WO2019167888A1 - 造粒焼結原料の製造方法 - Google Patents

造粒焼結原料の製造方法 Download PDF

Info

Publication number
WO2019167888A1
WO2019167888A1 PCT/JP2019/007079 JP2019007079W WO2019167888A1 WO 2019167888 A1 WO2019167888 A1 WO 2019167888A1 JP 2019007079 W JP2019007079 W JP 2019007079W WO 2019167888 A1 WO2019167888 A1 WO 2019167888A1
Authority
WO
WIPO (PCT)
Prior art keywords
raw material
sintered
granulated
steam
temperature
Prior art date
Application number
PCT/JP2019/007079
Other languages
English (en)
French (fr)
Inventor
寿幸 廣澤
山本 哲也
隆英 樋口
後藤 滋明
宗一郎 渡辺
洋平 瀧川
英司 半田
堤 竜二
Original Assignee
Jfeスチール株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Jfeスチール株式会社 filed Critical Jfeスチール株式会社
Priority to RU2020131562A priority Critical patent/RU2765204C1/ru
Priority to JP2020503495A priority patent/JP6897859B2/ja
Priority to BR112020017371-1A priority patent/BR112020017371B1/pt
Priority to CN201980012782.1A priority patent/CN111699272A/zh
Priority to KR1020207022713A priority patent/KR102431895B1/ko
Priority to AU2019228862A priority patent/AU2019228862B2/en
Priority to EP19761292.2A priority patent/EP3760747B1/en
Publication of WO2019167888A1 publication Critical patent/WO2019167888A1/ja
Priority to PH12020551344A priority patent/PH12020551344A1/en

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22BPRODUCTION AND REFINING OF METALS; PRETREATMENT OF RAW MATERIALS
    • C22B1/00Preliminary treatment of ores or scrap
    • C22B1/14Agglomerating; Briquetting; Binding; Granulating
    • C22B1/16Sintering; Agglomerating
    • C22B1/20Sintering; Agglomerating in sintering machines with movable grates
    • C22B1/205Sintering; Agglomerating in sintering machines with movable grates regulation of the sintering process
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21BMANUFACTURE OF IRON OR STEEL
    • C21B5/00Making pig-iron in the blast furnace
    • C21B5/001Injecting additional fuel or reducing agents
    • C21B5/003Injection of pulverulent coal
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22BPRODUCTION AND REFINING OF METALS; PRETREATMENT OF RAW MATERIALS
    • C22B1/00Preliminary treatment of ores or scrap
    • C22B1/14Agglomerating; Briquetting; Binding; Granulating
    • C22B1/16Sintering; Agglomerating
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22BPRODUCTION AND REFINING OF METALS; PRETREATMENT OF RAW MATERIALS
    • C22B1/00Preliminary treatment of ores or scrap
    • C22B1/14Agglomerating; Briquetting; Binding; Granulating
    • C22B1/24Binding; Briquetting ; Granulating
    • C22B1/2406Binding; Briquetting ; Granulating pelletizing
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22BPRODUCTION AND REFINING OF METALS; PRETREATMENT OF RAW MATERIALS
    • C22B1/00Preliminary treatment of ores or scrap
    • C22B1/14Agglomerating; Briquetting; Binding; Granulating
    • C22B1/24Binding; Briquetting ; Granulating
    • C22B1/242Binding; Briquetting ; Granulating with binders
    • C22B1/243Binding; Briquetting ; Granulating with binders inorganic
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22BPRODUCTION AND REFINING OF METALS; PRETREATMENT OF RAW MATERIALS
    • C22B1/00Preliminary treatment of ores or scrap
    • C22B1/14Agglomerating; Briquetting; Binding; Granulating
    • C22B1/24Binding; Briquetting ; Granulating
    • C22B1/242Binding; Briquetting ; Granulating with binders
    • C22B1/244Binding; Briquetting ; Granulating with binders organic
    • C22B1/245Binding; Briquetting ; Granulating with binders organic with carbonaceous material for the production of coked agglomerates
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J2/00Processes or devices for granulating materials, e.g. fertilisers in general; Rendering particulate materials free flowing in general, e.g. making them hydrophobic
    • B01J2/12Processes or devices for granulating materials, e.g. fertilisers in general; Rendering particulate materials free flowing in general, e.g. making them hydrophobic in rotating drums
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21BMANUFACTURE OF IRON OR STEEL
    • C21B5/00Making pig-iron in the blast furnace
    • C21B5/001Injecting additional fuel or reducing agents
    • C21B2005/005Selection or treatment of the reducing gases
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21BMANUFACTURE OF IRON OR STEEL
    • C21B2400/00Treatment of slags originating from iron or steel processes
    • C21B2400/02Physical or chemical treatment of slags
    • C21B2400/022Methods of cooling or quenching molten slag
    • C21B2400/024Methods of cooling or quenching molten slag with the direct use of steam or liquid coolants, e.g. water

Definitions

  • the present invention relates to a method for producing a granulated and sintered raw material, and in particular, through the development of a granulated and sintered raw material effective for reducing the size of a wet band appearing in a raw material charging layer on a sintering machine pallet, This is a proposal for a method that contributes to improving the productivity of sintered ore obtained using this raw material.
  • Patent Document 1 water and a binder are added to a sintering raw material containing carbonaceous material, granulated, and then the granulated and sintered raw material obtained by drying with a rotary kiln is charged onto a pallet and sintered.
  • a method for producing a sintered ore is disclosed.
  • special equipment called a rotary kiln is required to dry the granulated and sintered raw material using a rotor kiln or the like.
  • a raw material for a blast furnace to be charged into a blast furnace that is, a lump ore is charged into a cooler attached to a sintering machine and the lump ore is dried in advance. That is, in this method, a blast furnace ore is charged at a place where the temperature in the cooling machine (cooler) of the sintering machine (temperature of the cooled sintered ore) reaches 300 to 600 ° C.
  • a method of drying in advance is proposed.
  • Patent Document 1 when improving the productivity of sintered ore, for example, in the method of preheating and drying the sintering compounded raw material (granulated sintered raw material) in advance (Patent Document 1), a new dedicated In addition to the need for equipment and increased equipment costs, there is a problem that fuel is required in addition to the aggregating material used in the sintering process, resulting in high costs.
  • Patent Document 2 is a method in which the heat source of the sintering machine cooler is used for preheating the massive iron ore charged in the blast furnace. Therefore, this method controls the wet zone of the raw material charging layer on the pallet through improvement of the granulated sintered raw material itself, thereby improving the productivity of the sintered ore and improving the quality. It's not technology.
  • the present invention solves the above-mentioned problems of the prior art, particularly by producing a granulated and sintered raw material that is heated to a certain temperature or higher using steam during granulation.
  • the purpose of the present invention is to propose a novel method for producing a granulated and sintered raw material, which can improve air permeability and improve the productivity of sintered ore when charged in a sintering machine.
  • steam such as water vapor is blown into a granulator such as a drum mixer, an Eirich mixer, or a pelletizer used for granulating a sintering compound raw material.
  • a granulator such as a drum mixer, an Eirich mixer, or a pelletizer used for granulating a sintering compound raw material.
  • the temperature is higher than the initial temperature of the sintered blended raw material before entering the drum mixer, for example, the temperature of the granulated sintered raw material is higher than the initial temperature, More preferably, as a thermal granulation raw material for sintering (granulation sintering raw material) raised to a temperature of 60 ° C. or higher, it was charged on a pallet of a sintering machine.
  • a method for producing a granulated and sintered raw material characterized in that the raw material is a granulated and sintered raw material having a temperature 10 ° C. or more higher than the temperature before charging the blended raw material into the granulator.
  • the steam has a superheat degree of 13.5 ° C. or less in the steam pipe, (2) Blowing steam into the granulator is performed in the first half part from the raw material charging position of the granulator to a substantially intermediate position in the length direction; (3) The amount of steam blown into the granulator is 3.0 kg / ts or more, (4) When the temperature of the granulated and sintered raw material discharged from the granulator exceeds 60 ° C., in addition to water introduced by blowing steam, water for factory use, hot water or condensed water is added. Adding moisture corresponding to 0.5 mass% or more and 3.0 mass% or less as moisture after granulation; Is more preferable.
  • the initial temperature of the starting material is obtained by granulating by blowing steam such as water vapor into a granulator such as a drum mixer, an Eirich mixer, or a pelletizer. It is possible to produce granulated and sintered raw materials that are 10 ° C higher than the temperature of the raw materials), so when such granulated and sintered raw materials are charged onto the sintering machine pallet, the air permeability of the raw material charging layer is improved. As a result, the production rate of sintered ore can be improved.
  • (a) is a schematic diagram which shows arrangement
  • (b) is sectional drawing which shows the condition inside a drum mixer. It is a figure which shows the relationship between the water vapor
  • the granulated and sintered raw material (pseudoparticles) charged on the sintering machine pallet for the production of sintered ore is generally iron ore powder or iron making having an average particle size of about 1.0 to 5.0 mm.
  • Contaminated iron sources such as various dust generated in the plant, CaO-containing raw materials such as limestone and quicklime, steelmaking slag, condensates such as powdered coke and anthracite, MgO containing refined nickel slag, dolomite, serpentine, etc.
  • raw material refining nickel slag, the sintered material compounding such Keiseki (silica sand) SiO 2 containing material and the like
  • Keiseki silicon sand
  • SiO 2 containing material and the like is first stored in a hopper, and the proportion from the hopper, a predetermined these sintering material on the conveyor
  • the raw material is sintered and blended, and the mixture is put into the granulator, granulated by adding necessary humidity while stirring and mixing, and the average particle size is about 3.0 to 6.0 mm.
  • Granulated and sintered raw material Pseudo particles).
  • an Eirich mixer or a pelletizer can be used as described above, but preferably a drum as shown in FIG. A mixer is used, and a plurality of them may be used.
  • a drum mixer an example of a drum mixer will be described as a granulator.
  • the granulated and sintered raw material (pseudo particles) obtained by granulating with the drum mixer is generally placed on the sintering machine pallet via a charging device arranged on the sintering machine.
  • a raw material charging layer is formed by charging and depositing to a thickness (height) of about 400 to 600 mm, and then this raw material charging is performed by an ignition furnace installed above the raw material charging layer.
  • the charcoal material contained in the bed is ignited, and the charcoal material in the raw material charge layer is sequentially burned by the downward suction by the wind box disposed under the pallet, which is generated at this time.
  • Sintering is performed by burning and melting the charged raw material (granulated sintered raw material) with combustion heat.
  • the sintered layer (sintered cake) obtained on the pallet is sized with a sieve through a crusher and a cooler of a sinter, and is converted into a massive product sintered ore of 5 mm or more and a return ore of less than 5 mm. Separated and collected.
  • the present invention relates to a method for producing a granulated sintered raw material (pseudo particle) which is a pretreatment step of a sintered raw material used in the above-described sintered ore manufacturing process. It is a figure explaining the aspect which manufactures this granulation sintering raw material 2 (granulation).
  • the feature of the present invention is that, for example, steam is blown into the drum mixer 1 (injection) when the raw material is granulated by a granulator such as the drum mixer 1 that granulates the sintered blended raw material by rolling.
  • the temperature is raised to a temperature at least 10 ° C. higher than the initial temperature of the sintered blending raw material when the drum mixer 1 is put into the interior (for example, the temperature on the drum mixer entrance side of the ambient temperature to about 35 ° C.).
  • the granulated and sintered raw material 2 is heated (heated), preferably heated and humidified so that the temperature of the granulated and sintered raw material is about 45 ° C. to 70 ° C. is there.
  • the amount of steam blown in order to raise the temperature to 10 ° C. or higher than the temperature of the raw material for sintering blended on the drum mixer inlet side is 3 kg / ts or more, preferably 4 kg / t ⁇ . It is desirable to blow an amount from s to about 25 kg / ts from a position described later. This blowing amount is an effective amount for improving the production rate of sintered ore through ensuring desirable moisture as a granulated sintering raw material and ensuring good air permeability of the raw material charging layer.
  • FIG. 2 is a diagram showing the temperature change of the granulated and sintered raw material after granulation when the steam blowing time is changed.
  • the temperature of the sintered compounding raw material is about a few tens of seconds longer than the temperature of the sintered compounding raw material immediately before being charged into the drum mixer.
  • the temperature can be easily raised to about 45 ° C., preferably about 70 ° C., which is 10 ° C. or higher.
  • the degree of superheat of steam in the steam pipe is low because the amount of steam that is not condensed and dissipated outside the drum mixer can be reduced, and the amount of steam used can be reduced.
  • the superheat degree of water vapor is obtained by subtracting the saturated vapor temperature at the pressure from the vapor temperature.
  • FIG. 3 is a diagram showing a change in moisture value of the granulated and sintered raw material on the drum mixer outlet side with respect to the temperature of the granulated and sintered raw material.
  • the moisture when the temperature of the granulated and sintered raw material is around 60 ° C to 70 ° C, the moisture also rises due to the condensation of water vapor due to the temperature rise. It can be seen that the phenomenon starts and the evaporation of water from the so-called granulated and sintered raw material occurs. That is, when the opening degree of the steam pipe is 1/4, 2/4, 3/4, the larger the opening degree, the faster the moisture rises due to the temperature rise, but in our experiments, as shown in FIG.
  • the temperature of the granulated and sintered raw material depends on the opening of the pipe, but when it reaches around 60-70 ° C, the moisture decreases, and it is considered that the temperature changes from humidification to drying near this temperature. .
  • the amount of water condensed by blowing water vapor is taken into account,
  • the water content is adjusted to be about 0.5 mass% to 3.0 mass% higher than the target water content (6.5 mass%) of the granulated and sintered raw material. It is preferable.
  • the superheat degree of steam in the steam pipe exceeds 13.5 ° C, the amount of steam that is not condensed and dissipated outside the drum mixer increases, and at the same time, the moisture rise in the granulated and sintered raw material due to the condensed water is suppressed. There was a tendency to be. Therefore, if the superheat degree of the steam in the steam pipe is 13.5 ° C. or less, the condensation is promoted in the steam drum mixer, the amount of steam used can be reduced, and at the same time, the moisture content of the granulated sintered raw material is increased by the condensed water. This is desirable because moisture adjustment is easier.
  • FIG. 4 is a diagram showing the influence of when steam is blown in the first half of the drum mixer and when steam is blown in the entire area of the drum mixer.
  • the harmonic mean diameter of the pseudo particles is maximized in the vicinity of 7 to 8 mass% where the granulated and sintered raw material has an appropriate water content. From this, the position where steam is blown into the drum mixer is superior in terms of the granulation effect because the harmonic average diameter of the granulated and sintered raw material (pseudoparticles) becomes larger when blown in the first half. I understand that.
  • the first half means from the raw material charging position of the granulator to the approximately middle position in the length direction.
  • Table 1 shows an example in which an example suitable for the method of the present invention is compared with a comparative example according to the conventional method.
  • These examples are comparative examples 1 in which water vapor is not blown into the drum mixer (however, this example is CaO added as a binder ( ⁇ 2 mass%) with respect to the compounded sintered raw material before charging the drum mixer: 35 ° C.
  • the temperature of the granulated and sintered raw material is 42.5 ° C. due to the heat generated when CaOH 2 reacts with water to produce CaOH 2 (increase of + 7.5 ° C .: common to all examples)
  • the air permeability index and the production rate are compared.
  • Example 2 In Comparative Example 2, the addition of a very small amount of water vapor (1.9 kg / ts) stopped the temperature of the granulated and sintered raw material from increasing to 4.8 ° C., less than 10 ° C. The effect is not evident. On the other hand, in Example 1, since the increase in the temperature of the granulated and sintered raw material reached 56.0 ° C., which is 10 ° C. or higher, a clear effect was revealed in terms of air permeability index and production rate, and the temperature increase was about 35 ° C. Even in the case of Example 2, the great effect is obtained.
  • Example 3 is an example in which water vapor was blown into the first half of the drum mixer (0.5 from the entry side from the raw material charging position of the granulator when the total length of the granulator is 1).
  • the harmonic average diameter of the granulated and sintered raw material is increased, and a great improvement effect is obtained in terms of air permeability index and production rate.
  • the amount of steam blown to make a granulated and sintered raw material having an outlet side temperature higher by 10 ° C. or more than the inlet side temperature of the drum mixer is 3 kg / ts or more, preferably 4 kg / t ⁇ . It is considered effective to secure s or more.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Manufacturing & Machinery (AREA)
  • Organic Chemistry (AREA)
  • Metallurgy (AREA)
  • Materials Engineering (AREA)
  • Geochemistry & Mineralogy (AREA)
  • Geology (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Mechanical Engineering (AREA)
  • General Life Sciences & Earth Sciences (AREA)
  • Environmental & Geological Engineering (AREA)
  • Inorganic Chemistry (AREA)
  • Manufacture And Refinement Of Metals (AREA)

Abstract

造粒時に蒸気を使って加熱してなる造粒焼結原料を製造することによって、これを焼結機に装入したときに、通気性の改善に役立つと共に焼結鉱の生産性を向上させることができる新規な造粒焼結原料の製造方法を提案する。 この提案は、鉄鉱石粉の他、炭材や副原料を配合してなる焼結配合原料を造粒機にて造粒する際に、該造粒機内に水蒸気を吹き込むことにより、前記焼結配合原料の当該造粒機内への装入前の温度よりも10℃以上高い温度の造粒焼結原料とする造粒焼結原料の製造方法である。

Description

造粒焼結原料の製造方法
 本発明は、造粒焼結原料の製造方法に関し、特に、焼結機パレット上における原料装入層中に現れる湿潤帯の大きさを縮小するのに有効な造粒焼結原料の開発を通じて、この原料を用いて得られる焼結鉱の生産性の向上等に資する方法についての提案である。
 従来、焼結機の操業に当たっては、パレット上の原料装入層の湿潤帯が占める割合の縮小を図ることによって、主として炭材使用量の低減と焼結生産性の向上とを実現する努力が払われてきた。例えば、特許文献1には、炭材を含む焼結原料に水とバインダーを加えて造粒し、次いで、ロータリーキルンにより乾燥して得られる造粒焼結原料をパレット上に装入して焼結するという焼結鉱の製造方法が開示されている。しかしながら、この従来技術の場合、ローターキルンなどを用いて造粒焼結原料を乾燥するためにロータリーキルンという特別な設備が必要となる。
 その他、高炉内に装入する高炉用原料、即ち塊鉱石を焼結機に付帯設置されているクーラー内に装入して、その塊鉱石を事前に乾燥する方法の提案がある。即ち、この方法は、焼結機の冷却装置(クーラー)における装置内温度(被冷却焼結鉱の温度)が300~600℃に達している個所に高炉用塊鉱石を装入し、これを事前に乾燥する方法を提案している。
特開2007-169780号公報 特開2013-119667号公報
 上掲の各従来技術において、焼結鉱の生産性を向上させる場合、例えば、焼結配合原料(造粒焼結原料)を事前に予熱乾燥する方法(特許文献1)では、新たに専用の設備が必要で、設備費が嵩む他、焼結プロセスで用いる凝結材以外にも燃料が必要となって、コスト高になるという問題があった。
 また、特許文献2に開示の方法は、焼結機クーラーの熱源を高炉内に装入する塊鉄鉱石の予熱に利用する方法である。従って、この方法は、造粒焼結原料自体の改善を通じて、パレット上の原料装入層の湿潤帯を制御し、そのことによって焼結鉱の生産性を向上させたり、品質の向上を図るという技術ではない。
 そこで、本発明は、従来技術が抱えている前述した課題を解決すること、とくに造粒時に蒸気を使って一定以上の温度に加熱してなる造粒焼結原料を製造することによって、これを焼結機に装入したときに、通気性の改善に役立つと共に焼結鉱の生産性を向上させることができる新規な造粒焼結原料の製造方法を提案することを目的としている。
 本発明では、前述の課題を解決するために、焼結配合原料を造粒する際に用いるドラムミキサーやアイリッヒミキサー、ペレタイザーなどの造粒機内に、水蒸気のような蒸気を吹き込んで該焼結配合原料を加熱しつつ造粒することにより、ドラムミキサーに入れる前の焼結配合原料の当初温度以上の温度とすること、例えば該造粒焼結原料の温度を前記当初温度よりも高い温度、より好ましくは60℃以上の温度までに上昇させた焼結用熱造粒原料(造粒焼結原料)として、これを焼結機のパレット上に装入することにした。
 即ち、本発明は、鉄鉱石粉の他、炭材や副原料を配合してなる焼結配合原料を造粒機にて造粒する際に、該造粒機内に水蒸気を吹き込むことにより、前記焼結配合原料の当該造粒機内への装入前の温度よりも10℃以上高い温度の造粒焼結原料とすることを特徴とする造粒焼結原料の製造方法である。
 なお、本発明においては、
(1)前記水蒸気は、水蒸気配管内での過熱度が13.5℃以下であること、
(2)前記造粒機内への水蒸気の吹き込みは、該造粒機の原料投入位置から長さ方向の略中間の位置までの前半部分において行なうこと、
(3)前記造粒機内への水蒸気の吹き込み量が3.0kg/t-s以上であること、
(4)前記造粒機から排出される造粒焼結原料の温度が60℃を超えたとき、水蒸気の吹き込みによって投入される水分に加え、さらに工場用水や熱水あるいは凝縮水を添加して造粒後水分にして0.5mass%以上、3.0mass%以下に相当する水分を加えること、
がより好ましい。
 本発明によれば、ドラムミキサーやアイリッヒミキサー、ペレタイザーなどの造粒機に水蒸気の如き蒸気を吹き込んで造粒することにより、出発原料の当初温度(造粒機内へ装入前の焼結配合原料の温度)よりも10℃以上高い造粒焼結原料を製造することができるので、こうした造粒焼結原料を焼結機パレット上に装入した場合、原料装入層の通気性が改善され、ひいては焼結鉱の生産率を向上させることができる。
本発明にかかるプロセスフローを示す図であり、(a)はドラムミキサー及び蒸気配管の配置を示す模式図、(b)はドラムミキサーの内部の状況を示す断面図である。 水蒸気の吹き込み時間を変更したときの水蒸気吹き込み時間と造粒焼結原料昇温温度との関係を示す図である。 造粒焼結原料の温度とドラムミキサー出側での該造粒後の水分との関係を示す図である。 ドラムミキサーの前半部分で蒸気を吹き込んだ場合と、ドラムミキサーの全領域で蒸気を吹き込んだ場合の、造粒焼結原料水分と造粒焼結原料の調和平均径との関係を示す図である。
 焼結鉱製造のために焼結機パレット上に装入される造粒焼結原料(擬似粒子)は、一般に、平均粒径で1.0~5.0mm程度の大きさの鉄鉱石粉、製鉄所内で発生する各種ダスト等の雑鉄源、石灰石や生石灰、製鋼スラグなどのCaO含有原料、粉コークスや無煙炭などの凝結材、任意配合原料として精錬ニッケルスラグやドロマイト、蛇紋岩などからなるMgO含有原料、精錬ニッケルスラグ、硅石(硅砂)などからなるSiO含有原料等の配合用焼結原料を、先ずホッパーに貯蔵し、そして、そのホッパーから、これらの焼結原料をコンベヤ上に所定の割合で切り出して配合してなる焼結配合原料とし、これを、前記造粒機に入れて攪拌混合しながら必要な調湿を加えて造粒し、平均粒径が3.0~6.0mm程度の造粒焼結原料(擬似粒子)としている。
 前記平均粒径とは、算術平均径(Dm)のことであって、「Dm=Σ(Vi/di)」(但し、Viはi番目の粒度範囲の中にある粒子の存在比率であり、diはi番目の粒度範囲の代表粒径である)で定義される粒径である。
 なお、本発明において、前記焼結配合原料を造粒するために用いる造粒機としては、上述したようにアイリッヒミキサーやペレタイザーの使用も可能であるが、好ましくは図1に示すようなドラムミキサーを用い、かつ、これは複数基を用いてもよい。以下、造粒機としてはドラムミキサーの例で説明する。
 なお、前記ドラムミキサーによる造粒処理をして得られた造粒焼結原料(擬似粒子)は、一般に、焼結機上に配置されている装入装置を介して、焼結機パレット上に400~600mm程度の厚さ(高さ)になるように装入して堆積させることにより原料装入層を形成させ、次いで、その原料装入層の上方に設置した点火炉により、この原料装入層中に含まれている炭材に点火し、そして、前記パレット下に配置したウィンドボックスによる下方吸引により、該原料装入層中の前記炭材を順次に燃焼させ、このときに発生する燃焼熱によって、前記装入原料(造粒焼結原料)を燃焼溶融させることによって焼結するのである。その後、パレット上で得られる焼結層(焼結ケーキ)は、破砕機、焼結機クーラーを経て篩にて整粒され、5mm以上の塊状の成品焼結鉱と5mm未満の返鉱とに分別して回収される。
 本発明は、上述した焼結鉱製造過程で用いられる焼結原料の事前処理工程である造粒焼結原料(擬似粒子)の製造方法に関するものであって、図1は、ドラムミキサー1を使って該造粒焼結原料2を製造(造粒)する態様を説明する図である。
 即ち、本発明の特徴は、焼結配合原料を転動を利用して造粒するドラムミキサー1のような造粒機によって造粒する際に、そのドラムミキサー1内に例えば水蒸気を吹き込む(噴射する)ことにより、該ドラムミキサー1内装入時の焼結配合原料の当初温度(例えば大気温度以上~35℃程度のドラムミキサー入側での温度)よりも少なくとも10℃以上高い温度にまで昇温させた造粒焼結原料2となるようにする(加熱)こと、好ましくは造粒焼結原料の温度が45℃~70℃程度の温度になるように加熱し加湿して造粒することにある。
 そして、ドラムミキサー入側での焼結配合原料の温度よりも10℃以上高い温度にまで昇温させるのに必要な水蒸気の吹き込み量としては、3kg/t-s以上、好ましくは4kg/t-s以上25kg/t-s程度までの量を、後述する位置から吹き込むことが望ましい。この吹き込み量は、造粒焼結原料としての望ましい水分の確保と原料装入層の良好な通気性の確保を通じて焼結鉱の生産率を向上させる上で有効な量である。
 一般に、100℃における水の凝縮熱は2200kJ/kg以上あり、水の比熱4.2kJ/kgからも水蒸気が液体の水に戻る際の熱量は非常に大きい。図2は、水蒸気の吹き込み時間を変化させたときの造粒後の造粒焼結原料の温度変化を示す図である。この図からわかるように、水蒸気のもつ凝縮熱を活用する場合、焼結配合原料の温度は数十秒程度の造粒処理により、ドラムミキサーに装入される直前の焼結配合原料の温度よりも10℃以上高い温度である45℃程度以上の、好ましくは70℃程度にまで容易に昇温させることができる。また、水蒸気の水蒸気配管内における過熱度は低い方が、水蒸気が凝縮せずにドラムミキサー外に散逸する量が低減して水蒸気使用量を低減できるので望ましい。ここで、水蒸気の過熱度とは、蒸気の温度から、その圧力での飽和蒸気温度を引いたものである。
 ただし、発明者らの研究によると、造粒した造粒焼結原料(擬似粒子)の温度が60℃あたりを超えると、該造粒焼結原料からの蒸発が活発になり、造粒後の擬似粒子の水分低下を招くだけでなく、蒸発潜熱による吸熱が特に70℃以上においては顕著に起こることを突き止めた。
 例えば、図3は、造粒焼結原料の温度に対するドラムミキサー出側での該造粒焼結原料の水分値の変化を示す図である。この図からわかるように、造粒焼結原料の温度が60℃~70℃付近になると、温度の上昇による水蒸気の凝縮によって水分の上昇も起こるが、同時にこの温度に達すると逆に水分の低下現象が始まり、いわゆる該造粒焼結原料からの水分の蒸発が起こっていることがわかる。即ち、蒸気配管の開度が1/4、2/4、3/4の場合、開度が大きい方が昇温による水分の上昇も早いが、発明者らの実験では、図3に示すとおり、造粒焼結原料の温度は、配管の開度にもよるが、60~70℃付近になると逆に水分の低下が起っており、この温度付近では加湿から乾燥に変わるものと考えられる。
 そこで、本発明では、前記ドラムミキサーから排出される造粒焼結原料(擬似粒子)の温度が60~70℃を超えたとき、水蒸気の吹き込みによって凝縮する水分量を考慮して、工場用水や熱水あるいは水蒸気の凝縮水などを添加することによって、例えば、造粒焼結原料の目標水分量(6.5mass%)よりも0.5mass%~3.0mass%程度高くなるように水分調整することが好ましい。また、水蒸気の水蒸気配管内における過熱度が13.5℃を超えると水蒸気が凝縮せずにドラムミキサー外に散逸する量が増加し、同時に、凝縮水による造粒焼結原料の水分上昇が抑制される傾向が認められた。そのため、水蒸気の水蒸気配管内における過熱度が13.5℃以下であれば、水蒸気のドラムミキサー内で凝縮が促進され、水蒸気使用量を低減できると同時に凝縮水による造粒焼結原料の水分上昇が増加するので水分調整がより容易となり望ましい。
 次に、本発明の実施に当たっては、ドラムミキサーへの水蒸気の吹き込み位置の影響についても検討が必要である。図4は、ドラムミキサーの前半部分で水蒸気を吹き込んだ場合と、ドラムミキサーの全領域で水蒸気を吹き込んだ場合の影響を示す図である。この図からわかるように、造粒焼結原料が適当な水分量である7~8mass%付近において擬似粒子の調和平均径が極大となっている。このことから、ドラムミキサーへの水蒸気の吹き込み位置は、前半部で吹き込んだ場合の方が、造粒焼結原料(擬似粒子)の調和平均径が大きくなり、造粒効果の点で優れていることがわかる。前半部とは造粒機の原料投入位置から長さ方向の略中間の位置までを言う。なお、ここで用いている調和平均径(Dh)とは、「Dh=1/Σ(Vi/di)」(但し、Viはi番目の粒度範囲中にある粒子の存在比率であり、diはi番目の粒度範囲の代表径である)で定義される粒径で、粉体層の通気を評価するために用いられる指標であって、この調和平均径(Dh)の数値が大きい程、造粒が進行していて通気が良いことを示している。
 表1は、本発明方法に適合する実施例と従来方法に従う比較例とを対比した例である。これらの例は、ドラムミキサー内に水蒸気を吹き込まない比較例1(ただし、この例はドラムミキサー装入前の配合焼結原料:35℃に対し、バインダーとして添加(≦2mass%)しているCaOが水と反応してCaOHを生成する際に生ずる発熱(+7.5℃の上昇:各例とも共通)の影響により造粒焼結原料の温度は42.5℃になっている)を基準として、通気性指数や生産率等を比較したものである。なお、比較例2は、ごく少量の水蒸気(1.9kg/t-s)の添加により造粒焼結原料の温度は10℃未満の4.8℃の上昇に止まり、生産率等に明確な効果が顕れていない。一方、実施例1は、造粒焼結原料温度の上昇が10℃以上の56.0℃になったために、通気性指数や生産率の点で明確な効果が顕れ、温度上昇が約35℃となった実施例2の場合でも大きい効果が出ている。さらに、実施例3は、ドラムミキサーの前半部分(造粒機全長を1とした場合において、造粒機の原料投入位置から入側から0.5)に水蒸気を吹き込んだ例であるが、図4に示したように、造粒焼結原料(擬似粒子)の調和平均径が大きくなり、通気性指数および生産率の点で大きな改善効果が得られている。いずれにしても、ドラムミキサーの入側温度よりも10℃以上高い出側温度の造粒焼結原料にするのに必要な水蒸気の吹き込み量は3kg/t-s以上、好ましくは4kg/t-s以上確保することが有効となると考えられる。
Figure JPOXMLDOC01-appb-T000001
 本発明に係る前述した技術は、水蒸気を用いて焼結配合原料を加熱する例で説明したが、加熱用蒸気としては他のものの利用も可能である。
1 ドラムミキサー
2 造粒焼結原料

Claims (5)

  1.  鉄鉱石粉の他、炭材や副原料を配合してなる焼結配合原料を造粒機にて造粒する際に、該造粒機内に水蒸気を吹き込むことにより、前記焼結配合原料の当該造粒機内への装入前の温度よりも10℃以上高い温度の造粒焼結原料とすることを特徴とする造粒焼結原料の製造方法。
  2.  前記水蒸気は、水蒸気配管内での過熱度が13.5℃以下であることを特徴とする請求項1に記載の造粒焼結原料の製造方法。
  3.  前記造粒機内への水蒸気の吹き込みは、該造粒機の原料投入位置から長さ方向の略中間の位置までの前半部分において行なうことを特徴とする請求項1または2に記載の造粒焼結原料の製造方法。
  4.  前記造粒機内への水蒸気の吹き込み量が3.0kg/t-s以上であることを特徴とする請求項1~3のいずれか1に記載の造粒焼結原料の製造方法。
  5.  前記造粒機から排出される造粒焼結原料の温度が60℃を超えたとき、水蒸気の吹き込みによって投入される水分に加え、さらに工場用水や熱水あるいは凝縮水を添加して造粒後水分にして0.5mass%以上、3.0mass%以下に相当する水分を加えることを特徴とする請求項1~4のいずれか1に記載の造粒焼結原料の製造方法。
PCT/JP2019/007079 2018-02-28 2019-02-25 造粒焼結原料の製造方法 WO2019167888A1 (ja)

Priority Applications (8)

Application Number Priority Date Filing Date Title
RU2020131562A RU2765204C1 (ru) 2018-02-28 2019-02-25 Способ изготовления гранулированного материала исходного сырья для спекания
JP2020503495A JP6897859B2 (ja) 2018-02-28 2019-02-25 造粒焼結原料の製造方法
BR112020017371-1A BR112020017371B1 (pt) 2018-02-28 2019-02-25 Método de fabricação de matéria-prima granulada para sinterização
CN201980012782.1A CN111699272A (zh) 2018-02-28 2019-02-25 造粒烧结原料的制造方法
KR1020207022713A KR102431895B1 (ko) 2018-02-28 2019-02-25 조립 소결 원료의 제조 방법
AU2019228862A AU2019228862B2 (en) 2018-02-28 2019-02-25 Method for Manufacturing Granulated Raw Material for Sintering
EP19761292.2A EP3760747B1 (en) 2018-02-28 2019-02-25 Method for manufacturing granulated raw material for sintering
PH12020551344A PH12020551344A1 (en) 2018-02-28 2020-08-27 Method for manufacturing granulated raw material for sintering

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2018-035688 2018-02-28
JP2018035688 2018-02-28

Publications (1)

Publication Number Publication Date
WO2019167888A1 true WO2019167888A1 (ja) 2019-09-06

Family

ID=67805877

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2019/007079 WO2019167888A1 (ja) 2018-02-28 2019-02-25 造粒焼結原料の製造方法

Country Status (8)

Country Link
EP (1) EP3760747B1 (ja)
JP (1) JP6897859B2 (ja)
KR (1) KR102431895B1 (ja)
CN (1) CN111699272A (ja)
AU (1) AU2019228862B2 (ja)
PH (1) PH12020551344A1 (ja)
RU (1) RU2765204C1 (ja)
WO (1) WO2019167888A1 (ja)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2020115959A1 (ja) * 2018-12-07 2020-06-11 Jfeスチール株式会社 焼結鉱の製造方法
WO2023210411A1 (ja) * 2022-04-28 2023-11-02 Jfeスチール株式会社 造粒装置、造粒焼結原料の製造方法および焼結鉱の製造方法

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS59229423A (ja) * 1983-06-09 1984-12-22 Sumitomo Metal Ind Ltd 焼結鉱の製造方法
JPH0711348A (ja) * 1993-06-28 1995-01-13 Nippon Steel Corp 焼結操業方法
JP2007169780A (ja) 2005-11-25 2007-07-05 Jfe Steel Kk 焼結鉱の製造方法
JP2013119667A (ja) 2011-12-09 2013-06-17 Jfe Steel Corp 鉱石事前処理方法

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20010036862A (ko) * 1999-10-12 2001-05-07 이구택 소결 배합원료의 의사입화 강화장치 및 방법
KR20090069599A (ko) * 2007-12-26 2009-07-01 주식회사 포스코 소결광의 제조방법
KR101175519B1 (ko) * 2010-06-28 2012-08-21 현대제철 주식회사 소결광의 소결 원료 조립 장치
CN107304461B (zh) * 2016-04-25 2019-04-19 中冶长天国际工程有限责任公司 用于烧结生产的强力混合工艺及其装置
JP7011348B2 (ja) * 2018-06-12 2022-01-26 株式会社 エフケー光学研究所 異物検査装置及び異物検査方法

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS59229423A (ja) * 1983-06-09 1984-12-22 Sumitomo Metal Ind Ltd 焼結鉱の製造方法
JPH0711348A (ja) * 1993-06-28 1995-01-13 Nippon Steel Corp 焼結操業方法
JP2007169780A (ja) 2005-11-25 2007-07-05 Jfe Steel Kk 焼結鉱の製造方法
JP2013119667A (ja) 2011-12-09 2013-06-17 Jfe Steel Corp 鉱石事前処理方法

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP3760747A4

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2020115959A1 (ja) * 2018-12-07 2020-06-11 Jfeスチール株式会社 焼結鉱の製造方法
WO2023210411A1 (ja) * 2022-04-28 2023-11-02 Jfeスチール株式会社 造粒装置、造粒焼結原料の製造方法および焼結鉱の製造方法

Also Published As

Publication number Publication date
RU2765204C1 (ru) 2022-01-26
EP3760747A4 (en) 2021-01-06
EP3760747B1 (en) 2023-12-27
EP3760747A1 (en) 2021-01-06
AU2019228862B2 (en) 2022-03-10
JP6897859B2 (ja) 2021-07-07
KR102431895B1 (ko) 2022-08-11
AU2019228862A1 (en) 2020-09-24
PH12020551344A1 (en) 2021-05-31
CN111699272A (zh) 2020-09-22
KR20200103827A (ko) 2020-09-02
BR112020017371A2 (pt) 2020-12-15
JPWO2019167888A1 (ja) 2020-12-03

Similar Documents

Publication Publication Date Title
WO2019167888A1 (ja) 造粒焼結原料の製造方法
JP5315659B2 (ja) 焼結鉱の製造方法
JP6959590B2 (ja) 焼結鉱の製造方法
JPH0127133B2 (ja)
JP2017128786A (ja) 炭材内装鉱およびその製造方法
RU2774518C1 (ru) Способ получения спечённой руды
JP2009030116A (ja) 高炉用鉱石原料の製造方法
KR101709204B1 (ko) 성형탄의 제조 방법 및 건조 장치
WO2024069991A1 (ja) 鉄鉱石ペレットの製造方法及び鉄鉱石ペレット
WO2023210412A1 (ja) 造粒装置、造粒焼結原料の製造方法および焼結鉱の製造方法
JP4996211B2 (ja) 鉄鉱石ペレットを製造する際の造粒原料の粒度決定方法
JP2008088533A (ja) 焼結鉱の製造方法
JP2001271121A (ja) 高炉用焼結鉱の製造方法
JP2019123919A (ja) 焼結鉱の製造方法
JPS60197827A (ja) 焼結鉱の製造方法
JP5434340B2 (ja) 焼結鉱の製造方法
BR112020017371B1 (pt) Método de fabricação de matéria-prima granulada para sinterização
KR101634071B1 (ko) 성형탄 및 그 제조 방법
CN114410958A (zh) 一种降低球团粉化的生产方法
JP5549143B2 (ja) 焼結用原料の製造方法
Das et al. Agglomeration
TW201908497A (zh) 內含碳材之礦料及其製造方法

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 19761292

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2020503495

Country of ref document: JP

Kind code of ref document: A

ENP Entry into the national phase

Ref document number: 20207022713

Country of ref document: KR

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

ENP Entry into the national phase

Ref document number: 2019228862

Country of ref document: AU

Date of ref document: 20190225

Kind code of ref document: A

ENP Entry into the national phase

Ref document number: 2019761292

Country of ref document: EP

Effective date: 20200928

REG Reference to national code

Ref country code: BR

Ref legal event code: B01A

Ref document number: 112020017371

Country of ref document: BR

ENP Entry into the national phase

Ref document number: 112020017371

Country of ref document: BR

Kind code of ref document: A2

Effective date: 20200825