JP2017223644A - 赤外線センサ - Google Patents
赤外線センサ Download PDFInfo
- Publication number
- JP2017223644A JP2017223644A JP2017028987A JP2017028987A JP2017223644A JP 2017223644 A JP2017223644 A JP 2017223644A JP 2017028987 A JP2017028987 A JP 2017028987A JP 2017028987 A JP2017028987 A JP 2017028987A JP 2017223644 A JP2017223644 A JP 2017223644A
- Authority
- JP
- Japan
- Prior art keywords
- domain
- base substrate
- period
- infrared light
- light receiving
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Granted
Links
- 239000000758 substrate Substances 0.000 claims abstract description 69
- 239000013078 crystal Substances 0.000 claims abstract description 48
- 239000010409 thin film Substances 0.000 abstract description 6
- 238000011896 sensitive detection Methods 0.000 abstract 1
- 230000000737 periodic effect Effects 0.000 description 77
- 238000009413 insulation Methods 0.000 description 15
- 238000000034 method Methods 0.000 description 13
- 238000012545 processing Methods 0.000 description 13
- 230000000694 effects Effects 0.000 description 12
- 239000004065 semiconductor Substances 0.000 description 11
- 239000000463 material Substances 0.000 description 10
- 239000010410 layer Substances 0.000 description 9
- 239000006185 dispersion Substances 0.000 description 7
- 239000012212 insulator Substances 0.000 description 7
- 230000015572 biosynthetic process Effects 0.000 description 5
- 238000000206 photolithography Methods 0.000 description 5
- 230000035945 sensitivity Effects 0.000 description 5
- 238000010586 diagram Methods 0.000 description 4
- 238000004519 manufacturing process Methods 0.000 description 4
- 238000004544 sputter deposition Methods 0.000 description 4
- 229910004298 SiO 2 Inorganic materials 0.000 description 3
- 238000001514 detection method Methods 0.000 description 3
- 239000002184 metal Substances 0.000 description 3
- 229910052751 metal Inorganic materials 0.000 description 3
- 238000010521 absorption reaction Methods 0.000 description 2
- 238000009529 body temperature measurement Methods 0.000 description 2
- 230000007423 decrease Effects 0.000 description 2
- 239000000126 substance Substances 0.000 description 2
- 229910018072 Al 2 O 3 Inorganic materials 0.000 description 1
- JBRZTFJDHDCESZ-UHFFFAOYSA-N AsGa Chemical compound [As]#[Ga] JBRZTFJDHDCESZ-UHFFFAOYSA-N 0.000 description 1
- 229910001218 Gallium arsenide Inorganic materials 0.000 description 1
- 229910000673 Indium arsenide Inorganic materials 0.000 description 1
- GPXJNWSHGFTCBW-UHFFFAOYSA-N Indium phosphide Chemical compound [In]#P GPXJNWSHGFTCBW-UHFFFAOYSA-N 0.000 description 1
- 230000005678 Seebeck effect Effects 0.000 description 1
- 229910004541 SiN Inorganic materials 0.000 description 1
- 229910000577 Silicon-germanium Inorganic materials 0.000 description 1
- 229910002367 SrTiO Inorganic materials 0.000 description 1
- 239000011358 absorbing material Substances 0.000 description 1
- 239000004964 aerogel Substances 0.000 description 1
- 229920001400 block copolymer Polymers 0.000 description 1
- 150000001875 compounds Chemical class 0.000 description 1
- 239000000470 constituent Substances 0.000 description 1
- 238000013461 design Methods 0.000 description 1
- 238000009826 distribution Methods 0.000 description 1
- 238000009429 electrical wiring Methods 0.000 description 1
- 238000000609 electron-beam lithography Methods 0.000 description 1
- 238000005530 etching Methods 0.000 description 1
- 239000003574 free electron Substances 0.000 description 1
- PCHJSUWPFVWCPO-UHFFFAOYSA-N gold Chemical compound [Au] PCHJSUWPFVWCPO-UHFFFAOYSA-N 0.000 description 1
- 239000010931 gold Substances 0.000 description 1
- 229910052737 gold Inorganic materials 0.000 description 1
- WPYVAWXEWQSOGY-UHFFFAOYSA-N indium antimonide Chemical compound [Sb]#[In] WPYVAWXEWQSOGY-UHFFFAOYSA-N 0.000 description 1
- RPQDHPTXJYYUPQ-UHFFFAOYSA-N indium arsenide Chemical compound [In]#[As] RPQDHPTXJYYUPQ-UHFFFAOYSA-N 0.000 description 1
- 238000001459 lithography Methods 0.000 description 1
- 238000005259 measurement Methods 0.000 description 1
- 150000002739 metals Chemical class 0.000 description 1
- 229910003465 moissanite Inorganic materials 0.000 description 1
- 238000012544 monitoring process Methods 0.000 description 1
- 230000003647 oxidation Effects 0.000 description 1
- 238000007254 oxidation reaction Methods 0.000 description 1
- 239000011148 porous material Substances 0.000 description 1
- 230000005855 radiation Effects 0.000 description 1
- 238000012552 review Methods 0.000 description 1
- 229910010271 silicon carbide Inorganic materials 0.000 description 1
- 239000002344 surface layer Substances 0.000 description 1
Images
Classifications
-
- G—PHYSICS
- G01—MEASURING; TESTING
- G01J—MEASUREMENT OF INTENSITY, VELOCITY, SPECTRAL CONTENT, POLARISATION, PHASE OR PULSE CHARACTERISTICS OF INFRARED, VISIBLE OR ULTRAVIOLET LIGHT; COLORIMETRY; RADIATION PYROMETRY
- G01J5/00—Radiation pyrometry, e.g. infrared or optical thermometry
- G01J5/02—Constructional details
-
- G—PHYSICS
- G01—MEASURING; TESTING
- G01J—MEASUREMENT OF INTENSITY, VELOCITY, SPECTRAL CONTENT, POLARISATION, PHASE OR PULSE CHARACTERISTICS OF INFRARED, VISIBLE OR ULTRAVIOLET LIGHT; COLORIMETRY; RADIATION PYROMETRY
- G01J5/00—Radiation pyrometry, e.g. infrared or optical thermometry
- G01J5/02—Constructional details
- G01J5/0225—Shape of the cavity itself or of elements contained in or suspended over the cavity
- G01J5/023—Particular leg structure or construction or shape; Nanotubes
-
- G—PHYSICS
- G01—MEASURING; TESTING
- G01J—MEASUREMENT OF INTENSITY, VELOCITY, SPECTRAL CONTENT, POLARISATION, PHASE OR PULSE CHARACTERISTICS OF INFRARED, VISIBLE OR ULTRAVIOLET LIGHT; COLORIMETRY; RADIATION PYROMETRY
- G01J5/00—Radiation pyrometry, e.g. infrared or optical thermometry
- G01J5/02—Constructional details
- G01J5/04—Casings
- G01J5/046—Materials; Selection of thermal materials
-
- G—PHYSICS
- G01—MEASURING; TESTING
- G01J—MEASUREMENT OF INTENSITY, VELOCITY, SPECTRAL CONTENT, POLARISATION, PHASE OR PULSE CHARACTERISTICS OF INFRARED, VISIBLE OR ULTRAVIOLET LIGHT; COLORIMETRY; RADIATION PYROMETRY
- G01J5/00—Radiation pyrometry, e.g. infrared or optical thermometry
- G01J5/02—Constructional details
- G01J5/06—Arrangements for eliminating effects of disturbing radiation; Arrangements for compensating changes in sensitivity
-
- G—PHYSICS
- G01—MEASURING; TESTING
- G01J—MEASUREMENT OF INTENSITY, VELOCITY, SPECTRAL CONTENT, POLARISATION, PHASE OR PULSE CHARACTERISTICS OF INFRARED, VISIBLE OR ULTRAVIOLET LIGHT; COLORIMETRY; RADIATION PYROMETRY
- G01J5/00—Radiation pyrometry, e.g. infrared or optical thermometry
- G01J5/10—Radiation pyrometry, e.g. infrared or optical thermometry using electric radiation detectors
- G01J5/12—Radiation pyrometry, e.g. infrared or optical thermometry using electric radiation detectors using thermoelectric elements, e.g. thermocouples
-
- G—PHYSICS
- G01—MEASURING; TESTING
- G01J—MEASUREMENT OF INTENSITY, VELOCITY, SPECTRAL CONTENT, POLARISATION, PHASE OR PULSE CHARACTERISTICS OF INFRARED, VISIBLE OR ULTRAVIOLET LIGHT; COLORIMETRY; RADIATION PYROMETRY
- G01J5/00—Radiation pyrometry, e.g. infrared or optical thermometry
- G01J5/10—Radiation pyrometry, e.g. infrared or optical thermometry using electric radiation detectors
- G01J5/12—Radiation pyrometry, e.g. infrared or optical thermometry using electric radiation detectors using thermoelectric elements, e.g. thermocouples
- G01J5/14—Electrical features thereof
-
- G—PHYSICS
- G01—MEASURING; TESTING
- G01J—MEASUREMENT OF INTENSITY, VELOCITY, SPECTRAL CONTENT, POLARISATION, PHASE OR PULSE CHARACTERISTICS OF INFRARED, VISIBLE OR ULTRAVIOLET LIGHT; COLORIMETRY; RADIATION PYROMETRY
- G01J5/00—Radiation pyrometry, e.g. infrared or optical thermometry
- G01J5/10—Radiation pyrometry, e.g. infrared or optical thermometry using electric radiation detectors
- G01J5/20—Radiation pyrometry, e.g. infrared or optical thermometry using electric radiation detectors using resistors, thermistors or semiconductors sensitive to radiation, e.g. photoconductive devices
-
- G—PHYSICS
- G01—MEASURING; TESTING
- G01J—MEASUREMENT OF INTENSITY, VELOCITY, SPECTRAL CONTENT, POLARISATION, PHASE OR PULSE CHARACTERISTICS OF INFRARED, VISIBLE OR ULTRAVIOLET LIGHT; COLORIMETRY; RADIATION PYROMETRY
- G01J5/00—Radiation pyrometry, e.g. infrared or optical thermometry
- G01J5/10—Radiation pyrometry, e.g. infrared or optical thermometry using electric radiation detectors
- G01J5/20—Radiation pyrometry, e.g. infrared or optical thermometry using electric radiation detectors using resistors, thermistors or semiconductors sensitive to radiation, e.g. photoconductive devices
- G01J5/22—Electrical features thereof
-
- G—PHYSICS
- G01—MEASURING; TESTING
- G01J—MEASUREMENT OF INTENSITY, VELOCITY, SPECTRAL CONTENT, POLARISATION, PHASE OR PULSE CHARACTERISTICS OF INFRARED, VISIBLE OR ULTRAVIOLET LIGHT; COLORIMETRY; RADIATION PYROMETRY
- G01J5/00—Radiation pyrometry, e.g. infrared or optical thermometry
- G01J5/10—Radiation pyrometry, e.g. infrared or optical thermometry using electric radiation detectors
- G01J5/12—Radiation pyrometry, e.g. infrared or optical thermometry using electric radiation detectors using thermoelectric elements, e.g. thermocouples
- G01J2005/123—Thermoelectric array
Landscapes
- Physics & Mathematics (AREA)
- General Physics & Mathematics (AREA)
- Spectroscopy & Molecular Physics (AREA)
- Chemical & Material Sciences (AREA)
- Engineering & Computer Science (AREA)
- Nanotechnology (AREA)
- Photometry And Measurement Of Optical Pulse Characteristics (AREA)
Abstract
【課題】高感度な検出特性を有する赤外線センサを提供すること。【解決手段】本開示による赤外線センサは、赤外線受光部12とベース基板11とを備え、これら2つは、貫通孔が周期的に配列した薄膜状のフォノニック結晶からなる梁13ににより離間されるるように構成されており、前記フォノニック結晶からなる梁13は、前記赤外線受光部12から前記ベース基板11方向に向かって、任意の間隔毎に貫通孔の周期Pが増大するように構成されている。【選択図】図5A
Description
本願は、フォノニック結晶構造を搭載した赤外線センサに関する。
従来の熱型赤外線センサでは、特許文献1に記載されているように、赤外線受光部が梁を介してベース基板から離間して配置される構造が提案されている。この構造は、赤外線受光部をベース基板から熱的に絶縁させることを目的としており、梁の断熱性能が高いほど赤外線の受光感度は向上する。特許文献1に記されているように、エアロゲルなどの多孔質の材料を梁として用いることで断熱性能を向上させることが出来る。しかしながら秩序のない単純な多孔質構造では、空隙率の増加に伴った熱コンダクタンスの減少が得られるに過ぎないため、断熱性能は限定的である。
一方、非特許文献1あるいは特許文献2では、ナノオーダー(1nmから1000nmの領域)で周期的に整列した貫通孔や柱状の共振器を薄膜状の物質に導入することで、その薄膜を構成する母材の熱伝導率を減少させられることが開示されている。このような物質はフォノニック結晶と呼ばれ、構成材料の熱伝導率そのものが減少するため、単純な多孔質構造に比べて、空隙率の導入に起因する熱コンダクタンスの減少以上の断熱効果が得られる。
以下にフォノニック結晶が熱伝導を制御する仕組みを記す。絶縁体、あるいは半導体では、熱は主にフォノンと呼ばれる格子振動によって運ばれる。フォノンの分散関係(周波数と波数の関係、あるいはバンド構造)は材料毎に決まっており、絶縁体や半導体の熱伝導率はフォノン分散関係によって決定される。特に、熱を運ぶフォノンは100GHzから10THzの幅広い周波数帯域に及び、この帯域に該当するフォノンが材料の熱伝導特性を決定する。前述の熱を運ぶフォノンの周波数帯域をここでは熱の帯域と定義する。フォノニック結晶では、周期構造を導入することで材料本来のフォノン分散を人工的に制御出来るため、材料の熱伝導率そのものを制御することが出来る。特に、分散曲線において断熱性能に影響を与える変化としては、フォノニックバンドギャップ(PBG)の形成が挙げられる。熱の帯域にPBGを形成することが出来れば、PBG内のフォノンは存在出来なくなるため、熱の伝導に寄与しなくなる。その結果、熱伝導率を減少させることが出来る。
このようなフォノニック結晶構造を赤外線受光部の梁に導入することで、赤外線センサの感度を向上させることが出来る。
Physical Review B 91, 205422 (2015)
PBGの中心周波数ωgは、フォノニック結晶に導入された周期構造の周期Pに依存する(ωgは(1/P)に比例する)。そのため、PBGによって熱伝導の寄与を排除できるフォノンの周波数帯域は、フォノニック結晶の周期に強く依存する。一方、熱の帯域は温度によって変化する。例えば、温度が高いほど熱の帯域は高周波数側にシフトし、温度が低いほど低周波側にシフトする。したがって、単一周期からなるフォノニック結晶では、特定の温度においてのみ優れた断熱性能を発揮する。つまり、フォノニック結晶の温度変化に伴ってPBGが熱の帯域から外れた場合、フォノニック結晶の断熱効果は弱まる。
フォノニック結晶を赤外線センサの梁に用いる場合、赤外線受光部からベース基板に向かって梁内部で温度勾配が発生する。つまり梁内部において、赤外線受光部側がベース基板側に対して高温になる。これは、赤外線受光部側における熱の帯域が、ベース基板側における熱の帯域に比べて、相対的に周波数が高くなることを意味している。したがって梁を単一周期からなるフォノニック結晶で構成した場合、赤外線受光部側とベース基板側において、熱の帯域とPBGとの周波数領域における位置関係が変動する。このため、赤外線受光部側の温度に合わせてフォノニック結晶を設計した場合、ベース基板側での断熱性能は弱まり、ベース基板側の温度に合わせてフォノニック結晶を設計した場合、赤外線受光部側での断熱性能は弱まる。このように、単一周期からなる一様なフォノニック結晶で梁を構成した場合、梁全域にわたって十分な断熱性能が得られない。
本開示は、熱型赤外線センサの感度向上のための技術を提供する。
本開示の赤外線センサは、赤外線受光部とベース基板とを、貫通孔が周期的に配列した薄膜状のフォノニック結晶からなる梁で離間するように構成され、前記フォノニック結晶からなる梁は、前記赤外線受光部から前記ベース基板方向に向かって、任意の間隔毎に貫通孔の周期が増大するように構成されている。
本開示によれば、梁内において、赤外線受光部からベース基板方向に向かって、任意の間隔毎に貫通孔の周期が増大するように微細加工を施すことにより、梁全域に渡って優れた断熱効果が得られる。その結果、優れた感度を持つ赤外線センサを提供することができる。
以下、本発明の実施の形態について、図面を参照しながら説明する。
(実施の形態1)
本発明の実施の形態1の赤外線センサにおける赤外線受光部付近の平面図および断面図をそれぞれ図1および図2に示す。本発明の赤外線センサは、Siなどの半導体からなるベース基板11の直上に設けられた空間(すなわち、凹部30、図2を参照せよ)を隔てて設置される赤外線受光部12と、空間部において、赤外線受光部12を支える第1の梁13aおよび第2の梁13bとからなる。用語「梁13」は、「第1の梁13a」および「第2の梁13b」を含み得る。
本発明の実施の形態1の赤外線センサにおける赤外線受光部付近の平面図および断面図をそれぞれ図1および図2に示す。本発明の赤外線センサは、Siなどの半導体からなるベース基板11の直上に設けられた空間(すなわち、凹部30、図2を参照せよ)を隔てて設置される赤外線受光部12と、空間部において、赤外線受光部12を支える第1の梁13aおよび第2の梁13bとからなる。用語「梁13」は、「第1の梁13a」および「第2の梁13b」を含み得る。
さらにベース基板11上に設けられた信号処理回路14と、赤外線受光部12からの電気信号を信号処理回路14に伝える電気配線15からなる。また赤外線受光部12の最表面層には赤外線吸収層16が設けられる。
本発明の赤外線センサの動作原理について図2を用いて説明する。赤外線受光部12に赤外線17が入射すると、赤外線受光部12の温度が上昇する。このとき赤外線受光部12は熱浴となるベース基板11から熱的に絶縁されているほど温度が上昇する。赤外線受光部12の温度検出方式はゼーベック効果を利用したサーモパイル方式でも良いが、抵抗変化を利用したサーミスタ方式でも良い。サーモパイル方式の場合、図3に示すように、梁13そのものがサーモパイル18として機能し、ベース基板11上で梁と接続された電気配線15によって電気信号が信号処理回路14に運ばれ、温度測定あるいは赤外線の強度測定を行う。一方、サーミスタ方式の場合、図4Aあるいは図4Bに示すように、赤外線受光部12上にPtなどのサーミスタ配線19を施し、梁13上に設置された電気配線15を伝ってベース基板11上に形成される信号処理回路14に運ばれ、温度測定あるいは赤外線の強度測定を行う。なおサーミスタ方式の場合、図4Aに示すような両持ち梁構造でも良いが、図4Bに示すような片持ち梁構造でも良い。言い換えれば、サーミスタ赤外線受光部12が用いられる場合、第2の梁13bは不要である。
図3、図4Aあるいは図4Bに示す基本構成を一画素として、ベース基板11上に配列することで有限の温度を持った物体のイメージングや、赤外線放射やレーザ光線の強度分布を測定することが出来る。
本発明における赤外線センサの梁13は厚さ10nmから500nmの薄膜状の物質で、薄膜面内に任意の直径からなる貫通孔20が任意の周期で配列する二次元フォノニック結晶によって構成されている。図5Aに本発明の実施の形態1における赤外線受光部12と梁13の一部を含む平面の拡大図を示す。梁13には、図5Aに示すように、ひとつの周期性からなる一様なフォノニック結晶ではなく、下記に定義する複数のフォノニックドメイン21が配置される構造を持つ。フォノニックドメイン21は、図5Aの点線で囲われた領域にあたり、その内部では一様なフォノニック結晶構造(貫通孔が一様な周期で配列した構造)を持った領域を指す。図5Aは梁13の一部を示しており、一例として、3つのフォノニックドメイン21によって構成されている様子を示す。また図5B、図5C、図5Dに各フォノニックドメインにおける周期構造の拡大図を示す。各フォノニックドメイン内は一様な周期構造で構成されるものの、隣り合うフォノニックドメイン間では異なる周期構造を有する。本発明における赤外線センサの梁13では、図5Aに示すように、赤外線受光部12側からベース基板11側の方向に沿って、2種類以上のフォノニックドメイン21が任意の間隔毎に周期が増大するように配置される。なおフォノニックドメインの数は多ければ多いほど断熱効果は高まる。この理由としては、異なる周期構造を持つフォノニックドメインは異なるフォノン分散を持つため、隣り合うフォノニックドメインの間では、フォノン群速度のミスマッチによって界面熱抵抗が発生するためである。隣り合うフォノニックドメインが配列する間隔は周期的でも良いし、ランダムでも良い。
本発明の実施の形態1の赤外線センサにおけるフォノニックドメインの周期Pは、1nmから300nmの範囲内であることが好ましい。この理由としては、熱を運ぶフォノンの波長が主に1nmから300nmの範囲に及ぶからである。
本発明の実施の形態1の赤外線センサにおけるフォノニックドメインの貫通孔の直径Dは、周期Pに対して、D/P ≧ 0.5であることが好ましい。この理由としては、D/P < 0.5の条件下では空隙率が低下するため優れた断熱性能が得られないからである。なお隣り合う貫通孔は接触しないように、D/P < 0.9である必要もある。
本発明の実施の形態1の赤外線センサにおける一つのフォノニックドメインの面内の形状は円形でも多角形でも良いが、面内サイズは、フォノニックドメインを構成する周期構造の周期Pに対して一辺の長さ5P以上、面積25P2以上を満たすことが好ましい。この理由としては、PBGの形成には最低5周期分の一様な周期構造が必要となるからである。
本発明の実施の形態1の赤外線センサにおけるフォノニックドメインの周期構造を形成する単位格子22としては、図6A〜図6Dに示すように、正方格子(図6A)、六方格子(図6B)、長方格子(図6C)あるいは面心長方格子(図6D)などが挙げられる。各フォノニックドメインを構成する単位格子の種類は梁全域に渡って一種類であっても良く、数種類であっても良い。
本発明の実施の形態1の赤外線センサにおける梁13を構成する材料は、金属ではなく、半導体であることが好ましい。この理由としては、金属においては熱を運ぶ媒体がフォノンではなく自由電子であるためである。具体的には、Si、Geなどの単一元素からなる半導体や、SiN、SiC、SiGe、GaAs、InAs、InSb、InP、GaN、AlNなどの化合物半導体、あるいはFe2O3、VO2、TiO2、SrTiO3などの酸化物半導体や絶縁体を用いることが好ましい。
サーミスタ赤外線受光部12が用いられる場合、梁13は、半導体または絶縁体から形成され得る。絶縁体の材料の例は、Al2O3、SiO2などである。
本発明の実施の形態1の赤外線センサの製造方法の一例を下記に記す。
Siベース基板11の上面に信号処理回路14を形成した後に、熱酸化によって、ベース基板11の表面を被覆するようにSiO2の絶縁層を形成する。その後CVD法などで梁層をSiO2層の上面に形成する。なお梁層は赤外線受光部を構成する層も兼ねる。貫通孔20の形成には、100nmから300nmの周期構造では電子線リソグラフィー、1nmから100nmの周期ではブロック共重合体リソグラフィーを用いる。フォトリソグラフィーによって赤外線受光部12および梁13の形状を描画し、選択的エッチングによって梁層をベース基板11から空間的に離間させる。
サーミスタ方式の赤外線検出の場合、フォトリソグラフィーおよびスパッタリング法などによってPtなどからなるサーミスタ19を赤外線受光部12に形成する。さらに次の工程において、フォトリソグラフィーおよびスパッタリング法を用いて、赤外線受光部12上に、金黒などの赤外線吸収材料からなる赤外線吸収層16を形成する。また梁13の一部にフォトリソグラフィーおよびスパッタリング法を用いて電気配線15を設け、受光部に形成されたサーミスタ19とベース基板11上に設けられた信号処理回路14を電気的に接続する。サーミスタ方式では、赤外線が赤外線受光部12に入射すると、赤外線入射に伴うサーミスタの抵抗の温度変化を信号処理回路14でモニタリングすることで赤外線の入射量を判断し、赤外線センサとして機能する。
一方、サーモパイル方式の赤外線検出の場合、梁13を構成する半導体材料が熱電対として機能する。梁13を熱電対として機能させるために、図7に示すように、赤外線受光部12を挟んで梁の一方(すなわち、第1の梁13a)はP型、もう一方(すなわち、第2の梁13b)はN型にドーピングする。この際、赤外線受光部12上で、P型領域23とN型領域24が接触するようにドーピングを行う。一方、梁13のベース基板側の領域においては、ベース基板の一部にはみ出す形でドーピングを行う。梁13端部のドーピングされた領域からは、ベース基板11上に金属からなる電気配線15をフォトリソグラフィーおよびスパッタリング法を用いて設けて、ベース基板11上に形成された信号処理回路14に電気的に接続する。サーモパイル方式では、N型にドープされた梁の端部とP型にドープされた梁13での端部の間で発生した起電圧を信号処理回路14でモニタリングすることで赤外線の入射量を判断し、赤外線センサとして機能する。この説明から明らかなように、サーモパイル赤外線受光部12が用いられる場合、p型にドープされた第1の梁13aおよびn型にドープされた第2の梁13bが必要であるため、梁13は絶縁体から形成されない。一方、サーミスタ赤外線受光部12が用いられる場合、梁13は第2の梁13bは必須ではなく、かつ梁13(すなわち、第1の梁13a)は絶縁体から形成され得る。
(実施の形態2)
図8に、本発明の実施の形態2の赤外線センサにおける梁13を構成する二次元フォノニック結晶の一例を示す。実施の形態1と同様、実施の形態2の梁は複数のフォノニックドメイン21によって構成されている。実施の形態2のフォノニックドメインは、一つの周期構造を構成する貫通孔同士の間隙に、周期構造とは異なる新たな周期構造を含む、階層構造からなる複数の周期構造を含むことを特徴とする。一例として、直径D1の貫通孔20が周期P1で配列する第1周期構造25の間隙の中に、直径D2の貫通孔20が周期P2で配列するもう一つの第2周期構造26が存在する階層構造からなるマルチ周期構造によってフォノニックドメインが形成されている。このように複数の周期構造を一つのフォノニックドメイン内に形成することで、複数のPBGを一度に形成することができる。さらに、複数のPBGで熱の帯域を挟み込むように周期構造を形成すれば、バンド端効果によって熱の帯域のフォノンの群速度を低下させることが出来るため、さらなる熱伝導率の低減効果が得られる。実施の形態2においても、実施の形態1と同様に、隣り合うフォノニックドメイン間では異なる周期構造を有する。実施の形態2における赤外線センサの梁13では、図8に示すように、赤外線受光部12側からベース基板11側の方向に沿って、2種類以上のフォノニックドメイン21が任意の間隔毎に、第1周期構造25あるいは第2周期構造26のいずれかの周期が増大するように配置される。なおフォノニックドメイン21の数は多ければ多いほど断熱効果は高まる。この理由としては、異なる周期構造を持つフォノニックドメインは異なるフォノン分散を持つため、隣り合うフォノニックドメインの間では、フォノン群速度のミスマッチによって界面熱抵抗が発生するためである。隣り合うフォノニックドメインが配列する間隔は周期的でも良いし、ランダムでも良い。
図8に、本発明の実施の形態2の赤外線センサにおける梁13を構成する二次元フォノニック結晶の一例を示す。実施の形態1と同様、実施の形態2の梁は複数のフォノニックドメイン21によって構成されている。実施の形態2のフォノニックドメインは、一つの周期構造を構成する貫通孔同士の間隙に、周期構造とは異なる新たな周期構造を含む、階層構造からなる複数の周期構造を含むことを特徴とする。一例として、直径D1の貫通孔20が周期P1で配列する第1周期構造25の間隙の中に、直径D2の貫通孔20が周期P2で配列するもう一つの第2周期構造26が存在する階層構造からなるマルチ周期構造によってフォノニックドメインが形成されている。このように複数の周期構造を一つのフォノニックドメイン内に形成することで、複数のPBGを一度に形成することができる。さらに、複数のPBGで熱の帯域を挟み込むように周期構造を形成すれば、バンド端効果によって熱の帯域のフォノンの群速度を低下させることが出来るため、さらなる熱伝導率の低減効果が得られる。実施の形態2においても、実施の形態1と同様に、隣り合うフォノニックドメイン間では異なる周期構造を有する。実施の形態2における赤外線センサの梁13では、図8に示すように、赤外線受光部12側からベース基板11側の方向に沿って、2種類以上のフォノニックドメイン21が任意の間隔毎に、第1周期構造25あるいは第2周期構造26のいずれかの周期が増大するように配置される。なおフォノニックドメイン21の数は多ければ多いほど断熱効果は高まる。この理由としては、異なる周期構造を持つフォノニックドメインは異なるフォノン分散を持つため、隣り合うフォノニックドメインの間では、フォノン群速度のミスマッチによって界面熱抵抗が発生するためである。隣り合うフォノニックドメインが配列する間隔は周期的でも良いし、ランダムでも良い。
なお図8では一つのフォノニックドメイン21内に2種類の周期構造が形成されているが、フォノニックドメイン21を構成する周期構造は3種類以上あっても良い。例えば、直径D1の貫通孔が周期P1で配列する第1周期構造25の間隙の中に、直径D2の貫通孔が周期P2で配列する第2周期構造26が存在し、さらに第2周期構造の間隙に、もう一つの第3周期構造が存在する構造でも良い。
本発明の実施の形態2の赤外線センサにおけるフォノニックドメイン21の周期Pは、1nmから300nmの範囲内であることが好ましい。この理由としては、熱を運ぶフォノンの波長が主に1nmから300nmの範囲に及ぶからである。
本発明の実施の形態2の赤外線センサにおけるフォノニックドメイン21内における最大の周期を持つ周期構造を第1周期構造、第1周期構造の間隙に配列される周期構造を第2周期構造と定義した場合、第1周期構造における隣り合う貫通孔の間隙は、第2周期構造の貫通孔が5周期分以上収まる大きさである必要がある。第1周期構造の周期P1と第2周期構造の周期P2はP1/P2 ≧ 10の関係を満たすのが好ましい。この理由としては、熱の帯域が3桁程度異なる周波数帯域に広く分布するのに対して、第1周期構造によって形成されるPBGの中心周波数と第2周期構造によって形成されるPBGの中心周波数を10倍以上異なるように設計するためである。両者のPBGの中心周波数が近い場合、マルチ周期構造の効果は弱まる。上記関係を満たすようであれば、第1周期構造と第2周期構造の貫通孔の直径と周期の関係D/Pはどのように設計しても良い。なお隣り合う貫通孔は接触しないように、D/Pを適切に設定する必要がある。
本発明の実施の形態2の赤外線センサにおけるフォノニックドメイン21の面内の形状は円形でも多角形でも良いが、面内サイズは、フォノニックドメイン内における最大の周期を持つ周期構造を第1周期構造と定義した場合、第1周期構造の周期P1に対して一辺の長さ5P1以上、面積25P1 2以上を満たすことが好ましい。この理由としては、PBGの形成には最低5周期分の一様な周期構造が必要となるからである。
本発明の実施の形態2の赤外線センサにおけるフォノニックドメインの周期構造を形成する単位格子としては、図6に示すように、正方格子(図6a)、六方格子(図6b)、長方格子(図6c)、あるいは面心長方格子(図6d)などが挙げられる。各フォノニックドメインを構成する単位格子の種類は梁全域に渡って一種類であっても良く、数種類であっても良い。
本発明の実施の形態2の赤外線センサの製造方法は実施の形態1の赤外線センサと同様の手法で製造できる。
(実施の形態3)
図9に、本発明の実施の形態3の赤外線センサにおける梁13を構成する二次元フォノニック結晶の一例を示す。実施の形態1と同様、実施の形態3の梁13は複数のフォノニックドメインによって構成されている。実施の形態3のフォノニックドメイン21は、直径D1の貫通孔20が周期P1で配列することで形成されるミクロ周期構造27が複数個配列することで形成される。ミクロ周期構造27をサブフォノニックドメイン28と定義する。また一つのフォノニックドメイン21を構成するサブフォノニックドメイン28は、一様な形状からなり、周期Pmの間隔で配列し、マクロ周期構造29を形成している。なおサブフォノニックドメイン28の形状は、一様であれば円形でも良く、四角形でも良い。サブフォノニックドメインの一辺の長さが、サブフォノニックドメイン28の全体形状に対して十分小さい場合、波長の長いフォノンに対して、一つのサブフォノニックドメイン28は図10の模式図に示すように一つの大きな貫通孔として機能する。それゆえ、波長の長いフォノンに対してフォノニック結晶として断熱性能を発揮する。それに対して、波長の短いフォノンに対しては、サブフォノニックドメイン28内のミクロ周期構造27が断熱性能を発揮する。したがって、本発明の実施の形態3におけるミクロ周期構造27を構成する貫通孔の周期P1は、サブフォノニックドメインの一辺の長さLsに対して、P1/Ls ≦ 0.1である必要がある。この理由としては、P1/Ls >0.1の場合、長い波長のフォノンはミクロ周期構造によって散乱され、フォノニック結晶として機能しないためである。
図9に、本発明の実施の形態3の赤外線センサにおける梁13を構成する二次元フォノニック結晶の一例を示す。実施の形態1と同様、実施の形態3の梁13は複数のフォノニックドメインによって構成されている。実施の形態3のフォノニックドメイン21は、直径D1の貫通孔20が周期P1で配列することで形成されるミクロ周期構造27が複数個配列することで形成される。ミクロ周期構造27をサブフォノニックドメイン28と定義する。また一つのフォノニックドメイン21を構成するサブフォノニックドメイン28は、一様な形状からなり、周期Pmの間隔で配列し、マクロ周期構造29を形成している。なおサブフォノニックドメイン28の形状は、一様であれば円形でも良く、四角形でも良い。サブフォノニックドメインの一辺の長さが、サブフォノニックドメイン28の全体形状に対して十分小さい場合、波長の長いフォノンに対して、一つのサブフォノニックドメイン28は図10の模式図に示すように一つの大きな貫通孔として機能する。それゆえ、波長の長いフォノンに対してフォノニック結晶として断熱性能を発揮する。それに対して、波長の短いフォノンに対しては、サブフォノニックドメイン28内のミクロ周期構造27が断熱性能を発揮する。したがって、本発明の実施の形態3におけるミクロ周期構造27を構成する貫通孔の周期P1は、サブフォノニックドメインの一辺の長さLsに対して、P1/Ls ≦ 0.1である必要がある。この理由としては、P1/Ls >0.1の場合、長い波長のフォノンはミクロ周期構造によって散乱され、フォノニック結晶として機能しないためである。
このように複数の周期構造を一つのフォノニックドメイン内に形成することで、複数のPBGを一度に形成することができる。複数のPBGで熱の帯域を挟み込むように周期構造を形成すれば、バンド端効果によって熱の帯域のフォノンの群速度を低下させることが出来るため、さらなる熱伝導率の低減効果が得られる。実施の形態3においても、実施の形態1と同様に、隣り合うフォノニックドメイン間では異なる周期構造を有する。実施の形態3における赤外線センサの梁13では、図9に示すように、赤外線受光部12側からベース基板11側の方向に沿って、2種類以上のフォノニックドメインが任意の間隔毎に、ミクロ周期構造27あるいはマクロ周期構造29のいずれかの周期が増大するように配置される。なおフォノニックドメイン21の数は多ければ多いほど断熱効果は高まる。この理由としては、異なる周期構造を持つフォノニックドメインは異なるフォノン分散を持つため、隣り合うフォノニックドメインの間では、フォノン群速度のミスマッチによって界面熱抵抗が発生するためである。隣り合うフォノニックドメインが配列する間隔は周期的でも良いし、ランダムでも良い。
本発明の実施の形態3の赤外線センサにおけるサブフォノニックドメイン28のミクロ周期構造27の周期Psは、1nmから30nmの範囲内であることが好ましい。一方、サブフォノニックドメイン28が形成するマクロ周期構造29の周期Pmはミクロ周期構造27の周期に応じて、10nmから300nmであることが好ましい。
サブフォノニックドメイン28を構成するミクロ周期構造27では、貫通孔が5周期分以上整列している必要がある。この条件はフォノニックドメイン21が形成するマクロ周期構造29にも当てはまる。
本発明の実施の形態3の赤外線センサにおけるフォノニックドメイン21の面内の形状は円形でも多角形でも良い。本発明の実施の形態3におけるフォノニックドメインの面内サイズは、サブフォノニックドメイン21が形成するマクロ周期構造29の周期Pmに対して、一辺の長さ5Pm以上、面積25Pm 2以上を満たすことが好ましい。この理由としては、PBGの形成には最低5周期分の一様な周期構造が必要となるからである。
本発明の実施の形態3の赤外線センサにおけるマクロ周期構造およびミクロ周期構造を形成する単位格子としては、図6に示すように、正方格子(図6a)、六方格子(図6b)、長方格子(図6c)、あるいは面心長方格子(図6d)などが挙げられる。各フォノニックドメインを構成する単位格子の種類は梁全域に渡って一種類であっても良く、数種類であっても良い。
本発明の実施の形態3の赤外線センサの製造方法は実施の形態1の赤外線センサと同様の手法で製造できる。
上記の開示内容から導出される本発明は以下の通りである。
1.赤外線センサであって、以下を具備する:
凹部を有するベース基板、
サーモパイル赤外線受光部、
第1の梁、および
第2の梁、ここで、
前記第1の梁の一端が前記赤外線受光部に接続されており、
前記第1の梁の他端が前記ベース基板に接続されており、
前記第2の梁の一端が前記赤外線受光部に接続されており、
前記第2の梁の他端が前記ベース基板に接続されており、
断面視において、前記赤外線受光部が前記ベース基板の上部で懸架されるように前記凹部が前記赤外線受光部および前記ベース基板の間に挟まれており、
断面視において、前記第1の梁が前記ベース基板の上部で懸架されるように前記凹部が前記第1の梁および前記ベース基板の間に挟まれており、juy6
断面視において、前記第2の梁が前記ベース基板の上部で懸架されるように前記凹部が前記第2の梁および前記ベース基板の間に挟まれており、
前記第1の梁は、p型第1ドメインおよびp型第2ドメインを含み、
平面視において、前記p型第1ドメインは、前記p型第2ドメインおよび前記赤外線受光部の間に挟まれており、
前記p型第1ドメインは、周期p1pで規則的に配列された複数の貫通孔を具備するフォノニック結晶から形成されており、
前記p型第2ドメインは、周期p2pで規則的に配列された複数の貫通孔を具備するフォノニック結晶から形成されており、
前記周期p2pの値は、前記周期p1pの値よりも大きく、
前記第2の梁は、n型第1ドメインおよびn型第2ドメインを含み、
平面視において、前記n型第1ドメインは、前記n型第2ドメインおよび前記赤外線受光部の間に挟まれており、
前記n型第1ドメインは、周期p1nで規則的に配列された複数の貫通孔を具備するフォノニック結晶から形成されており、
前記n型第2ドメインは、周期p2nで規則的に配列された複数の貫通孔を具備するフォノニック結晶から形成されており、かつ
前記周期p2nの値は、前記周期p1nの値よりも大きい。
2.項目1に記載の赤外線センサであって、さらに以下を具備する:
前記第1の梁に電気的に接続された第1の配線、
前記第2の梁に電気的に接続された第2の配線、
前記第1の配線に電気的に接続された第1の電極、および
前記第2の配線に電気的に接続された第2の電極。
3.赤外線センサであって、以下を具備する:
凹部を有するベース基板、
サーミスタ赤外線受光部、
第1の梁、
前記赤外線受光部に電気的に接続された第1の配線、
前記赤外線受光部に電気的に接続された第2の配線、
前記第1の配線に電気的に接続された第1の電極、および
前記第2の配線に電気的に接続された第2の電極、ここで
前記第1の梁の一端が前記赤外線受光部に接続されており、
前記第1の梁の他端が前記ベース基板に接続されており、
断面視において、前記赤外線受光部が前記ベース基板の上部で懸架されるように前記凹部が前記赤外線受光部および前記ベース基板の間に挟まれており、
断面視において、前記第1の梁が前記ベース基板の上部で懸架されるように前記凹部が前記第1の梁および前記ベース基板の間に挟まれており、
前記第1の梁は、第1ドメインおよび第2ドメインを含み、
平面視において、前記第1ドメインは、前記第2ドメインおよび前記赤外線受光部の間に挟まれており、
前記第1ドメインは、周期p1で規則的に配列された複数の貫通孔を具備するフォノニック結晶から形成されており、
前記第2ドメインは、周期p2で規則的に配列された複数の貫通孔を具備するフォノニック結晶から形成されており、かつ
前記周期p2の値は、前記周期p1の値よりも大きい。
4.項目3に記載の赤外線センサであって、さらに以下を具備する:
第2の梁、ここで、
前記第2の梁の一端が前記赤外線受光部に接続されており、
前記第2の梁の他端が前記ベース基板に接続されており、
断面視において、前記第2の梁が前記ベース基板の上部で懸架されるように前記凹部が前記第2の梁および前記ベース基板の間に挟まれており、
前記第2の梁は、それぞれフォノニック結晶から形成された第3ドメインおよび第4ドメインを具備し、
平面視において、前記第3ドメインは、前記第4ドメインおよび前記赤外線受光部の間に挟まれており、
前記第3ドメインは、周期p3で規則的に配列された複数の貫通孔を具備するフォノニック結晶から形成されており、
前記第4ドメインは、周期p4で規則的に配列された複数の貫通孔を具備するフォノニック結晶から形成されており、かつ
前記周期p4の値は、前記周期p3の値よりも大きい。
5.項目3に記載の赤外線センサであって、
前記第1の配線および前記第2の配線は、前記第1の梁の表面に接している。
6.項目4に記載の赤外線センサであって、
前記第1の配線は、前記第1の梁の表面に接しており、かつ
前記第2の配線は、前記第2の梁の表面に接している。
1.赤外線センサであって、以下を具備する:
凹部を有するベース基板、
サーモパイル赤外線受光部、
第1の梁、および
第2の梁、ここで、
前記第1の梁の一端が前記赤外線受光部に接続されており、
前記第1の梁の他端が前記ベース基板に接続されており、
前記第2の梁の一端が前記赤外線受光部に接続されており、
前記第2の梁の他端が前記ベース基板に接続されており、
断面視において、前記赤外線受光部が前記ベース基板の上部で懸架されるように前記凹部が前記赤外線受光部および前記ベース基板の間に挟まれており、
断面視において、前記第1の梁が前記ベース基板の上部で懸架されるように前記凹部が前記第1の梁および前記ベース基板の間に挟まれており、juy6
断面視において、前記第2の梁が前記ベース基板の上部で懸架されるように前記凹部が前記第2の梁および前記ベース基板の間に挟まれており、
前記第1の梁は、p型第1ドメインおよびp型第2ドメインを含み、
平面視において、前記p型第1ドメインは、前記p型第2ドメインおよび前記赤外線受光部の間に挟まれており、
前記p型第1ドメインは、周期p1pで規則的に配列された複数の貫通孔を具備するフォノニック結晶から形成されており、
前記p型第2ドメインは、周期p2pで規則的に配列された複数の貫通孔を具備するフォノニック結晶から形成されており、
前記周期p2pの値は、前記周期p1pの値よりも大きく、
前記第2の梁は、n型第1ドメインおよびn型第2ドメインを含み、
平面視において、前記n型第1ドメインは、前記n型第2ドメインおよび前記赤外線受光部の間に挟まれており、
前記n型第1ドメインは、周期p1nで規則的に配列された複数の貫通孔を具備するフォノニック結晶から形成されており、
前記n型第2ドメインは、周期p2nで規則的に配列された複数の貫通孔を具備するフォノニック結晶から形成されており、かつ
前記周期p2nの値は、前記周期p1nの値よりも大きい。
2.項目1に記載の赤外線センサであって、さらに以下を具備する:
前記第1の梁に電気的に接続された第1の配線、
前記第2の梁に電気的に接続された第2の配線、
前記第1の配線に電気的に接続された第1の電極、および
前記第2の配線に電気的に接続された第2の電極。
3.赤外線センサであって、以下を具備する:
凹部を有するベース基板、
サーミスタ赤外線受光部、
第1の梁、
前記赤外線受光部に電気的に接続された第1の配線、
前記赤外線受光部に電気的に接続された第2の配線、
前記第1の配線に電気的に接続された第1の電極、および
前記第2の配線に電気的に接続された第2の電極、ここで
前記第1の梁の一端が前記赤外線受光部に接続されており、
前記第1の梁の他端が前記ベース基板に接続されており、
断面視において、前記赤外線受光部が前記ベース基板の上部で懸架されるように前記凹部が前記赤外線受光部および前記ベース基板の間に挟まれており、
断面視において、前記第1の梁が前記ベース基板の上部で懸架されるように前記凹部が前記第1の梁および前記ベース基板の間に挟まれており、
前記第1の梁は、第1ドメインおよび第2ドメインを含み、
平面視において、前記第1ドメインは、前記第2ドメインおよび前記赤外線受光部の間に挟まれており、
前記第1ドメインは、周期p1で規則的に配列された複数の貫通孔を具備するフォノニック結晶から形成されており、
前記第2ドメインは、周期p2で規則的に配列された複数の貫通孔を具備するフォノニック結晶から形成されており、かつ
前記周期p2の値は、前記周期p1の値よりも大きい。
4.項目3に記載の赤外線センサであって、さらに以下を具備する:
第2の梁、ここで、
前記第2の梁の一端が前記赤外線受光部に接続されており、
前記第2の梁の他端が前記ベース基板に接続されており、
断面視において、前記第2の梁が前記ベース基板の上部で懸架されるように前記凹部が前記第2の梁および前記ベース基板の間に挟まれており、
前記第2の梁は、それぞれフォノニック結晶から形成された第3ドメインおよび第4ドメインを具備し、
平面視において、前記第3ドメインは、前記第4ドメインおよび前記赤外線受光部の間に挟まれており、
前記第3ドメインは、周期p3で規則的に配列された複数の貫通孔を具備するフォノニック結晶から形成されており、
前記第4ドメインは、周期p4で規則的に配列された複数の貫通孔を具備するフォノニック結晶から形成されており、かつ
前記周期p4の値は、前記周期p3の値よりも大きい。
5.項目3に記載の赤外線センサであって、
前記第1の配線および前記第2の配線は、前記第1の梁の表面に接している。
6.項目4に記載の赤外線センサであって、
前記第1の配線は、前記第1の梁の表面に接しており、かつ
前記第2の配線は、前記第2の梁の表面に接している。
本開示によれば、梁内において、赤外線受光部からベース基板方向に向かって、任意の間隔毎に貫通孔の周期が増大するように微細加工を施すことにより、梁全域に渡って優れた断熱効果が得られる。その結果、優れた感度を持つ赤外線センサを提供することができる。
11 ベース基板
12 赤外線受光部
13 梁
14 信号処理回路
15 電気配線
16 赤外線吸収層
17 赤外線
18 サーモパイル
19 サーミスタ配線
20 貫通孔
21 フォノニックドメイン
22 単位格子
23 P型半導体
24 N型半導体
25 第1周期構造
26 第2周期構造
27 ミクロ周期構造
28 サブフォノニックドメイン
29 マクロ周期構造
12 赤外線受光部
13 梁
14 信号処理回路
15 電気配線
16 赤外線吸収層
17 赤外線
18 サーモパイル
19 サーミスタ配線
20 貫通孔
21 フォノニックドメイン
22 単位格子
23 P型半導体
24 N型半導体
25 第1周期構造
26 第2周期構造
27 ミクロ周期構造
28 サブフォノニックドメイン
29 マクロ周期構造
Claims (6)
- 赤外線センサであって、以下を具備する:
凹部を有するベース基板、
サーモパイル赤外線受光部、
第1の梁、および
第2の梁、ここで、
前記第1の梁の一端が前記赤外線受光部に接続されており、
前記第1の梁の他端が前記ベース基板に接続されており、
前記第2の梁の一端が前記赤外線受光部に接続されており、
前記第2の梁の他端が前記ベース基板に接続されており、
断面視において、前記赤外線受光部が前記ベース基板の上部で懸架されるように前記凹部が前記赤外線受光部および前記ベース基板の間に挟まれており、
断面視において、前記第1の梁が前記ベース基板の上部で懸架されるように前記凹部が前記第1の梁および前記ベース基板の間に挟まれており、juy6
断面視において、前記第2の梁が前記ベース基板の上部で懸架されるように前記凹部が前記第2の梁および前記ベース基板の間に挟まれており、
前記第1の梁は、p型第1ドメインおよびp型第2ドメインを含み、
平面視において、前記p型第1ドメインは、前記p型第2ドメインおよび前記赤外線受光部の間に挟まれており、
前記p型第1ドメインは、周期p1pで規則的に配列された複数の貫通孔を具備するフォノニック結晶から形成されており、
前記p型第2ドメインは、周期p2pで規則的に配列された複数の貫通孔を具備するフォノニック結晶から形成されており、
前記周期p2pの値は、前記周期p1pの値よりも大きく、
前記第2の梁は、n型第1ドメインおよびn型第2ドメインを含み、
平面視において、前記n型第1ドメインは、前記n型第2ドメインおよび前記赤外線受光部の間に挟まれており、
前記n型第1ドメインは、周期p1nで規則的に配列された複数の貫通孔を具備するフォノニック結晶から形成されており、
前記n型第2ドメインは、周期p2nで規則的に配列された複数の貫通孔を具備するフォノニック結晶から形成されており、かつ
前記周期p2nの値は、前記周期p1nの値よりも大きい。 - 請求項1に記載の赤外線センサであって、さらに以下を具備する:
前記第1の梁に電気的に接続された第1の配線、
前記第2の梁に電気的に接続された第2の配線、
前記第1の配線に電気的に接続された第1の電極、および
前記第2の配線に電気的に接続された第2の電極。 - 赤外線センサであって、以下を具備する:
凹部を有するベース基板、
サーミスタ赤外線受光部、
第1の梁、
前記赤外線受光部に電気的に接続された第1の配線、
前記赤外線受光部に電気的に接続された第2の配線、
前記第1の配線に電気的に接続された第1の電極、および
前記第2の配線に電気的に接続された第2の電極、ここで
前記第1の梁の一端が前記赤外線受光部に接続されており、
前記第1の梁の他端が前記ベース基板に接続されており、
断面視において、前記赤外線受光部が前記ベース基板の上部で懸架されるように前記凹部が前記赤外線受光部および前記ベース基板の間に挟まれており、
断面視において、前記第1の梁が前記ベース基板の上部で懸架されるように前記凹部が前記第1の梁および前記ベース基板の間に挟まれており、
前記第1の梁は、第1ドメインおよび第2ドメインを含み、
平面視において、前記第1ドメインは、前記第2ドメインおよび前記赤外線受光部の間に挟まれており、
前記第1ドメインは、周期p1で規則的に配列された複数の貫通孔を具備するフォノニック結晶から形成されており、
前記第2ドメインは、周期p2で規則的に配列された複数の貫通孔を具備するフォノニック結晶から形成されており、かつ
前記周期p2の値は、前記周期p1の値よりも大きい。 - 請求項3に記載の赤外線センサであって、さらに以下を具備する:
第2の梁、ここで、
前記第2の梁の一端が前記赤外線受光部に接続されており、
前記第2の梁の他端が前記ベース基板に接続されており、
断面視において、前記第2の梁が前記ベース基板の上部で懸架されるように前記凹部が前記第2の梁および前記ベース基板の間に挟まれており、
前記第2の梁は、それぞれフォノニック結晶から形成された第3ドメインおよび第4ドメインを具備し、
平面視において、前記第3ドメインは、前記第4ドメインおよび前記赤外線受光部の間に挟まれており、
前記第3ドメインは、周期p3で規則的に配列された複数の貫通孔を具備するフォノニック結晶から形成されており、
前記第4ドメインは、周期p4で規則的に配列された複数の貫通孔を具備するフォノニック結晶から形成されており、かつ
前記周期p4の値は、前記周期p3の値よりも大きい。 - 請求項3に記載の赤外線センサであって、
前記第1の配線および前記第2の配線は、前記第1の梁の表面に接している。 - 請求項4に記載の赤外線センサであって、
前記第1の配線は、前記第1の梁の表面に接しており、かつ
前記第2の配線は、前記第2の梁の表面に接している。
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2016116747 | 2016-06-13 | ||
JP2016116747 | 2016-06-13 |
Publications (3)
Publication Number | Publication Date |
---|---|
JP2017223644A true JP2017223644A (ja) | 2017-12-21 |
JP2017223644A5 JP2017223644A5 (ja) | 2018-02-08 |
JP6311133B2 JP6311133B2 (ja) | 2018-04-18 |
Family
ID=60573729
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP2017028987A Active JP6311133B2 (ja) | 2016-06-13 | 2017-02-20 | 赤外線センサ |
Country Status (3)
Country | Link |
---|---|
US (3) | US10281333B2 (ja) |
JP (1) | JP6311133B2 (ja) |
CN (1) | CN107490437B (ja) |
Cited By (15)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2019105624A (ja) * | 2017-12-11 | 2019-06-27 | パナソニックIpマネジメント株式会社 | 赤外線センサおよび赤外線センサのボロメータ赤外線受光部を冷却する方法 |
WO2019171465A1 (ja) * | 2018-03-06 | 2019-09-12 | Tdk株式会社 | 熱利用デバイス |
WO2019225058A1 (ja) | 2018-05-22 | 2019-11-28 | パナソニックIpマネジメント株式会社 | 赤外線センサ及びフォノニック結晶体 |
WO2020003689A1 (ja) * | 2018-06-29 | 2020-01-02 | 国立研究開発法人産業技術総合研究所 | フォノニック材料及びその製造方法 |
WO2020174731A1 (ja) | 2019-02-28 | 2020-09-03 | パナソニックIpマネジメント株式会社 | 赤外線センサ、赤外線センサアレイ、及び赤外線センサの製造方法 |
WO2020174732A1 (ja) | 2019-02-28 | 2020-09-03 | パナソニックIpマネジメント株式会社 | 赤外線センサ及び赤外線センサアレイ |
WO2020174733A1 (ja) | 2019-02-28 | 2020-09-03 | パナソニックIpマネジメント株式会社 | 積層体及び結晶体 |
JPWO2021132359A1 (ja) * | 2019-12-28 | 2021-07-01 | ||
WO2021132358A1 (ja) * | 2019-12-28 | 2021-07-01 | 伸幸 全 | フォノニック材料及びその製造方法 |
WO2022138247A1 (ja) * | 2020-12-25 | 2022-06-30 | パナソニックIpマネジメント株式会社 | 固体材料 |
WO2022202252A1 (ja) | 2021-03-24 | 2022-09-29 | パナソニックIpマネジメント株式会社 | 積層体、電子デバイス、及び積層体の製造方法 |
WO2022239610A1 (ja) | 2021-05-11 | 2022-11-17 | パナソニックIpマネジメント株式会社 | サーモパイル型センサ及びセンサアレイ |
WO2022239611A1 (ja) | 2021-05-11 | 2022-11-17 | パナソニックIpマネジメント株式会社 | 赤外線センサ及び赤外線センサの製造方法 |
WO2023013354A1 (ja) * | 2021-08-03 | 2023-02-09 | パナソニックIpマネジメント株式会社 | 導電性断熱材及び赤外線センサ |
WO2023090010A1 (ja) | 2021-11-17 | 2023-05-25 | パナソニックIpマネジメント株式会社 | 赤外線センサ、センシングシステム、及び赤外線のセンシング方法 |
Families Citing this family (6)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN113330303B (zh) * | 2019-05-21 | 2024-04-19 | 松下知识产权经营株式会社 | 气体传感器 |
KR102236192B1 (ko) * | 2019-11-25 | 2021-04-06 | 한국표준과학연구원 | 굴절률분포형 음향양자결정 평면 렌즈 및 이의 설계방법 |
CN111392689B (zh) * | 2020-03-05 | 2022-09-20 | 北京理工大学 | 一种金黑图形化的方法 |
CN111667807B (zh) * | 2020-05-27 | 2023-06-02 | 武汉大学 | 复合式声子晶体结构及其制备方法 |
CN112710402B (zh) * | 2020-12-22 | 2022-11-22 | 武汉敏声新技术有限公司 | 谐振式热红外传感器及其制备方法 |
US11961988B1 (en) | 2023-05-26 | 2024-04-16 | William N. Carr | Hybrid battery system comprising a continuous power source |
Citations (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US6396191B1 (en) * | 1999-03-11 | 2002-05-28 | Eneco, Inc. | Thermal diode for energy conversion |
US20100052089A1 (en) * | 2008-09-02 | 2010-03-04 | Gady Golan | Photoelectric Structure and Method of Manufacturing Thereof |
JP2013545353A (ja) * | 2010-10-15 | 2013-12-19 | コミシリア ア レネルジ アトミック エ オ エナジーズ オルタネティヴズ | 均質な材料から形成された不均質な音響構造 |
US20140076024A1 (en) * | 2012-09-19 | 2014-03-20 | Commissariat A L'energie Atomique Et Aux Ene Alt | Thermal flow sensor with vibrating element and gas sensor comprising at least one such sensor |
US20160155923A1 (en) * | 2014-12-02 | 2016-06-02 | Stmicroelectronics (Crolles 2) Sas | Thermo-electric generator |
Family Cites Families (28)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US6100463A (en) * | 1997-11-18 | 2000-08-08 | The Boeing Company | Method for making advanced thermoelectric devices |
US8217381B2 (en) * | 2004-06-04 | 2012-07-10 | The Board Of Trustees Of The University Of Illinois | Controlled buckling structures in semiconductor interconnects and nanomembranes for stretchable electronics |
US9865790B2 (en) * | 2004-12-07 | 2018-01-09 | Toyota Motor Engineering & Manufacturing North America, Inc. | Nanostructured bulk thermoelectric material |
US7309830B2 (en) * | 2005-05-03 | 2007-12-18 | Toyota Motor Engineering & Manufacturing North America, Inc. | Nanostructured bulk thermoelectric material |
KR100978329B1 (ko) * | 2005-08-17 | 2010-08-26 | 파나소닉 전공 주식회사 | 적외선 센서 유닛 및 그 제조 방법 |
US7825324B2 (en) * | 2006-12-29 | 2010-11-02 | Alcatel-Lucent Usa Inc. | Spreading thermoelectric coolers |
WO2008100901A1 (en) * | 2007-02-12 | 2008-08-21 | Massachusetts Institute Of Technology | Transformative periodic structures, in particular tunable photonic crystals and phononic crystals |
US7733198B1 (en) * | 2007-05-15 | 2010-06-08 | Sandia Corporation | Microfabricated bulk wave acoustic bandgap device |
US8094023B1 (en) * | 2008-03-10 | 2012-01-10 | Sandia Corporation | Phononic crystal devices |
US8054145B2 (en) * | 2008-04-30 | 2011-11-08 | Georgia Tech Research Corporation | Phononic crystal wave structures |
CN102197290A (zh) * | 2008-09-25 | 2011-09-21 | 松下电工株式会社 | 红外线传感器 |
US8508370B1 (en) * | 2009-02-27 | 2013-08-13 | Sandia Corporation | Synthetic thermoelectric materials comprising phononic crystals |
TWI424687B (zh) * | 2009-12-02 | 2014-01-21 | Ind Tech Res Inst | 共振器與週期性結構 |
US8927934B2 (en) * | 2010-09-13 | 2015-01-06 | Ricoh Company, Ltd. | Thermal infrared sensor and manufacturing method thereof |
US9419198B2 (en) * | 2010-10-22 | 2016-08-16 | California Institute Of Technology | Nanomesh phononic structures for low thermal conductivity and thermoelectric energy conversion materials |
US20120282435A1 (en) * | 2011-03-24 | 2012-11-08 | University Of Massachusetts | Nanostructured Silicon with Useful Thermoelectric Properties |
US9679779B2 (en) * | 2011-03-30 | 2017-06-13 | The Aerospace Corporation | Systems and methods for depositing materials on either side of a freestanding film using selective thermally-assisted chemical vapor deposition (STA-CVD), and structures formed using same |
US8969850B2 (en) * | 2011-09-23 | 2015-03-03 | Rockwell Collins, Inc. | Nano-structure arrays for EMR imaging |
SG192390A1 (en) * | 2012-02-01 | 2013-08-30 | Agency Science Tech & Res | Radiation sensor |
WO2013149205A1 (en) * | 2012-03-29 | 2013-10-03 | California Institute Of Technology | Phononic structures and related devices and methods |
US9417465B2 (en) * | 2013-04-07 | 2016-08-16 | The Regents Of The University Of Colorado, A Body Corporate | Nanophononic metamaterials |
WO2015012914A2 (en) * | 2013-04-22 | 2015-01-29 | Northeastern University | Nano- and micro-electromechanical resonators |
JP6458250B2 (ja) * | 2013-06-10 | 2019-01-30 | パナソニックIpマネジメント株式会社 | 赤外線センサ |
EP3064914B1 (en) * | 2013-10-31 | 2021-11-24 | Hamamatsu Photonics K.K. | Light-detecting device |
US20160093420A1 (en) * | 2014-09-26 | 2016-03-31 | Elwha Llc | Artificially-structured superconducting materials |
CN104659137B (zh) * | 2014-12-22 | 2017-02-22 | 电子科技大学 | 一种全固态光子增强热电子发射器件 |
US10444431B2 (en) * | 2015-01-15 | 2019-10-15 | National Institute Of Standards And Technology | Reticulated resonator, process for making and use of same |
US9696492B1 (en) * | 2016-03-03 | 2017-07-04 | National Technology & Engineering Solutions Of Sandia, Llc | On-chip photonic-phononic emitter-receiver apparatus |
-
2017
- 2017-02-20 JP JP2017028987A patent/JP6311133B2/ja active Active
- 2017-04-25 CN CN201710274259.9A patent/CN107490437B/zh active Active
- 2017-04-26 US US15/497,353 patent/US10281333B2/en active Active
-
2019
- 2019-03-20 US US16/359,798 patent/US20190219448A1/en not_active Abandoned
- 2019-06-13 US US16/439,896 patent/US10634561B2/en active Active
Patent Citations (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US6396191B1 (en) * | 1999-03-11 | 2002-05-28 | Eneco, Inc. | Thermal diode for energy conversion |
US20100052089A1 (en) * | 2008-09-02 | 2010-03-04 | Gady Golan | Photoelectric Structure and Method of Manufacturing Thereof |
JP2013545353A (ja) * | 2010-10-15 | 2013-12-19 | コミシリア ア レネルジ アトミック エ オ エナジーズ オルタネティヴズ | 均質な材料から形成された不均質な音響構造 |
US20140076024A1 (en) * | 2012-09-19 | 2014-03-20 | Commissariat A L'energie Atomique Et Aux Ene Alt | Thermal flow sensor with vibrating element and gas sensor comprising at least one such sensor |
US20160155923A1 (en) * | 2014-12-02 | 2016-06-02 | Stmicroelectronics (Crolles 2) Sas | Thermo-electric generator |
Non-Patent Citations (1)
Title |
---|
野村政宏 ほか: "マルチスケールフォノンブロッキングによる熱伝導の低減効果", 第62回応用物理学会春季学術講演会講演予稿集, JPN6018003876, 2015, pages 08 - 028, ISSN: 0003734222 * |
Cited By (36)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2019105624A (ja) * | 2017-12-11 | 2019-06-27 | パナソニックIpマネジメント株式会社 | 赤外線センサおよび赤外線センサのボロメータ赤外線受光部を冷却する方法 |
JP7232978B2 (ja) | 2017-12-11 | 2023-03-06 | パナソニックIpマネジメント株式会社 | 赤外線センサおよび赤外線センサのボロメータ赤外線受光部を冷却する方法 |
WO2019171465A1 (ja) * | 2018-03-06 | 2019-09-12 | Tdk株式会社 | 熱利用デバイス |
JP7173125B2 (ja) | 2018-03-06 | 2022-11-16 | Tdk株式会社 | 熱利用デバイス |
JPWO2019171465A1 (ja) * | 2018-03-06 | 2021-03-04 | Tdk株式会社 | 熱利用デバイス |
WO2019225058A1 (ja) | 2018-05-22 | 2019-11-28 | パナソニックIpマネジメント株式会社 | 赤外線センサ及びフォノニック結晶体 |
JP7352884B2 (ja) | 2018-05-22 | 2023-09-29 | パナソニックIpマネジメント株式会社 | 赤外線センサ及びフォノニック結晶体 |
US10890489B2 (en) | 2018-05-22 | 2021-01-12 | Panasonic Intellectual Property Management Co., Ltd. | Infrared sensor and phononic crystal |
JPWO2019225058A1 (ja) * | 2018-05-22 | 2021-05-06 | パナソニックIpマネジメント株式会社 | 赤外線センサ及びフォノニック結晶体 |
WO2020003689A1 (ja) * | 2018-06-29 | 2020-01-02 | 国立研究開発法人産業技術総合研究所 | フォノニック材料及びその製造方法 |
JPWO2020003689A1 (ja) * | 2018-06-29 | 2021-04-22 | 国立研究開発法人産業技術総合研究所 | フォノニック材料及びその製造方法 |
JP7145529B2 (ja) | 2018-06-29 | 2022-10-03 | 国立研究開発法人産業技術総合研究所 | フォノニック材料及びその製造方法 |
JPWO2020174732A1 (ja) * | 2019-02-28 | 2021-12-23 | パナソニックIpマネジメント株式会社 | 赤外線センサ及び赤外線センサアレイ |
CN113015889A (zh) * | 2019-02-28 | 2021-06-22 | 松下知识产权经营株式会社 | 红外线传感器、红外线传感器阵列及红外线传感器的制造方法 |
US12007283B2 (en) | 2019-02-28 | 2024-06-11 | Panasonic Intellectual Property Management Co., Ltd. | Infrared sensor and infrared sensor array |
CN113015890B (zh) * | 2019-02-28 | 2024-04-02 | 松下知识产权经营株式会社 | 红外线传感器及红外线传感器阵列 |
CN113015889B (zh) * | 2019-02-28 | 2024-04-02 | 松下知识产权经营株式会社 | 红外线传感器、红外线传感器阵列及红外线传感器的制造方法 |
JPWO2020174731A1 (ja) * | 2019-02-28 | 2021-12-23 | パナソニックIpマネジメント株式会社 | 赤外線センサ、赤外線センサアレイ、及び赤外線センサの製造方法 |
CN113015890A (zh) * | 2019-02-28 | 2021-06-22 | 松下知识产权经营株式会社 | 红外线传感器及红外线传感器阵列 |
EP3933358A4 (en) * | 2019-02-28 | 2022-05-11 | Panasonic Intellectual Property Management Co., Ltd. | INFRARED SENSOR, INFRARED SENSOR ARRAY AND METHOD OF MAKING AN INFRARED SENSOR |
US11906363B2 (en) | 2019-02-28 | 2024-02-20 | Panasonic Intellectual Property Management Co., Ltd. | Infrared sensor, infrared sensor array, and method of manufacturing infrared sensor |
WO2020174731A1 (ja) | 2019-02-28 | 2020-09-03 | パナソニックIpマネジメント株式会社 | 赤外線センサ、赤外線センサアレイ、及び赤外線センサの製造方法 |
WO2020174732A1 (ja) | 2019-02-28 | 2020-09-03 | パナソニックIpマネジメント株式会社 | 赤外線センサ及び赤外線センサアレイ |
WO2020174733A1 (ja) | 2019-02-28 | 2020-09-03 | パナソニックIpマネジメント株式会社 | 積層体及び結晶体 |
JPWO2021132359A1 (ja) * | 2019-12-28 | 2021-07-01 | ||
JP7256903B2 (ja) | 2019-12-28 | 2023-04-12 | 伸幸 全 | フォノニック材料及びその製造方法 |
JP7106771B2 (ja) | 2019-12-28 | 2022-07-26 | 伸幸 全 | フォノニック材料及びその製造方法 |
JPWO2021132358A1 (ja) * | 2019-12-28 | 2021-07-01 | ||
WO2021132359A1 (ja) * | 2019-12-28 | 2021-07-01 | 伸幸 全 | フォノニック材料及びその製造方法 |
WO2021132358A1 (ja) * | 2019-12-28 | 2021-07-01 | 伸幸 全 | フォノニック材料及びその製造方法 |
WO2022138247A1 (ja) * | 2020-12-25 | 2022-06-30 | パナソニックIpマネジメント株式会社 | 固体材料 |
WO2022202252A1 (ja) | 2021-03-24 | 2022-09-29 | パナソニックIpマネジメント株式会社 | 積層体、電子デバイス、及び積層体の製造方法 |
WO2022239610A1 (ja) | 2021-05-11 | 2022-11-17 | パナソニックIpマネジメント株式会社 | サーモパイル型センサ及びセンサアレイ |
WO2022239611A1 (ja) | 2021-05-11 | 2022-11-17 | パナソニックIpマネジメント株式会社 | 赤外線センサ及び赤外線センサの製造方法 |
WO2023013354A1 (ja) * | 2021-08-03 | 2023-02-09 | パナソニックIpマネジメント株式会社 | 導電性断熱材及び赤外線センサ |
WO2023090010A1 (ja) | 2021-11-17 | 2023-05-25 | パナソニックIpマネジメント株式会社 | 赤外線センサ、センシングシステム、及び赤外線のセンシング方法 |
Also Published As
Publication number | Publication date |
---|---|
JP6311133B2 (ja) | 2018-04-18 |
US20190293490A1 (en) | 2019-09-26 |
US10281333B2 (en) | 2019-05-07 |
US20170356806A1 (en) | 2017-12-14 |
US10634561B2 (en) | 2020-04-28 |
US20190219448A1 (en) | 2019-07-18 |
CN107490437A (zh) | 2017-12-19 |
CN107490437B (zh) | 2020-10-23 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JP6311133B2 (ja) | 赤外線センサ | |
JP7232978B2 (ja) | 赤外線センサおよび赤外線センサのボロメータ赤外線受光部を冷却する方法 | |
JP7352884B2 (ja) | 赤外線センサ及びフォノニック結晶体 | |
JP4897269B2 (ja) | 収縮による熱分離を有する放射検出器およびその放射検出器を用いた赤外線検出装置 | |
WO2020174732A1 (ja) | 赤外線センサ及び赤外線センサアレイ | |
JP3573754B2 (ja) | 温度センサー構造体 | |
US20240183718A1 (en) | Electroconductive thermal insulating material and inrared sensor | |
WO2022239610A1 (ja) | サーモパイル型センサ及びセンサアレイ | |
WO2021241088A1 (ja) | 赤外線センサ及び赤外線センサの制御方法 | |
Bartmann et al. | Germanium nanowire microbolometer | |
JP3775830B2 (ja) | 赤外線検出素子 | |
US20240130238A1 (en) | Optical sensor | |
WO2023090010A1 (ja) | 赤外線センサ、センシングシステム、及び赤外線のセンシング方法 | |
JP2024018113A (ja) | 光センサ、及び光センサアレイ | |
KR20160139411A (ko) | 적외선 검출장치 |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
A521 | Request for written amendment filed |
Free format text: JAPANESE INTERMEDIATE CODE: A523 Effective date: 20171129 |
|
TRDD | Decision of grant or rejection written | ||
A01 | Written decision to grant a patent or to grant a registration (utility model) |
Free format text: JAPANESE INTERMEDIATE CODE: A01 Effective date: 20180206 |
|
A61 | First payment of annual fees (during grant procedure) |
Free format text: JAPANESE INTERMEDIATE CODE: A61 Effective date: 20180219 |
|
R151 | Written notification of patent or utility model registration |
Ref document number: 6311133 Country of ref document: JP Free format text: JAPANESE INTERMEDIATE CODE: R151 |