空構造の反りなどが発生しないように応力を考慮して貫通孔19を適宜形成できる。これは、良好な中空構造を保持するのに有利である。
ここで、例えば、図3に示した赤外線センサ100において中空部2上に吸収体10などが支持された構造を形成するには、バルクマイクロマシニングまたは表面マイクロマシニングと呼ばれる中空化方法を採用できる。前者では、異方性エッチングなどの技術で深掘りして中空領域を形成する。後者では、予めレジストなどの犠牲層で中空領域を埋めておき、その上に構造体を蒸着などで形成し、犠牲層のみをエッチング除去することで構造体が中空部上に支持された構造を製造する。
このように犠牲層エッチングを用いる技術において、犠牲層は、ウェットエッチング、ドライエッチングによって除去できるが、エッチャントは吸収体側面から回り込んで犠牲層を除去する。このとき、犠牲層が残存していると、例えば光入射によって温度が上昇する部分と上昇しない部分とが残渣物によって熱的に接続されてしまい、センサの性能が著しく低下することが想定される。
本実施形態2のように、吸収体10の反射板13に貫通孔19を形成した場合、犠牲層エッチングの際に、エッチングガスまたはウェットエッチング液がセンサ上部から下部の犠牲層に到達しやすくなり、犠牲層の残渣などが発生せず、良好な特性のセンサを製造できる。
次に、本実施形態2の変形例について説明する。
図22は、本発明の実施の形態2の変形例による吸収体の上面図であり、図23は、図22のIV−IV線断面図である。非特許文献1,2では、平坦な金属層(本発明では反射板13に相当)上の絶縁層の材料自体による、プラズモン共鳴波長以外の波長における赤外線吸収が問題となった。本実施形態2による吸収体10の構造のように、反射板13に貫通孔19の領域が充分に広く形成され、絶縁層の体積ができるだけ少なくされた場合、その分だけ絶縁層の材料自体による吸収が少なくなるため、当該材料による影響はほぼ無視できる。
そこで、この変形例では、接続柱12を絶縁体などの材料で構成する。当該材料は、例えば酸化シリコン(SiO)、窒化シリコン(SiN)、酸化アルミニウム(Al)などの絶縁体、シリコンなどの半導体、誘電体でもよい。吸収体10としての構造パラメータ、例えば接続柱12の高さなどは、それぞれの物性値に従って適宜調整可能である。
この場合、絶縁体などからなる接続柱12の内部でプラズモン共鳴が生じる。それゆえ、接続柱12の太さwは、孤立板11の面内方向寸法Lと同程度の太さ、例えば等しい太さでもよい。
次に、絶縁体からなる接続柱12の高さhについて説明する。
前述のように、吸収体10では、孤立板11の面内方向で表面プラズモン共鳴が生じる。このとき、高さ方向の共鳴が生じた場合には、共鳴波長が複数生じることになり、波長選択性が悪化する。あるいは、例えば接続柱12が酸化シリコンからなる場合には、8〜14μmの広い波長域における吸収が生じてしまう。
それゆえ、高さ方向での共鳴が生じないようにするために、接続柱12の高さhは、L/4より小さいことが好ましく、解析結果によれば、赤外波長域では200nm程度以下が好ましいとわかっている。ただし、接続柱12の高さhは、波長選択的効果が得られれば、接続柱12を構成する材料、検出波長の赤外線の絶縁層中での光学長によって変化させてもよい。なお、光学長とは、屈折率、誘電率によって決定される、物質中での光の波長を指す。
また、接続柱12の高さhは、孤立板11と、反射板13のうち孤立板11の直下の領域との間にキャビティを形成するために、金属のエバネッセント波長から決定される値(表皮効果の厚さδ)の2倍程度以上であることが好ましい。
次に、この変形例による吸収体10の製造方法を、孤立板11の面内方向寸法Lと接続柱12の太さwとが等しい場合について説明する。
まず、金属からなる反射板13と絶縁層(接続柱12に該当する層)をスパッタなどで形成する。次に、リフトオフ、ドライエッチングによるパターン加工によって、孤立板11のパターンを形成する。次に、フォトリソグラフィとウェットエッチングなどにより、孤立板11直下以外の領域で絶縁板22を除外する。最後に、例えばフォトリソグラフィとウェットエッチングにより貫通孔19を形成する。
このように、実施形態1で説明した吸収体10の製造方法に比べて、金属の接続柱12を製造する工程が省略されるので、製造方法が簡略化される。
以上、本実施形態2では、反射板13をz方向に貫通する貫通孔19が形成された構成について説明したが、応答速度を大きくするという目的のみを達成するのであれば、反射板13を貫通しない凹部が形成された構成でもよい。
実施の形態3.
実施形態1,2では、各孤立板11と反射板13との間に接続柱12を設けた。ところで、実施形態1,2で説明したように、孤立板11と接続柱12の寸法を調整することにより、孤立板11と反射板13との間で生じる表面プラズモン共鳴が反射板13の開口率に依存しないようにすることができる。これは、孤立板11と、反射板13における孤立板11の直下の領域(図18を参照)との間のみで共鳴が生じるため、共鳴領域が確保されればよく、他の領域は基本的に不要であることに起因する。つまり、孤立板11と、反射板13のうち孤立板11の直下の領域との間には、プラズモン共鳴を阻害しない物体、構造が存在してもこの効果を発揮可能である。
そこで、本実施形態3では、孤立板11と反射板13との間に絶縁板22を設ける。図24は、本発明の実施の形態3による吸収体の上面図であり、図25は、図24のV−V線断面図である。この構成でも、絶縁板22の寸法を調整することにより、これまで説明したような波長選択的な吸収を実現できる。
絶縁板22は、例えば酸化シリコン(SiO)、窒化シリコン(SiN)、酸化アルミニウム(Al)などの絶縁体の他、シリコンなどの半導体、誘電体で構成されてもよい。
図24,25では、絶縁板22が、孤立板11直下の領域以外の領域で反射板13の全面にわたって設けられているが、上記の通り、この領域で絶縁板22は本質的に不要であるので、反射板13の一部のみに設けられてもよい。つまり、本実施形態3で設けられる絶縁板22は、複数個の孤立板11と反射板13とを接続する接続柱であると考えることができる。
次に、絶縁板22の厚さについて説明する。
孤立板11の直下の絶縁板22の厚さは、実施形態2の変形例で説明した接続柱12の高さhと同様に考えることができる。つまり、孤立板11の面内方向におけるプラズモン共鳴を可能な限り乱さないようにするために、高さ方向の共鳴をなるべく生じにくくすればよい。そこで、絶縁板22の厚さは、L/4より小さいことが好ましく、解析結果によれば、赤外波長域では200nm程度以下が好ましいとわかっている。ただし、絶縁板22の厚さは、波長選択的効果が得られれば、絶縁板22を構成する材料、検出波長の赤外線の絶縁層中での光学長によって変化させてもよい。
また、絶縁板22の厚さは、孤立板11と、反射板13のうち孤立板11の直下の領域との間にキャビティを形成するために、金属のエバネッセント波長から決定される値(表皮効果の厚さδ)の2倍程度以上であることが好ましい。
孤立板11直下以外の領域における絶縁板22については、本質的にプラズモン共鳴に必要ではないため、この領域における絶縁板22の厚さは、孤立板11直下の絶縁板22の厚さより薄くすることが可能である。これにより、吸収体10の体積が減少して熱容量が低減されるため、応答速度が大きいセンサ100が実現する。
また、吸収体10に応力が加わると、吸収体10を構成する材料など応じた大きさの反りが生じるところ、絶縁板22を設ける領域は、応力による反りが生じないようにすることができる。これにより、設計範囲が広くなり、赤外線センサ100の高性能化に寄与できる。実施形態2で説明したように、センサ100の応答速度の観点からは、貫通孔19を可能な限り広い領域に形成することが好ましいが、同時に反射板13の強度を考慮する必要があった。本実施形態3のように反射板13の上に絶縁板22を設けることで、強度を補強できる。
また、絶縁板22を構成する絶縁体の一例である酸化シリコンは、主に、長波長赤外(8μm〜14μm)域に強い吸収ピークをもつため、絶縁体の吸収は波長選択性を阻害する。それゆえ、可能な限り絶縁板22の体積を減らすことが好ましい。
次に、この変形例による吸収体10の製造方法について説明する。
まず、金属からなる反射板13と絶縁板22をスパッタなどで形成する。次に、リフトオフ、ドライエッチングによるパターン加工によって、孤立板11のパターンを形成する。最後に、例えばフォトリソグラフィとウェットエッチングにより貫通孔19を形成する。このように、実施形態1,2で説明した吸収体10の製造方法に比べて、さらに製造方法が簡略化される。
以下で説明する実施の形態では、反射板13に貫通孔19が形成されていない吸収体10について説明するが、貫通孔19を形成した場合には、実施形態2,3で説明した効果と同様の効果を得ることができる。
実施の形態4.
実施形態1では、吸収体10の孤立板11、接続柱12および反射板13が、すべて同一の表面プラズモン共鳴を生じる金属からなっていた。また、実施形態2の変形例と実施形態3では、接続柱12が絶縁体などからなる場合などについて説明した。本実施形態4による吸収体10の孤立板11、接続柱12および反射板13は、実施形態1などと同様に金属からなる表面層と、誘電体、絶縁体、半導体からなる群から選択された材料からなる内部層とを含む。内部層の材料は、例えば酸化シリコン(SiO)、窒化シリコン(SiN)、酸化アルミニウム(Al)などの赤外波長域において吸収のある絶縁体、シリコンなどの半導体、誘電体でもよい。これらは、実施形態2の変形例で例示した接続柱12の材料である。当該内部層の材料には空気も含まれる。
また、表面層は、表面プラズモン共鳴を生じる金属からなり、その厚さは、表皮効果から決定される、検出波長の赤外線が透過しない厚さ以上とされる。これにより、赤外線が表面層を透過せず、内部層を構成する材料による表面プラズモン共鳴への影響が排除される。
誘電体、絶縁体、半導体などの材料は、一般に金属よりも体積熱容量が小さい。それゆえ、本実施形態4によれば、接続柱12が内部層を含むことで、吸収体10の熱容量を低下させ、さらに応答速度を大きくすることができる。
実施の形態5.
図26は、本発明の実施の形態5による吸収体の断面図である。
本実施形態5では、孤立板11に、その表面を覆う被覆層23が設けられている。図26では、接続柱12の部分を除いた表面全体に被覆層23が設けられているが、当該部分を含めて表面全体に設けられてもよい。ただし、孤立板11の表面全体に被覆層23が設けられる必要はなく、図27(a)〜(c)に示すように、孤立板11の上面、側面、下面のうち少なくとも1つの面、または少なくともこれらのエッジ部分に設けられればよい。
被覆層23は、電磁波を全反射させず内部を透過させることができ、かつ空気の屈折率(約1.0)よりも屈折率が大きい材料からなる。当該材料は、酸化シリコン(SiO)、酸化アルミニウム(Al)、その他の絶縁体(誘電体)、半導体である。
図6を用いて説明したように、表面プラズモン共鳴が生じるときには、特に孤立板11のエッジ部分に電磁界が集中する。このとき、屈折率nの材料からなる被覆層23内に局在する電磁波の光学長は、近似的に真空(または空気)中の波長×nとなる。少なくとも上記エッジ部分が屈折率の大きい被覆層23で覆われる結果、プラズモン共鳴により局在する電磁波が被覆層23内に閉じ込められるため、上記のように共鳴波長も被覆層23の屈折率倍に大きくなる。このようにして、共鳴波長が長波長側にシフトする。シフトの大きさは、表面プラズモン共鳴による電界増強の度合いにも依存する。
被覆層23の厚さについて説明する。
被覆層23の厚さが大きいと、被覆層23の材料自体による吸収が生じ、更には吸収体10の体積が大きくなって応答速度が小さくなるといった短所が生じる。そこで、被覆層23の厚さは可能な限り小さくすることが好ましい。図7〜11を用いて説明した電磁界解析の結果、表面プラズモン共鳴が生じると、電磁界は孤立板11の周囲100nm程度の範囲に局在することがわかっている。それゆえ、検出波長が赤外域にあれば、被覆層23の厚さは50〜300nm程度が好ましい。この好ましい厚さは、被覆層23を構成する材料に応じて異なる。
図28は、本発明の実施の形態5による吸収体の吸収特性を示すグラフである。グラフの横軸は入射光の波長を、縦軸は規格化された吸収率を示す。図28では、孤立板11(円板)の直径を1.5μm、周期pを4μmとして電磁界解析を行った。また、被覆層23の厚さは50nmとした。また、孤立板11、反射板13を構成する金属をAuとし、被覆層23と接続柱23を酸化シリコンとした。図28には、被覆層23が設けられない場合(短破線)、孤立板11の下面のみに設けられた場合(長破線)、表面全体に設けられた場合(実線)についての結果を示しており、ピークの吸収波長λabはそれぞれ約3.5μm、約5.0μm、約5.5μmであった。
また、孤立板11(円板)の直径を2.0μmとして同じ電磁界解析を行った結果、被覆層23が設けられない場合には、ピークの吸収波長λabは約4.5μmであった。l被覆層23が孤立板11の下面のみに設けられた場合(長破線)とこの結果とを比較すると、孤立板11の下面に被覆層23を設けることにより、同程度の吸収波長λabを得るための孤立板11の直径を少なくとも0.5μm小さくすることができると言える。また、検出波長の長波長化の効果は、被覆層23が孤立板11の表面全体に設けられた場合に最も大きくなることがわかる。
このように検出波長が長波長化することにより、同じ検出波長を得るための周期pを小さくすることができる。したがって、説明している赤外線センサ100により熱画像イメージャを構成した場合には、その画素を縮小することが可能となる。
なお、検出波長の長波長化の効果は、非特許文献1,2に記載の金属/絶縁膜/金属構造(多層構造)でも得られる可能性がある。ただし、本実施形態5では、上記絶縁膜より充分に小さい面積領域、つまり上面、側面および下面の少なくとも1つにのみ被覆層23が設けられており、したがって体積熱容量を低下させつつ検出波長の長波長化の効果を得ることができる。
また一般に、金などの金属は、酸化シリコンなどの絶縁体よりも体積熱容量が大きい。それゆえ、同じ体積であれば、被覆層23を設けることにより、孤立板11の熱容量を低下させることができる。
図29,30では、図23,25の構造に加えて被覆層23が設けられている。図29,30の構造においても、検出波長の長波長化が可能である。これらの図では、絶縁体からなる接続柱12(または絶縁板22)と被覆層23とを別体として図示しているが、両者は同一の絶縁体であってもよい。
実施の形態6.
図31は、本発明の実施の形態6による赤外線センサアレイの上面図である。なお、本明細書中、「赤外線センサアレイ」は、図1で説明した赤外線センサ装置に搭載される、赤外線センサをアレイ状(マトリックス状)に配置した構造を指す。
赤外線センサアレイ200は、実施形態1による赤外線センサ100をアレイ状に配置したものである。図31では、説明を簡単にするために、2行×2列の合計4個の赤外線センサ100からなる赤外線センサアレイ200を示しているが、本発明はこれに限定されず、配置される赤外線センサ100の個数に制限はない。また、必ずしも2次元的な配列でなくてもよく、1次元的な配列にしてもよい。さらに、必ずしも正方格子状の配列でなくてもよく、三角格子状、六方格子状、非周期的な配列など、他の任意の配列でもよい。
赤外線センサアレイ200は、外部の走査回路(図示せず)などにより各行および/または各列の赤外線センサを選択して、各センサ100が検出した情報を時系列に取り出す。このとき、各センサ100を一画素と考えることができる。また、各センサが検出した情報は、並列に読み出してもよい。
このようにして、赤外線センサアレイ200を搭載した赤外線センサ装置は、画像を検出する熱画像イメージャとして用いることが可能となる。このとき、図4aに示す吸収体10を赤外線吸収体として用いることにより、波長情報と入射光強度の情報を有する画像を検出できる。また、イメージセンサ以外の用途としては、少ない画素数で位置検知用のアレイ化センサとして用いることができる。
実施の形態7.
図32は、本発明の実施の形態7による赤外線センサアレイの上面図であり、図33は、図32のVI−VI線断面図である。
赤外線センサアレイ300は、孤立板11の面内方向寸法Lのみが異なる4種類の赤外線センサ110,120,130,140をアレイ状に配置したものである。孤立板の面内方向寸法Lをセンサ毎に変更した点で実施形態5と異なるが、その他の構成については実施形態5と同様であり、説明を省略する。
赤外線センサの吸収体に形成した孤立板11,21,31,41の面内方向寸法Lを変えることにより、画素を構成する各センサの検出波長を変えることができる。
また、孤立板11の面内方向寸法Lに対して周期p、孤立板11の厚さt、接続柱の高さhをそれぞれ変化させることにより、各センサの検出波長を変えることも可能である。ただし、実施形態1で説明したように、面内方向寸法Lの変化に比べて、周期p、厚さt、高さhの変化が吸収波長の決定に与える影響は小さいため、これらの変化は、例えば吸収波長の微調整に利用できる。
つまり、p/L、t/L、h/Lの最適化によって所望の波長における吸収率を最大化できる。このように、L,p,t,hのうち少なくとも一つが互いに異なるセンサ構造を有する画素をアレイ化することによって、画素によって異なる波長の入射光強度情報を有する画像を検出する熱画像イメージャとして用いることが可能となる。
そして、このように検出波長の異なる画素をアレイ化することによって、可視光域におけるイメージセンサと同様に、赤外波長域においてもカラー化した画像を得ることができる。また、イメージセンサ以外の用途としては、少ない画素数で位置検知用のアレイ化センサとして用いることができる。
実施の形態8.
図34は、本発明の実施の形態8による赤外線センサの、図3の一部に相当する要部断面図である。温度検知部54周辺の構造以外は、図3に示される他の実施形態と同様であり、説明を省略する。
図34に示す温度検知部54は、絶縁層14で覆われた検知膜5と薄膜金属配線6とを含む。図示していないが、図3と同様に、温度検知部54は支持脚3により中空部2の上部に支持される。
図3では、温度検知部4の上側に支持柱9が設けられ、支持柱9の上に吸収体10が支持された構成を示した。一方、本実施形態8では、吸収体10が温度検知部54と一体形成され、あるいは温度検知部54の上に直接に設けられる。そして、吸収体10により吸収された赤外線は、熱に変換されて温度検知部54に直接に伝わり、入射赤外線が検出される。吸収体10の構造は実施形態1で説明した構造と同じであり、孤立板11の面内方向寸法Lを制御することによって、特定波長の赤外線が吸収される。
本実施形態8のように、吸収体10と一体形成された温度検知部54を有する赤外線センサでも、検出波長の赤外線が共鳴し選択的に吸収量が増加するため、検出波長の赤外線を選択的に検出することが可能となる。
さらに、吸収体10を支持柱9上に取り付ける工程が不要となるため、実施形態1〜5による赤外線センサを製造する場合より製造工程を簡略化でき、より安価に製品を製造できる。
以上で説明した温度検知部54を含む赤外線センサ600をアレイ状に配置して、実施形態6,7による赤外線センサアレイを形成してもよい。
また、実施形態6で説明したように、吸収体10について同じ構造の赤外線センサをアレイ化することによって、イメージセンサを構成することが可能である。また、実施形態7で説明したように、孤立板11の面内方向寸法L、周期pまたは接続柱の高さhが異なる赤外線センサをアレイ化する(異なる吸収波長域を有する画素をアレイ化する)ことによって、可視光域におけるイメージセンサと同様に、赤外波長域においてもカラー化した画像を得ることができる。
実施の形態9.
まず、本実施形態9と前述の実施形態1〜8との関係について説明する。
特許文献1、非特許文献1,2で開示された赤外線吸収体(光吸収体)では、一画素(本明細書での1つの赤外線センサ)内に周期構造を設ける必要があった。実施形態1〜8でも、1つの赤外線センサ内に複数個の孤立板11を周期的に設けた。この場合、赤外線センサのサイズを充分に低下させることができず、したがって赤外線センサ装置1000の画素分解能を充分に向上させることができないという問題がある。
一方、これまで説明してきたように、吸収体10による吸収波長は、周期pよりも面内方向寸法Lに応じて変化する。また、反射板13における孤立板11の直下以外の領域は、プラズモン共鳴に大きな影響を与えないことがわかっている。
これに基づき、上記問題を解決するための鋭意検討を行った結果、本発明者らは、1つの赤外線センサ内に孤立板の周期構造を設けなくても、複数個の電磁波センサにわたって孤立板の周期構造を設けた場合には、実施形態1〜8で説明した効果と同様の効果が得られることを見いだした。本実施形態9は、この新規な知見に基づくものである。
図35は、本発明の実施の形態9による赤外線センサアレイの上面図である。図36は、図35のVII−VII線断面図である。赤外線センサアレイ700では、赤外線センサ610が2次元アレイ状に配置されている。各赤外線センサ610は、互いに一定の距離(空間距離、クリアランス)dを隔てて配置されている。孤立板11は、1つの各赤外線センサ610につき2つ設けられている。
1つの赤外線センサ610内での孤立板11の間隔をpとし、隣接する2つの赤外線センサ610にわたって隣接する2つの孤立板11の間隔をpとすると、p=p(=p)が成立する。図35では、x方向でこの関係が成立することを示しているが、y方向でも同様に成立する。このように、1つの赤外線センサ610内には孤立板11が2つしかないため孤立板11の周期構造は形成されないが、複数個の赤外線センサ610で見れば、孤立板11の周期構造が形成されることになる。
図35には2行×2列の合計4つの赤外線センサ610からなる赤外線センサアレイ700を示しているが、5つ以上の赤外線センサ610が設けられてもよい。なお、赤外線センサ610では、実施形態8で説明した赤外線センサ600と同様に、吸収体10と温度検知部54とが一体形成されているが、これは必須ではない。
図37,38に示す例では、1つの赤外線センサ620につき孤立板11が1つ設けられている。この場合にも、1つの赤外線センサ620内には孤立板11が1つしかないため孤立板11の周期構造は形成されないが、隣接する3つ以上の赤外線センサ620で見れば、孤立板11の周期構造が形成される。
さらに、隣接する2つの赤外線センサを用いた場合にも、3つ以上の赤外線センサによる周期構造と同程度の波長選択性が得られることがわかっている。それゆえ、本実施形態9では、2つの赤外線センサにより周期数1の周期pが構成されるとする。
図39は、図37,38の赤外線センサアレイによる吸収特性を示すグラフである。図39では、p=3μm、h=0.15μm、L=2.0μm、w=500nm、d=500nmとして電磁界解析を行った。この結果から、本実施形態9による赤外線センサアレイでも、これまで説明したように波長選択的な吸収が生じることがわかる。
以上のように、1つの赤外線センサ内で周期構造が設けられない場合でも、隣接する複数個の赤外線センサにわたって周期構造が設けられることにより、複数個の赤外線センサからなる赤外線センサアレイによって波長選択的な吸収が可能となる。このように、一画素を構成する赤外線センサ内に周期構造を設ける必要がないため、一画素のサイズを低下させることができる。特に、図37,38のように、赤外線センサ内に孤立板11を1つだけ設けた場合には、一画素のサイズ(面積)を孤立板11の周期pよりも小さくすることができ、吸収体10の体積が充分に減少して熱容量も小さくなる。このようにして、赤外線センサ装置1000の画素分解能を向上させることができる。
なお、本実施形態9で、長方形状を有する孤立板11をストライプ状に配置した場合には、図12a,12bなどを用いて説明したように、特定の偏光のみを検出することが可能になる。
以上の説明では、一画素を可能な限り小型化する観点で、1つの赤外線センサ(画素)内に1つまたは2つの孤立板11が設けられる構成について説明したが、隣接する複数個の赤外線センサにわたって周期構造が設けられることが重要であって、1つの赤外線センサ内に3つ以上の孤立板11が設けられてもよい。
以上、本発明の実施の形態では、温度検知部がシリコンダイオードである場合について説明したが、本発明はこれに限定されず、吸収体構造として、サーモパイル、ボロメータ、サーミスタなどに用いる場合にも有効である。つまり、本発明は、熱型赤外線センサの方式自体には依存しない。また、以上で説明した各実施形態および各変形例の構成は、自由に組み合わせ、あるいは変形、省略されてもよい。
1 基板、 2 中空部、 3 支持脚、 4,54 温度検知部、 5 検知膜、 6 薄膜金属配線、 7 アルミニウム配線、 8 反射膜、 9 支持柱、 10 吸収体、 11,21,31,41 孤立板、 12 接続柱、 13 反射板、 14,17 絶縁層、 18 絶縁膜、 19 貫通孔、 20 吸収体、 22 絶縁板、 23 被覆層、 26 中空領域、 100,110,120,130,140,600,610,620 赤外線センサ、 200,300,700,800 赤外線センサアレイ、 1000 赤外線センサ装置。

Claims (23)

  1. 1つまたは複数個の電磁波センサを備えた電磁波センサ装置であって、
    前記電磁波センサは、
    温度検知部と、
    前記温度検知部に熱的に接続された電磁波吸収部とを備え、
    前記電磁波吸収部は、
    周期的に隔てられて配置された、金属を含む複数の孤立板と、
    前記孤立板に対向配置され、少なくとも表面が前記金属である反射板と、
    前記孤立板の面内方向での表面プラズモン共鳴が生じるように前記孤立板と反射板との間を接続する接続柱とを有し、
    前記孤立板の面内方向寸法は、前記電磁波吸収部に入射した電磁波に含まれる特定波長の電磁波と結合する表面プラズモンを誘起するように選択されたことを特徴とする電磁波センサ装置。
  2. 前記孤立板は、1方向に、又は互いに交差する2方向にそれぞれ一定の周期で配置され、
    前記一定の周期は、前記特定波長より小さいことを特徴とする、請求項1に記載の電磁波センサ装置。
  3. 複数個の電磁波センサを備えた電磁波センサ装置であって、
    前記複数個の電磁波センサはそれぞれ、
    温度検知部と、
    前記温度検知部に熱的に接続された電磁波吸収部とを備え、
    前記電磁波吸収部は、
    金属を含む孤立板と、
    前記孤立板に対向配置され、少なくとも表面が前記金属である反射板と、
    前記孤立板の面内方向での表面プラズモン共鳴が生じるように前記孤立板と反射板との間を接続する接続柱とを有し、
    前記孤立板の面内方向寸法は、前記電磁波吸収部に入射した電磁波に含まれる特定波長の電磁波と結合する表面プラズモンを誘起するように選択され、
    前記複数個の電磁波センサにわたって、前記孤立板が、1方向または互いに交差する2方向にそれぞれ一定の周期で配置されたことを特徴とする電磁波センサ装置。
  4. 前記電磁波吸収部は、前記孤立板を1つまたは2つ有することを特徴とする、請求項3に記載の電磁波センサ装置。
  5. 前記一定の周期は、前記特定波長より小さいことを特徴とする、請求項3または4に記載の電磁波センサ装置。
  6. 1方向に前記電磁波センサを2つ備えたことを特徴とする、請求項3〜5のいずれか1項に記載の電磁波センサ装置。
  7. 前記金属は、表面プラズモンを発生させる金属であることを特徴とする、請求項1〜6のいずれか1項に記載の電磁波センサ装置。
  8. 前記孤立板および前記接続柱は、
    絶縁体、半導体および誘電体からなる群から選択された材料からなり、または
    少なくとも表面が金属であることを特徴とする、請求項1〜7のいずれか1項に記載の電磁波センサ装置。
  9. 前記接続柱の高さ及び太さは、前記孤立板の面内方向寸法より小さいことを特徴とする、請求項1〜8のいずれか1項に記載の電磁波センサ装置。
  10. 前記孤立板の厚さ、前記接続柱の高さ、前記接続柱の太さの少なくとも1つは、前記孤立板の面内方向寸法の1/4より小さいことを特徴とする、請求項1〜9のいずれか1項に記載の電磁波センサ装置。
  11. 前記孤立板、前記接続柱及び前記反射板は、少なくとも表面が金属であり、
    該金属の透磁率をμ、電気伝導率をσ、前記特定波長の電磁波の角振動数をωとして、前記孤立板の厚さ、前記接続柱の高さ、前記接続柱の太さ、及び前記反射板の厚さはそれぞれ、
    2×(2/μσω)1/2
    以上の大きさであることを特徴とする、請求項1〜10のいずれか1項に記載の電磁波センサ装置。
  12. 前記孤立板の上面、側面および下面のうち少なくとも1つの面に、空気よりも屈折率が大きい材料からなる被覆層が設けられたことを特徴とする、請求項1〜11のいずれか1項に記載の電磁波センサ装置。
  13. 前記反射板は、該反射板の面内方向で前記孤立板と重複しない範囲に形成された貫通孔を有することを特徴とする、請求項1〜12のいずれか1項に記載の電磁波センサ装置。
  14. 前記貫通孔は、1方向に、又は互いに交差する2方向にそれぞれ、前記孤立板が配置される周期または該孤立板が配置される周期とは異なる周期で隔てられて形成されたことを特徴とする、請求項13に記載の電磁波センサ装置。
  15. 前記孤立板、前記反射板及び前記接続柱は、
    金属からなる表面層と、
    絶縁体、半導体及び誘電体からなる群から選択された材料からなる内部層とを含むことを特徴とする、請求項1〜14のいずれか1項に記載の電磁波センサ装置。
  16. 前記孤立板は、互いに交差する2方向に対称な形状を有することを特徴とする、請求項1〜15のいずれか1項に記載の電磁波センサ装置。
  17. 前記孤立板は、互いに交差する2方向に非対称な形状を有することを特徴とする、請求項1〜15のいずれか1項に記載の電磁波センサ装置。
  18. 前記反射板は、該反射板の面内方向で前記孤立板と重複しない範囲に形成された貫通孔を有し、
    前記接続柱は、絶縁体、半導体及び誘電体からなる群から選択された材料からなり、
    前記接続柱の高さは、前記孤立板の面内方向寸法の1/4より小さく、
    前記接続柱の太さは、前記孤立板の面内方向寸法以下であることを特徴とする、請求項1〜17のいずれか1項に記載の電磁波センサ装置。
  19. 複数の前記孤立板と前記反射板との間が前記接続柱により接続され、
    前記反射板は、該反射板の面内方向で前記孤立板と重複しない範囲に形成された貫通孔を有し、
    前記接続柱は、絶縁体、半導体及び誘電体からなる群から選択された材料からなり、
    前記接続柱の高さは、前記孤立板の面内方向寸法の1/4より小さいことを特徴とする、請求項1〜17のいずれか1項に記載の電磁波センサ装置。
  20. 中空部を有する基板と、
    前記温度検知部に接続され、中空部の上側に前記温度検知部を保持する支持脚とをさらに備え、
    前記温度検知部は、温度によりその電気抵抗の値が変わる検知膜を有し、
    前記電磁波吸収部は、前記温度検知部の上側に設けられたことを特徴とする、請求項1〜19のいずれか1項に記載の電磁波センサ装置。
  21. 前記電磁波吸収部は、前記温度検知部の上に直接に設けられたことを特徴とする、請求項20に記載の電磁波センサ装置。
  22. アレイ状に配置された複数個の電磁波センサを含むことを特徴とする、請求項1〜21のいずれか1項に記載の電磁波センサ装置。
  23. 前記アレイ状に配置された複数個の電磁波センサは、第1電磁波センサと第2電磁波センサとを含み、
    前記第1電磁波センサと第2電磁波センサとは、互いに、前記孤立板が配置される周期、前記孤立板の面内方向寸法、前記孤立板の厚さ、前記接続柱の高さのうちの少なくとも1つが異なることを特徴とする、請求項22に記載の電磁波センサ装置。
JP2014088263A 2013-04-24 2014-04-22 電磁波センサ装置 Active JP6184366B2 (ja)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2014088263A JP6184366B2 (ja) 2013-04-24 2014-04-22 電磁波センサ装置

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
JP2013091300 2013-04-24
JP2013091300 2013-04-24
JP2014088263A JP6184366B2 (ja) 2013-04-24 2014-04-22 電磁波センサ装置

Publications (2)

Publication Number Publication Date
JP2014224810A true JP2014224810A (ja) 2014-12-04
JP6184366B2 JP6184366B2 (ja) 2017-08-23

Family

ID=52123561

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2014088263A Active JP6184366B2 (ja) 2013-04-24 2014-04-22 電磁波センサ装置

Country Status (1)

Country Link
JP (1) JP6184366B2 (ja)

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2016197097A (ja) * 2015-04-02 2016-11-24 パロ アルト リサーチ センター インコーポレイテッド メタマテリアル構造を含む赤外線吸収薄膜を有する温度センサ
JP2018505393A (ja) * 2014-12-12 2018-02-22 ベルタン・テクノロジーズBertin Technologies 気体を検出するための光フィルタリング装置
WO2018193824A1 (ja) * 2017-04-17 2018-10-25 パナソニックIpマネジメント株式会社 焦電センサ素子及びこれを用いた焦電センサ
WO2019039551A1 (ja) * 2017-08-23 2019-02-28 国立大学法人東北大学 メタマテリアル構造体および屈折率センサ
JP6541921B1 (ja) * 2018-03-15 2019-07-10 三菱電機株式会社 生体物質測定装置
WO2019176157A1 (ja) * 2018-03-15 2019-09-19 三菱電機株式会社 生体物質測定装置

Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH113985A (ja) * 1997-03-19 1999-01-06 Lockheed Martin Corp パッチ結合赤外線ホトディテクタ
JP2007024842A (ja) * 2005-07-21 2007-02-01 Matsushita Electric Works Ltd 赤外線センサ
JP2007248382A (ja) * 2006-03-17 2007-09-27 Canon Inc 検出素子及び画像形成装置
JP2011095137A (ja) * 2009-10-30 2011-05-12 Mitsubishi Electric Corp 半導体光素子および半導体光装置
JP2012154762A (ja) * 2011-01-26 2012-08-16 Mitsubishi Electric Corp 赤外線センサおよび赤外線センサアレイ
CN102651421A (zh) * 2012-05-04 2012-08-29 中国科学院苏州纳米技术与纳米仿生研究所 光谱选择性光电探测器及其制备方法
JP2012177696A (ja) * 2012-03-28 2012-09-13 Mitsubishi Electric Corp 半導体光素子および半導体光装置
JP2012208104A (ja) * 2011-03-15 2012-10-25 Mitsubishi Electric Corp 半導体光素子および半導体光装置
WO2013048577A1 (en) * 2011-09-26 2013-04-04 Solarity, Inc. Substrate and superstrate design and process for nano-imprinting lithography of light and carrier collection management devices

Patent Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH113985A (ja) * 1997-03-19 1999-01-06 Lockheed Martin Corp パッチ結合赤外線ホトディテクタ
JP2007024842A (ja) * 2005-07-21 2007-02-01 Matsushita Electric Works Ltd 赤外線センサ
JP2007248382A (ja) * 2006-03-17 2007-09-27 Canon Inc 検出素子及び画像形成装置
JP2011095137A (ja) * 2009-10-30 2011-05-12 Mitsubishi Electric Corp 半導体光素子および半導体光装置
JP2012154762A (ja) * 2011-01-26 2012-08-16 Mitsubishi Electric Corp 赤外線センサおよび赤外線センサアレイ
JP2012208104A (ja) * 2011-03-15 2012-10-25 Mitsubishi Electric Corp 半導体光素子および半導体光装置
WO2013048577A1 (en) * 2011-09-26 2013-04-04 Solarity, Inc. Substrate and superstrate design and process for nano-imprinting lithography of light and carrier collection management devices
JP2012177696A (ja) * 2012-03-28 2012-09-13 Mitsubishi Electric Corp 半導体光素子および半導体光装置
CN102651421A (zh) * 2012-05-04 2012-08-29 中国科学院苏州纳米技术与纳米仿生研究所 光谱选择性光电探测器及其制备方法

Cited By (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2018505393A (ja) * 2014-12-12 2018-02-22 ベルタン・テクノロジーズBertin Technologies 気体を検出するための光フィルタリング装置
JP2016197097A (ja) * 2015-04-02 2016-11-24 パロ アルト リサーチ センター インコーポレイテッド メタマテリアル構造を含む赤外線吸収薄膜を有する温度センサ
EP3076141B1 (en) * 2015-04-02 2022-09-28 Palo Alto Research Center Incorporated Thermal sensor with infrared absorption membrane including metamaterial structure
WO2018193824A1 (ja) * 2017-04-17 2018-10-25 パナソニックIpマネジメント株式会社 焦電センサ素子及びこれを用いた焦電センサ
WO2019039551A1 (ja) * 2017-08-23 2019-02-28 国立大学法人東北大学 メタマテリアル構造体および屈折率センサ
JPWO2019039551A1 (ja) * 2017-08-23 2020-09-24 国立大学法人東北大学 メタマテリアル構造体および屈折率センサ
JP7202661B2 (ja) 2017-08-23 2023-01-12 国立大学法人東北大学 メタマテリアル構造体および屈折率センサ
JP6541921B1 (ja) * 2018-03-15 2019-07-10 三菱電機株式会社 生体物質測定装置
WO2019176157A1 (ja) * 2018-03-15 2019-09-19 三菱電機株式会社 生体物質測定装置
US11408824B2 (en) 2018-03-15 2022-08-09 Mitsubishi Electric Corporation Biological material measurement device

Also Published As

Publication number Publication date
JP6184366B2 (ja) 2017-08-23

Similar Documents

Publication Publication Date Title
JP6184366B2 (ja) 電磁波センサ装置
CN111947788B (zh) 红外探测器及其制备方法
JP6161554B2 (ja) 電磁波検出器および電磁波検出器アレイ
KR101910573B1 (ko) 광대역 광 흡수체를 포함하는 적외선 검출기
US9163998B2 (en) Infrared detector
JP5801151B2 (ja) 懸架式ボロメータマイクロプレートに基づく赤外線検出器
US9121761B2 (en) Infrared detectors
JP6193754B2 (ja) 電磁波検出器
JP4964935B2 (ja) 半導体光素子および半導体光装置
US9476774B2 (en) Uncooled microbolometer pixel and array for configurable broadband and multi-frequency terahertz detection
JP2015045629A5 (ja)
JP6338747B2 (ja) 電磁波検出器
KR101683257B1 (ko) 광 검출기
JP5943764B2 (ja) 電磁波センサ及び電磁波センサ装置
JP6279011B2 (ja) 熱型赤外線検出器および熱型赤外線検出器の製造方法
CN110118604B (zh) 基于混合谐振模式的宽光谱微测辐射热计及其制备方法
JP2012177696A (ja) 半導体光素子および半導体光装置
JP5706174B2 (ja) 赤外線センサおよび赤外線センサアレイ
US9274003B2 (en) Image pixel apparatus for detecting electromagnetic radiation, sensor array for detecting electromagnetic radiation and method for detecting electromagnetic radiation by means of an image pixel apparatus
US20160356652A1 (en) Infrared detector including broadband surface plasmon resonator
JP2009265091A (ja) 高度に分離された熱検出器
CN113447140A (zh) 一种cmos红外微桥探测器
Nagao et al. Wavelength-selective photothermal infrared sensors
CA2875303C (en) Uncooled microbolometer pixel and array for configurable broadband and multi-frequency terahertz detection
US9429475B2 (en) Thermal radiation sensor and thermal image capturing device including same

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20160920

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20170616

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20170627

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20170725

R150 Certificate of patent or registration of utility model

Ref document number: 6184366

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250