WO2019168114A1 - クロマト分離方法およびクロマト分離装置 - Google Patents

クロマト分離方法およびクロマト分離装置 Download PDF

Info

Publication number
WO2019168114A1
WO2019168114A1 PCT/JP2019/007894 JP2019007894W WO2019168114A1 WO 2019168114 A1 WO2019168114 A1 WO 2019168114A1 JP 2019007894 W JP2019007894 W JP 2019007894W WO 2019168114 A1 WO2019168114 A1 WO 2019168114A1
Authority
WO
WIPO (PCT)
Prior art keywords
liquid
filling
supply
eluent
extraction
Prior art date
Application number
PCT/JP2019/007894
Other languages
English (en)
French (fr)
Inventor
圭史 岩本
誠 安元
利彦 浦辻
Original Assignee
三菱ケミカルアクア・ソリューションズ株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 三菱ケミカルアクア・ソリューションズ株式会社 filed Critical 三菱ケミカルアクア・ソリューションズ株式会社
Priority to EP19760586.8A priority Critical patent/EP3761023A4/en
Priority to US16/976,927 priority patent/US11819779B2/en
Priority to JP2020503620A priority patent/JP7181278B2/ja
Priority to KR1020207024306A priority patent/KR102491223B1/ko
Publication of WO2019168114A1 publication Critical patent/WO2019168114A1/ja

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D15/00Separating processes involving the treatment of liquids with solid sorbents; Apparatus therefor
    • B01D15/08Selective adsorption, e.g. chromatography
    • B01D15/10Selective adsorption, e.g. chromatography characterised by constructional or operational features
    • B01D15/18Selective adsorption, e.g. chromatography characterised by constructional or operational features relating to flow patterns
    • B01D15/1807Selective adsorption, e.g. chromatography characterised by constructional or operational features relating to flow patterns using counter-currents, e.g. fluidised beds
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N30/00Investigating or analysing materials by separation into components using adsorption, absorption or similar phenomena or using ion-exchange, e.g. chromatography or field flow fractionation
    • G01N30/02Column chromatography
    • G01N30/26Conditioning of the fluid carrier; Flow patterns
    • G01N30/38Flow patterns
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D15/00Separating processes involving the treatment of liquids with solid sorbents; Apparatus therefor
    • B01D15/08Selective adsorption, e.g. chromatography
    • B01D15/10Selective adsorption, e.g. chromatography characterised by constructional or operational features
    • B01D15/18Selective adsorption, e.g. chromatography characterised by constructional or operational features relating to flow patterns
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D15/00Separating processes involving the treatment of liquids with solid sorbents; Apparatus therefor
    • B01D15/08Selective adsorption, e.g. chromatography
    • B01D15/10Selective adsorption, e.g. chromatography characterised by constructional or operational features
    • B01D15/18Selective adsorption, e.g. chromatography characterised by constructional or operational features relating to flow patterns
    • B01D15/1814Selective adsorption, e.g. chromatography characterised by constructional or operational features relating to flow patterns recycling of the fraction to be distributed
    • B01D15/1821Simulated moving beds
    • B01D15/1828Simulated moving beds characterized by process features
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D15/00Separating processes involving the treatment of liquids with solid sorbents; Apparatus therefor
    • B01D15/08Selective adsorption, e.g. chromatography
    • B01D15/10Selective adsorption, e.g. chromatography characterised by constructional or operational features
    • B01D15/20Selective adsorption, e.g. chromatography characterised by constructional or operational features relating to the conditioning of the sorbent material
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D15/00Separating processes involving the treatment of liquids with solid sorbents; Apparatus therefor
    • B01D15/08Selective adsorption, e.g. chromatography
    • B01D15/42Selective adsorption, e.g. chromatography characterised by the development mode, e.g. by displacement or by elution
    • B01D15/424Elution mode
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N30/00Investigating or analysing materials by separation into components using adsorption, absorption or similar phenomena or using ion-exchange, e.g. chromatography or field flow fractionation
    • G01N30/02Column chromatography
    • G01N30/26Conditioning of the fluid carrier; Flow patterns
    • G01N30/38Flow patterns
    • G01N30/46Flow patterns using more than one column
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N30/00Investigating or analysing materials by separation into components using adsorption, absorption or similar phenomena or using ion-exchange, e.g. chromatography or field flow fractionation
    • G01N30/02Column chromatography
    • G01N30/26Conditioning of the fluid carrier; Flow patterns
    • G01N30/38Flow patterns
    • G01N30/44Flow patterns using recycling of the fraction to be distributed
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N30/00Investigating or analysing materials by separation into components using adsorption, absorption or similar phenomena or using ion-exchange, e.g. chromatography or field flow fractionation
    • G01N30/02Column chromatography
    • G01N30/26Conditioning of the fluid carrier; Flow patterns
    • G01N30/38Flow patterns
    • G01N30/46Flow patterns using more than one column
    • G01N30/468Flow patterns using more than one column involving switching between different column configurations

Definitions

  • the present invention relates to a chromatographic separation method, and more particularly to a chromatographic separation method for separating a plurality of components in a liquid to be separated by passing the liquid to be separated through a separating agent.
  • a chromatographic separation method for performing continuous chromatographic separation which is typified by a simulated moving bed method, is known.
  • Such a chromatographic separation method is particularly useful in an industrial field where a large amount of liquid to be separated is required to be processed.
  • it is widely used in the field of sugar production such as separation of fructose and glucose from isomerized sugar, separation of sucrose from molasses, and removal of low molecular components contained in oligosaccharides.
  • sugar production such as separation of fructose and glucose from isomerized sugar, separation of sucrose from molasses, and removal of low molecular components contained in oligosaccharides.
  • Several methods have been developed as chromatographic separation methods for continuous chromatographic separation.
  • Patent Document 1 is configured so that a fluid can circulate in one direction, and a set of raw material fluid supply ports, a non-adsorbent fluid outlet, and a desorbent fluid supply port along the flow direction. And the adsorbate fluid outlet are provided in this order, and the entire adsorbing zone occupies between the raw material fluid supply port and the non-adsorbate fluid outlet, the non-adsorbate fluid outlet and the desorbent fluid supply port, Is divided into four zones: a purification zone that occupies between, a desorption zone that occupies between the desorbent fluid supply port and the adsorbate fluid outlet, and a concentration zone that occupies between the adsorbate fluid outlet and the raw material fluid supply port. And the set of supply ports and outlets are provided with a packed bed configured to be switched to another set of supply ports and outlets downstream after a predetermined working time. Separation of substances in the raw fluid using a lithographic apparatus The law has been disclosed.
  • the eluent is supplied to the first bed of the simulated moving bed composed of four unit packed beds from the first bed to the fourth bed, the raw material liquid is supplied to the third bed, and the first bed is discharged from the first bed.
  • a part of the liquid to be extracted is a fraction rich in the B component, and a part of the liquid flowing out from the third bed is a fraction rich in the C component, and the supply-extraction step and the supply / extraction of the liquid are not performed.
  • Patent Document 3 is a method in which a raw material fluid containing a plurality of components is supplied to an endless circulation chromatographic separation system, and an adsorption zone for each component is formed in a packed bed and then separated into two or more fractions. At least (i) supplying the raw material and extracting the fraction enriched in one component, (ii) supplying the desorbent and extracting the fraction enriched in the other component, and (iii) to the packed bed In the chromatographic separation method, which includes the steps of circulating the fluid in the bed and moving the mixed zone of multiple components without supplying the raw material and extracting the fraction, and repeating the cycle including this step.
  • the packed bed is composed of a packed bed for supplying the raw material fluid and one or more other packed beds, and the packed bed for supplying the raw material fluid has an average larger than the adsorbent (ion exchange resin) of the other packed bed. Filled with ion exchange resin with particle size and / or high cross-linking degree Chromatographic separation method is disclosed, wherein the being.
  • An object of the present invention is to provide a chromatographic separation method and the like in which consolidation of a separating agent hardly occurs when continuous chromatographic separation is performed.
  • the present inventors have conceived of solving the above-mentioned problem by introducing an upward flow into any of the chromatographic separation steps, contrary to the common sense when performing continuous chromatographic separation.
  • continuous chromatographic separation it is common knowledge of those skilled in the art to supply a separation target solution and an eluent in a downward flow in order to maintain high piston performance while maintaining piston flow.
  • a separation target solution and an eluent in a downward flow in order to maintain high piston performance while maintaining piston flow.
  • a space is formed between the top and the surface layer of the separating agent (resin).
  • a separation device comprising: a supply unit that supplies an eluent for extracting any component contained in the liquid to the filling unit; and an extraction unit that extracts any component contained in the liquid to be separated from the filling unit.
  • a chromatographic separation method including an upward supply extraction step of extracting any component contained in the liquid from the upward flow extraction portion.
  • the upward flow supply unit may be the extraction unit, and the upward flow extraction unit may be the supply unit.
  • the apparatus configuration can be further simplified.
  • the liquid to be separated and the eluent are supplied in a downward flow from the supply section to different filling sections among the plurality of filling sections, and further include a downward supply and extraction step of extracting the separation liquid from any of the extraction sections.
  • the separated component can be extracted.
  • the liquid to be separated and the eluent are supplied to different filling parts among the plurality of filling parts in a downward flow from the supply part, and the separation liquid is drawn downward from any of the extraction parts.
  • a supply / extraction step, and a circulation step of circulating the liquid to be separated and the eluent in the filling section in a downward flow between the filling sections without supplying the liquid to be separated and the eluent. can do.
  • chromatographic separation can be performed continuously.
  • the circulation step can be performed after the upward supply and extraction step, and can be a separation and circulation step in which separation of a plurality of components is advanced. In this case, it is easy to perform chromatographic separation more continuously.
  • the three steps of the downward supply extraction step, the upward supply extraction step, and the separation / circulation step can be performed in this order.
  • the order of the steps is more suitable for continuous chromatographic separation.
  • three steps can be repeated.
  • the separation operation can be performed for a longer period.
  • the two steps of the downward supply extraction step and the separation circulation step are repeated in this order, and three steps can be inserted between the two steps.
  • a step of loosening the separating agent can be added when necessary.
  • an adjustment circulation step can be further included which is performed between the downward supply extraction step and the upward supply extraction step and adjusts the position of the liquid to be separated and the eluent.
  • the position of the concentration distribution of the liquid to be separated or the eluent can be adjusted to a better position for performing the next step.
  • the four steps of the downward supply extraction step, the adjustment circulation step, the upward supply extraction step, and the separation circulation step can be performed in this order.
  • the order of the steps is more suitable for continuous chromatographic separation.
  • 4 processes can be repeated.
  • the separation operation can be performed for a longer period. It is possible to repeat the two steps of the downward supply extraction step and the separation and circulation step in this order, and to insert four steps between the repetition of the two steps. In this case, a step of loosening the separating agent can be added when necessary.
  • the filling unit used when the eluent is allowed to flow in the upward flow in the upward supply / withdrawing step can be sequentially moved upstream in the upward flow each time the upward supply / withdrawal step is repeated. .
  • a more suitable packed portion can be selected by performing chromatographic separation continuously.
  • the separation liquid can be extracted from the upward flow extraction portion of the filling portion that supplies the eluent. In this case, the separation liquid can be extracted from a more suitable position.
  • a filling unit for flowing the eluent in a downward flow in the downward supply and extraction step and a filling unit for flowing the eluent in an upward flow in the upward supply and extraction step that is performed first after the downward supply and extraction step.
  • the eluent is caused to flow downwardly into one or a plurality of filling sections, and the filling section used at that time enters the liquid to be separated from the extraction section of the filling section located on the most downstream side.
  • One component is extracted from a plurality of components contained, and the eluent is caused to flow upward in one or more filling portions in the upward supply and extraction step, and is located at the most downstream of the filling portions used at that time. It is possible to extract one component from the upward flow extraction portion of the filling portion. In this case, one component can be extracted more efficiently.
  • a plurality of filling parts that are filled with a separating agent for separating a plurality of components contained in the liquid to be separated by chromatography and each of the filling parts are filled with the liquid to be separated.
  • a supply unit that supplies to the gas supply unit and a filling unit, each of which supplies a separation liquid rich in any component in the liquid to be separated from the filling part, and an eluent for extracting the separation liquid.
  • the eluent is switched so that it flows in the opposite direction when it is supplied from the supply part and when it is supplied from the extraction part.
  • a chromatographic separation device comprising a switching unit for extracting a liquid. In this case, when performing continuous chromatographic separation, a chromatographic separation apparatus in which consolidation of the separating agent hardly occurs can be provided.
  • the switching unit when supplying the eluent from the extraction unit, supplies the eluent in an upward flow to any of the extraction units, and is provided with a extraction unit for supplying the eluent.
  • the separation liquid can be controlled to be extracted from the supply section. In this case, the separation liquid can be extracted from a more suitable position.
  • the switching unit can supply the separated liquid and the eluent in a downward flow from separate supply units, and can further perform control for extracting the separation liquid from any of the extraction units. In this case, the separation liquid can be extracted efficiently.
  • the switching unit can further control to circulate the liquid to be separated and the eluent in the filling part in a downward flow between the filling parts without supplying the liquid to be separated and the eluent.
  • chromatographic separation can be performed continuously.
  • the present invention it is possible to provide a chromatographic separation method and the like in which the separation agent is less likely to be consolidated when performing continuous chromatographic separation. Further, when a branch pipe filter for a separation liquid or an eluent is provided in the supply unit, the branch pipe filter is washed by an upward flow, and a reduction in pressure loss on the apparatus surface can be expected.
  • FIG. 1 It is a figure explaining the chromatographic separation apparatus with which this embodiment is applied. It is the flowchart explaining operation
  • (A)-(b) is a figure showing each density distribution of P ingredient and R ingredient in a filling part. It is the flowchart explaining operation
  • (A) to (c) are diagrams showing the concentration distributions of the P component and the R component in the filling portion.
  • (A) to (l) are diagrams showing the flow directions of the liquid to be separated and the eluent in the filling section when the three steps of Step 201 to Step 203 are repeated four times (from the first cycle to the fourth cycle). It is.
  • (A) to (d) are diagrams showing the concentration distribution of each P component and R component in the filling portion.
  • (A) to (p) are diagrams showing the flow direction of the liquid to be separated and the eluent in the packed portion when the four steps from Step 301 to Step 304 are repeated four times (from the first cycle to the fourth cycle). It is.
  • the liquid to be separated according to the present embodiment is a liquid to be separated using a chromatographic separation apparatus, which will be described later, and is obtained by dissolving a plurality of components in a solvent such as water or an organic solvent. It is. Then, by utilizing the difference in the interaction of each component with the separating agent, a plurality of components are largely separated into two fractions.
  • the plurality of components are, for example, two components of a P component and an R component, they can be separated and either or both of the P component and the R component can be selectively extracted as useful components.
  • a component having a larger interaction with the separating agent is a P component
  • a component having a smaller interaction with the separating agent is an R component (when the interaction with the separating agent is R component ⁇ P component). )
  • R component ⁇ P component when the interaction with the separating agent is R component ⁇ P component.
  • the separation can be performed not only when the components included are two components, but may be three or more components. It can also be applied to the case where one component is separated from these, or the case where it is separated into two large fractions.
  • components in the liquid to be separated can be separated even when the liquid to be separated has a high viscosity.
  • Specific examples include liquids to be separated containing saccharides such as oligosaccharides and maltose.
  • the separating agent used in the present embodiment is not particularly limited, and a synthetic adsorbent, an ion exchange resin, or the like can be used.
  • synthetic adsorbents reverse phase chromatography using the difference in hydrophobicity of each component, normal phase chromatography using ⁇ - ⁇ interaction, hydrogen bonding, etc. are the main separation principles.
  • ion exchange resins size exclusion chromatography utilizing the difference in molecular size, ion exclusion chromatography utilizing repulsion with a functional group, etc. are the main separation principles.
  • the synthetic adsorbent may be aromatic, aromatic modified or methacrylic.
  • the ion exchange resin any of strong acid cation exchange resin, weak acid cation exchange resin, strong basic anion exchange resin, and weak basic anion exchange resin may be used.
  • a strongly acidic cation exchange resin for example, UBK510L, UBK530, UBK550, UBK535J, UBK535K, etc., which are cation exchange resins for industrial chromatographic separation manufactured by Mitsubishi Chemical Corporation can be used. Further, AMBERLITE CR1320 manufactured by Dow Chemical Co., Ltd., LEWATIT MDS1368 manufactured by LANXESS, or the like can be used.
  • the particle size of the particles constituting the separating agent is preferably more uniform.
  • the particle size distribution is preferably 150 ⁇ m to 450 ⁇ m, and the proportion of particles having a particle size of about 220 ⁇ m to 360 ⁇ m is preferably 80% or more of the total volume. Further, it is more preferably 85% or more.
  • the eluent is a liquid used for developing the components in the packed bed filled with the separating agent and adjusting the magnitude of the interaction between the separating agent and the components.
  • the interaction between the separating agent and the component is adjusted by the concentration of the eluent, so that it is not completely adsorbed and each component can be separated and eluted.
  • the eluent for example, alcohols such as ethanol and methanol, and hexanes can be used.
  • ion exchange resins use the size of molecules and the weak interaction between functional units and components, pure water is often used as the eluent.
  • an acidic aqueous solution containing hydrochloric acid, sulfuric acid or the like, or an alkaline aqueous solution containing sodium hydroxide or the like may be used.
  • FIG. 1 is a diagram illustrating a chromatographic separation apparatus 1 to which the present embodiment is applied.
  • the chromatographic separation apparatus 1 includes a filling unit 10 that separates components, a supply unit 20 that supplies a liquid to be separated and an eluent, an extraction unit 30 that extracts a separation liquid, and a switching unit 40 that switches a flow path.
  • a filling unit 10 that separates components
  • a supply unit 20 that supplies a liquid to be separated and an eluent
  • an extraction unit 30 that extracts a separation liquid
  • a switching unit 40 that switches a flow path.
  • filling units 10 are provided.
  • filling portions 11, 12, 13, and 14 filling portions 11 to 14
  • the filling parts 11, 12, 13, and 14 may be simply referred to as the filling part 10 when not distinguished from each other.
  • the filling unit 10 is filled with a separating agent for separating a plurality of components contained in the liquid to be separated by chromatography.
  • the separation column packed with these separation agents is more preferably a packed column type having no empty column at the top. Two filling portions 10 are sufficient.
  • the number is 3 or more from the viewpoint of separation efficiency, and it is more preferable that the number is 4 or more when it is necessary to change or adjust the operating conditions of the system based on the type of liquid to be separated.
  • the filling part 10 may consist of five or more.
  • the filling unit 10 is, for example, a column and has a space for filling the separating agent therein.
  • the filling part 10 is made of, for example, a steel plate as a material, and the liquid contact part can be a rubber-lined part, but is not limited thereto.
  • a resin or the like can be used as the material of the filling portion 10.
  • the shape of the packed portion 10 is not particularly limited, but in the present embodiment, for example, it is generally cylindrical and has a tower shape as a whole.
  • the supply unit 20 is provided in each of the filling units 10 and supplies the liquid to be separated and the eluent to the filling unit 10.
  • the supply part 20 is a supply port provided in the upper part of the filling part 10, for example.
  • supply units 21, 22, 23, and 24 supply units 21 to 24
  • the supply units 21, 22, 23, and 24 may be simply referred to as the supply unit 20.
  • one supply unit 20 is provided for each filling unit 10, but a plurality of supply units 20 may be provided. For example, it is possible to provide two separate solutions for supplying the liquid to be separated and for supplying the eluent.
  • the extraction unit 30 is provided in each of the filling units 10 and extracts the separation liquid rich in any component in the liquid to be separated from the filling unit 10.
  • the extraction unit 30 is, for example, a discharge port provided in the lower part of the filling unit 10.
  • extraction portions 31, 32, 33, and 34 extraction portions 31 to 34
  • the extraction units 31, 32, 33 and 34 may be simply referred to as the extraction unit 30 when not distinguished from each other.
  • one extraction unit 30 is provided for each filling unit 10, but a plurality of extraction units 30 may be provided.
  • the extraction part 30 can be provided at a more appropriate position for extracting the P fraction and the R fraction.
  • the eluent may be supplied from the extraction unit 30. Therefore, you may provide the supply port used in this case separately.
  • the extraction unit 30 for extracting the separation liquid and the supply port for supplying the eluent are separated, and the interference with the other filling unit 10 and the pipes HX1 to HX4, which will be described later, is suppressed and the separation operation is stabilized. It becomes easier to do.
  • the switching unit 40 is, for example, an open / close valve (open / close valve). By opening and closing this on-off valve, the flow paths of the liquid to be separated, the eluent, and the separation liquid can be switched.
  • the switching unit 40 includes eluent on / off valves W1, W2, W3, W4 (eluent on / off valves W1 to W4), separated liquid on / off valves F1, F2, F3, F4 (separated liquid on / off valves).
  • connection path on / off valves X1, X2, X3, X4 connection path on / off valves X1 to X4
  • R component on / off valves R1, R2, R3, R4 R component on / off valves R1 to R4
  • P component On-off valves P1, P2, P3, and P4 P component on-off valves P1 to P4) are provided.
  • the chromatographic separation apparatus 1 includes a pipe HW for supplying an eluent from an eluent tank and the like, a pipe HW1 for supplying the eluent from the pipe HW to the filling unit 11, a pipe HW2 for supplying the eluent from the pipe HW to the filling unit 12, A pipe HW3 for supplying the eluent from the pipe HW to the filling unit 13 and a pipe HW4 for supplying the eluent from the pipe HW to the filling unit 14 are provided.
  • the eluent on / off valves W1 to W4 are provided in the pipes HW1 to HW4, respectively, and control the supply of the eluent to the filling units 11 to 14.
  • the chromatographic separation apparatus 1 supplies a pipe HF for supplying a liquid to be separated from a liquid tank to be separated, a pipe HF1 for supplying a liquid to be separated to the filling part 11 from the pipe HF, and a liquid to be separated to the filling part 12 from the pipe HF.
  • the separated liquid on-off valves F1 to F4 are provided in the pipes HF1 to HF4, respectively, and control the supply of the separated liquid to the filling units 11 to 14.
  • the chromatographic separation apparatus 1 has a pipe HX1 that connects the extraction part 31 of the filling part 11 and the supply part 22 of the filling part 12 as a connection path that connects the filling parts 10, and an extraction part of the filling part 12.
  • the pipe HX2 connecting the supply section 23 of the filling section 13, the pipe HX3 connecting the extraction section 33 of the filling section 13 and the supply section 24 of the filling section 14, the extraction section 34 and the filling section of the filling section 14.
  • 11 is provided with a pipe HX4 that connects the 11 supply sections 21.
  • connection path opening / closing valves X1 to X4 are provided in the pipes HX1 to HX4, respectively, and control the flow of the liquid to be separated between the filling parts 11 to 14.
  • a bypass path HB is provided at the connection path opening / closing valve X4 of the pipe HX4, and a pump PM is provided in the bypass path HB.
  • the bypass HB and the pump PM are installed in the pipe HX4, but may be installed in any of the pipes HX1 to HX4, and may be installed in a plurality of positions (for example, all positions) of the pipes HX1 to HX4. Good.
  • the chromatographic separation apparatus 1 is filled with piping HR for extracting the R fraction, piping HR1 for extracting the R fraction from the filling portion 11 to the piping HR, and piping HR2 for extracting the R fraction from the filling portion 12 to the piping HR, and R fraction.
  • a pipe HR3 to be extracted from the portion 13 to the pipe HR and a pipe HR4 to extract the R fraction from the filling portion 14 to the pipe HR are provided.
  • the R component on-off valves R1 to R4 are provided in the pipes HR1 to HR4, respectively, and control the extraction of the separation liquid from the filling portions 11 to 14.
  • the chromatographic separation apparatus 1 is filled with piping HP for extracting the P fraction, piping HP1 for extracting the P fraction from the filling unit 11 to the piping HP, piping HP2 for extracting the P fraction from the filling unit 12 to the piping HP, and P fraction.
  • a pipe HP3 that is extracted from the section 13 to the pipe HP, and a pipe HP4 that extracts the P fraction from the filling section 14 to the pipe HP are provided.
  • the P component on-off valves P1 to P4 are provided in the pipes HP1 to HP4, respectively, and control the extraction of the separation liquid from the filling portions 11 to 14.
  • the switching unit 40 is used to perform switching for supplying an eluent for extracting the separation liquid from either the supply unit 20 or the extraction unit 30.
  • the separation liquid is extracted with the eluent flowing in the opposite direction between when the eluent is supplied from the supply unit 20 and when it is supplied from the extraction unit 30.
  • the chromatographic separation apparatus 1 described above operates as follows. Here, first, the operation of the conventional chromatographic separation apparatus 1 will be described, and then the operation of the chromatographic separation apparatus 1 according to the present embodiment will be described.
  • FIG. 2 is a flowchart for explaining the operation of the conventional chromatographic separation apparatus 1.
  • FIGS. 3A to 3B are diagrams showing the concentration distributions of the P component and the R component in the filling portions 11 to 14, respectively.
  • the horizontal direction represents a position in the filling portions 11 to 14.
  • the left side in the figure is the position of the upper part (upstream side) in the filling part 11 to 14, and the right side in the figure is the inside of the filling part 11 to 14 This means that the position is lower (more downstream).
  • the vertical direction represents the density of the P component and R component at each position.
  • the right arrow and the left arrow indicate the flow direction of the liquid to be separated and the eluent in the filling parts 11 to 14, and in the case of the right arrow, the liquid to be separated and the eluent are lowered in the filling parts 11 to 14. Means flowing in countercurrent. In this case, the downward flow is a normal flow direction when the separation operation is performed. On the other hand, in the case of the left arrow, it means that the liquid to be separated or the eluent flows upward in the filling portions 11 to 14. In this case, the upward flow is opposite to the normal flow direction. Further, when the right arrow and the left arrow are not shown, it means that no flow has occurred in the filling portions 11 to 14.
  • the down arrow and the up arrow represent the location where the separation liquid and the eluent are supplied, and the location where the P fraction which is a separation liquid rich in the P component and the R fraction which is a separation liquid rich in the R component are extracted.
  • the liquid to be separated is represented by “F”
  • the eluent is represented by “W”
  • the P component and the P fraction are represented by “P”
  • the R component and the R fraction are represented by “R”.
  • the filling part 13 may be referred to as an adsorption zone (Zone 1), the filling part 14 as a purification zone (Zone 2), the filling part 11 as a desorption zone (Zone 3), and the filling part 12 as a concentration zone (Zone 4).
  • the separation operation is continuously performed while shifting these zones one by one. Note that the method described below may be referred to as an improved simulated moving bed method.
  • the passing speed of the R component becomes larger than the passing speed of the P component as described above. Therefore, for example, as shown in FIG. 3A, the R component tends to proceed first in the liquid passing direction, and the P component tends to remain later. That is, separation between the P component and the R component occurs in the filling portions 11 to 14.
  • each liquid is supplied to a different filling part 10 among the several filling parts 10 by a downward flow from a supply part in the state of Fig.3 (a).
  • the separation liquid rich in the P component and the separation liquid rich in the R component are each extracted from separate extraction portions (step 101: downward supply extraction process).
  • the separated liquid on-off valve F3, the eluent on-off valve W1, the connection path on-off valves X1, X2, the P component on-off valve P1, and the R component on-off valve R3 are opened, and the other on-off valves are closed.
  • the liquid to be separated is supplied from the supply unit 23 to the filling unit 13
  • the eluent is supplied from the supply unit 21 to the filling unit 11.
  • the P fraction which is a separation liquid rich in P component
  • the R fraction which is a separation liquid rich in R component
  • the P component is eluted by the eluent supplied from the supply unit 21 to the filling unit 11, and a part of the supplied eluate is separated from the P fraction which is a separation liquid rich in P component. Pull out to the pipe HP1. Further, the remainder of the eluent that has not been extracted from the extraction portion 31 flows into the filling portion 12 from the pipe HX1. As a result, the eluent moves downward and flows through the filling part 12 and the filling part 13. Then, the separation of the P component and the R component proceeds in the filling unit 12 and the filling unit 13, and the concentration distribution of the P component and the R component also moves downstream. Then, the liquid to be separated is supplied to the filling unit 13, and the R fraction, which is a separation liquid rich in R component, is extracted from the extraction unit 33 of the filling unit 13 to the pipe HR ⁇ b> 3.
  • the amount of liquid extracted into the pipe HP1 is a part of the amount of liquid supplied from the supply unit 21. Therefore, in order to control this flow rate, it is necessary to attach a pump at the end of the pipe HP1 and extract it at a constant flow rate or to adjust the extraction amount with an integrating flow meter.
  • the liquid to be separated is supplied from the supply unit 23
  • the R fraction is extracted from the extraction unit 33
  • the eluent is supplied from the supply unit 21
  • the P image is extracted from the extraction unit 31.
  • the operation of extracting the fraction and the operation of supplying the eluent from the supply unit 21 and extracting the R fraction from the extraction unit 33 may be performed separately.
  • step 101 the concentration distributions of the P component and the R component are as shown in FIG.
  • step 102 separation and circulation step.
  • connection on-off valves X1, X2, and X3 are opened, and the other on-off valves are closed. Then, by operating the pump PM, the liquid to be separated and the eluent in the filling unit 10 are circulated between the filling units 10 in a downward flow. That is, in this case, by opening the connection path on-off valves X1, X2, and X3, all the filling portions 10 are connected by the pipes HX1, HX2, HX3, HX4, and the bypass path HB, and a circulation path is formed. . Then, the pump PM is operated to move the liquid to be separated and the eluent through the circulation path.
  • the liquid to be separated and the eluent in the filling unit 10 are moved downward by one in the filling unit 10.
  • separation of the P component and the R component proceeds.
  • the concentration distribution is shifted from the state of FIG. 3A by one on the right side in the drawing for the filling portion 10.
  • the density distribution is reproduced in a form shifted by one for the filling portion 10 on the right side in the figure.
  • step 103 it is determined whether or not to end the chromatographic separation. For example, the chromatographic separation is terminated when a predetermined amount of water to be treated is treated. Further, the process may be terminated when the pressure loss exceeds a predetermined magnitude, or may be terminated when a predetermined separation operation time has elapsed.
  • Step 104 the separation operation is stopped.
  • Step 104 the separation operation is stopped.
  • the process returns to step 101. That is, the above two steps of Step 101 to Step 102 are repeated.
  • FIG. 4 is a flowchart for explaining the operation of the chromatographic separation apparatus 1 according to the first embodiment.
  • FIGS. 5A to 5C are diagrams showing the concentration distributions of the P component and the R component in the filling portions 11 to 14, respectively.
  • the horizontal direction represents the positions in the filling portions 11 to 14, and the vertical direction represents the concentrations of the P component and the R component at each position, as in FIG.
  • the direction of the arrow, the symbols F, W, P, and R, and the meanings of Zone 1 to Zone 4 are the same as those in FIG.
  • step 201 and step 203 to step 205 are the same as step 101 to step 104, respectively, and the upward supply and extraction step of step 202 is performed. It is different. Therefore, the following description will focus on the upward supply and extraction process of step 202.
  • the concentration distributions of the P component and the R component are as shown in FIG. 5B similar to FIG. 3B.
  • the separation liquid is extracted from the supply unit 20 of the filling unit 10 that supplies the eluent while supplying the eluent in an upward flow to any of the extraction units 30 (step 202). : Upward supply extraction process).
  • the eluent on / off valve W1 In the upward supply extraction process, the eluent on / off valve W1, the connection path on / off valves X3 and X4, and the component on / off valve R3 are opened, and the other on / off valves are closed.
  • the R fraction which is a separation liquid rich in R components, is extracted from the supply unit 24 of the filling unit 14. Specifically, the eluent is supplied from a location where the concentrations of the P fraction and the R fraction are low, particularly from a location where the density of the R fraction is low.
  • the eluent in the upward supply extraction process, the eluent is allowed to flow upward through the filling unit 14, thereby removing the R component flowing into the upper part of the filling unit 14 while alleviating consolidation of the separating agent.
  • the connection path opening / closing valves X1 and X2 the eluent is allowed to flow from the lower part of the filling part 14 through the extraction part 34, and is circulated in the filling part 14 in an upward flow.
  • 14 is extracted from the supply unit 24 above 14 as an R fraction.
  • the flow direction of the eluent in the filling unit 14 is an upward flow, and goes from below to above. Therefore, the consolidation of the separating agent can be reduced.
  • the supply unit 24 may be provided with a branch pipe filter for the liquid to be separated or the eluent.
  • the branch pipe filter is washed by the upward flow, and a reduction in pressure loss on the apparatus surface can be expected.
  • the linear velocity (LV) is preferably 0.5 m / hr or more and 10.0 m / hr or less, and more preferably 1.0 m / hr or more and 5.0 m / hr or less.
  • connection path opening / closing valves X1 and X2 are closed, the concentration distribution of the P component and the R component in the filling portions 11, 12, and 13 does not change, and only the concentration distribution of the R component in the filling portion 14 changes. To do. Therefore, even if the eluent is flowed in the upward direction opposite to the normal separation operation, the separation of the P component and the R component is not disturbed. In this case, the consolidation of the separating agent can be eased and the R fraction can be extracted.
  • step 202 the concentration distributions of the P component and the R component are as shown in FIG.
  • step 203 separation and circulation step.
  • the liquid to be separated and the eluent in the filling unit 10 are circulated between the filling units 10 in a downward flow to advance separation of a plurality of components (step 203: separation and circulation step). ).
  • the liquid to be separated and the eluent are moved in the circulation path.
  • the liquid to be separated and the eluent in the filling unit 10 are moved downward by one in the filling unit 10.
  • separation of the P component and the R component proceeds.
  • the concentration distribution is shifted from the state of FIG. 5A by one on the right side in the drawing for the filling portion 10.
  • the density distribution is reproduced in a form shifted by one for the filling portion 10 on the right side in the figure.
  • FIG. 6 (a) to (l) show four steps (first cycle to fourth cycle) of three steps (downward supply extraction step, upward supply extraction step, separation circulation step) of step 201 to step 203.
  • FIG. 8 is a diagram showing the flow direction of the liquid to be separated and the eluent in the filling sections 11 to 14 when it is repeated.
  • FIGS. 6A to 6C show the first cycle
  • FIGS. 6D to 6F show the second cycle.
  • 6 (g) to (i) are the third cycle
  • FIGS. 6 (j) to (l) are the fourth cycle.
  • the right arrow means a downward flow
  • the left arrow means an upward flow.
  • the right arrow and the left arrow when the right arrow and the left arrow are not shown, it means that no flow has occurred in the filling portions 11 to 14.
  • the down arrow and the up arrow represent the part which supplies a to-be-separated liquid and an eluent, and the part which extracts P fraction and R fraction.
  • the separated liquid is represented by “F”
  • the eluent is represented by “W”
  • the P component and the P fraction are represented by “P”
  • the R component and the R fraction are represented by “R”.
  • Table 1 below shows what is opened for each on-off valve of the switching unit 40. Note that on-off valves other than the on-off valves shown here are closed.
  • the filling unit 10 used when the eluent flows in the upward flow sequentially moves to the upstream side in the upward flow every time the upward supply and extraction step is repeated. You can also say. Referring to FIG. 6, the filling unit 10 that flows the eluent in a downward flow in the downward supply extraction process, and the eluent in the upward supply extraction process that is performed first after the downward supply extraction process. It turns out that it is a different filling part from the filling part 10 circulated by countercurrent. Further, in FIG.
  • the eluent when viewing the position where the R fraction is extracted, the eluent is allowed to flow downward in one or a plurality of filling sections 10 in the downward supply extraction process, and the most of the filling sections 10 used at that time.
  • the R fraction is extracted from the plurality of components contained in the liquid to be separated from the extraction portion 30 of the filling portion 10 located downstream, and the eluent is supplied to one or a plurality of filling portions 10 in the upward supply extraction step.
  • the R fraction is extracted from the upward flow extraction portion of the filling portion 10 located on the most downstream side of the filling portion 10 used at that time.
  • the R fraction is an example of one component.
  • the position of the opening / closing valve to be opened is similarly shifted by one by one to the right side (downstream side) in the drawing with respect to each filling portion 10. If one cycle is performed four times, the original state is restored again. That is, after FIG. 6 (l), the process returns to FIG. 6 (a).
  • any component contained in the liquid to be separated is extracted from the supply unit 20 while supplying the eluent to at least one filling unit 10 from the extraction unit 30 in an upward flow. It includes an upward supply extraction process.
  • the location where the eluent is supplied in the upward flow can be regarded as an upward flow supply unit that supplies the eluent to the filling unit 10 in the upward supply extraction process.
  • a place for extracting any component contained in the liquid to be separated may be provided in the filling unit 10 separately from the supply unit 20. That is, the supply unit 20 and a portion for extracting any component contained in the separation liquid are separately provided in the upper part of the filling unit 10 in the filling unit 10.
  • the location where any component contained in the separation liquid is extracted can be regarded as an upward flow extraction portion for extracting the eluent from the filling portion 10 in the upward supply extraction step.
  • the apparatus configuration can be further simplified by using the upward flow supply unit as the extraction unit 30 and the upward flow extraction unit as the supply unit 20.
  • FIG. 7 is a flowchart illustrating the operation of the chromatographic separation apparatus 1 according to the second embodiment.
  • FIGS. 8A to 8D are diagrams showing the concentration distributions of the P component and the R component of the filling portions 11 to 14, respectively.
  • the horizontal direction represents the position in the filling parts 11, 12, 13, and 14, and the vertical direction represents the concentrations of the P component and the R component, as in FIGS.
  • the directions of the arrows, the symbols F, W, P, and R, and the meanings of Zone 1 to Zone 4 are the same as in FIGS.
  • an adjustment circulation step is inserted between the downward supply extraction step and the upward supply extraction step as compared with the first embodiment.
  • the steps other than the adjustment circulation step are the same, the following description will be focused on the adjustment circulation step.
  • Step 301 and Steps 303 to 306 shown in FIG. 7 are the same as Step 201 to Step 205 of FIG. 8A, 8C, and 8D are substantially the same as FIGS. 5A to 5C, respectively.
  • step 301 the concentration distributions of the P component and the R component are as shown in FIG. 8B, the separation liquid and the eluent in the filling section 10 are circulated between the filling sections 10 in a downward flow, and the position of the separation liquid and the elution liquid in the filling section 10 is determined. Move to the start position of the next process (step 302: adjustment circulation process). At this time, the liquid to be separated and the eluent are not supplied. Thereby, the position of the concentration distribution of the liquid to be separated or the eluent can be adjusted to a better position for performing the next step.
  • connection on-off valves X1, X2, and X3 are opened, and the other on-off valves are closed, as in the case of the separation circulation process of step 203 in FIG. Then, by operating the pump PM, the liquid to be separated and the eluent in the filling unit 10 are circulated between the filling units 10 in a downward flow. As a result, the liquid to be separated and the eluent in the filling unit 10 move downward by a certain amount.
  • the R fraction which is a separation liquid rich in R component in the filling unit 14 is extracted, so the circulation amount is adjusted so that the P component in the filling unit 13 does not flow into the filling unit 14.
  • the P component and R component density distributions are as shown in FIG.
  • the R component is moved into the filling unit 14 as much as possible, and the P component is prevented from flowing into the filling unit 14.
  • the extraction unit 30 that supplies the eluent while supplying the eluent in an upward flow to any one of the extraction units 30.
  • the separation liquid is extracted from the supply unit 20 of the filling unit 10 provided with (step 303: upward supply extraction process).
  • step 303 the P component and R component concentration distributions are as shown in FIG.
  • the separation target liquid and the eluent in the filling unit 10 are circulated between the filling units 10 in a downward flow to advance separation of a plurality of components (step 304: separation and circulation step). ).
  • step 304 separation and circulation step.
  • the liquid to be separated and the eluent are moved in the circulation path.
  • the liquid to be separated and the eluent in the filling unit 10 are moved downward by one in the filling unit 10.
  • separation of the P component and the R component proceeds.
  • the concentration distribution is shifted from the state of FIG. 8A by one on the right side in the drawing for the filling portion 10.
  • the density distribution is reproduced in a form shifted by one for the filling portion 10 on the right side in the figure.
  • the adjustment circulation process is performed, so that the position of the concentration distribution of the liquid to be separated and the eluent can be adjusted to a better position.
  • separation performed by a downward supply extraction process with the to-be-separated liquid which flowed into the filling part 12 from the filling part 11 can be supplemented in the adjustment circulation process. Therefore, in the previous downward supply extraction process, part or all of the liquid to be separated that flows from the filling unit 11 into the filling unit 12 may be reduced.
  • the amount of eluent used is increased by performing the upward supply and extraction step.
  • FIGS. 9A to 9P show four steps (downward supply extraction step, adjustment circulation step, upward supply extraction step, separation circulation step) of step 301 to step 304 four times (first cycle to (4th cycle) is a diagram showing the flow direction of the liquid to be separated and the eluent in the filling sections 11 to 14 when it is repeated.
  • first cycle to (4th cycle) is a diagram showing the flow direction of the liquid to be separated and the eluent in the filling sections 11 to 14 when it is repeated.
  • FIGS. 9A to 9D show the first cycle
  • FIGS. 9E to 9H show the second cycle.
  • 9 (i) to (l) are the third cycle
  • FIGS. 9 (m) to (p) are the fourth cycle.
  • the meanings of the arrows shown in FIG. 9 are the same as those in FIG.
  • Table 2 below shows what is opened for each on-off valve of the switching unit 40. Note that on-off valves other than the on-off valves shown here are closed.
  • the place where the separation liquid and the eluent are supplied and the place where the P fraction and the R fraction are extracted are shifted one by one to the right side (downstream side) in the drawing.
  • the position of the opening / closing valve that is opened similarly shifts by one on the right side (downstream side) in the figure with respect to each filling portion 10. If one cycle is performed four times, the original state is restored again. That is, after FIG. 9 (p), the process returns to FIG. 9 (a).
  • the process of the to-be-separated liquid performed with the chromatographic separation apparatus 1 demonstrated above can also be regarded as the chromatographic separation method containing the following processes (1), (3), (4) in 1st Embodiment. it can. Steps (1), (3), and (4) correspond to Step 201 to Step 203, respectively. In the second embodiment, it can also be regarded as a chromatographic separation method including the steps (1) to (4).
  • the processes (1) to (4) correspond to the above-described steps 301 to 304, respectively.
  • Adjusting and circulating step of adjusting the position of the liquid to be separated and the eluent (3) A plurality of filling sections 10 filled with a separating agent for separating a plurality of components contained in the liquid to be separated, and a plurality of filling sections 10
  • a supply unit 20 for supplying an eluent for extracting a liquid to be separated or any component contained in the liquid to be separated to the filling unit 10, and any component contained in the liquid to be separated.
  • a chromatographic separation apparatus 1 comprising an extraction unit 30 extracted from the filling unit 10.
  • a chromatographic separation method for separating a plurality of components contained in a liquid to be separated by chromatography wherein an eluent is supplied in an upward flow from an upward flow supply unit to at least one filling unit 10, Upward supply and extraction step of extracting any component contained in the liquid to be separated from the upward flow extraction portion (4) Performed after the upward supply and extraction step, the separation liquid and eluent in the filling portion 10 , A separation / circulation process in which a plurality of components are separated by circulating between the filling sections 10 in a downward flow
  • At least one of (2) and (4) circulates the liquid to be separated and the eluent in the filling section 10 between the filling sections 10 in a downward flow without supplying the liquid to be separated and the eluent. It can be understood that this is an example of a circulating process.
  • the first embodiment is a chromatographic separation method in which three steps of (1) downward supply extraction step, (3) upward supply extraction step, and (4) separation and circulation step are performed in this order. It can also be taken as. It can also be understood as a chromatographic separation method in which these four steps are repeated.
  • the second embodiment is a chromatograph that performs four steps in this order: (1) downward supply extraction step, (2) adjustment circulation step, (3) upward supply extraction step, and (4) separation circulation step. It can also be regarded as a separation method. Furthermore, it can be understood that this is a chromatographic separation method in which these three steps are repeated.
  • separation is achieved while obtaining equivalent performance in terms of purity and recovery rate of each component as compared with the conventional improved simulated moving bed method described in FIGS. It is possible to provide a chromatographic separation method capable of reducing the compaction of the agent. As a result, the chromatographic separation apparatus 1 can contribute to a long-term stable operation.
  • the opening / closing control of the switching unit 40 which is an opening / closing valve, may be performed manually or automatically. Moreover, you may use together the case where it performs manually and the case where it performs automatically.
  • a control unit such as a control panel is provided, and the control unit controls the switching unit 40 by cooperating software and hardware resources. That is, a control PLC (Programmable Logic Controller) provided in the control unit reads a program that realizes opening / closing control of the switching unit 40 and executes the program to control opening / closing of the switching unit 40.
  • a control PLC Programmable Logic Controller
  • Example 1 separation operation was performed by the method according to the first embodiment using the chromatographic separation apparatus 1 shown in FIG. Table 3 shows the separation operation conditions at this time.
  • varicella was used as the liquid to be separated.
  • This varicella contains monosaccharides (DP1), disaccharides (DP2), and trisaccharides or more (DP3 +).
  • the monosaccharide (DP1) is mainly glucose.
  • the disaccharide (DP2) is mainly maltose.
  • trisaccharide or more (DP3 +) is mainly maltotriose.
  • Table 3 the respective composition ratios were 61.23%, 15.40%, and 23.37% by weight when the total was 100%. Further, the concentration of all of these components relative to the whole liquid to be separated was 51.2% as shown in Table 3.
  • Example 1 the separation operation which isolate
  • trisaccharide or more (DP3 +) can be separated as R fraction.
  • Demineralized water was used as the eluent.
  • UBK530 which is a cation exchange resin for industrial chromatographic separation manufactured by Mitsubishi Chemical Corporation, was used as a separating agent, and this was packed into four columns as the packing unit 10.
  • This separating agent is a Na-type strongly acidic cation exchange resin. At this time, the column had an inner diameter of 29.4 mm, and when 1492 ml of the separating agent was packed, the layer height was 550 mm.
  • the temperature of the liquid to be separated and the eluent was set to 65 ° C., and the space velocity (SV) during liquid passing was set to 0.5 min ⁇ 1 . Further, the flow rate was 58.6 ml per 1 L resin, and the eluent / separated liquid was supplied in a volume ratio of 2.53. The extraction ratio (P fraction / R fraction) of the P fraction and the R fraction was 0.98. In Example 1, the purpose was to separate trisaccharides or more (DP3 +).
  • the supply amount of the liquid to be separated was 32.4 ml
  • the extraction amount of the P fraction was 55.4 ml
  • the extraction amount of the R fraction was 15.1 ml.
  • the supply amount of the eluent was 9.6 ml.
  • the circulation amount was 158.3 ml.
  • Example 2 In Example 2, the separation operation was performed by the method according to the second embodiment using the chromatographic separation apparatus 1 shown in FIG. At this time, the separation operation conditions of (1) downward supply extraction step and (3) upward supply extraction step were the same as those in Example 1. Further, (4) the circulation amount in the separation and circulation step was reduced by 3.0 ml to 155.3 ml with respect to Example 1, and (2) the circulation amount in the adjustment circulation step was set to 3.0 ml. As a result, the total amount of circulation in one cycle is the same as in the first embodiment.
  • Comparative Example 1 In Comparative Example 1, the chromatographic separation apparatus 1 shown in FIG. 1 is used to perform (1) a downward supply extraction process and (4) a separation circulation process, (2) an adjustment circulation process, and (3) an upward supply extraction. Separation operation was performed without performing the process. The separation operation conditions at this time were as shown in Table 3.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Analytical Chemistry (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • General Health & Medical Sciences (AREA)
  • Biochemistry (AREA)
  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Immunology (AREA)
  • Pathology (AREA)
  • Health & Medical Sciences (AREA)
  • Sustainable Development (AREA)
  • Treatment Of Liquids With Adsorbents In General (AREA)

Abstract

被分離液中に含まれる複数の成分を分離するための分離剤を充填した複数の充填部10と、複数の充填部10のそれぞれに設けられた、被分離液または被分離液に含まれる何れかの成分を抜き出すための溶離液を充填部10に供給する供給部20と、被分離液中に含まれる何れかの成分を充填部10から抜き出す抜出部30と、を備えるクロマト分離装置1により、被分離液中に含まれる複数の成分をクロマトグラフィーにより分離するクロマト分離方法であって、溶離液を、少なくとも1の充填部10に上向流供給部から上向流で供給しつつ、被分離液に含まれる何れかの成分を上向流抜出部から抜き出す上向供給抜出工程を含むクロマト分離方法。

Description

クロマト分離方法およびクロマト分離装置
 本発明は、クロマト分離方法等に関し、より詳しくは、分離剤に被分離液を通液することで被分離液中の複数の成分を分離するクロマト分離方法等に関する。
 従来より、擬似移動床法を代表とし、連続式のクロマト分離を行なうクロマト分離方法が知られている。このようなクロマト分離方法は、大量の被分離液の処理が求められる工業分野で特に有用である。例えば、異性化糖から果糖やブドウ糖の分離を行なう場合、糖蜜から蔗糖を分離する場合、オリゴ糖に含まれる低分子成分を除去する場合などの製糖分野において幅広く用いられている。連続式のクロマト分離を行なうクロマト分離方法としては、いくつかの方式が開発されている。
 特許文献1には、一方向に流体が循環的に流れ得るように構成されており、その流れの方向に沿って一組の原料流体供給口、非吸着質流体抜出口、脱着剤流体供給口及び吸着質流体抜出口がこの順序で設けられていて、全体が、原料流体供給口と非吸着質流体抜出口との間を占める吸着帯域、非吸着質流体抜出口と脱着剤流体供給口との間を占める精製帯域、脱着剤流体供給口と吸着質流体抜出口との間を占める脱着帯域、及び吸着質流体抜出口と原料流体供給口との間を占める濃縮帯域の4帯域に区分されており、かつ上記一組の供給口及び抜出口は、所定の作業時間経過後、下流にある他の一組の供給口及び抜出口に切替えられるように構成されている充填床を備えたクロマトグラフィー装置を用いて原料流体中の物質の分離を行なう方法が開示されている。
 また特許文献2には、第1床~第4床の4個の単位充填床から成る擬似移動床の第1床に溶離液、第3床に原料液を供給し、且つ第1床から流出する液の一部をB成分に富む画分、第3床から流出する液の全部をC成分に富む画分として、それぞれ系外に抜出す供給-抜出し段階、液の供給-抜出しを行なわずに擬似移動床内の液を下流方向に循環的に移動させる循環段階、第2床に溶離液を供給して床内の液を下流方向に押し流し、第1床から流出する液の全量をA成分に富む画分として系外に抜出す抜出し段階の3段階から成る工程を行ない、次いで液の供給-抜出し口を直ぐ下流の単位充填床に切替えて上記の工程を反復する方法が開示されている。
 さらに特許文献3には、無端循環系のクロマト分離系に複数成分を含む原料流体を供給し、充填床内に各成分の吸着帯域を形成させたのち2以上の画分に分離する方法であって、少なくとも(i)原料の供給と一成分が富化された画分を抜き出す工程、(ii)脱着剤の供給と他成分が富化された画分を抜き出す工程、(iii)充填床へ原料の供給及び画分の抜き出しをせず、床内の流体を循環させ、複数成分の混在帯域を移動させる工程の各工程を含み、この工程を含むサイクルを繰り返す事よりなるクロマト分離方法に於いて、充填床は原料流体を供給する充填床と1以上の他の充填床から構成され、且つ原料流体を供給する充填床には他の充填床の吸着剤(イオン交換樹脂)よりも大きい平均粒径及び/又は高架橋度のイオン交換樹脂が充填されていることを特徴とするクロマト分離方法が開示されている。
特開平2-49159号公報 特開平7-232003号公報 特開2002-143605号公報
 前述の通り、擬似移動床法等の連続式のクロマト分離を行なうクロマト分離方法では、大量の被分離液の処理が期待されることが多い。そのため単位分離剤量あたりの被分離液の処理量が多く、さらには高濃度の被分離液を処理できることが望ましい。一方で、これらの要素は圧力損失が増大する要因である。圧力損失が増大すると、分離剤が圧密化しやすく、分離性能の低下が生じやすくなる。よってこれを抑制するため、被分離液の負荷量あるいは濃度を下げ粘性を低減させる、分離剤の適切な粒子径を選定する、昇温により被分離液の粘性を下げるなどの操作を行ない、圧力損失をコントロールすることが行なわれている。
 しかしながら、被分離液の負荷量あるいは濃度を下げることは、被分離液の処理量の増加につながり、そのため装置が大きくなりやすい。また分離剤の粒子径を大きくすると、分離性能が低下しやすくなる。さらに昇温することで被分離液の粘性は下がるが、糖液などを被分離液とした場合は、昇温により着色が生じやすくなるため、60℃程度が温度の上限となる場合が多い。また天然物が基本由来となる糖液などが被分離液である場合、年ごと、さらに言えば時期ごとに組成が変化することがほとんどである。そのため、被分離液の粘性が高くなりすぎたり、昇温により着色しやすくなるなどの現象が生じやすく、より低温で分離運転を行なわなければならない場合も生じる。そしてその結果、被分離液の粘性があまり下がらず、圧力損失が増大しやすくなる。そのため分離剤が圧密化し、長期の安定運転が困難となりやすい。さらに分離剤が圧密化すると、分離性能の低下だけでなく、分離運転そのものができなくなることもある。そのときは、装置洗浄や分離剤をほぐす操作等が必要となる。
 本発明の目的は、連続式のクロマト分離をする場合に、分離剤の圧密化が生じにくいクロマト分離方法等を提供するものである。
 本発明者らは、連続式クロマト分離を行う際の常識に反して、クロマト分離工程のいずれかに上向流を導入することにより上記課題を解決することを着想した。
 ここで、連続式クロマト分離を行う際には、ピストンフローを維持して高い分離性能を引き出すために、被分離液や溶離液を下向流で供給することが当業者の常識である。
 工業的に使用される大型の連続式クロマト分離装置において、分離材が充填された充填部の内部は、大量の粒状体を充填時に最密充填することは困難なため、少なくともその運転を通じて、塔頂部と分離剤(樹脂)の表層までには空間が生じる。この状態で、被分離液や溶離液が下向流で充填部に導入されれば、液体による圧力が分離剤を押し下げる方向に作用するために、分離材の位置がほぼ変わらない(充填部内で流動しない)ため、ピストンフローを保持することが可能である。一方で、被分離液や溶離液が上向流で充填部に導入されると、液体による圧力が分離剤を押し上げる方向に作用するため、分離剤が流動してしまう。分離剤が流動すると、ピストンフローの保持が難しいため、分離性能が低下する恐れがある。
 本発明者らは従来の常識にとらわれず、運転条件を鋭意検討した結果、クロマト分離の一部に上向流抜出工程を取り入れても分離性能が低下せずにクロマト分離を実施できることを見出して本発明を完成した。
 かくして本発明によれば、被分離液中に含まれる複数の成分を分離するための分離剤を充填した複数の充填部と、複数の充填部のそれぞれに設けられた、被分離液または被分離液に含まれる何れかの成分を抜き出すための溶離液を充填部に供給する供給部と、被分離液中に含まれる何れかの成分を充填部から抜き出す抜出部と、を備える分離装置により、被分離液中に含まれる複数の成分をクロマトグラフィーにより分離するクロマト分離方法であって、溶離液を、少なくとも1の充填部に上向流供給部から上向流で供給しつつ、被分離液に含まれる何れかの成分を上向流抜出部から抜き出す上向供給抜出工程を含むクロマト分離方法が提供される。
 ここで、上向流供給部は、抜出部であるとともに、上向流抜出部は、供給部であるようにすることができる。この場合、装置構成をより簡単にすることができる。
 また被分離液および溶離液を複数の充填部のうち異なる充填部に供給部から下向流で供給するとともに、抜出部の何れかから分離液を抜き出す下向供給抜出工程をさらに含むようにすることができる。この場合、分離した成分を抜き出すことができる。
 そして被分離液および溶離液を供給せずに、充填部内の被分離液および溶離液を、下向流にて充填部間で循環させる循環工程をさらに含むようにすることができる。この場合、複数の成分の分離を促進することができる。
 さらに被分離液および前記溶離液を、複数の充填部のうち異なる充填部にそれぞれの液を供給部から下向流で供給するとともに、前記抜出部の何れかから前記分離液を抜き出す下向供給抜出工程と、被分離液および前記溶離液を供給せずに、充填部内の被分離液および溶離液を、下向流にて当該充填部間で循環させる循環工程と、を含むようにすることができる。この場合、クロマト分離を連続的に行なうことができる。
 また循環工程は、上向供給抜出工程の後に行ない、複数の成分の分離を進める分離循環工程とすることができる。この場合、クロマト分離をより連続的に行ないやすい。
 さらに下向供給抜出工程、上向供給抜出工程および分離循環工程の3工程をこの順で行なうことができる。この場合、クロマト分離を連続的に行なうのにより好適な工程の順となる。
 またさらに3工程を繰り返すことができる。この場合、分離運転をより長期に行なうことができる。
 また下向供給抜出工程および分離循環工程の2工程をこの順で繰り返すとともに、2工程の繰り返しの間に3工程を挿入することができる。この場合、必要なときに分離剤をほぐす工程を入れることができる。
 さらに循環工程として、下向供給抜出工程と上向供給抜出工程との間に行ない、被分離液および溶離液の位置を調製する調整循環工程をさらに含むようにすることができる。この場合、被分離液や溶離液の濃度分布の位置を、次工程を行なうのに、よりよい位置に合わせることができる。
 またさらに下向供給抜出工程、調整循環工程、上向供給抜出工程および分離循環工程の4工程をこの順で行なうことができる。この場合、クロマト分離を連続的に行なうのにより好適な工程の順となる。
 そして4工程を繰り返すことができる。この場合、分離運転をより長期に行なうことができる。
 下向供給抜出工程および分離循環工程の2工程をこの順で繰り返すとともに、2工程の繰り返しの間に4工程を挿入することができる。この場合、必要なときに分離剤をほぐす工程を入れることができる。
 上向供給抜出工程で溶離液を上向流で流すときに使用する充填部は、上向供給抜出工程を繰り返す毎に、上向流における上流側に順次移動するようにすることができる。この場合、クロマト分離を連続的に行なうのにより好適な充填部を選択することができる。
 上向供給抜出工程は、溶離液を供給する充填部の上向流抜出部から分離液を抜き出すようにすることができる。この場合、より適した位置から分離液を抜き出すことができる。
 さらに下向供給抜出工程で溶離液を下向流で流す充填部と、下向供給抜出工程の後最初に行う上向供給抜出工程で溶離液を上向流で流す充填部とは、異なる充填部であるようにすることができる。この場合、分離した成分が混合することを抑制することができる。
 そして下向供給抜出工程で溶離液を1または複数の充填部に下向流で流し、そのときに使用する充填部のうち最下流に位置する充填部の抜出部から被分離液中に含まれる複数の成分のうち1の成分を抜き出すとともに、上向供給抜出工程で溶離液を1または複数の充填部に上向流で流し、そのときに使用する充填部のうち最下流に位置する充填部の上向流抜出部から1の成分を抜き出すようにすることができる。この場合、1の成分をより効率的に抜き出すことができる。
 また本発明によれば、被分離液中に含まれる複数の成分をクロマトグラフィーにより分離するための分離剤を充填する、複数の充填部と、充填部のそれぞれに設けられ、被分離液を充填部に供給する供給部と、充填部のそれぞれに設けられ、被分離液中の何れかの成分に富む分離液を充填部から抜き出す抜出部と、分離液を抜き出すための溶離液を、供給部および抜出部の何れか一方から供給するための切り換えを行ない、溶離液を、供給部から供給するときと抜出部から供給するときとで、溶離液が流れる向きを逆側にして分離液を抜き出す切換部と、を備えるクロマト分離装置が提供される。この場合、連続式のクロマト分離をする場合に、分離剤の圧密化が生じにくいクロマト分離装置を提供できる。
 ここで切換部は、溶離液を抜出部から供給するときは、抜出部の何れかに対し溶離液を上向流で供給しつつ、溶離液を供給する抜出部が設けられる充填部の供給部から分離液を抜き出す制御を行なうようにすることができる。この場合、より適した位置から分離液を抜き出すことができる。
 また切換部は、被分離液および溶離液を別々の供給部から下向流で供給するとともに、抜出部の何れかから分離液を抜き出す制御をさらに行なうようにすることができる。この場合、分離液を効率よく抜き出すことができる。
 さらに切換部は、被分離液および溶離液を供給せずに、充填部内部の被分離液および溶離液を、充填部間で下向流にて循環させる制御をさらに行なうことができる。この場合、クロマト分離を連続的に行なうことができる。
 本発明によれば、連続式のクロマト分離をする場合に、分離剤の圧密化が生じにくいクロマト分離方法等を提供することができる。また、供給部に被分離液や溶離液用の枝管フィルタを設ける場合は、上向流によりこの枝管フィルタが洗浄され、装置面での圧損低減も期待できる。
本実施形態が適用されるクロマト分離装置について説明した図である。 従来のクロマト分離装置の動作について説明したフローチャートである。 (a)~(b)は、充填部内のP成分およびR成分のそれぞれの濃度分布について示した図である。 第1の実施形態におけるクロマト分離装置の動作について説明したフローチャートである。 (a)~(c)は、充填部内のP成分およびR成分のそれぞれの濃度分布について示した図である。 (a)~(l)は、ステップ201~ステップ203の3工程を4回(1サイクル目~4サイクル目)繰り返した場合の充填部内の被分離液や溶離液の流れの向きを示した図である。 第2の実施形態におけるクロマト分離装置の動作について説明したフローチャートである。 (a)~(d)は、充填部のそれぞれのP成分およびR成分の濃度分布について示した図である。 (a)~(p)は、ステップ301~ステップ304の4工程を4回(1サイクル目~4サイクル目)繰り返した場合の充填部内の被分離液や溶離液の流れの向きを示した図である。
 以下、本発明を実施するための形態について詳細に説明する。尚、本発明は、以下の実施の形態に限定されるものではなく、その要旨の範囲内で種々変形して実施することができる。また、使用する図面は本実施の形態を説明するためのものであり、実際の大きさを表すものではない。
<被分離液、分離剤、溶離液の説明>
(被分離液)
 本実施の形態の被分離液は、含まれる複数の成分を、後述するクロマト分離装置を使用して分離する対象となる液体であり、水または有機溶媒等の溶媒に複数の成分が溶解したものである。そして、各成分の分離剤に対する相互作用の差を利用することで、複数の成分を大きく2つの画分に分離する。この複数の成分が、例えば、P成分およびR成分の2成分だった場合、これらを分離し、P成分およびR成分の何れかまたは双方を有用成分として選択的に抽出することができる。なお以下の説明では、分離剤との相互作用がより大きい成分をP成分、分離剤との相互作用がより小さい成分をR成分とし(分離剤との相互作用が、R成分<P成分の場合)、このP成分とR成分とを分離する場合について説明を行なう。つまりこの場合、被分離液を分離剤に通液すると、R成分の通過速度の方が、P成分の通過速度より大きくなる。その結果、通液方向に向かいR成分が先に進みやすく、P成分が後に残りやすい。つまりP成分とR成分との分離が生ずる。なお以後、これらの成分を分離した後の液体であって、P成分とR成分の何れかに富む液体を、「分離液」と言うことがある。
 なお分離を行なうことができるのは、含まれる成分が2成分の場合に限られるものではなく、3成分以上であってもよい。そしてこれらの中から1成分を分離する場合や大きく2つの画分にそれぞれ分離する場合などにも適用できる。
 本実施の形態では、被分離液が、高粘度の場合でも被分離液中の成分を分離することができる。具体的には、オリゴ糖、マルトース等の糖類を含む被分離液が挙げられる。
(分離剤)
 本実施の形態で使用する分離剤は、特に限られるものではなく、合成吸着剤、イオン交換樹脂などを使用することができる。
 合成吸着剤においては、各成分の疎水性の差を利用した逆相クロマトグラフィー、π-π相互作用、水素結合などを利用した順相クロマトグラフィーが主な分離原理となる。
 またイオン交換樹脂においては、分子サイズの違いを利用したサイズ排除クロマトグラフィー、官能基との反発力を利用したイオン排除クロマトグラフィーなどが主な分離原理となる。
 合成吸着剤は、芳香族系、芳香族系修飾型、メタクリル系の何れを使用してもよい。またイオン交換樹脂としては、強酸性陽イオン交換樹脂、弱酸性陽イオン交換樹脂、強塩基性陰イオン交換樹脂、弱塩基性陰イオン交換樹脂の何れを使用してもよい。
 ただし被分離液として高粘性のもの、例えば、糖液等を使用する場合、強酸性陽イオン交換樹脂を使用することが好ましい。
 このような分離剤としては、例えば、三菱ケミカル株式会社製の工業クロマト分離用陽イオン交換樹脂である、UBK510L、UBK530、UBK550、UBK535J、UBK535K等を用いることができる。またダウ・ケミカル社製のAMBERLITE CR1320)、ランクセス社製のLEWATIT MDS1368等を用いることができる。
 分離剤を構成する粒子の粒径はより均一であることが好ましい。例えば、粒度分布として、粒径150μm~450μmであることが好ましく、220μm~360μm程度の粒子の割合が、体積比で全体の80%以上であることが好ましい。また85%以上であることがさらに好ましい。
(溶離液)
 本実施の形態では、溶離液は、分離剤を充填する充填層において成分を展開し、分離剤と成分の相互作用の大きさを調整するために使用する液体である。
 合成吸着剤では、分離剤と成分間の相互作用を溶離液濃度によって調整することで、完全に吸着せず、かつ各成分を分離して溶出させることができる。溶離液として、例えば、エタノールやメタノール等のアルコール類やヘキサン類を用いることができる。
 またイオン交換樹脂は、分子サイズの大きさや、官能器と成分の微弱な相互作用を利用するため、溶離液は純水を用いることが多い。また、分離液中の成分の安定性や解離状態を維持するため、塩酸や硫酸等を含む酸性水溶液、あるいは水酸化ナトリウム等を含むアルカリ性水溶液を用いることがある。
 以下、図面に基づき、本実施の形態が適用されるクロマト分離装置について説明を行なう。
<クロマト分離装置の説明>
 図1は、本実施形態が適用されるクロマト分離装置1について説明した図である。
 クロマト分離装置1は、成分の分離を行なう充填部10と、被分離液や溶離液の供給を行なう供給部20と、分離液を抜き出す抜出部30と、流路の切り換えを行なう切換部40とを備える。
 本実施の形態では、充填部10は、4個備えられる。本実施の形態では、充填部10として、充填部11、12、13、14(充填部11~14)を図示している。なお以後、充填部11、12、13、14のそれぞれを区別しない場合は、単に充填部10と言うことがある。充填部10は、被分離液中に含まれる複数の成分をクロマトグラフィーにより分離するための分離剤を充填する。これらの分離剤を充填する分離塔は上部に空塔を持たないパックドカラムタイプとすることがより好ましい。なお充填部10は、2個配されれば足りる。ただし、分離効率の観点から3個以上であることがより好ましく、被分離液の種類等に基づいてシステムの運転条件変更や調整が必要の場合には、4個以上であることがさらに好ましい。また充填部10は、5個以上からなってもよい。
 充填部10は、例えば、カラムであり、分離剤を充填するための空間を内部に有する。充填部10は、材質として例えば、鋼板などからなり、接液部はゴムライニングしたものとすることができるが、これに限られるものではない。例えば、充填部10の材質として樹脂等も使用することができる。また充填部10の形状としては特に限られるものではないが、本実施の形態では、例えば、略円筒形状とし、全体として塔形状をなす。
 供給部20は、充填部10のそれぞれに設けられ、被分離液や溶離液を充填部10に供給する。供給部20は、例えば、充填部10の上部に設けられた供給口である。本実施の形態では、供給部20として、供給部21、22、23、24(供給部21~24)を図示している。なお以後、供給部21、22、23、24のそれぞれを区別しない場合は、単に供給部20と言うことがある。また図示する例では、供給部20は、充填部10のそれぞれに1つずつ設けられるが、複数ずつでもよい。例えば、被分離液を供給する場合と、溶離液を供給する場合とで別々に設け、2つずつとしてもよい。
 抜出部30は、充填部10のそれぞれに設けられ、被分離液中の何れかの成分に富む分離液を充填部10から抜き出す。抜出部30は、例えば、充填部10の下部に設けられた排出口である。本実施の形態では、抜出部30として、抜出部31、32、33、34(抜出部31~34)を図示している。なお以後、抜出部31、32、33、34のそれぞれを区別しない場合は、単に抜出部30と言うことがある。また図示する例では、抜出部30は、充填部10のそれぞれに1つずつ設けられるが、複数ずつでもよい。例えば、被分離液中のP成分に富む分離液であるP画分を抜き出す場合と、R成分に富む分離液であるR画分抜き出す場合とで別々に設け、2つずつとしてもよい。この場合、P画分やR画分を抜き出すのにより適切な位置に、それぞれ抜出部30を設けることができる。さらに詳しくは後述するが、本実施の形態では、溶離液を抜出部30から供給する場合がある。そのためこの際に使用する供給口を別途設けてもよい。これにより、分離液を抜き出す抜出部30と溶離液を供給する供給口とが別々となり、他の充填部10や、後述する配管HX1~HX4への干渉を抑制し、分離運転を安定して行いやすくなる。
 切換部40は、例えば、開閉弁(開閉バルブ)である。そしてこの開閉弁を開閉することで、被分離液、溶離液、分離液の流路を切り換えることができる。本実施の形態では、切換部40は、溶離液開閉弁W1、W2、W3、W4(溶離液開閉弁W1~W4)、被分離液開閉弁F1、F2、F3、F4(被分離液開閉弁F1~F4)、接続路開閉弁X1、X2、X3、X4(接続路開閉弁X1~X4)、R成分開閉弁R1、R2、R3、R4(R成分開閉弁R1~R4)、およびP成分開閉弁P1、P2、P3、P4(P成分開閉弁P1~P4)を備える。
 またクロマト分離装置1は、溶離液を溶離液槽等から供給する配管HW、溶離液を配管HWから充填部11に供給する配管HW1、溶離液を配管HWから充填部12に供給する配管HW2、溶離液を配管HWから充填部13に供給する配管HW3、および溶離液を配管HWから充填部14に供給する配管HW4を備える。この場合、溶離液開閉弁W1~W4は、それぞれ配管HW1~HW4に設けられ、充填部11~14への溶離液の供給を制御する。
 さらにクロマト分離装置1は、被分離液を被分離液槽等から供給する配管HF、被分離液を配管HFから充填部11に供給する配管HF1、被分離液を配管HFから充填部12に供給する配管HF2、被分離液を配管HFから充填部13に供給する配管HF3、および被分離液を配管HFから充填部14に供給する配管HF4を備える。この場合、被分離液開閉弁F1~F4は、それぞれ配管HF1~HF4に設けられ、充填部11~14への被分離液の供給を制御する。
 またさらにクロマト分離装置1は、各充填部10間を接続する接続路として、充填部11の抜出部31と充填部12の供給部22とを接続する配管HX1、充填部12の抜出部32と充填部13の供給部23とを接続する配管HX2、充填部13の抜出部33と充填部14の供給部24とを接続する配管HX3、充填部14の抜出部34と充填部11の供給部21とを接続する配管HX4を備える。この場合、接続路開閉弁X1~X4は、それぞれ配管HX1~HX4に設けられ、充填部11~14の相互間の被分離液の流通を制御する。
 なお配管HX4の接続路開閉弁X4の箇所には、バイパス路HBが設けられ、バイパス路HBには、ポンプPMが設けられる。なおバイパス路HBおよびポンプPMは、配管HX4に設置されているが、配管HX1~HX4の何れに設置してもよく、配管HX1~HX4の複数位置(例えば、全ての位置)に設置してもよい。
 そしてクロマト分離装置1は、R画分を抜き出す配管HR、R画分を充填部11から配管HRに抜き出す配管HR1、R画分を充填部12から配管HRに抜き出す配管HR2、R画分を充填部13から配管HRに抜き出す配管HR3、およびR画分を充填部14から配管HRに抜き出す配管HR4を備える。この場合、R成分開閉弁R1~R4は、それぞれ配管HR1~HR4に設けられ、充填部11~14からの分離液の抜き出しを制御する。
 そしてクロマト分離装置1は、P画分を抜き出す配管HP、P画分を充填部11から配管HPに抜き出す配管HP1、P画分を充填部12から配管HPに抜き出す配管HP2、P画分を充填部13から配管HPに抜き出す配管HP3、およびP画分を充填部14から配管HPに抜き出す配管HP4を備える。この場合、P成分開閉弁P1~P4は、それぞれ配管HP1~HP4に設けられ、充填部11~14からの分離液の抜き出しを制御する。
 詳しくは後述するが、切換部40は、分離液を抜き出すための溶離液を、供給部20および抜出部30の何れか一方から供給するための切り換えを行なうのに使用する。また溶離液を、供給部20から供給するときと抜出部30から供給するときとで、溶離液が流れる向きを逆側にして分離液を抜き出す。
<クロマト分離装置1の動作の説明>
 以上説明したクロマト分離装置1は、以下のように動作する。
 ここでは、まず従来のクロマト分離装置1の動作について説明をした後、本実施の形態に係るクロマト分離装置1の動作について説明を行う。
 図2は、従来のクロマト分離装置1の動作について説明したフローチャートである。
 また図3(a)~(b)は、充填部11~14内のP成分およびR成分のそれぞれの濃度分布について示した図である。ここで横方向は、充填部11~14内の位置を表す。各充填部11~14において、図中において、より左方ほど充填部11~14内のより上部(より上流側)の位置であり、図中において、より右方ほど充填部11~14内のより下部(より下流側)の位置であることを意味する。また縦方向は、各位置におけるP成分およびR成分の濃度を表す。さらに右矢印および左矢印は、充填部11~14内において、被分離液や溶離液の流れの向きを表し、右矢印の場合は、充填部11~14内を被分離液や溶離液が下向流で流れることを意味する。この場合、下向流は、分離運転するときの通常の流れの向きである。対して、左矢印の場合は、充填部11~14内を被分離液や溶離液が上向流で流れることを意味する。この場合、上向流は、通常の流れの向きとは逆側である。さらに右矢印および左矢印が図示されていない場合は、その充填部11~14内で、流れが生じていないことを意味する。また下矢印や上矢印は、被分離液や溶離液を供給する箇所、およびP成分に富む分離液であるP画分やR成分に富む分離液であるR画分を抜き出す箇所を表す。図中、被分離液を「F」、溶離液を「W」、P成分やP画分を「P」、R成分やR画分を「R」で表す。
 なお図3において、充填部13を吸着帯域(Zone1)、充填部14を精製帯域(Zone2)、充填部11を脱着帯域(Zone3)、充填部12を濃縮帯域(Zone4)と言うことがある。そして本実施の形態では、これらの帯域(Zone)を1つずつずらしながら分離運転を連続式に行なう。なお以下に説明する方法は、改良型擬似移動床法と呼ばれることがある。
 充填部11~14に対し、被分離液を分離剤に通液すると、上述したように、R成分の通過速度の方が、P成分の通過速度より大きくなる。そのため例えば、図3(a)に示すように、通液方向に向かいR成分が先に進みやすく、P成分が後に残りやすい。つまり充填部11~14内で、P成分とR成分との分離が生じた状態となる。
 そして図3(a)の状態において、被分離液および溶離液を複数の充填部10のうち異なる充填部10にそれぞれの液を供給部から下向流で供給する。またこれとともに、P成分に富む分離液とR成分に富む分離液とをそれぞれ別々の抜出部から抜き出す(ステップ101:下向供給抜出工程)。
 この場合、被分離液開閉弁F3、溶離液開閉弁W1、接続路開閉弁X1、X2、P成分開閉弁P1、R成分開閉弁R3を開とし、他の開閉弁は、閉とする。これにより被分離液を、供給部23から充填部13に供給するとともに、溶離液を、供給部21から充填部11に供給する。またP成分に富む分離液であるP画分を、抜出部31から抜き出し、R成分に富む分離液であるR画分を、抜出部33から抜き出す。
 即ち、下向供給抜出工程では、供給部21から充填部11に供給する溶離液によってP成分を溶離させ、供給した溶離液の一部を、P成分に富む分離液であるP画分を配管HP1に抜き出す。また抜出部31から抜き出さなかった溶離液の残部は、配管HX1から充填部12に流入する。これにより、溶離液は、下向方向に移動し、充填部12および充填部13を流通する。そして充填部12および充填部13においてP成分とR成分との分離が進むとともに、P成分およびR成分の濃度分布についても下流側に移動する。そして、充填部13に被分離液を供給し、充填部13の抜出部33から、R成分に富む分離液であるR画分を配管HR3に抜き出す。
 ここで、配管HP1に抜き出す液量は、供給部21から供給する液量の一部である。よってこの流量を制御するため、配管HP1の先にポンプを取付け一定流量で抜き出すか、あるいは積算流量計で抜き出し量を調整する必要がある。
 なお、下向供給抜出工程では、供給部23から被分離液を供給し、抜出部33からR画分を抜き出す操作、供給部21から溶離液を供給し、抜出部31からP画分を抜き出す操作、および供給部21から溶離液を供給し、抜出部33からR画分を抜き出す操作をそれぞれ分割して実施してもよい。
 そしてステップ101の終了時点で、P成分およびR成分の濃度分布は、図3(b)に示すようなものになる。
 そして図3(b)の状態において、充填部10内の被分離液および溶離液を、下向流にて充填部10間で循環させ、複数の成分の分離を進める(ステップ102:分離循環工程)。なおこのとき被分離液および溶離液の供給は行なわない。
 この場合、接続路開閉弁X1、X2、X3を開とし、他の開閉弁は、閉とする。そしてポンプPMを動作させることにより、充填部10内の被分離液および溶離液を、下向流にて充填部10間で循環させる。つまりこの場合、接続路開閉弁X1、X2、X3を開けることで、配管HX1、HX2、HX3、HX4、バイパス路HBにより、全ての充填部10が連結された状態となり、循環路が形成される。そしてポンプPMを動作させ、この循環路内を、被分離液や溶離液を移動させる。ここでは、充填部10内の被分離液および溶離液を、充填部10の1個分、下向方向に移動する。またこの際に、P成分とR成分との分離が進む。その結果、図3(a)の状態から、充填部10について、図中右側に1個分ずれた形の濃度分布となる。つまり図中右側に充填部10について、1個分ずれた形で濃度分布が再現される。これにより、再びステップ101に戻り、同じ分離処理を繰り返すことができ、クロマト分離を連続して行なうことができる。
 そして、次にクロマト分離を終了させるか否かを決定する(ステップ103)。クロマト分離を終了させる場合としては、例えば、予め定められた量の被処理水を処理した場合である。また、圧力損失が予め定められた大きさを超えた場合に終了としてもよく、予め定められた分離運転時間が経過したときに終了としてもよい。
 そしてクロマト分離を終了させる場合(ステップ103でYes)、分離運転を停止する(ステップ104)。
 対して、クロマト分離を終了させない場合(ステップ103でNo)、ステップ101に戻る。つまり上記ステップ101~ステップ102の2工程を繰り返す。
 次に、本実施の形態に係るクロマト分離装置1の動作について説明を行う。
[第1の実施形態]
 ここではまず本実施の形態のクロマト分離装置1の動作として、第1の実施形態について説明を行なう。
 図4は、第1の実施形態におけるクロマト分離装置1の動作について説明したフローチャートである。
 また図5(a)~(c)は、充填部11~14内のP成分およびR成分のそれぞれの濃度分布について示した図である。ここで横方向は、充填部11~14内の位置を表し、縦方向は、各位置におけるP成分およびR成分の濃度を表すのは、図3と同様である。さらに、矢印の向き、F、W、P、Rの記号、およびZone1~Zone4の意味も図3と同様である。
 第1の実施の形態では、図4で図示するように、ステップ201、ステップ203~ステップ205は、それぞれ、ステップ101~ステップ104と同様であり、ステップ202の上向供給抜出工程を行なう点で異なる。よって以下、ステップ202の上向供給抜出工程を中心に説明を行なう。
 ここでは、ステップ201の終了時点で、P成分およびR成分の濃度分布は、図3(b)と同様の図5(b)に示すようなものになる。
 そして図5(b)の状態において、抜出部30の何れかに対し溶離液を上向流で供給しつつ、溶離液を供給する充填部10の供給部20から分離液を抜き出す(ステップ202:上向供給抜出工程)。
 上向供給抜出工程では、溶離液開閉弁W1、接続路開閉弁X3、X4、成分開閉弁R3を開とし、他の開閉弁は、閉とする。これにより溶離液を、抜出部34から充填部14に供給する。またR成分に富む分離液であるR画分を、充填部14の供給部24から抜き出す。
 具体的に、溶離液は、P画分およびR画分の濃度が低い箇所、特にR画分の濃度が低い箇所から供給する。即ち、ほとんど溶離液しか含まれない箇所から同じ溶離液を供給することで、RとP成分の濃度分布への影響が少ないため、分離性能が低下しない。一方、RとP成分濃度が高い箇所から逆向き(上向流)に溶離液を供給すると、部分的に本来の溶離位置と異なるところに出るので、最終製品の純度が低下するため、クロマト分離で向上させたい性能が落ちることとなる。
 即ち、上向供給抜出工程では、充填部14に上向流で溶離液を流すことで、分離剤の圧密化を緩和しつつ、充填部14の上部に流入しているR成分の抜き出しを行なう。具体的には、接続路開閉弁X1、X2を閉とすることで、溶離液を抜出部34から充填部14の下方から流入させ、充填部14内を上向流で流通させ、充填部14の上方の供給部24から全量をR画分として抜き出す。さらに充填部14内の溶離液の流通方向は、上向流であり、下方から上方へ向かう。そのため分離剤の圧密化の緩和が可能となる。また供給部24に被分離液や溶離液用の枝管フィルタを設ける場合がある。この場合、上向流によりこの枝管フィルタが洗浄され、装置面での圧損低減も期待できる。ただし、上向流の流量があまりに低いと分散不良による片流れなどにより分離性能が低下するため、上向流にはある程度の流量が必要となる。具体的には、線速度(LV)が、0.5m/hr以上、10.0m/hr以下にすることが望ましく、1.0m/hr以上5.0m/hr以下にすることがさらに望ましい。
 充填部14内には、図5(b)に示すようにP成分はほとんど存在せず、存在するのは、ほぼR成分である。また接続路開閉弁X1、X2は、閉であるため、充填部11、12、13内のP成分およびR成分の濃度分布は変化せず、充填部14内のR成分の濃度分布だけが変化する。そのため通常の分離運転とは逆側の上向流で溶離液を流しても、P成分とR成分との分離を乱すことはない。そしてこの場合、分離剤の圧密化の緩和を図れるとともに、R画分を抜き出すこともできる。
 そしてステップ202の終了時点で、P成分およびR成分の濃度分布は、図5(c)に示すようなものになる。
 そして図5(c)の状態において、充填部10内の被分離液および溶離液を、下向流にて充填部10間で循環させ、複数の成分の分離を進める(ステップ203:分離循環工程)。これにより、循環路内を、被分離液や溶離液を移動させる。ここでは、充填部10内の被分離液および溶離液を、充填部10の1個分、下向方向に移動する。またこの際に、P成分とR成分との分離が進む。その結果、図5(a)の状態から、充填部10について、図中右側に1個分ずれた形の濃度分布となる。つまり図中右側に充填部10について、1個分ずれた形で濃度分布が再現される。これにより、再びステップ201に戻り、同じ分離処理を繰り返すことができ、クロマト分離を連続して行なうことができる。
 図6(a)~(l)は、ステップ201~ステップ203の3工程(下向供給抜出工程、上向供給抜出工程、分離循環工程)を4回(1サイクル目~4サイクル目)繰り返した場合の充填部11~14内の被分離液や溶離液の流れの向きを示した図である。ここで、図6(a)~(c)は、1サイクル目であり、図6(d)~(f)は、2サイクル目である。また図6(g)~(i)は、3サイクル目であり、図6(j)~(l)は、4サイクル目である。また図6では、図5の場合と同様に、右矢印は、下向流であることを意味し、左矢印は、上向流であることを意味する。さらに右矢印および左矢印が図示されていない場合は、その充填部11~14内で、流れが生じていないことを意味する。そして、下矢印や上矢印は、被分離液や溶離液を供給する箇所、およびP画分やR画分を抜き出す箇所を表す。この場合、被分離液を「F」、溶離液を「W」、P成分やP画分を「P」、R成分やR画分を「R」で表す。
 また以下の表1は、切換部40の各開閉弁について開にするものを示している。なおここで示した開閉弁以外の開閉弁は閉とする。
Figure JPOXMLDOC01-appb-T000001
 図6(a)~(c)、図6(d)~(f)、図6(g)~(i)、図6(j)~(l)をそれぞれ比較すると、流れの方向の位置、被分離液や溶離液を供給する箇所、およびP画分やR画分を抜き出す箇所は、それぞれ充填部10について、図中右側(下流側)に1個分ずつずれていく。つまり流れの方向の位置、被分離液や溶離液を供給する箇所、およびP画分やR画分を抜き出す箇所は、下向流における下流側に順次移動する。また上向供給抜出工程を見た場合、溶離液を上向流で流すときに使用する充填部10は、上向供給抜出工程を繰り返す毎に、上向流における上流側に順次移動する、と言うこともできる。そして、図6を参照すると、下向供給抜出工程で溶離液を下向流で流す充填部10と、下向供給抜出工程の後最初に行う上向供給抜出工程で溶離液を上向流で流す充填部10とは、異なる充填部であることがわかる。さらに図6において、R画分を抜き出す位置を見ると、下向供給抜出工程で溶離液を1または複数の充填部10に下向流で流し、そのときに使用する充填部10のうち最下流に位置する充填部10の抜出部30から被分離液中に含まれる複数の成分のうちR画分を抜き出すとともに、上向供給抜出工程で溶離液を1または複数の充填部10に上向流で流し、そのときに使用する充填部10のうち最下流に位置する充填部10の上向流抜出部からR画分を抜き出す。この場合、R画分は、1の成分の一例である。また表1を参照すると、開にする開閉弁の位置も、同様に、それぞれ填部10について、図中右側(下流側)に1個分ずつずれていく。なお1サイクルを4回行うと、再び、元の状態に戻る。つまり図6(l)の後は、図6(a)に戻る。
 このように、本実施の形態では、溶離液を、少なくとも1の充填部10に抜出部30から上向流で供給しつつ、被分離液に含まれる何れかの成分を供給部20から抜き出す上向供給抜出工程を含むことを特徴とする。
 なお、溶離液を上向流で供給する箇所を、充填部10に抜出部30とは別に設けてもよい。即ち、充填部10に抜出部30と溶離液を上向流で供給する箇所とを充填部10の下部に別々に設ける。この場合、溶離液を上向流で供給する箇所は、上向供給抜出工程において、溶離液を充填部10に供給する上向流供給部として捉えることができる。
 また同様に、被分離液に含まれる何れかの成分を抜き出す箇所を、充填部10に供給部20とは別に設けてもよい。即ち、充填部10に供給部20と分離液に含まれる何れかの成分を抜き出す箇所とを充填部10の上部に別々に設ける。この場合、分離液に含まれる何れかの成分を抜き出す箇所は、上向供給抜出工程において、溶離液を充填部10から抜き出す上向流抜出部として捉えることができる。
 ただし、上述したように、上向流供給部を、抜出部30とし、上向流抜出部を、供給部20とすることにより、装置構成をより簡単にすることができる。
[第2の実施形態]
 次に、クロマト分離装置1の動作として、第2の実施形態について説明を行なう。
 図7は、第2の実施形態におけるクロマト分離装置1の動作について説明したフローチャートである。また図8(a)~(d)は、充填部11~14のそれぞれのP成分およびR成分の濃度分布について示した図である。ここで横方向は、充填部11、12、13、14内の位置を表し、縦方向は、P成分およびR成分の濃度を表すのは、図3、5と同様である。さらに、矢印の向き、F、W、P、Rの記号、およびZone1~Zone4の意味も図3、5と同様である。
 第2の実施形態は、第1の実施形態に比較して、下向供給抜出工程と上向供給抜出工程との間に、調整循環工程が入る。また調整循環工程以外の工程は、同様であるため、以下の説明は、調整循環工程の説明を中心に行なう。
 この場合、図7に示すステップ301、ステップ303~ステップ306は、図4のステップ201~ステップ205とそれぞれ同様である。また図8(a)、(c)、(d)は、図5(a)~(c)とそれぞれほぼ同様である。
 ステップ301の終了時点で、P成分およびR成分の濃度分布は、図8(b)に示すようなものになる。そして図8(b)の状態において、充填部10内の被分離液および溶離液を、下向流にて充填部10間で循環させ、充填部10内における被分離液およぶ溶離液の位置を次工程の開始位置まで移動させる(ステップ302:調整循環工程)。なおこのとき被分離液および溶離液の供給は行なわない。これにより、被分離液や溶離液の濃度分布の位置を、次工程を行なうのに、よりよい位置に合わせることができる。
 ステップ302の調整循環工程では、上記図4におけるステップ203の分離循環工程の場合と同様に、接続路開閉弁X1、X2、X3を開とし、他の開閉弁は、閉とする。そしてポンプPMを動作させることにより、充填部10内の被分離液および溶離液を、下向流にて充填部10間で循環させる。その結果、充填部10内の被分離液および溶離液が、一定量分、下向方向に移動する。
 調整循環工程では、次工程において、充填部14内のR成分に富む分離液であるR画分を抜き出すことから、充填部13内のP成分が充填部14内に流入しないよう循環量を調整する必要がある。
 そしてステップ302の終了時点で、P成分およびR成分の濃度分布は、図8(c)に示すようなものになる。この調整循環工程では、R成分をできるだけ、充填部14内に移動させるともに、P成分を充填部14内に流入させないようにする。
 そして図8(c)の状態において、第1の実施形態の場合と同様に、抜出部30の何れかに対し溶離液を上向流で供給しつつ、溶離液を供給する抜出部30が設けられる充填部10の供給部20から分離液を抜き出す(ステップ303:上向供給抜出工程)。
 その結果、ステップ303の終了時点で、P成分およびR成分の濃度分布は、図8(d)に示すようなものになる。
 そして図8(d)の状態において、充填部10内の被分離液および溶離液を、下向流にて充填部10間で循環させ、複数の成分の分離を進める(ステップ304:分離循環工程)。これにより、循環路内を、被分離液や溶離液を移動させる。ここでは、充填部10内の被分離液および溶離液を、充填部10の1個分、下向方向に移動する。またこの際に、P成分とR成分との分離が進む。その結果、図8(a)の状態から、充填部10について、図中右側に1個分ずれた形の濃度分布となる。つまり図中右側に充填部10について、1個分ずれた形で濃度分布が再現される。これにより、再びステップ301に戻り、同じ分離処理を繰り返すことができ、クロマト分離を連続して行なうことができる。
 第2の実施形態の場合、第1の実施形態に比較して、調整循環工程を行なうため、被分離液や溶離液の濃度分布の位置を、よりよい位置に合わせることができる。また第2の実施形態においては、調整循環工程において、充填部11から充填部12に流入した被分離液により、下向供給抜出工程で行なう分離を進める操作を補填できる。従って、1つ前の下向供給抜出工程において、充填部11から充填部12に流入させる被分離液の一部、あるいは全量を削減してもよい。本実施の形態では、上向供給抜出工程を行なうことで、溶離液の使用量が増加するが、このようにすることで、供給する被分離液や溶離液の使用量を抑えることができる。一方、第1の実施形態の場合、第2の実施形態に比較して、調整循環工程を行なわないため、分離運転時間の短縮化が図りやすいという利点が生じる。
 図9(a)~(p)は、ステップ301~ステップ304の4工程(下向供給抜出工程、調整循環工程、上向供給抜出工程、分離循環工程)を4回(1サイクル目~4サイクル目)繰り返した場合の充填部11~14内の被分離液や溶離液の流れの向きを示した図である。ここで、図9(a)~(d)は、1サイクル目であり、図9(e)~(h)は、2サイクル目である。また図9(i)~(l)は、3サイクル目であり、図9(m)~(p)は、4サイクル目である。また図9に図示する矢印の意味は、図6と同様である。
 また以下の表2は、切換部40の各開閉弁について開にするものを示している。なおここで示した開閉弁以外の開閉弁は閉とする。
Figure JPOXMLDOC01-appb-T000002
 図9(a)~(d)、図9(e)~(h)、図9(i)~(l)、図9(m)~(p)をそれぞれ比較すると、流れの方向の位置、被分離液や溶離液を供給する箇所、およびP画分やR画分を抜き出す箇所は、それぞれ填部10について、図中右側(下流側)に1個分ずつずれていく。また表2を参照すると、開にする開閉弁の位置も、同様に、それぞれ填部10について、図中右側(下流側)に1個分ずつずれていく。なお1サイクルを4回行うと、再び、元の状態に戻る。つまり図9(p)の後は、図9(a)に戻る。
 なお以上説明したクロマト分離装置1で行なう被分離液の処理は、第1の実施形態では、以下の(1)、(3)、(4)の工程を含むクロマト分離方法であると捉えることもできる。この(1)、(3)、(4)の各工程は、上述したステップ201~ステップ203にそれぞれ対応する。また第2の実施形態では、(1)~(4)の工程を含むクロマト分離方法であると捉えることもできる。この(1)~(4)の各工程は、上述したステップ301~ステップ304にそれぞれ対応する。
 (1)被分離液および溶離液を複数の充填部10のうち異なる充填部10に供給部20から下向流で供給するとともに、抜出部30の何れかから分離液を抜き出す下向供給抜出工程
 (2)下向供給抜出工程と上向供給抜出工程との間に行ない、充填部10内の被分離液および溶離液を、下向流にて充填部10間で循環させ、被分離液および溶離液の位置を調製する調整循環工程
 (3)被分離液中に含まれる複数の成分を分離するための分離剤を充填した複数の充填部10と、複数の充填部10のそれぞれに設けられた、被分離液または被分離液に含まれる何れかの成分を抜き出すための溶離液を充填部10に供給する供給部20と、被分離液中に含まれる何れかの成分を充填部10から抜き出す抜出部30と、を備えるクロマト分離装置1により、被分離液中に含まれる複数の成分をクロマトグラフィーにより分離するクロマト分離方法であって、溶離液を、少なくとも1の充填部10に上向流供給部から上向流で供給しつつ、被分離液に含まれる何れかの成分を上向流抜出部から抜き出す上向供給抜出工程
 (4)上向供給抜出工程の後に行ない、充填部10内の被分離液および溶離液を、下向流にて充填部10間で循環させ、複数の成分の分離を進める分離循環工程
 なお、(2)および(4)の少なくとも一方は、被分離液および溶離液を供給せずに、充填部10内の被分離液および溶離液を、下向流にて充填部10間で循環させる循環工程の一例であると捉えることができる。
 またさらに、第1の実施形態は、(1)下向供給抜出工程、(3)上向供給抜出工程、および(4)分離循環工程の3工程をこの順で行なうクロマト分離方法であると捉えることもできる。またこの4工程を繰り返すクロマト分離方法であると捉えることもできる。
 また第2の実施形態は、(1)下向供給抜出工程、(2)調整循環工程、(3)上向供給抜出工程、(4)分離循環工程の4工程をこの順で行なうクロマト分離方法であると捉えることもできる。さらにこの3工程を繰り返すクロマト分離方法であると捉えることもできる。
 さらにこの3工程や4工程のみを繰り返す場合に限られるものではなく、(1)下向供給抜出工程、および(4)分離循環工程の2工程をこの順で繰り返すとともに、この2工程の繰り返しの間に上述した3工程や4工程を挿入するようにしてもよい。つまりこの場合、分離剤の圧密化があまり生じていないときは、上記2工程を行ない、分離剤の圧密化が生じたときに、上記3工程や4工程を行なうことができる。つまり下向流での分離運転を行ないつつ、その合間に上向流での分離運転を行なう。上記3工程や4工程と、上記2工程との何れを行なうかは、例えば、圧力損失の程度により決めてもよく、また例えば、上記2工程を10回行った後に、上記3工程や4工程を1回行い、以後、これを繰り返すなど、回数により決めてもよい。この実施の形態によれば、分離剤の圧密化の緩和が図れるとともに、分離運転時間の短縮化が図りやすい。
 第1の実施形態および第2の実施形態によれば、図2、3で説明した従来の改良型擬似移動床法と比較して各成分の純度・回収率で同等の性能を得ながら、分離剤の圧密化を緩和することができるクロマト分離方法を提供できる。そしてその結果、クロマト分離装置1の長期間の安定運転に寄与することができる。
 なお上述した形態において、開閉弁である切換部40の開閉の制御は、手動で行ってもよく、自動で行ってもよい。また手動で行なう場合と自動で行なう場合とを併用してもよい。自動で行う場合は、例えば、制御盤等の制御部を設け、制御部が、ソフトウェアとハードウェア資源とを協働させ切換部40の制御を行なう。即ち、制御部に設けられた制御用PLC(Programmable Logic Controller)が、切換部40の開閉の制御を実現するプログラムを読み込み、このプログラムを実行することで、切換部40の開閉の制御を行なう。
 以下、本発明を実施例を用いてより詳細に説明するが、本発明は、その要旨を越えない限りこれらの実施例により限定されるものではない。
[分離運転]
(実施例1)
 実施例1では、図1に示すクロマト分離装置1を用い、第1の実施形態による方法で、分離運転を行なった。このときの分離運転条件を表3に示す。
Figure JPOXMLDOC01-appb-T000003
 ここでは、被分離液として、水飴を用いた。この水飴は、単糖類(DP1)、二糖類(DP2)、および三糖類以上(DP3+)を含む。単糖類(DP1)は、主にグルコースである。また二糖類(DP2)は、主にマルトースである。さらに三糖類以上(DP3+)は、主にマルトトリオースである。またそれぞれの組成比は、表3に示すように、合計を100%としたときに、重量比でそれぞれ61.23%、15.40%、23.37%であった。また被分離液全体に対するこれらの成分全体の濃度は、表3に示すように51.2%であった。
 そして実施例1では、三糖類以上(DP3+)を分離する分離運転を行なった。この場合、三糖類以上(DP3+)は、R画分として分離することができる。また溶離液として脱塩水を用いた。さらに分離剤として、三菱ケミカル株式会社製の工業クロマト分離用陽イオン交換樹脂であるUBK530を使用し、これを充填部10である4本のカラムに充填した。この分離剤は、Na型強酸性陽イオン交換樹脂である。このときカラムは、内径29.4mmであり、分離剤を1492ml充填したところ、層高が、550mmとなった。
 そして被分離液および溶離液の温度を65℃、通液時の空間速度(SV)を0.5min-1とした。また1L樹脂当たりの処理量を58.6mlとし、溶離液/被分離液を体積比で2.53として通液を行なった。またP画分とR画分の抜き出し比(P画分/R画分)を0.98とした。なお実施例1では、三糖類以上(DP3+)の分離を目的とした。
 このとき(1)下向供給抜出工程では、被分離液の供給量を32.4mlとし、またP画分の抜き出し量を55.4mlとし、R画分の抜き出し量を15.1mlとした。
 また(3)上向供給抜出工程では、溶離液の供給量を9.6mlとした。
 さらに(4)分離循環工程では、循環量を158.3mlとした。
(実施例2)
 実施例2では、図1に示すクロマト分離装置1を用い、第2の実施形態による方法で、分離運転を行なった。このとき(1)下向供給抜出工程および(3)上向供給抜出工程の分離運転条件は、実施例1と同様とした。また(4)分離循環工程の循環量は、実施例1に対し3.0ml減らして、155.3mlとし、(2)調整循環工程の循環量を3.0mlとした。これにより1サイクル中の循環量の総量は、実施例1と同じとしている。
(比較例1)
 比較例1では、図1に示すクロマト分離装置1を用い、(1)下向供給抜出工程および(4)分離循環工程を行ない、(2)調整循環工程および(3)上向供給抜出工程は行なわないで、分離運転を行なった。このときの分離運転条件は、表3に示すようにした。
[結果]
 結果について表3に示す。
 実施例1、実施例2および比較例1を対比すると、分離液(R画分)について、単糖類(DP1)、二糖類(DP2)、および三糖類以上(DP3+)のそれぞれの成分比は、重量比でほぼ同じとなった。またこれらの成分全体の濃度もほぼ同じとなった。
 また実施例1および実施例2と比較例1とを対比すると、実施例1および実施例2の三糖類以上(DP3+)の純度および回収率は、比較例1のそれと比較してほぼ同等となった。これにより、従来の改良型擬似移動床法と比較して各成分の純度・回収率で同等の性能を得ながら、分離剤の圧密化を緩和することができるクロマト分離方法を提供できることがわかる。
1…クロマト分離装置、10(11、12、13、14)…充填部、20(21、22、23、24)…供給部、30(31、32、33、34)…抜出部、40…切換部

Claims (21)

  1.  被分離液中に含まれる複数の成分を分離するための分離剤を充填した複数の充填部と、
     前記複数の充填部のそれぞれに設けられた、
     前記被分離液または前記被分離液に含まれる何れかの成分を抜き出すための溶離液を前記充填部に供給する供給部と、
     前記被分離液中に含まれる何れかの成分を前記充填部から抜き出す抜出部と、
     を備える分離装置により、
     前記被分離液中に含まれる複数の成分をクロマトグラフィーにより分離するクロマト分離方法であって、
     前記溶離液を、少なくとも1の前記充填部に上向流供給部から上向流で供給しつつ、前記被分離液に含まれる何れかの成分を上向流抜出部から抜き出す上向供給抜出工程を含むクロマト分離方法。
  2.  前記上向流供給部は、前記抜出部であるとともに、前記上向流抜出部は、前記供給部であることを特徴とする請求項1に記載のクロマト分離方法。
  3.  前記被分離液および前記溶離液を前記複数の充填部のうち異なる充填部に供給部から下向流で供給するとともに、前記抜出部の何れかから前記分離液を抜き出す下向供給抜出工程をさらに含むことを特徴とする請求項1に記載のクロマト分離方法。
  4.  前記被分離液および前記溶離液を供給せずに、前記充填部内の被分離液および溶離液を、下向流にて当該充填部間で循環させる循環工程をさらに含むことを特徴とする請求項1に記載のクロマト分離方法。
  5.  前記被分離液および前記溶離液を、前記複数の充填部のうち異なる充填部にそれぞれの液を供給部から下向流で供給するとともに、前記抜出部の何れかから前記分離液を抜き出す下向供給抜出工程と、
     前記被分離液および前記溶離液を供給せずに、前記充填部内の被分離液および溶離液を、下向流にて当該充填部間で循環させる循環工程と、
     を含むことを特徴とする請求項1に記載のクロマト分離方法。
  6.  前記循環工程は、前記上向供給抜出工程の後に行ない、前記複数の成分の分離を進める分離循環工程であることを特徴とする請求項4または5に記載のクロマト分離方法。
  7.  前記下向供給抜出工程、前記上向供給抜出工程および前記分離循環工程の3工程をこの順で行なうことを特徴とする請求項6に記載のクロマト分離方法。
  8.  前記3工程を繰り返すことを特徴とする請求項7に記載のクロマト分離方法。
  9.  前記下向供給抜出工程および前記分離循環工程の2工程をこの順で繰り返すとともに、当該2工程の繰り返しの間に前記3工程を挿入することを特徴とする請求項7に記載のクロマト分離方法。
  10.  前記循環工程として、前記下向供給抜出工程と前記上向供給抜出工程との間に行ない、前記被分離液および前記溶離液の位置を調製する調整循環工程をさらに含むことを特徴とする請求項6に記載のクロマト分離方法。
  11.  前記下向供給抜出工程、前記調整循環工程、前記上向供給抜出工程および前記分離循環工程の4工程をこの順で行なうことを特徴とする請求項10に記載のクロマト分離方法。
  12.  前記4工程を繰り返すことを特徴とする請求項11に記載のクロマト分離方法。
  13.  前記下向供給抜出工程および前記分離循環工程の2工程をこの順で繰り返すとともに、当該2工程の繰り返しの間に前記4工程を挿入することを特徴とする請求項11に記載のクロマト分離方法。
  14.  前記上向供給抜出工程で前記溶離液を上向流で流すときに使用する前記充填部は、当該上向供給抜出工程を繰り返す毎に、上向流における上流側に順次移動することを特徴とする請求項8または12に記載のクロマト分離方法。
  15.  前記上向供給抜出工程は、前記溶離液を供給する前記充填部の前記上向流抜出部から前記分離液を抜き出すことを特徴とする請求項1に記載のクロマト分離方法。
  16.  前記下向供給抜出工程で前記溶離液を下向流で流す充填部と、前記下向供給抜出工程の後最初に行う前記上向供給抜出工程で当該溶離液を上向流で流す充填部とは、異なる充填部であることを特徴とする請求項3または5に記載のクロマト分離方法。
  17.  前記下向供給抜出工程で前記溶離液を1または複数の充填部に下向流で流し、そのときに使用する充填部のうち最下流に位置する充填部の抜出部から前記被分離液中に含まれる複数の成分のうち1の成分を抜き出すとともに、前記上向供給抜出工程で当該溶離液を1または複数の充填部に上向流で流し、そのときに使用する充填部のうち最下流に位置する充填部の上向流抜出部から当該1の成分を抜き出すことを特徴とする請求項16に記載のクロマト分離方法。
  18.  被分離液中に含まれる複数の成分をクロマトグラフィーにより分離するための分離剤を充填する、複数の充填部と、
     前記充填部のそれぞれに設けられ、前記被分離液を前記充填部に供給する供給部と、
     前記充填部のそれぞれに設けられ、前記被分離液中の何れかの成分に富む分離液を前記充填部から抜き出す抜出部と、
     前記分離液を抜き出すための溶離液を、前記供給部および前記抜出部の何れか一方から供給するための切り換えを行ない、当該溶離液を、当該供給部から供給するときと当該抜出部から供給するときとで、当該溶離液が流れる向きを逆側にして前記分離液を抜き出す切換部と、
     を備えるクロマト分離装置。
  19.  前記切換部は、前記溶離液を前記抜出部から供給するときは、当該抜出部の何れかに対し当該溶離液を上向流で供給しつつ、当該溶離液を供給する抜出部が設けられる前記充填部の供給部から前記分離液を抜き出す制御を行なうことを特徴とする請求項18に記載のクロマト分離装置。
  20.  前記切換部は、前記被分離液および前記溶離液を別々の供給部から下向流で供給するとともに、前記抜出部の何れかから前記分離液を抜き出す制御をさらに行なうことを特徴とする請求項19に記載のクロマト分離装置。
  21.  前記切換部は、前記被分離液および前記溶離液を供給せずに、前記充填部内部の被分離液および溶離液を、前記充填部間で下向流にて循環させる制御をさらに行なうことを特徴とする請求項20に記載のクロマト分離装置。
PCT/JP2019/007894 2018-03-01 2019-02-28 クロマト分離方法およびクロマト分離装置 WO2019168114A1 (ja)

Priority Applications (4)

Application Number Priority Date Filing Date Title
EP19760586.8A EP3761023A4 (en) 2018-03-01 2019-02-28 CHROMATOGRAPHIC SEPARATION PROCESS AND CHROMATOGRAPHIC SEPARATION SYSTEM
US16/976,927 US11819779B2 (en) 2018-03-01 2019-02-28 Chromatographic separation method and chromatographic separation device
JP2020503620A JP7181278B2 (ja) 2018-03-01 2019-02-28 クロマト分離方法およびクロマト分離装置
KR1020207024306A KR102491223B1 (ko) 2018-03-01 2019-02-28 크로마토 분리 방법 및 크로마토 분리 장치

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2018037003 2018-03-01
JP2018-037003 2018-03-01

Publications (1)

Publication Number Publication Date
WO2019168114A1 true WO2019168114A1 (ja) 2019-09-06

Family

ID=67806278

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2019/007894 WO2019168114A1 (ja) 2018-03-01 2019-02-28 クロマト分離方法およびクロマト分離装置

Country Status (5)

Country Link
US (1) US11819779B2 (ja)
EP (1) EP3761023A4 (ja)
JP (1) JP7181278B2 (ja)
KR (1) KR102491223B1 (ja)
WO (1) WO2019168114A1 (ja)

Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0249159A (ja) 1988-05-17 1990-02-19 Mitsubishi Kasei Techno Engineers Kk クロマト分離法
JPH04235701A (ja) * 1991-01-16 1992-08-24 Soken Kagaku Kk 多成分混合物の分離精製方法及び装置
JPH07232003A (ja) 1993-12-27 1995-09-05 Mitsubishi Kasei Eng Co 擬似移動床を用いた3成分分離方法
JPH08323104A (ja) * 1995-05-30 1996-12-10 Tsukishima Kikai Co Ltd 流路分配装置、疑似移動床および連続吸着法
JPH10332658A (ja) * 1997-04-01 1998-12-18 Wako Pure Chem Ind Ltd 液体試料成分の分離方法及び該方法に使用する装置
JP2002143605A (ja) 2000-11-09 2002-05-21 Nippon Rensui Co Ltd クロマト分離方法
US20130266706A1 (en) * 2010-07-13 2013-10-10 Nederlandse Organisatie Voor Toegepast- Natuurwetenschappelijk Onderzoek Tno Methods and compositions for deacidifying fruit juice
JP2017037048A (ja) * 2015-08-14 2017-02-16 オルガノ株式会社 クロマト分離方法及びクロマト分離システム
US20170065906A1 (en) * 2015-09-08 2017-03-09 Orochem Technologies, Inc. Continuous process for separation of proteins

Family Cites Families (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4511476A (en) 1983-01-17 1985-04-16 The Amalgamated Sugar Company Method for preventing compaction in sorbent beds
CA2139033C (en) 1993-12-27 2004-04-20 Masatake Tanimura Method of separation into three components using a simulated moving bed
TW422712B (en) 1997-04-01 2001-02-21 Wako Pure Chem Ind Ltd Liquid test components separation method and equipment thereof
JP4518477B2 (ja) 2004-04-05 2010-08-04 オルガノ株式会社 クロマト分離方法および装置
US9725383B2 (en) * 2012-04-03 2017-08-08 Reliance Industries Limited Oxygenates-free C8-C12 aromatic hydrocarbon stream and a process for preparing the same
EP2667188B1 (de) * 2012-05-25 2021-06-23 Manol Roussev Trennsäulenofen
JP2014029294A (ja) 2012-07-31 2014-02-13 Nippon Rensui Co Ltd クロマト分離法

Patent Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0249159A (ja) 1988-05-17 1990-02-19 Mitsubishi Kasei Techno Engineers Kk クロマト分離法
JPH04235701A (ja) * 1991-01-16 1992-08-24 Soken Kagaku Kk 多成分混合物の分離精製方法及び装置
JPH07232003A (ja) 1993-12-27 1995-09-05 Mitsubishi Kasei Eng Co 擬似移動床を用いた3成分分離方法
JPH08323104A (ja) * 1995-05-30 1996-12-10 Tsukishima Kikai Co Ltd 流路分配装置、疑似移動床および連続吸着法
JPH10332658A (ja) * 1997-04-01 1998-12-18 Wako Pure Chem Ind Ltd 液体試料成分の分離方法及び該方法に使用する装置
JP2002143605A (ja) 2000-11-09 2002-05-21 Nippon Rensui Co Ltd クロマト分離方法
US20130266706A1 (en) * 2010-07-13 2013-10-10 Nederlandse Organisatie Voor Toegepast- Natuurwetenschappelijk Onderzoek Tno Methods and compositions for deacidifying fruit juice
JP2017037048A (ja) * 2015-08-14 2017-02-16 オルガノ株式会社 クロマト分離方法及びクロマト分離システム
US20170065906A1 (en) * 2015-09-08 2017-03-09 Orochem Technologies, Inc. Continuous process for separation of proteins

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP3761023A4

Also Published As

Publication number Publication date
US20210039014A1 (en) 2021-02-11
KR20200112928A (ko) 2020-10-05
EP3761023A4 (en) 2021-04-21
JP7181278B2 (ja) 2022-11-30
KR102491223B1 (ko) 2023-01-20
JPWO2019168114A1 (ja) 2021-02-12
EP3761023A1 (en) 2021-01-06
US11819779B2 (en) 2023-11-21

Similar Documents

Publication Publication Date Title
CA1305434C (en) Method of chromatographic separation
CA1317887C (en) Method of chromatographic separation
KR101828899B1 (ko) 모의 이동상 흡착 분리 방법 및 장치
US8211312B2 (en) Separation system and method
JP4879392B2 (ja) クロマト分離方法
JP2962594B2 (ja) 複数成分の分離方法
JP2014525830A (ja) 制御バルブの個数を減少させた疑似移動吸着剤床式吸着分離を行う方法および装置
EP1003036B1 (en) Method of chromatography
JP2014029294A (ja) クロマト分離法
TWI524926B (zh) 以模擬移動床吸附法進行產品回收的系統和流程
US20140371510A1 (en) Product recovery from adsorption-separation purge fluids
WO2019168114A1 (ja) クロマト分離方法およびクロマト分離装置
JP2018004567A (ja) クロマト分離方法及びクロマト分離システム
JP2015501724A (ja) 疑似移動床吸着による生成物回収のシステム及び方法
JPH11183459A (ja) クロマト分離方法及びクロマト分離装置
AU566829B2 (en) Method for preventing compaction in sorbent beds
JPH0639205A (ja) 3成分分離用液体クロマト分離装置
CN112742169B (zh) 一种吸附工艺方法
JPH0639206A (ja) 擬似移動床式液体クロマト分離装置
TWI496614B (zh) 以模擬移動床吸附法進行產品回收的系統和流程
US7011759B1 (en) Vessel head-flush process
JP4606092B2 (ja) 擬似移動層方式クロマト分離方法および装置
JP4603114B2 (ja) 液体に含まれる複数成分を分離する方法及び装置
JP2834225B2 (ja) 擬似移動層式クロマト分離装置
JP3256390B2 (ja) 複数成分の分離方法

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 19760586

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2020503620

Country of ref document: JP

Kind code of ref document: A

ENP Entry into the national phase

Ref document number: 20207024306

Country of ref document: KR

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

WWE Wipo information: entry into national phase

Ref document number: 2019760586

Country of ref document: EP

ENP Entry into the national phase

Ref document number: 2019760586

Country of ref document: EP

Effective date: 20201001