WO2024069991A1 - 鉄鉱石ペレットの製造方法及び鉄鉱石ペレット - Google Patents

鉄鉱石ペレットの製造方法及び鉄鉱石ペレット Download PDF

Info

Publication number
WO2024069991A1
WO2024069991A1 PCT/JP2022/038913 JP2022038913W WO2024069991A1 WO 2024069991 A1 WO2024069991 A1 WO 2024069991A1 JP 2022038913 W JP2022038913 W JP 2022038913W WO 2024069991 A1 WO2024069991 A1 WO 2024069991A1
Authority
WO
WIPO (PCT)
Prior art keywords
iron ore
pellets
ore pellets
raw material
mass ratio
Prior art date
Application number
PCT/JP2022/038913
Other languages
English (en)
French (fr)
Inventor
耕一 森岡
裕太 瀧口
嗣憲 加藤
雄貴 梶山
Original Assignee
株式会社神戸製鋼所
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 株式会社神戸製鋼所 filed Critical 株式会社神戸製鋼所
Publication of WO2024069991A1 publication Critical patent/WO2024069991A1/ja

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21BMANUFACTURE OF IRON OR STEEL
    • C21B5/00Making pig-iron in the blast furnace
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22BPRODUCTION AND REFINING OF METALS; PRETREATMENT OF RAW MATERIALS
    • C22B1/00Preliminary treatment of ores or scrap
    • C22B1/14Agglomerating; Briquetting; Binding; Granulating
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22BPRODUCTION AND REFINING OF METALS; PRETREATMENT OF RAW MATERIALS
    • C22B1/00Preliminary treatment of ores or scrap
    • C22B1/14Agglomerating; Briquetting; Binding; Granulating
    • C22B1/16Sintering; Agglomerating

Definitions

  • the present invention relates to a method for producing iron ore pellets and iron ore pellets.
  • a known method of operating a blast furnace is to charge iron ore containing iron oxides, calcined ore, and coke as a carbon source into the top of the furnace, then blow air or oxygen into the furnace through the tuyeres at the bottom to promote a reduction reaction that generates carbon monoxide and removes oxygen from the iron oxide, and then extract pig iron from the bottom of the furnace.
  • This blast pressure depends on the properties of the charge materials.
  • iron ore, sintered ore, and iron ore pellets are exposed to high temperatures and a reducing atmosphere, undergoing a reduction reaction and becoming a mixture of metallic iron and oxides. At the same time, they soften and deform under the load inside the blast furnace. This softening and deformation fills the gaps between the charge particles, hindering ventilation inside the furnace. The phenomenon that is the main cause of this is called pressure loss in the lower furnace, and efforts are being made to reduce this.
  • Known iron ore pellets capable of reducing the pressure loss in the lower furnace include self-fluxed pellets having a CaO/ SiO2 mass ratio of 0.8 or more, an MgO/ SiO2 mass ratio of 0.4 or more, and a predetermined particle size distribution (see JP 2008-280556 A).
  • the reducibility at high temperatures is increased by setting the CaO/ SiO2 mass ratio to 0.8 or more and the MgO/ SiO2 mass ratio to 0.4 or more, and the air permeability is ensured by controlling the particle size distribution.
  • the present invention was made based on the above-mentioned circumstances, and aims to provide a manufacturing method for iron ore pellets that have excellent reducibility at high temperatures and can reduce the upper air flow resistance of a blast furnace, and the iron ore pellets.
  • a method for producing iron ore pellets according to one embodiment of the present invention is a method for producing self-fluxed iron ore pellets used in blast furnace operation, and includes a raw material blending step of blending an auxiliary material containing CaO and MgO with an ore raw material so that the CaO/ SiO2 mass ratio is 0.8 or more and the MgO/ SiO2 mass ratio is 0.4 or more, a granulation step of granulating raw pellets having a porosity of 15% or more and 22% or less from the mixed raw material obtained in the raw material blending step, and a firing step of firing the raw pellets at a temperature of 1200°C or more and 1300°C or less.
  • a self-fluxed iron ore pellet for use in a blast furnace operation, the iron ore pellet having a CaO/ SiO2 mass ratio of 0.8 or more, a MgO/ SiO2 mass ratio of 0.4 or more, and an average crushing strength of 270 kg/p or more.
  • the method for producing iron ore pellets of the present invention can produce iron ore pellets that have excellent reducibility at high temperatures and can reduce the upper air resistance of a blast furnace.
  • the iron ore pellets of the present invention have excellent reducibility at high temperatures and can reduce the upper air resistance of a blast furnace.
  • FIG. 1 is a flow diagram showing a method for producing iron ore pellets according to an embodiment of the present invention.
  • FIG. 2 is a schematic diagram showing the configuration of a manufacturing apparatus used in the method for manufacturing iron ore pellets shown in FIG.
  • FIG. 3 is a graph showing the relationship between the percentage of fines of 5 mm or less generated during transportation of iron ore pellets and the average crushing strength.
  • the inventors of the present invention have studied the upper airflow resistance of a blast furnace and found that even if the ratio of small-sized iron ore pellets, which leads to an increase in pressure loss during pellet production, is reduced, the pellets are broken and powder is generated during the subsequent transportation and blast furnace charging processes.
  • the inventors have found that reducing the powder generated from the iron ore pellets due to transportation and impact in the blast furnace reduces the upper airflow resistance of the blast furnace.
  • the inventors have found that in order to reduce the powder, it is effective to increase the average crushing strength to 270 kg/p.
  • the firing temperature if the firing temperature is low, the pellets will not be sintered properly. In other words, the distance between the ore particles will increase, and the points of contact between the particles will decrease, weakening the forces that make up the pellets' strength and tending to reduce the crushing strength. For this reason, even if the firing temperature is lowered and the generation of coarse crystal grains is suppressed, the crushing strength will not increase sufficiently.
  • the inventors noticed that the porosity does not decrease unless the firing temperature is low and the pellets are not sintered.
  • the decrease in porosity occurs when the iron ore particles approach and merge with each other due to a diffusion phenomenon in order to reduce the surface area in order to reduce the surface energy of the iron ore particles.
  • the inventors thought that if the porosity could be controlled independently of the firing temperature, the crushing strength could be sufficiently increased. They then discovered that the crushing strength could be sufficiently increased by controlling the porosity at the raw pellet stage, which had not been done before, and completed the present invention.
  • a manufacturing method of iron ore pellets is a manufacturing method of self-fluxed iron ore pellets used in blast furnace operation, and includes a raw material blending step of blending an auxiliary material containing CaO and MgO with an ore raw material so that the CaO/ SiO2 mass ratio is 0.8 or more and the MgO/ SiO2 mass ratio is 0.4 or more, a granulation step of granulating raw pellets having a porosity of 15% or more and 22% or less from the mixed raw material obtained in the raw material blending step, and a firing step of firing the raw pellets at a temperature of 1200°C or more and 1300°C or less.
  • the iron ore pellets produced by the method for producing iron ore pellets are self-fluxed, have a CaO/ SiO2 mass ratio equal to or greater than the lower limit, and have a MgO/ SiO2 mass ratio equal to or greater than the lower limit, and therefore have high reducibility.
  • the raw pellets are fired at a temperature within the above range in the firing process after the porosity is set within the above range, so that the crushing strength of the produced iron ore pellets can be sufficiently increased. Therefore, by using the method for producing iron ore pellets, it is possible to produce iron ore pellets that are excellent in reducibility at high temperatures and can reduce the upper air flow resistance of a blast furnace.
  • a rolling granulator is used in the granulation process, and the porosity can be controlled by the raw material particle size in the raw material mixing process and the rolling time in the granulation process.
  • the porosity can be controlled by the raw material particle size in the raw material mixing process and the rolling time in the granulation process.
  • the particle size range of the raw pellets in the granulation process is 4 mm or more and 20 mm or less.
  • classification using a sieve group having an oversize screen and a seed screen adjusted to a predetermined sieve size is preferably used.
  • a self-fluxed iron ore pellet for use in a blast furnace operation, the iron ore pellet having a CaO/ SiO2 mass ratio of 0.8 or more, a MgO/ SiO2 mass ratio of 0.4 or more, and an average crushing strength of 270 kg/p or more.
  • the iron ore pellets are self-fluxed, have a CaO/ SiO2 mass ratio equal to or greater than the lower limit, and have a MgO/ SiO2 mass ratio equal to or greater than the lower limit, so that they have high reducibility.
  • the iron ore pellets have an average crushing strength equal to or greater than the lower limit, so that the amount of powder generated from the iron ore pellets due to transportation and impacts in the blast furnace can be reduced, and the upper air flow resistance of the blast furnace can be reduced.
  • the mass ratio of the crushing strength of 100 kg/p or less should preferably be 10% or less.
  • crushing strength refers to the strength defined in JIS-M8718:2017
  • average crushing strength refers to the average crushing strength of at least any 10 iron ore pellets.
  • the manufacturing method of iron ore pellets shown in Fig. 1 includes a raw material blending step S1, a granulation step S2, a firing step S3, and a cooling step S4.
  • the manufacturing method of iron ore pellets can manufacture self-fluxed iron ore pellets 1 used in blast furnace operation using a grate kiln type manufacturing apparatus (hereinafter, also simply referred to as "manufacturing apparatus 2").
  • the manufacturing apparatus 2 includes a pan pelletizer 3, a grate furnace 4, a kiln 5, and an annular cooler 6.
  • auxiliary raw materials containing CaO and MgO are blended with the ore raw material so that the CaO/ SiO2 mass ratio is 0.8 or more and the MgO/ SiO2 mass ratio is 0.4 or more.
  • limestone which serves as a CaO source
  • dolomite which serves as an MgO source
  • the above-mentioned raw ore material and the above-mentioned auxiliary material may be crushed in a ball mill or the like beforehand or after mixing, as necessary, to adjust the particle size of the mixed raw material in which the above-mentioned raw ore material and the above-mentioned auxiliary material are mixed.
  • the inventors have found that the porosity of the raw pellets P is proportional to the raw material particle size index. In other words, by appropriately controlling the raw material particle size index, the porosity of the raw pellets P can be controlled, and the strength of the iron ore pellets 1 can be controlled by the porosity of the raw pellets P.
  • the "raw material particle size index” can be determined by the following method. First, the particle size distribution of the mixed raw material is measured. For this measurement, one of JIS-A-1204:2010, JIS-A-8815:1994, or JIS-Z-8825:2022 can be used. Next, the mass ratio or volume ratio mi in each particle size range Pi (representative value) is used to calculate the sum ⁇ 3/Pi ⁇ mi from 3 ⁇ m to 1000 ⁇ m, and this is the raw material particle size index.
  • the suitable value of the raw material particle size index can be specified by the following method. First, raw materials with at least two types of raw material particle size indexes are prepared in a mixed raw material with a specific mixing ratio, raw pellets P are produced, and the porosity is measured. From this result, the relationship between the raw material particle size index and the porosity can be calculated.
  • the required porosity can be calculated from the strength required for the iron ore pellets 1. Then, the raw material particle size index that will result in the required porosity can be determined, and the particle size of the raw material is adjusted to obtain this raw material particle size index. Note that adjusting the particle size also includes purchasing raw materials with such particle size.
  • the mixed raw material may also be mixed with a binder such as bentonite to provide the raw pellets P with the necessary strength for transportation during the manufacturing process.
  • a binder such as bentonite
  • raw pellets P having a porosity of 15% to 22% are granulated from the mixed raw material obtained in the raw material blending step S1.
  • a rolling granulator can be used to granulate the raw pellets P.
  • a pan pelletizer 3 or a drum pelletizer shown in FIG. 2 can be used as the rolling granulator.
  • the porosity of the raw pellets P is controlled as described above.
  • the lower limit of the porosity is 15%, and more preferably 17%.
  • the upper limit of the porosity is 22%, and more preferably 20%. If the porosity is below the lower limit, there is a risk of causing a steam explosion (bursting phenomenon) in the firing step S3. Conversely, if the porosity exceeds the upper limit, there is a risk of the crushing strength of the iron ore pellets 1 decreasing.
  • the porosity can be controlled by the raw material particle size in the raw material mixing step S1 and the rolling time in the granulation step S2. By controlling the porosity in this way, it is easier to control the porosity to a desired value, and the crushing strength can be increased more reliably.
  • the particle size range of the raw pellets P in the granulation process S2 is 4 mm or more and 20 mm or less, more preferably 6 mm or more and 15 mm or less.
  • classification using a sieve group having an oversize screen (upper limit sieve) and a seed screen (lower limit sieve) adjusted to a predetermined sieve size may be used.
  • the particle size after the firing step S3 can be easily and reliably adjusted. It is preferable that non-standard products that are not classified in the classification operation are crushed and reused as mixed raw material.
  • the green pellets P are fired at a temperature of 1200° C. or more and 1300° C. or less.
  • a grate furnace 4 and a kiln 5 are used in the firing step S3.
  • the grate furnace 4 includes a traveling grate 41 , a drying chamber 42 , a water-removing chamber 43 , and a preheating chamber 44 .
  • the traveling grate 41 is endless, and the raw pellets P placed on the traveling grate 41 can be moved in the following order: drying chamber 42, water release chamber 43, and preheating chamber 44.
  • the raw pellets P are dried, dewatered, and preheated by the heating gas G1, and preheated pellets H are obtained, which are raw pellets P with a strength sufficient to withstand rolling in the kiln 5.
  • the process is as follows: First, in the drying chamber 42, the raw pellets P are dried at an ambient temperature of about 250°C. Next, in the dewatering chamber 43, the dried raw pellets P are heated to about 450°C, and the crystal water mainly in the iron ore is decomposed and removed. Furthermore, in the preheating chamber 44, the raw pellets P are heated to about 1100°C, and the carbonates contained in the limestone, dolomite, etc. are decomposed and carbon dioxide is removed, and the magnetite in the iron ore is oxidized. This results in the preheated pellets H.
  • the heating gas G1 used in the water-releasing chamber 43 is used as the heating gas G1 in the drying chamber 42.
  • the heating gas G1 in the water-releasing chamber 43 is used as the heating gas G1 in the preheating chamber 44
  • the combustion exhaust gas G2 used in the kiln 5 is used as the heating gas G1 in the preheating chamber 44.
  • a burner 45 may be provided in each chamber to control the temperature of the heating gas G1. In FIG. 2, the burner 45 is provided in the water-releasing chamber 43 and the preheating chamber 44.
  • the heating gas G1 used in the drying chamber 42 is finally discharged from the chimney C.
  • the kiln 5 is a cylindrical rotary furnace with an inclination, and is directly connected to the grate furnace 4.
  • the kiln 5 burns the preheated pellets H discharged from the preheating chamber 44 of the grate furnace 4. Specifically, the preheated pellets H are burned by combustion using a kiln burner (not shown) disposed on the outlet side. As a result, high-temperature iron ore pellets 1 are obtained.
  • the lower limit of the firing temperature for firing the preheated pellets H is 1200°C, and 1220°C is more preferable.
  • the upper limit of the firing temperature is 1300°C, and 1280°C is more preferable.
  • the inventors have found that when the firing temperature is within the above range, the porosity of the raw pellets P and the strength of the iron ore pellets 1 are proportional to each other. In other words, if the firing temperature is below the lower limit, the pellets are not sintered, and if the firing temperature exceeds the upper limit, coarse crystal grains are likely to be generated, which may reduce the crushing strength of the iron ore pellets 1. Conversely, once the desired strength is determined, the porosity of the raw pellets P can be determined from the proportional relationship.
  • the air used as the cooling gas G3 used in the annular cooler 6 is used as the combustion air.
  • the high-temperature combustion exhaust gas G2 used to burn the preheated pellets H is sent to the preheating chamber 44 as the heating gas G1.
  • the hot iron ore pellets 1 discharged from the kiln 5 are moved while the cooling gas G3, that is, the air, is ventilated by the ventilation device 61, thereby cooling the iron ore pellets 1.
  • the cooling gas G3 used in the annular cooler 6 and whose temperature has increased is sent to the kiln 5 and used as combustion air.
  • the iron ore pellets 1 produced by the method for producing iron ore pellets are self-fluxed, have a CaO/ SiO2 mass ratio of 0.8 or more, and have a MgO/ SiO2 mass ratio of 0.4 or more, and therefore have high reducibility.
  • the raw pellets P have a porosity of 15% to 22% and are fired at a temperature of 1200°C to 1300°C in the firing step S3, so that the crushing strength of the produced iron ore pellets 1 can be sufficiently increased. Therefore, by using the method for producing iron ore pellets, it is possible to produce iron ore pellets 1 that are excellent in reducibility at high temperatures and can reduce the upper air flow resistance of a blast furnace.
  • the iron ore pellets 1 are self-fluxed iron ore pellets used in blast furnace operation.
  • the iron ore pellets 1 are made by granulating fine ore powder and firing it to form high-strength agglomerates, and can be manufactured by, for example, the above-mentioned method for manufacturing iron ore pellets.
  • the raw materials are iron ore (iron oxide) and limestone (a CaO-containing compound)
  • calcium ferrite compounds are produced during the firing process through a solid-phase reaction between the CaO produced by thermal decomposition and the iron oxide, and at the same time, they are bonded at their contact points by solid-phase diffusion bonding. This bonding is localized, and the micropores that existed before firing are maintained even after firing, and the iron ore pellet 1 becomes a porous body with micropores that are relatively uniformly distributed.
  • the reducing gas diffuses into these micropores, causing a reduction reaction to progress from the outer surface of the iron ore pellets 1 to the inside.
  • the reduction reaction removes oxygen from the iron oxide, causing existing micropores to expand and new micropores to form, while at the same time producing metallic iron.
  • the number of micropores begins to decrease.
  • the diffusion of the reducing gas into the interior of the iron ore pellets 1 is inhibited, making it easier for reduction to stagnate.
  • the iron ore pellets 1 are self-fluxing. By making the iron ore pellets 1 self-fluxing in this way, it is easy to promote the melting down of the reduced iron.
  • the self-fluxing property of the iron ore pellets 1 is determined by the auxiliary raw materials, etc.
  • the lower limit of the average crushing strength of the iron ore pellets 1 is 270 kg/p, and more preferably 300 kg/p.
  • Figure 3 shows the relationship between the mass fraction of powder with a particle size of 5 mm or less (fineness of 5 mm or less) generated by transportation of the iron ore pellets 1 and the average crushing strength. This result is based on the results of empirical verification along the transportation route.
  • Figure 3 also includes iron ore pellets with a CaO/SiO 2 mass ratio of less than 0.8 and iron ore pellets with a MgO/SiO 2 mass ratio of less than 0.4, but it can be seen that the fineness of 5 mm or less is stably low in iron ore pellets 1 with an average crushing strength of the above lower limit or more, regardless of these properties.
  • the upper limit of the average crushing strength of the iron ore pellets 1 is not particularly limited, but in reality, the upper limit is, for example, 500 kg/p.
  • the mass ratio of the iron ore pellets 1 having a crushing strength of 100 kg/p or less is preferably 10% or less, more preferably 5% or less, and even more preferably 1% or less. Even if the average crushing strength of the iron ore pellets 1 is high, if there is a large variation in strength between individual pellets, it is possible that the absolute amount of iron ore pellets 1 that are pulverized will be large. In this regard, by setting the mass ratio of the iron ore pellets 1 having a crushing strength of 100 kg/p or less to the above upper limit, the amount of powder generated from the iron ore pellets 1 can be further reduced, and the upper air resistance of the blast furnace can be further reduced.
  • the iron ore pellets 1 are self-fluxed and have a CaO/ SiO2 mass ratio of 0.8 or more and a MgO/ SiO2 mass ratio of 0.4 or more, so that they have high reducibility.
  • the iron ore pellets 1 have an average crushing strength of 270 kg/p or more, so that the amount of powder generated from the iron ore pellets 1 due to transportation and impacts in the blast furnace can be reduced, and the upper air flow resistance of the blast furnace can be reduced.
  • a method for manufacturing iron ore pellets using a grate kiln type manufacturing apparatus has been described, but they can also be manufactured using a straight grate type manufacturing apparatus.
  • the grate furnace is equipped with a traveling grate, a drying chamber, a water release chamber, a preheating chamber, and a firing chamber, and the firing process is completed using only the grate furnace.
  • the raw pellets are dried, water release, and preheated using heating gas in the drying chamber, water release chamber, and preheating chamber, and are finally fired in the firing chamber.
  • the above mixed raw materials were used to granulate green pellets using a disk pelletizer, and the pellets were fired at 1260°C using a firing device consisting of a fixed grate furnace and a kiln furnace to obtain iron ore pellet No. 1.
  • Table 1 shows the raw material particle size index, green pellet porosity, and average crushing strength of iron ore pellet No. 1.
  • the method for producing iron ore pellets of the present invention can produce iron ore pellets that have excellent reducibility at high temperatures and can reduce the upper air resistance of a blast furnace.
  • the iron ore pellets of the present invention have excellent reducibility at high temperatures and can reduce the upper air resistance of a blast furnace.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Manufacturing & Machinery (AREA)
  • Organic Chemistry (AREA)
  • Metallurgy (AREA)
  • Materials Engineering (AREA)
  • Geochemistry & Mineralogy (AREA)
  • Geology (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Mechanical Engineering (AREA)
  • General Life Sciences & Earth Sciences (AREA)
  • Environmental & Geological Engineering (AREA)
  • Manufacture And Refinement Of Metals (AREA)
  • Manufacture Of Iron (AREA)

Abstract

本発明の一態様に係る鉄鉱石ペレットの製造方法は、高炉操業に用いられる自溶性の鉄鉱石ペレットの製造方法であって、CaO/SiO質量比が0.8以上で、かつMgO/SiO質量比が0.4以上となるように、CaO及びMgOを含む副原料を鉱石原料に配合する原料配合工程と、上記原料配合工程で得られた混合原料から気孔率が15%以上22%以下の生ペレットを造粒する造粒工程と、上記生ペレットを1200℃以上1300℃以下の温度で焼成する焼成工程とを備える。

Description

鉄鉱石ペレットの製造方法及び鉄鉱石ペレット
 本発明は、鉄鉱石ペレットの製造方法及び鉄鉱石ペレットに関する。
 高炉操業として、高炉の上部から酸化鉄類を含む鉄鉱石や焼成鉱及び炭素源のコークスを装入し、下部の羽口から空気や酸素を送風して炉内にて一酸化炭素の発生や酸化鉄から酸素を除去する還元反応を進行させ炉下部から銑鉄を取り出す方法が公知である。
 その連続操業を円滑に進行させるためには、送風を円滑に行うことが重要である。そのためには送風圧力が低く安定していること、つまり通気性が良いことが望ましい。この送風圧力は、装入物の性状に依存する。装入物の中でも鉄鉱石、焼結鉱、鉄鉱石ペレット類は、高温かつ還元雰囲気に晒されて還元反応を受けて金属鉄と酸化物の混合体となる。同時に高炉内の荷重を受けて軟化し変形する。この軟化変形により装入物粒子間の空隙を埋めて炉内の通気性が妨げられる。この現象が主たる原因となる事象を炉下部圧損と呼び、これを低減することが志向されている。
 この炉下部圧損を低減できる鉄鉱石ペレットとして、CaO/SiO質量比が0.8以上、MgO/SiO質量比が0.4以上であって、所定の粒径分布を有する自溶性ペレットが公知である(特開2008-280556号公報参照)。
 上記鉄鉱石ペレットでは、CaO/SiO質量比を0.8以上、MgO/SiO質量比を0.4以上とすることで高温における被還元性を高め、粒径分布を制御することで通気性を確保している。
特開2008-280556号公報
 上記従来の鉄鉱石ペレットでは、通気性が確保できるようになるものの、その効果は比較的限定的であり、シャフト炉上部の比較的低温な領域における通気抵抗(上部圧損)が悪化し易い。また、最近では微粉炭を高炉の羽口から吹き込み、高価なコークス使用量を減らす操業が増えている。その結果、微粉炭吹込み量の増加に伴い、高炉内の通気性を支持してきたコークス量が減少し通気抵抗が全体に増大する傾向にある。このため、特に高炉の上部通気抵抗を低減することが求められている。
 本発明は、上述のような事情に基づいてなされたものであり、高温における被還元性に優れ、かつ高炉の上部通気抵抗が低減できる鉄鉱石ペレットの製造方法及び鉄鉱石ペレットの提供を目的とする。
 本発明の一態様に係る鉄鉱石ペレットの製造方法は、高炉操業に用いられる自溶性の鉄鉱石ペレットの製造方法であって、CaO/SiO質量比が0.8以上で、かつMgO/SiO質量比が0.4以上となるように、CaO及びMgOを含む副原料を鉱石原料に配合する原料配合工程と、上記原料配合工程で得られた混合原料から気孔率が15%以上22%以下の生ペレットを造粒する造粒工程と、上記生ペレットを1200℃以上1300℃以下の温度で焼成する焼成工程とを備える。
 本発明の別の一態様に係る鉄鉱石ペレットは、高炉操業に用いられる自溶性の鉄鉱石ペレットであって、CaO/SiO質量比が0.8以上で、かつMgO/SiO質量比が0.4以上であり、平均圧壊強度が270kg/p以上である。
 本発明の鉄鉱石ペレットの製造方法は、高温における被還元性に優れ、かつ高炉の上部通気抵抗が低減できる鉄鉱石ペレットを製造できる。また、本発明の鉄鉱石ペレットは、高温における被還元性に優れ、かつ高炉の上部通気抵抗が低減できる。
図1は、本発明の一実施形態に係る鉄鉱石ペレットの製造方法を示すフロー図である。 図2は、図1の鉄鉱石ペレットの製造方法で使用する製造装置の構成を示す模式図である。 図3は、鉄鉱石ペレットの運搬により生じる5mm以下粉率と平均圧壊強度との関係を示すグラフである。
[本発明の実施形態の説明]
 本発明者らが、高炉の上部通気抵抗について鋭意検討したところ、ペレット製造時には圧損の悪化につながる小粒径の鉄鉱石ペレットの割合を抑制しても、以降の運搬や高炉装入工程において破壊されて粉が発生してしまうことが避けられないことが分かった。そして、運搬や高炉内衝撃により鉄鉱石ペレットから発生する粉を減らすと高炉の上部通気抵抗が低減することを知得した。さらに、本発明者らは、粉を減らすためには、平均圧壊強度を270kg/pまで高めるとよいことを突きとめた。
 ところが、高炉操業で鉄鉱石ペレットに要求される被還元性を高めたCaO/SiO質量比が0.8以上で、かつMgO/SiO質量比が0.4以上の鉄鉱石ペレットでは、これまで平均圧壊強度270kg/p以上のものは得られていなかった。これは、CaO、MgO、SiO及びFeの化合物の粗大結晶粒が焼成中に生成し、強度を低下させるためであると考えられる。つまり、結晶粒が大きいと転位が移動しやすいスベリ面の方向が揃いやすく、転位が低い応力により動き破壊され易い。
 本発明者らは、さらに検討を重ね、上記粗大結晶粒が生成する時は焼成温度が高いことを見出した。鉱物組織の結晶は拡散により生成し拡大する。固相および液相におけるFe、Ca、Si、Mg、Alなどの拡散係数は高温であるほど大きくなる。すなわち焼成温度が高温であるほど拡散し結晶粒が大きくなり、粗大結晶粒が生成する。そこで、本発明者らは、焼成温度を低下させることで、粗大結晶粒の生成を抑制できると考えた。
 一方、焼成温度が低いとペレットが焼き締まらないという問題が生じる。すなわち、鉱石粒子間の距離が広がり、粒子間の接点が少なくなる等、ペレット強度を構成する力が弱くなり、圧壊強度を低下させてしまう傾向を生じる。このため、焼成温度を低下させ粗大結晶粒の生成を抑制しても、十分に圧壊強度が高まらない結果となる。
 ここで、本発明者らは、焼成温度が低くペレットが焼き締まらないと気孔率が低下しなくなることに着目した。気孔率低下は、鉄鉱石粒子の表面エネルギーを低下させるため、表面積を小さくするように拡散現象により鉱石粒子同士が接近・合体することにより生じる。このため、高気孔率ペレット内においては、鉱石粒子間の距離が広がったままであり、粒子間の接点が少なくなる等、ペレット強度を構成する力が弱くなるものと考えられる。そこで、本発明者らは、焼成温度とは独立して気孔率を制御することができれば、圧壊強度を十分に高められると考えた。そして、従来は行われてこなかった生ペレット段階での気孔率を制御することで、圧壊強度を十分に高められることを突きとめ、本発明を完成させた。
 すなわち、本発明の一態様に係る鉄鉱石ペレットの製造方法は、高炉操業に用いられる自溶性の鉄鉱石ペレットの製造方法であって、CaO/SiO質量比が0.8以上で、かつMgO/SiO質量比が0.4以上となるように、CaO及びMgOを含む副原料を鉱石原料に配合する原料配合工程と、上記原料配合工程で得られた混合原料から気孔率が15%以上22%以下の生ペレットを造粒する造粒工程と、上記生ペレットを1200℃以上1300℃以下の温度で焼成する焼成工程とを備える。
 当該鉄鉱石ペレットの製造方法により製造される鉄鉱石ペレットは、自溶性でCaO/SiO質量比が上記下限以上で、かつMgO/SiO質量比が上記下限以上であるので、被還元性が高い。また、生ペレット段階での気孔率を上記範囲内としたうえで、焼成工程で上記生ペレットを上記範囲内の温度で焼成するので、製造された鉄鉱石ペレットの圧壊強度を十分に高めることができる。従って、当該鉄鉱石ペレットの製造方法を用いることで、高温における被還元性に優れ、かつ高炉の上部通気抵抗が低減できる鉄鉱石ペレットを製造することができる。
 上記造粒工程で転動造粒機が用いられ、上記原料配合工程における原料粒度及び上記造粒工程における転動時間により上記気孔率を制御するとよい。このように気孔率を制御することで、気孔率を所望の値に制御し易く、より確実に圧壊強度を高めることができる。
 上記焼成工程後の粒径が4mm以上20mm以下となるように、上記造粒工程で生ペレットの粒度範囲を調整するとよい。このように上記焼成工程後の粒径を上記範囲内とすることで、高温における被還元性を維持しつつ、高炉の上部通気抵抗が低下することを抑止できる。
 上記生ペレットの粒度範囲の調整に、予め決められた篩目に調整されたオーバーサイズスクリーン及びシードスクリーンを有する篩群による分級を用いるとよい。このように上記生ペレットの粒度範囲の調整を分級により行うことで、容易かつ確実に上記焼成工程後の粒径を調整できる。
 本発明の別の一態様に係る鉄鉱石ペレットは、高炉操業に用いられる自溶性の鉄鉱石ペレットであって、CaO/SiO質量比が0.8以上で、かつMgO/SiO質量比が0.4以上であり、平均圧壊強度が270kg/p以上である。
 当該鉄鉱石ペレットは、自溶性でCaO/SiO質量比を上記下限以上とし、かつMgO/SiO質量比を上記下限以上とするので、被還元性が高い。また、当該鉄鉱石ペレットは、平均圧壊強度を上記下限以上とするので、運搬や高炉内衝撃により鉄鉱石ペレットから発生する粉を減らし、高炉の上部通気抵抗を低減することができる。
 圧壊強度が100kg/p以下の質量比率が10%以下であるとよい。このように圧壊強度が100kg/p以下の質量比率を上記上限以下とすることで、鉄鉱石ペレットから発生する粉をさらに減らし、高炉の上部通気抵抗をより低減することができる。
 ここで、「圧壊強度」とは、JIS-M8718:2017で規定される強度であり、「平均圧壊強度」は、任意の少なくとも10個の鉄鉱石ペレットの圧壊強度の平均値を指す。
[本発明の実施形態の詳細]
 以下、本発明の一実施形態に係る鉄鉱石ペレットの製造方法及び鉄鉱石ペレットについて、適宜図面を参照しつつ説明する。
〔鉄鉱石ペレットの製造方法〕
 図1に示す鉄鉱石ペレットの製造方法は、原料配合工程S1と、造粒工程S2と、焼成工程S3と、冷却工程S4とを備える。当該鉄鉱石ペレットの製造方法は、図2に示すように、高炉操業に用いられる自溶性の鉄鉱石ペレット1を、グレートキルン方式の製造装置(以下、単に「製造装置2」ともいう)を用いて製造することができる。製造装置2は、パンペレタイザ3と、グレート炉4と、キルン5と、アニュラクーラ6とを備える。
<原料配合工程>
 原料配合工程S1では、CaO/SiO質量比が0.8以上で、かつMgO/SiO質量比が0.4以上となるように、CaO及びMgOを含む副原料を鉱石原料に配合する。
 具体的には、原料配合工程S1では、上記鉱石原料である鉄鉱石(ペレットフィード)の鉄品位に応じて、上記副原料としてCaO源となる石灰石と、MgO源となるドロマイトとを配合する。
 上記鉱石原料及び上記副原料は、必要に応じて、事前に又は配合後にボールミル等で粉砕して、上記鉱石原料及び上記副原料が混合された混合原料の粒度を調整するとよい。本発明者らは、生ペレットPの気孔率が原料粒度指数と比例関係にあることを知得している。つまり、原料粒度指数を適切に制御すれば、生ペレットPの気孔率が制御され、この生ペレットPの気孔率により鉄鉱石ペレット1の強度が制御できる。
 ここで、「原料粒度指数」は、以下の方法により特定できる。まず、混合原料の粒度分布を測定する。この測定には、JIS-A-1204:2010、JIS-A-8815:1994、JIS-Z-8825:2022のうちの1つを用いることができる。次に、各粒度範囲Pi(代表値)における質量比率もしくは体積比率miを用い、3μmから1000μmの範囲までの総和Σ3/Pi・miを計算し、これを原料粒度指数とする。
 この原料粒度指数と生ペレットPの気孔率との関係は、同一銘柄の鉄鉱石と副原料とを同一比率で配合した混合原料において成立するが、例えば鉄鉱石の銘柄が異なると、表面形状や濡れ性等の影響により、その比例係数は変化し得る。従って、原料粒度指数の好適値は以下の方法により特定できる。まず、特定の混合比率の混合原料において少なくとも2種類の原料粒度指数の原料を準備し、生ペレットPを作製し気孔率を測定する。この結果から、原料粒度指数と気孔率との関係を算出できる。後述するように気孔率と鉄鉱石ペレット1との強度にも比例関係があるから、鉄鉱石ペレット1に必要な強度から必要な気孔率を算出することができる。そうすると、必要な気孔率となる原料粒度指数を決定することができるから、この原料粒度指数となるように原料の粒度を調整する。なお、粒度の調整には、そのような粒度を有する原料を購入することも含まれる。
 また、上記混合原料には、製造工程内の搬送で必要な生ペレットPの強度を得るために適宜ベンナイト等のバインダーを配合してもよい。
<造粒工程>
 造粒工程S2では、原料配合工程S1で得られた混合原料から気孔率が15%以上22%以下の生ペレットPを造粒する。生ペレットPの造粒には、転動造粒機が用いることができる。上記転動造粒機としては、図2に示すパンペレタイザ3やドラムペレタイザなどを用いることができる。
 具体的には、造粒工程S2では、上記混合原料に水分(造粒水)を添加した後、この造粒水含有混合物(造粒水を含有した上記混合原料)をパンペレタイザ3に投入及び転動させて、泥団子状の生ペレットPを製造する。
 当該鉄鉱石ペレットの製造方法では、上述のように生ペレットPの気孔率を制御する。上記気孔率の下限としては、15%であり、17%がより好ましい。一方、上記気孔率の上限としては、22%であり、20%がより好ましい。上記気孔率が上記下限未満であると、焼成工程S3において水蒸気爆発(バースティング現象)を引き起こすおそれがある。逆に、上記気孔率が上記上限を超えると、鉄鉱石ペレット1の圧潰強度が低下するおそれがある。
 上記気孔率は、原料配合工程S1における原料粒度及び造粒工程S2における転動時間により制御するとよい。このように気孔率を制御することで、気孔率を所望の値に制御し易く、より確実に圧壊強度を高めることができる。
 また、焼成工程S3後の粒径が4mm以上20mm以下、より好ましくは6mm以上15mm以下となるように、造粒工程S2で生ペレットPの粒度範囲を調整するとよい。このように焼成工程S3後の粒径を上記範囲内とすることで、高温における被還元性を維持しつつ、高炉の上部通気抵抗が低下することを抑止できる。
 生ペレットPの粒度範囲の調整に、予め決められた篩目に調整されたオーバーサイズスクリーン(上限篩)及びシードスクリーン(下限篩)を有する篩群による分級を用いるとよい。このように生ペレットPの粒度範囲の調整を分級により行うことで、容易かつ確実に焼成工程S3後の粒径を調整できる。なお、分級操作において外れた規格外品は解砕されて再度、混合原料として用いられることが好ましい。
<焼成工程>
 焼成工程S3では、生ペレットPを1200℃以上1300℃以下の温度で焼成する。図2に示す製造装置2では、焼成工程S3に、グレート炉4及びキルン5が用いられている。
(グレート炉)
 グレート炉4は、図2に示すように、トラベリンググレート41と、乾燥室42と、離水室43と、予熱室44とを備える。
 トラベリンググレート41は、無端状に構成され、このトラベリンググレート41上に載置された生ペレットPを、乾燥室42、離水室43及び予熱室44の順に移動させることができる。
 乾燥室42、離水室43及び予熱室44では、加熱用ガスG1によって生ペレットPを乾燥、離水及び予熱し、キルン5での転動に耐えうる強度を生ペレットPに付与した予熱ペレットHを得る。
 具体的には以下の手順による。まず、乾燥室42で、生ペレットPを250℃程度の雰囲気温度で乾燥させる。次に、離水室43で、乾燥後の生ペレットPを450℃程度に昇温し、主に鉄鉱石中の結晶水を分解除去する。さらに、予熱室44で、生ペレットPを1100℃程度まで昇温し、石灰石、ドロマイト等に含まれる炭酸塩を分解し二酸化炭素を除去するとともに、鉄鉱石中のマグネタイトを酸化させる。これにより予熱ペレットHが得られる。
 図2に示すように、乾燥室42の加熱用ガスG1としては、離水室43で使用された加熱用ガスG1が流用される。同様に離水室43の加熱用ガスG1には予熱室44の加熱用ガスG1が流用され、予熱室44の加熱用ガスG1には、キルン5で使用された燃焼排ガスG2が流用される。このように下流側の高温の加熱用ガスG1又は燃焼排ガスG2を流用することで、加熱用ガスG1の加熱コストを削減できる。なお、各室にはバーナ45を設け、加熱用ガスG1の温度を制御してもよい。図2では、離水室43及び予熱室44にバーナ45が設けられている。また、乾燥室42で使用された加熱用ガスG1は、最終的には煙突Cから排出される。
(キルン)
 キルン5は、グレート炉4に直結されており、勾配をつけた円筒状の回転炉である。キルン5は、グレート炉4の予熱室44から排出される予熱ペレットHを焼成する。具体的には出口側に配設されたキルンバーナ(不図示)による燃焼により予熱ペレットHを焼成する。これにより高温の鉄鉱石ペレット1が得られる。
 予熱ペレットHを焼成する焼成温度の下限としては、1200℃であり、1220℃がより好ましい。一方、上記焼成温度の上限としては、1300℃であり、1280℃がより好ましい。本発明者らは、焼成温度が上記範囲内である場合に、生ペレットPの気孔率と鉄鉱石ペレット1の強度とが比例関係にあることを見出している。つまり、上記焼成温度が上記下限未満であると、ペレットが焼き締まらないため、また上記焼成温度が上記上限を超えると、粗大結晶粒が生成し易くなるため、鉄鉱石ペレット1の圧潰強度が低下するおそれがある。逆に、所望の強度が決まれば、その比例関係から生ペレットPの気孔率を決めることができる。
 キルン5では、燃焼用空気としては、アニュラクーラ6で使用された冷却ガスG3である大気が用いられる。また、予熱ペレットHの焼成用に使用された高温の燃焼排ガスG2は、加熱用ガスG1として予熱室44へ送り込まれる。
<冷却工程>
 冷却工程S4では、焼成工程S3で得られる高温の鉄鉱石ペレット1を冷却する。冷却工程S4では、アニュラクーラ6が用いられる。冷却工程S4で冷却された鉄鉱石ペレット1は集積され、高炉操業に用いられる。
 アニュラクーラ6では、キルン5から排出された高温の鉄鉱石ペレット1を移動させながら、冷却ガスG3である大気を通風装置61により通風することで鉄鉱石ペレット1を冷却することができる。
 なお、アニュラクーラ6で使用され温度が上昇した冷却ガスG3は、キルン5へ送り込まれ、燃焼用空気として使用される。
<利点>
 当該鉄鉱石ペレットの製造方法により製造される鉄鉱石ペレット1は、自溶性でCaO/SiO質量比が0.8以上で、かつMgO/SiO質量比が0.4以上であるので、被還元性が高い。また、生ペレットPの段階での気孔率を15%以上22%以下としたうえで、焼成工程S3で生ペレットPを1200℃以上1300℃以下の温度で焼成するので、製造された鉄鉱石ペレット1の圧壊強度を十分に高めることができる。従って、当該鉄鉱石ペレットの製造方法を用いることで、高温における被還元性に優れ、かつ高炉の上部通気抵抗が低減できる鉄鉱石ペレット1を製造することができる。
〔鉄鉱石ペレット〕
 本発明の別の一態様に係る鉄鉱石ペレット1は、高炉操業に用いられる自溶性の鉄鉱石ペレットである。当該鉄鉱石ペレット1は、微粉鉱石を造粒し、焼成して強度の高い塊成鉱としたものであり、例えば上述の鉄鉱石ペレットの製造方法により製造することができる。
 鉄鉱石ペレット1の製造において、鉱石原料に石灰石などのCaO含有化合物を添加し、鉄鉱石ペレット1のCaO/SiO質量比を高めると、鉄鉱石ペレット1の被還元性が向上することが知られている。この知見に基づき、当該鉄鉱石ペレット1のCaO/SiO質量比は0.8以上である。
 原料が鉄鉱石(酸化鉄)と石灰石(CaO含有化合物)である場合、焼成過程において、熱分解によって生成したCaOと酸化鉄との固相反応によって、カルシウムフェライト系化合物が生成され、同時にその接点で固相拡散接合によって結合していく。この結合は局所的なものであり、焼成前に存在していた微細気孔が焼成後も維持され、鉄鉱石ペレット1は、微細気孔が比較的均一に存在する多孔質体となる。
 高炉操業時には、この微細気孔に還元ガスが拡散侵入していくことで、鉄鉱石ペレット1の外表面から内部へと還元反応が進行していく。還元反応により酸化鉄から酸素が除去されることによって、既存の微細気孔の拡大と新規微細気孔の生成が進行すると同時に金属鉄が生成する。この金属鉄の凝集によって鉄鉱石ペレット1の外形が収縮していく過程において微細気孔は減少に転じる。その結果、鉄鉱石ペレット1の内部への還元ガスの拡散が抑制され、還元が停滞し易くなる。
 この還元停滞を抑制するには、金属鉄の凝集過程で微細気孔消失を抑制する高融点成分の添加が有効である。特に高融点成分であるMgO源としてドロマイトを添加し、鉄鉱石ペレット1のMgO/SiO質量比を高めると、高い還元停滞抑制効果が得られることが知られている。この知見に基づき、当該鉄鉱石ペレット1のMgO/SiO質量比は0.4以上である。
 当該鉄鉱石ペレット1は、自溶性である。このように当該鉄鉱石ペレット1を自溶性とすることで、還元された鉄の溶け落ちが促進され易い。なお、鉄鉱石ペレット1の自溶性は、副原料等により決まる。
 当該鉄鉱石ペレット1の平均圧壊強度の下限としては、270kg/pであり、300kg/pがより好ましい。上述したように、運搬や高炉内衝撃により鉄鉱石ペレット1から発生する粉を減らすと高炉の上部通気抵抗が低減するという知見のもと、本発明者らが鋭意検討した結果、上記粉の量は平均圧壊強度により制御できるとの結論に至った。図3は、鉄鉱石ペレット1の運搬により生じる粒径5mm以下の粉の質量分率(5mm以下粉率)と平均圧壊強度との関係を示している。この結果は、搬送経路に沿い実証的に検証した結果に基づくものである。図3には、CaO/SiO質量比が0.8未満のものやMgO/SiO質量比が0.4未満のものも含まれるが、これらの性状に関わりなく、平均圧壊強度が上記下限以上の鉄鉱石ペレット1において、5mm以下粉率が安定的に低いことが分かる。なお、本発明において、当該鉄鉱石ペレット1の平均圧壊強度の上限は、特に限定されないが、現実的には、例えばその上限は500kg/pである。
 当該鉄鉱石ペレット1において、圧壊強度が100kg/p以下の質量比率が10%以下であることが好ましく、5%以下であることがより好ましく、1%以下であることがさらに好ましい。当該鉄鉱石ペレット1の平均圧壊強度が高い場合であっても、個体ごとの強度ばらつきが大きい場合、粉化する鉄鉱石ペレット1の絶対量が多くなることも考えられる。この点、圧壊強度が100kg/p以下の質量比率を上記上限以下とすることで、鉄鉱石ペレット1から発生する粉をさらに減らし、高炉の上部通気抵抗をより低減することができる。
<利点>
 当該鉄鉱石ペレット1は、自溶性でCaO/SiO質量比を0.8以上とし、かつMgO/SiO質量比を0.4以上とするので、被還元性が高い。また、当該鉄鉱石ペレット1は、平均圧壊強度を270kg/p以上とするので、運搬や高炉内衝撃により鉄鉱石ペレット1から発生する粉を減らし、高炉の上部通気抵抗を低減することができる。
[その他の実施形態]
 なお、本発明は、上記実施形態に限定されるものではない。
 上記実施形態では、鉄鉱石ペレットをグレートキルン方式の製造装置を用いて製造する方法を説明したが、ストレートグレート方式の製造装置を用いて製造することもできる。ストレートグレート方式の製造装置では、グレート炉は、トラベリンググレートと、乾燥室と、離水室と、予熱室と、焼成室とを備え、グレート炉のみで焼成工程が完了する。具体的には、乾燥室、離水室及び予熱室で、加熱用ガスによって生ペレットを乾燥、離水及び予熱し、焼成室で最後の焼成に至る。
 以下、実施例によって本発明をさらに詳細に説明するが、本発明はこれらの実施例に限定されるものではない。
[No.1]
 鉱石原料としての鉄鉱石と、副原料としての石灰石、ドロマイト及びベンナイトを準備した。CaO/SiO質量比が1.2で、かつMgO/SiO質量比が0.4となるように、上記副原料を上記鉱石原料に配合し、混合原料を得た。
 上記混合原料を用いて、ディスクペレンタイザを用いて生ペレットを造粒し、固定式グレート炉及びキルン炉から構成される焼成装置を用いて1260℃で焼成し、No.1の鉄鉱石ペレットを得た。No.1の鉄鉱石ペレットに対して、原料粒度指数、生ペレットの気孔率及び鉄鉱石ペレットの平均圧壊強度を表1に示す。
[No.2]
 上記混合原料をボールミルにて30分間粉砕した以外は、No.1と同様にして、No.2の鉄鉱石ペレットを得た。No.2の鉄鉱石ペレットに対して、原料粒度指数、生ペレットの気孔率及び鉄鉱石ペレットの平均圧壊強度を表1に示す。
[No.3~No.5]
 No.1及びNo.2の原料粒度指数と得られた鉄鉱石ペレットに対して、平均圧壊強度が270kg/p以上となるように、原料粒度指数をNo.1の原料粒度指数を基準として、1.8倍、2.0倍、2.2倍となるようにした以外は、No.1と同様にして、No.3~No.5の鉄鉱石ペレットを得た。No.3~No.5の鉄鉱石ペレットに対して、原料粒度指数、生ペレットの気孔率及び鉄鉱石ペレットの平均圧壊強度を表1に示す。
Figure JPOXMLDOC01-appb-T000001
 表1の結果から、CaO/SiO質量比が0.8以上で、かつMgO/SiO質量比が0.4以上である鉄鉱石ペレットにおいても、生ペレットの気孔率を15%以上22%以下とし、1200℃以上1300℃以下の温度で焼成することで、平均圧壊強度が270kg/p以上の鉄鉱石ペレットが得られることが分かる。
 本発明の鉄鉱石ペレットの製造方法は、高温における被還元性に優れ、かつ高炉の上部通気抵抗が低減できる鉄鉱石ペレットを製造できる。また、本発明の鉄鉱石ペレットは、高温における被還元性に優れ、かつ高炉の上部通気抵抗が低減できる。
1 鉄鉱石ペレット
2 製造装置
3 パンペレタイザ
4 グレート炉
41 トラベリンググレート
42 乾燥室
43 離水室
44 予熱室
45 バーナ
5 キルン
6 アニュラクーラ
61 通風装置
P 生ペレット
H 予熱ペレット
G1 加熱用ガス
G2 燃焼排ガス
G3 冷却ガス
C 煙突

Claims (6)

  1.  高炉操業に用いられる自溶性の鉄鉱石ペレットの製造方法であって、
     CaO/SiO質量比が0.8以上で、かつMgO/SiO質量比が0.4以上となるように、CaO及びMgOを含む副原料を鉱石原料に配合する原料配合工程と、
     上記原料配合工程で得られた混合原料から気孔率が15%以上22%以下の生ペレットを造粒する造粒工程と、
     上記生ペレットを1200℃以上1300℃以下の温度で焼成する焼成工程と
     を備える鉄鉱石ペレットの製造方法。
  2.  上記造粒工程で転動造粒機が用いられ、
     上記原料配合工程における原料粒度及び上記造粒工程における転動時間により上記気孔率を制御する請求項1に記載の鉄鉱石ペレットの製造方法。
  3.  上記焼成工程後の粒径が4mm以上20mm以下となるように、上記造粒工程で生ペレットの粒度範囲を調整する請求項1又は請求項2に記載の鉄鉱石ペレットの製造方法。
  4.  上記生ペレットの粒度範囲の調整に、予め決められた篩目に調整されたオーバーサイズスクリーン及びシードスクリーンを有する篩群による分級を用いる請求項3に記載の鉄鉱石ペレットの製造方法。
  5.  高炉操業に用いられる自溶性の鉄鉱石ペレットであって、
     CaO/SiO質量比が0.8以上で、かつMgO/SiO質量比が0.4以上であり、
     平均圧壊強度が270kg/p以上である鉄鉱石ペレット。
  6.  圧壊強度が100kg/p以下の質量比率が10%以下である請求項5に記載の鉄鉱石ペレット。
PCT/JP2022/038913 2022-09-26 2022-10-19 鉄鉱石ペレットの製造方法及び鉄鉱石ペレット WO2024069991A1 (ja)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2022-152829 2022-09-26
JP2022152829A JP2024047288A (ja) 2022-09-26 2022-09-26 鉄鉱石ペレットの製造方法及び鉄鉱石ペレット

Publications (1)

Publication Number Publication Date
WO2024069991A1 true WO2024069991A1 (ja) 2024-04-04

Family

ID=90476693

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2022/038913 WO2024069991A1 (ja) 2022-09-26 2022-10-19 鉄鉱石ペレットの製造方法及び鉄鉱石ペレット

Country Status (2)

Country Link
JP (1) JP2024047288A (ja)
WO (1) WO2024069991A1 (ja)

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS63219534A (ja) * 1987-03-09 1988-09-13 Kobe Steel Ltd 自溶性ペレットの製造方法
JP2012126947A (ja) * 2010-12-14 2012-07-05 Nippon Steel Corp 気孔偏在焼成ペレット及びその製造方法

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS63219534A (ja) * 1987-03-09 1988-09-13 Kobe Steel Ltd 自溶性ペレットの製造方法
JP2012126947A (ja) * 2010-12-14 2012-07-05 Nippon Steel Corp 気孔偏在焼成ペレット及びその製造方法

Also Published As

Publication number Publication date
JP2024047288A (ja) 2024-04-05

Similar Documents

Publication Publication Date Title
US4231797A (en) Fired iron-ore pellets having macro pores
EP0199818A1 (en) Agglomerate and a process for producing the same
JPH024658B2 (ja)
JPS589936A (ja) 塊成鉱製造法
CN106967877A (zh) 含碳团块矿、含碳团块矿的制造方法及其制造装置
AU2019391453B2 (en) Sintered ore manufacturing method
JP6460293B2 (ja) 焼結鉱の製造方法
WO2024069991A1 (ja) 鉄鉱石ペレットの製造方法及び鉄鉱石ペレット
JP7374870B2 (ja) 鉄鉱石ペレット
JPS63219534A (ja) 自溶性ペレットの製造方法
WO2024089903A1 (ja) 鉄鉱石ペレットの高温性状判定方法、鉄鉱石ペレットの製造方法及び鉄鉱石ペレット
WO2022208904A1 (ja) 鉄鉱石ペレットの製造方法
WO2017221774A1 (ja) 炭材内装焼結鉱の製造方法
JP7424339B2 (ja) 塊成物製造用の原料粒子、塊成物製造用の原料粒子の製造方法、塊成物、塊成物の製造方法および還元鉄の製造方法
JPH0310027A (ja) 高ゲーサイト鉱石の事前処理法
JP2001271121A (ja) 高炉用焼結鉱の製造方法
JP2001348622A (ja) 高炉用高品質低SiO2焼結鉱の製造方法
JP2023033734A (ja) 鉄鉱石焼成ペレットの製造方法
JP2019123919A (ja) 焼結鉱の製造方法
JPS60255935A (ja) 製鉄用の塊成鉱を製造する方法
Das et al. Agglomeration
JPH03130326A (ja) 高ゲーサイト鉱石を使用する高炉用の焼結鉱の製造法
JPH0196334A (ja) 高炉用装入ペレットの製造方法
JPH0430443B2 (ja)
JPH05287391A (ja) 高炉装入用ペレットの処理方法

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 22961050

Country of ref document: EP

Kind code of ref document: A1