WO2022208904A1 - 鉄鉱石ペレットの製造方法 - Google Patents
鉄鉱石ペレットの製造方法 Download PDFInfo
- Publication number
- WO2022208904A1 WO2022208904A1 PCT/JP2021/018288 JP2021018288W WO2022208904A1 WO 2022208904 A1 WO2022208904 A1 WO 2022208904A1 JP 2021018288 W JP2021018288 W JP 2021018288W WO 2022208904 A1 WO2022208904 A1 WO 2022208904A1
- Authority
- WO
- WIPO (PCT)
- Prior art keywords
- iron ore
- dolomite
- pellets
- ore pellets
- mass ratio
- Prior art date
Links
- XEEYBQQBJWHFJM-UHFFFAOYSA-N Iron Chemical compound [Fe] XEEYBQQBJWHFJM-UHFFFAOYSA-N 0.000 title claims abstract description 267
- 239000008188 pellet Substances 0.000 title claims abstract description 164
- 229910052742 iron Inorganic materials 0.000 title claims abstract description 133
- 238000004519 manufacturing process Methods 0.000 title claims abstract description 50
- 239000010459 dolomite Substances 0.000 claims abstract description 80
- 229910000514 dolomite Inorganic materials 0.000 claims abstract description 80
- XLYOFNOQVPJJNP-UHFFFAOYSA-N water Substances O XLYOFNOQVPJJNP-UHFFFAOYSA-N 0.000 claims abstract description 20
- 239000002994 raw material Substances 0.000 claims abstract description 16
- 238000010304 firing Methods 0.000 claims description 39
- 229910004298 SiO 2 Inorganic materials 0.000 claims description 30
- 238000000034 method Methods 0.000 claims description 24
- 238000005469 granulation Methods 0.000 claims description 21
- 230000003179 granulation Effects 0.000 claims description 21
- 238000002360 preparation method Methods 0.000 claims description 20
- VYPSYNLAJGMNEJ-UHFFFAOYSA-N Silicium dioxide Chemical compound O=[Si]=O VYPSYNLAJGMNEJ-UHFFFAOYSA-N 0.000 abstract description 8
- 229910052681 coesite Inorganic materials 0.000 abstract description 4
- 229910052906 cristobalite Inorganic materials 0.000 abstract description 4
- 239000000377 silicon dioxide Substances 0.000 abstract description 4
- 229910052682 stishovite Inorganic materials 0.000 abstract description 4
- 229910052905 tridymite Inorganic materials 0.000 abstract description 4
- 238000005453 pelletization Methods 0.000 abstract 2
- 239000002245 particle Substances 0.000 description 38
- 239000007789 gas Substances 0.000 description 18
- 230000001965 increasing effect Effects 0.000 description 17
- 238000001354 calcination Methods 0.000 description 16
- 238000010438 heat treatment Methods 0.000 description 15
- 230000008569 process Effects 0.000 description 13
- CURLTUGMZLYLDI-UHFFFAOYSA-N Carbon dioxide Chemical compound O=C=O CURLTUGMZLYLDI-UHFFFAOYSA-N 0.000 description 12
- 238000001035 drying Methods 0.000 description 10
- 238000000926 separation method Methods 0.000 description 10
- 238000011282 treatment Methods 0.000 description 9
- 238000006703 hydration reaction Methods 0.000 description 8
- 239000003638 chemical reducing agent Substances 0.000 description 7
- 238000001816 cooling Methods 0.000 description 7
- 238000009826 distribution Methods 0.000 description 7
- 238000010298 pulverizing process Methods 0.000 description 7
- UQSXHKLRYXJYBZ-UHFFFAOYSA-N Iron oxide Chemical compound [Fe]=O UQSXHKLRYXJYBZ-UHFFFAOYSA-N 0.000 description 6
- 229910002092 carbon dioxide Inorganic materials 0.000 description 6
- 238000002485 combustion reaction Methods 0.000 description 6
- 230000000694 effects Effects 0.000 description 6
- 230000009257 reactivity Effects 0.000 description 6
- 229910000805 Pig iron Inorganic materials 0.000 description 5
- 238000006722 reduction reaction Methods 0.000 description 5
- 238000005979 thermal decomposition reaction Methods 0.000 description 5
- 235000019738 Limestone Nutrition 0.000 description 4
- 239000000571 coke Substances 0.000 description 4
- 239000000112 cooling gas Substances 0.000 description 4
- 239000006028 limestone Substances 0.000 description 4
- 239000000843 powder Substances 0.000 description 4
- 230000008859 change Effects 0.000 description 3
- 150000001875 compounds Chemical class 0.000 description 3
- 230000007423 decrease Effects 0.000 description 3
- 238000002474 experimental method Methods 0.000 description 3
- 230000035699 permeability Effects 0.000 description 3
- 230000009467 reduction Effects 0.000 description 3
- 229910019440 Mg(OH) Inorganic materials 0.000 description 2
- 238000005054 agglomeration Methods 0.000 description 2
- 230000002776 aggregation Effects 0.000 description 2
- 230000008901 benefit Effects 0.000 description 2
- 229910001748 carbonate mineral Inorganic materials 0.000 description 2
- 235000013339 cereals Nutrition 0.000 description 2
- 238000006243 chemical reaction Methods 0.000 description 2
- 238000010586 diagram Methods 0.000 description 2
- 238000009792 diffusion process Methods 0.000 description 2
- 235000012239 silicon dioxide Nutrition 0.000 description 2
- 238000005245 sintering Methods 0.000 description 2
- 125000006850 spacer group Chemical group 0.000 description 2
- UGFAIRIUMAVXCW-UHFFFAOYSA-N Carbon monoxide Chemical compound [O+]#[C-] UGFAIRIUMAVXCW-UHFFFAOYSA-N 0.000 description 1
- 230000009471 action Effects 0.000 description 1
- QVGXLLKOCUKJST-UHFFFAOYSA-N atomic oxygen Chemical compound [O] QVGXLLKOCUKJST-UHFFFAOYSA-N 0.000 description 1
- 230000015572 biosynthetic process Effects 0.000 description 1
- 235000008429 bread Nutrition 0.000 description 1
- -1 calcium ferrite compound Chemical class 0.000 description 1
- 239000001569 carbon dioxide Substances 0.000 description 1
- 150000004649 carbonic acid derivatives Chemical class 0.000 description 1
- 238000004132 cross linking Methods 0.000 description 1
- 238000002425 crystallisation Methods 0.000 description 1
- 230000008025 crystallization Effects 0.000 description 1
- 230000006866 deterioration Effects 0.000 description 1
- 230000008034 disappearance Effects 0.000 description 1
- 230000002708 enhancing effect Effects 0.000 description 1
- 230000007613 environmental effect Effects 0.000 description 1
- 239000003546 flue gas Substances 0.000 description 1
- 239000000446 fuel Substances 0.000 description 1
- 230000006870 function Effects 0.000 description 1
- 230000004927 fusion Effects 0.000 description 1
- 239000005431 greenhouse gas Substances 0.000 description 1
- 238000000227 grinding Methods 0.000 description 1
- SZVJSHCCFOBDDC-UHFFFAOYSA-N iron(II,III) oxide Inorganic materials O=[Fe]O[Fe]O[Fe]=O SZVJSHCCFOBDDC-UHFFFAOYSA-N 0.000 description 1
- VTHJTEIRLNZDEV-UHFFFAOYSA-L magnesium dihydroxide Chemical compound [OH-].[OH-].[Mg+2] VTHJTEIRLNZDEV-UHFFFAOYSA-L 0.000 description 1
- 239000000347 magnesium hydroxide Substances 0.000 description 1
- 229910001862 magnesium hydroxide Inorganic materials 0.000 description 1
- 239000000463 material Substances 0.000 description 1
- 238000002844 melting Methods 0.000 description 1
- 230000008018 melting Effects 0.000 description 1
- 238000005065 mining Methods 0.000 description 1
- 239000000203 mixture Substances 0.000 description 1
- 229910052760 oxygen Inorganic materials 0.000 description 1
- 239000001301 oxygen Substances 0.000 description 1
- 239000012071 phase Substances 0.000 description 1
- 239000011148 porous material Substances 0.000 description 1
- 238000005096 rolling process Methods 0.000 description 1
- 229920006395 saturated elastomer Polymers 0.000 description 1
- 239000007787 solid Substances 0.000 description 1
- 239000007790 solid phase Substances 0.000 description 1
- 238000003746 solid phase reaction Methods 0.000 description 1
- 230000007704 transition Effects 0.000 description 1
- 238000009423 ventilation Methods 0.000 description 1
Images
Classifications
-
- C—CHEMISTRY; METALLURGY
- C22—METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
- C22B—PRODUCTION AND REFINING OF METALS; PRETREATMENT OF RAW MATERIALS
- C22B1/00—Preliminary treatment of ores or scrap
- C22B1/14—Agglomerating; Briquetting; Binding; Granulating
- C22B1/24—Binding; Briquetting ; Granulating
- C22B1/242—Binding; Briquetting ; Granulating with binders
- C22B1/243—Binding; Briquetting ; Granulating with binders inorganic
-
- C—CHEMISTRY; METALLURGY
- C22—METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
- C22B—PRODUCTION AND REFINING OF METALS; PRETREATMENT OF RAW MATERIALS
- C22B1/00—Preliminary treatment of ores or scrap
- C22B1/02—Roasting processes
-
- C—CHEMISTRY; METALLURGY
- C22—METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
- C22B—PRODUCTION AND REFINING OF METALS; PRETREATMENT OF RAW MATERIALS
- C22B1/00—Preliminary treatment of ores or scrap
- C22B1/14—Agglomerating; Briquetting; Binding; Granulating
- C22B1/16—Sintering; Agglomerating
-
- C—CHEMISTRY; METALLURGY
- C22—METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
- C22B—PRODUCTION AND REFINING OF METALS; PRETREATMENT OF RAW MATERIALS
- C22B1/00—Preliminary treatment of ores or scrap
- C22B1/14—Agglomerating; Briquetting; Binding; Granulating
- C22B1/16—Sintering; Agglomerating
- C22B1/20—Sintering; Agglomerating in sintering machines with movable grates
-
- C—CHEMISTRY; METALLURGY
- C22—METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
- C22B—PRODUCTION AND REFINING OF METALS; PRETREATMENT OF RAW MATERIALS
- C22B1/00—Preliminary treatment of ores or scrap
- C22B1/14—Agglomerating; Briquetting; Binding; Granulating
- C22B1/16—Sintering; Agglomerating
- C22B1/216—Sintering; Agglomerating in rotary furnaces
-
- C—CHEMISTRY; METALLURGY
- C22—METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
- C22B—PRODUCTION AND REFINING OF METALS; PRETREATMENT OF RAW MATERIALS
- C22B1/00—Preliminary treatment of ores or scrap
- C22B1/14—Agglomerating; Briquetting; Binding; Granulating
- C22B1/24—Binding; Briquetting ; Granulating
- C22B1/2406—Binding; Briquetting ; Granulating pelletizing
-
- C—CHEMISTRY; METALLURGY
- C22—METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
- C22B—PRODUCTION AND REFINING OF METALS; PRETREATMENT OF RAW MATERIALS
- C22B1/00—Preliminary treatment of ores or scrap
- C22B1/14—Agglomerating; Briquetting; Binding; Granulating
- C22B1/24—Binding; Briquetting ; Granulating
- C22B1/2413—Binding; Briquetting ; Granulating enduration of pellets
Definitions
- the present invention relates to a method for producing iron ore pellets.
- a first layer containing ore raw materials and a second layer containing coke are alternately stacked in the blast furnace, and auxiliary fuel is blown into the blast furnace from the tuyeres, and the hot air is used to blow the ore raw materials.
- Methods of melting to produce pig iron are known.
- the ore raw material supplied as iron ore pellets is reduced to produce pig iron.
- the coke functions as a reducing agent and also as a spacer to ensure air permeability.
- the iron ore pellets are required to have high reducibility in order to improve the production efficiency of pig iron.
- iron ore pellets with enhanced reducibility for example, iron ore pellets in which dolomite is added to have a CaO/SiO 2 mass ratio of 0.8 or more and a MgO/SiO 2 mass ratio of 0.4 or more are known. (See JP-A-1-136936). The above publication states that reducibility can be improved by further increasing the porosity of iron ore pellets.
- the present invention has been made based on the circumstances described above, and aims to provide a method for producing iron ore pellets with excellent reducibility and high crushing strength.
- the present inventors have made extensive studies on iron ore pellets to which dolomite has been added to enhance reducibility. It was found that the crushing strength increased in Although the exact reason is not clear, the present inventors have found that by subjecting dolomite to a certain treatment, MgO caused by dolomite is finely present inside the iron ore pellet, and the iron ore pellet is fired during firing. It is inferred that the action of increasing the binding force of the pellet tissue occurred. In other words, when MgO is refined, the reactivity of MgO increases and magnesioferrite compounds are easily generated, which can contribute to the bonding of the pellet structure, and / or the bonding strength is weak and can be the starting point of breaking the pellet. It is considered that the cohesive strength of the pellet structure is improved by making MgO finer and less likely to serve as a starting point of fracture.
- the method for producing iron ore pellets according to one aspect of the present invention is used for blast furnace operation, and has a CaO/SiO 2 mass ratio of 0.8 or more and a MgO/SiO 2 mass ratio of 0.4 or more.
- a method for producing iron ore pellets comprising a granulation step of granulating raw pellets by adding granulation water to iron ore raw materials and dolomite, and a firing step of firing the raw pellets, wherein the dolomite is It has properties such that it exists in a finely divided form within the raw pellet structure.
- dolomite is present in a finely divided form in the raw pellet structure before firing, and the iron ore pellets are produced by adding dolomite that increases the binding force of the pellet structure of the iron ore pellets. It is possible to increase the crushing strength of iron ore pellets.
- the iron ore pellets produced by the method for producing iron ore pellets have a CaO/SiO 2 mass ratio of 0.8 or more and a MgO/SiO 2 mass ratio of 0.4 or more. is high.
- the Blaine specific surface area of dolomite is made finer and incorporated into the pellet structure.
- the reactivity of dolomite can be increased, and MgO can be prevented from becoming a starting point of fracture in the produced iron ore pellets. Therefore, the cohesive strength of the pellet structure of the iron ore pellets is enhanced, and the crushing strength of the iron ore pellets can be enhanced.
- Benaine specific surface area means a value measured in accordance with JIS-R-5201:2015, and when the object is composed of a plurality of powders, individual powders Indicates the minimum value in .
- “Calcination” refers to a heat treatment process in which solids such as ores are heated to induce thermal decomposition, phase transitions, and removal of volatile components.
- Dolomite is a carbonate mineral and is represented by CaMg( CO3 ) 2 . When dolomite is calcined, CaCO3- >CaO+ CO2 , MgCO3- >MgO+ CO2 reaction and thermal decomposition.
- the MgO produced by this calcination receives water during the granulation process, changes to Mg(OH) 2 and at the same time becomes finer (reduces dolomite having a large particle size).
- the reactivity of dolomite can be increased, and MgO, which is generated in the firing process and can serve as fracture starting points in the manufactured iron ore pellets, can be made finer. Therefore, the cohesive strength of the pellet structure of the iron ore pellets to be produced is enhanced, and the crushing strength of the iron ore pellets can be enhanced.
- the firing temperature in the firing step is preferably 1250°C or higher.
- iron ore pellets of the present invention iron ore pellets with excellent reducibility and high crushing strength can be produced.
- FIG. 1 is a flow diagram showing a method for producing iron ore pellets according to one embodiment of the present invention.
- FIG. 2 is a schematic diagram showing the configuration of a production apparatus used in the iron ore pellet production method of FIG.
- FIG. 3 is a graph showing the particle size distribution of dolomite before and after calcination.
- FIG. 4 is a graph showing the relationship between Blaine specific surface area and crushing strength of dolomite in Examples.
- FIG. 5 is a graph showing the relationship between the ratio of dolomite particles having a particle size of 20 ⁇ m or less and the crushing strength in Examples.
- the method for producing iron ore pellets shown in FIG. 1 includes a preparation step S1, a granulation step S2, a firing step S3, and a cooling step S4.
- the method for producing iron ore pellets is used for blast furnace operation, and iron ore having a CaO/SiO 2 mass ratio of 0.8 or more and a MgO/SiO 2 mass ratio of 0.4 or more
- the pellets 1 can be manufactured using a great kiln-type manufacturing apparatus (hereinafter also simply referred to as "manufacturing apparatus 2").
- the manufacturing apparatus 2 includes a pan pelletizer 3 , a grate furnace 4 , a kiln 5 and an annular cooler 6 .
- the iron ore pellet 1 is obtained by granulating a fine ore and firing it to form a high-strength agglomerate.
- adding a CaO-containing compound such as limestone to the iron ore raw material to increase the CaO/SiO 2 mass ratio of the iron ore pellets 1 improves the reducibility of the iron ore pellets 1. known (see Patent Document 1). Based on this knowledge, in the method for producing iron ore pellets, iron ore pellets 1 having a CaO/SiO 2 mass ratio of 0.8 or more are produced.
- the raw materials are iron ore (iron oxide) and limestone (CaO-containing compound)
- a solid-phase reaction between CaO generated by thermal decomposition and iron oxide generates a calcium ferrite compound, and at the same time, the contact are bonded by solid phase diffusion bonding. This bonding is local, and the micropores existing before firing are maintained after firing, and the iron ore pellet 1 becomes a porous body in which the micropores exist relatively uniformly.
- the reduction reaction progresses from the outer surface of the iron ore pellet 1 to the inside as the reducing gas diffuses into these micropores.
- oxygen is removed from the iron oxide by the reduction reaction, the expansion of the existing micropores and the formation of new micropores proceed, and at the same time metallic iron is produced.
- the micropores start to decrease. As a result, diffusion of reducing gas into the interior of the iron ore pellet 1 is suppressed, and reduction tends to stagnate.
- the manufactured iron ore pellets 1 are preferably self-fluxing. By making the iron ore pellets 1 self-fluxing in this manner, burn-through of the reduced iron is facilitated.
- the self-fluxing property of the iron ore pellets 1 is determined by auxiliary raw materials and the like.
- dolomite is prepared.
- dolomite has properties such that it exists in a finely divided structure within the structure of the raw pellets P that are granulated in the granulation step S2 described later.
- dolomite is imparted with these properties.
- the dolomite is pulverized so that the Blaine specific surface area is equal to or greater than a predetermined value.
- pulverization can be performed using a well-known grinder.
- the predetermined value is preferably 4000 cm 2 /g, more preferably 6000 cm 2 /g. Enlarging the specific surface area is considered to be substantially equivalent to miniaturizing dolomite. This refinement can increase the reactivity of dolomite and prevent MgO from becoming a fracture starting point in the iron ore pellets 1 to be manufactured. Therefore, the cohesive strength of the pellet structure of the iron ore pellets 1 to be produced is enhanced, and the crushing strength of the iron ore pellets 1 can be enhanced.
- the upper limit of the Blaine specific surface area of the dolomite after pulverization is not particularly limited, the Blaine specific surface area of the dolomite after pulverization is set to 10000 cm 2 /g or less in consideration of production costs and the like.
- the lower limit of the proportion of particles with a particle size of 20 ⁇ m or less is preferably 35% by volume, more preferably 45% by volume, and even more preferably 55% by volume.
- the "percentage of particles having a particle size of 20 ⁇ m or less” refers to a value obtained from the particle size distribution measured by a particle size distribution analyzer (Microtrac).
- the upper limit of the D50 particle size of the pulverized dolomite is preferably 50 ⁇ m, more preferably 20 ⁇ m.
- the "D50 particle size” refers to a value obtained from the particle size distribution measured by a particle size distribution analyzer (Microtrac).
- raw pellets P are granulated by adding granulation water to the iron ore raw material and the dolomite.
- an auxiliary material such as limestone may be added in order to achieve a CaO/SiO 2 mass ratio of 0.8 or more.
- the MgO/SiO 2 mass ratio can be adjusted mainly by dolomite.
- this granulation water-containing mixture (iron ore raw material and dolomite containing granulation water) is processed by a granulator. It is put into the bread pelletizer 3 and rolled to produce raw pellets P in the form of mud balls.
- the iron ore raw material is the main raw material of the iron ore pellet 1, and is composed of iron ore powder (for example, 90% by mass or more of the whole is powder having a particle size of 0.5 mm or less).
- the surface properties of iron ore vary greatly depending on the mining area and the method of pulverization and transportation, but the surface properties of the iron ore are not particularly limited in the method for producing the iron ore pellets.
- the granulation water forms water bridges between the particles of the iron ore raw material.
- the strength of the raw pellets P granulated in the granulation step S2 is maintained by adhesion between particles due to this cross-linking. That is, the bonding between particles is expressed by the surface tension of water existing between particles, and the value obtained by multiplying this surface tension by the number of contact points between particles guarantees the adhesion between particles.
- the grate furnace 4 includes a traveling grate 41, a drying chamber 42, a separation chamber 43, and a preheating chamber 44, as shown in FIG.
- the traveling grate 41 is endless, and the raw pellets P placed on the traveling grate 41 can be moved through the drying chamber 42, the separation chamber 43 and the preheating chamber 44 in this order.
- the raw pellets P are dried, separated, and preheated by the heating gas G1, and the preheated pellets H are given strength enough to withstand rolling in the kiln 5. obtain.
- the raw pellets P are dried at an ambient temperature of about 250° C. in the drying chamber 42 .
- the temperature of the raw pellets P after drying is raised to about 450° C., and mainly the water of crystallization in the iron ore is decomposed and removed.
- the raw pellets P are heated to about 1100° C. to decompose carbonates contained in limestone, dolomite, etc., remove carbon dioxide, and oxidize magnetite in the iron ore. Preheated pellets H are thus obtained.
- the heating gas G1 in the drying chamber 42 As shown in FIG. 2, as the heating gas G1 in the drying chamber 42, the heating gas G1 used in the water separation chamber 43 is diverted. Similarly, the heating gas G1 in the preheating chamber 44 is used as the heating gas G1 in the water separation chamber 43, and the combustion exhaust gas G2 used in the kiln 5 is used as the heating gas G1 in the preheating chamber 44. By diverting the high-temperature heating gas G1 or combustion exhaust gas G2 on the downstream side in this way, the heating cost of the heating gas G1 can be reduced.
- a burner 45 may be provided in each chamber to control the temperature of the heating gas G1. In FIG. 2, a burner 45 is provided in the separation chamber 43 and the preheating chamber 44 . Moreover, the heating gas G1 used in the drying chamber 42 is finally discharged from the chimney C. As shown in FIG.
- the kiln 5 is directly connected to the grate furnace 4 and is an inclined cylindrical rotary furnace.
- the kiln 5 fires the preheated pellets H discharged from the preheating chamber 44 of the grate furnace 4 .
- the preheated pellets H are fired by combustion with a kiln burner (not shown) provided on the outlet side. Thereby, hot iron ore pellets 1 are obtained.
- the lower limit of the firing temperature for firing the preheated pellets H is preferably 1250°C, more preferably 1300°C.
- the upper limit of the firing temperature is not particularly limited, but can be set to 1500°C, for example. If the firing temperature exceeds the above upper limit, the effect of improving the crushing strength tends to be saturated, and the effect may be insufficient with respect to the increase in production cost. Further, from the viewpoint of reducing the amount of fusion of the iron ore pellets 1 due to the increase in temperature, the above upper limit is more preferably 1400°C.
- the air which is the cooling gas G3 used in the annular cooler 6, is used as the combustion air. Further, the high-temperature flue gas G2 used for baking the preheated pellets H is fed into the preheating chamber 44 as the heating gas G1.
- the annular cooler 6 can cool the iron ore pellets 1 by moving the hot iron ore pellets 1 discharged from the kiln 5 and ventilating the air, which is the cooling gas G3, with the ventilation device 61 .
- the cooling gas G3 which is used in the annular cooler 6 and whose temperature has risen, is sent to the kiln 5 and used as combustion air.
- dolomite is added so that it exists in a finer form within the pellet structure of the iron ore pellets 1 and increases the binding force of the pellet structure of the iron ore pellets 1 .
- the dolomite is pulverized and incorporated into the pellet structure.
- the reactivity of dolomite can be enhanced, and MgO can be prevented from becoming a starting point of fracture in the manufactured iron ore pellets 1 . Therefore, the cohesive strength of the pellet structure of the iron ore pellets 1 is enhanced, and the crushing strength of the iron ore pellets 1 can be enhanced.
- the iron ore pellets 1 produced by the method for producing iron ore pellets have a CaO/SiO 2 mass ratio of 0.8 or more and a MgO/SiO 2 mass ratio of 0.4 or more. high.
- a method for producing iron ore pellets according to another embodiment of the present invention is used for blast furnace operation, and has a CaO/SiO 2 mass ratio of 0.8 or more and a MgO/SiO 2 mass ratio of 0.4 or more.
- This is a method for producing iron ore pellets, and as shown in FIG. 1, a preparation step S1 for preparing dolomite, and a granulation step S2 for granulating raw pellets by adding granulation water to the iron ore raw material and the dolomite. , a firing step S3 for firing the raw pellets, and a cooling step S4 for cooling the hot iron ore pellets obtained in the firing step S3.
- the dolomite has properties such that it exists in a finely divided form within the raw pellet structure.
- each step other than the preparation step S1 is the same as each corresponding step in the method for producing iron ore pellets of the first embodiment.
- the preparation step S1 will be described below, and descriptions of other steps will be omitted.
- dolomite is calcined at a temperature equal to or higher than a predetermined value.
- the present inventors have found that this treatment imparts properties to the dolomite such that it exists in a finely divided state within the texture of the raw pellets, and that the crushing strength of the produced iron ore pellets can be increased. .
- the predetermined value is preferably 900°C, more preferably 1100°C.
- the upper limit of the calcination temperature is not particularly limited, the calcination temperature is set to 1500° C. or less in consideration of manufacturing costs and the like.
- Dolomite is a carbonate mineral and is represented by CaMg( CO3 ) 2 .
- CaCO3- >CaO+ CO2 MgCO3- >MgO+ CO2 reaction and thermal decomposition.
- the MgO produced by this calcination receives water in the granulation step S3, MgO+ H2O ⁇ Mg(OH) 2 hydration reaction to form magnesium hydroxide.
- FIG. 3 shows the results of measuring the particle size distribution of the calcined dolomite before and after the hydration reaction using Microtrac.
- the grain size distribution after calcination does not show a large change in grain size compared to the dolomite after the hydration reaction without calcination. It can be seen that the particle size change that is thought to be caused by the change occurs, and that particles with a large particle size, such as those exceeding 20 ⁇ m, are reduced, that is, they are becoming finer.
- This refinement can enhance the reactivity of dolomite, and can also refine MgO which is generated in the firing process and can serve as a fracture starting point in the manufactured iron ore pellets. Therefore, the cohesive strength of the pellet structure of the iron ore pellets to be produced is enhanced, and the crushing strength of the iron ore pellets can be enhanced.
- the lower limit of the calcination treatment time is preferably 20 minutes, more preferably 50 minutes, and even more preferably 100 minutes.
- the upper limit of the calcination treatment time is preferably 200 minutes, more preferably 150 minutes. If the calcination treatment time is less than the above lower limit, the thermal decomposition may not proceed sufficiently, and the iron ore pellet crushing strength may not be sufficiently improved. Conversely, if the calcination treatment time exceeds the above upper limit, the effect of improving crushing strength tends to saturate, and there is a risk that the effect will be insufficient with respect to the increase in production cost.
- the lower limit of the proportion of particles with a particle size of 20 ⁇ m or less is preferably 45% by volume, more preferably 55% by volume.
- the ratio of particles having a particle size of 20 ⁇ m or less is set to the above lower limit or more, the crushing strength of iron ore pellets can be easily increased.
- the dolomite is calcined at a temperature equal to or higher than a predetermined value in the preparation step S1, so that the dolomite is refined and present in the pellet structure before calcination, and the iron ore pellets are produced. It works to increase the bonding strength of tissues. The crushing strength of the iron ore pellet manufactured by this can be improved.
- the iron ore pellets produced by the method for producing iron ore pellets have a CaO/SiO 2 mass ratio of 0.8 or more and a MgO/SiO 2 mass ratio of 0.4 or more, so the reducibility is high. .
- dolomite having a Blaine specific surface area equal to or greater than a predetermined value may be prepared in advance.
- calcined dolomite may be prepared. In this case, the preparation process can be omitted.
- the treatment in the preparation step is not limited to the above embodiment, and other treatments may be applied such that the pellet structure is refined before firing.
- the grate furnace includes a traveling grate, a drying chamber, a water separation chamber, a preheating chamber, and a firing chamber, and the firing process is completed only in the grate furnace.
- the raw pellets are dried, separated and preheated by a heating gas in a drying chamber, a water separation chamber and a preheating chamber, and finally baked in a baking chamber.
- crushing strength can be increased by making the Blaine specific surface area of dolomite 4000 cm 2 /g or more.
- the firing temperature is 1250° C.
- iron ore pellets having a high crushing strength of 270 kg/P or more can be produced by setting the Blaine specific surface area of dolomite to 4000 cm 2 /g or more.
- the iron ore pellet had a CaO/ SiO2 mass ratio of 1.4 and a MgO/ SiO2 mass ratio of 0.8. Since the crushing strength increases when the 2 mass ratio is 0.4, even when the firing temperature is 1230 ° C., by lowering the CaO/SiO 2 mass ratio and/or the MgO/SiO 2 mass ratio, It is presumed that when Dolomite has a Blaine specific surface area of 4000 cm 2 /g or more, a crushing strength of 270 kg/P or more can be obtained.
- crushing strength can be increased by performing calcination at 900° C. or higher.
- iron ore pellets having a high crushing strength of 270 kg/P or more can be obtained by setting the proportion of dolomite particles having a particle size of 20 ⁇ m or less after the hydration reaction to 45% by volume or more. It can be said that it can be manufactured.
- the firing temperature is 1230 ° C.
- the CaO / SiO 2 mass ratio and / or the MgO / SiO 2 mass ratio by lowering the CaO / SiO 2 mass ratio and / or the MgO / SiO 2 mass ratio, the proportion of particles with a particle size of 20 ⁇ m or less is 45% by volume or more, and 270 kg It is presumed that a crushing strength of /P or more can be obtained.
- iron ore pellets with excellent reducibility and high crushing strength can be produced. Therefore, the iron ore pellets produced by the method for producing iron ore pellets can be suitably used in a blast furnace that operates with a low reducing agent.
Landscapes
- Chemical & Material Sciences (AREA)
- Engineering & Computer Science (AREA)
- Geology (AREA)
- Environmental & Geological Engineering (AREA)
- General Life Sciences & Earth Sciences (AREA)
- Geochemistry & Mineralogy (AREA)
- Life Sciences & Earth Sciences (AREA)
- Manufacturing & Machinery (AREA)
- Materials Engineering (AREA)
- Mechanical Engineering (AREA)
- Metallurgy (AREA)
- Organic Chemistry (AREA)
- Inorganic Chemistry (AREA)
- Manufacture And Refinement Of Metals (AREA)
- Manufacture Of Iron (AREA)
Abstract
Description
CaCO3→CaO+CO2、MgCO3→MgO+CO2
の反応を起こし、熱分解する。このか焼によって生成したMgOは造粒工程の段階で加水を受け、Mg(OH)2に変化すると同時に微細化(粒径の大きいドロマイトが減少)する。これによりドロマイトの反応性を高められるとともに、焼成工程で生成され、製造される鉄鉱石ペレットで破壊起点となり得るMgOを微細化することができる。従って、製造される鉄鉱石ペレットのペレット組織の結合力が高められ、鉄鉱石ペレットの圧潰強度を高めることができる。
図1に示す鉄鉱石ペレットの製造方法は、準備工程S1と、造粒工程S2と、焼成工程S3と、冷却工程S4とを備える。例えば図2に示すように、当該鉄鉱石ペレットの製造方法は、高炉操業に用いられ、CaO/SiO2質量比が0.8以上、MgO/SiO2質量比が0.4以上である鉄鉱石ペレット1を、グレートキルン方式の製造装置(以下、単に「製造装置2」ともいう)を用いて製造することができる。製造装置2は、パンペレタイザ3と、グレート炉4と、キルン5と、アニュラクーラ6とを備える。
鉄鉱石ペレット1は、微粉鉱石を造粒し、焼成して強度の高い塊成鉱としたものである。鉄鉱石ペレット1の製造において、鉄鉱石原料に石灰石などのCaO含有化合物を添加し、鉄鉱石ペレット1のCaO/SiO2質量比を高めると、鉄鉱石ペレット1の被還元性が向上することが知られている(特許文献1参照)。この知見に基づき、当該鉄鉱石ペレットの製造方法では、CaO/SiO2質量比が0.8以上の鉄鉱石ペレット1を製造する。
準備工程S1では、ドロマイトを準備する。当該鉄鉱石ペレットの製造方法では、ドロマイトが、後述する造粒工程S2で造粒される生ペレットPの組織内で微細化されて存在するような性状を有する。準備工程S1では、ドロマイトにこの性状を付与する。具体的には、準備工程S1で、ブレーン比表面積が所定値以上となるように上記ドロマイトを粉砕する。なお、粉砕は公知の粉砕機を用いて行うことができる。
造粒工程S2では、鉄鉱石原料及び上記ドロマイトへの造粒水の添加により生ペレットPを造粒する。上述のようにCaO/SiO2質量比0.8以上とするために石灰石等の副原料を加えてもよい。MgO/SiO2質量比は、主としてドロマイトにより調整することができる。
焼成工程S3では、生ペレットPを焼成する。焼成工程S3では、グレート炉4及びキルン5が用いられる。
グレート炉4は、図2に示すように、トラベリンググレート41と、乾燥室42と、離水室43と、予熱室44とを備える。
キルン5は、グレート炉4に直結されており、勾配をつけた円筒状の回転炉である。キルン5は、グレート炉4の予熱室44から排出される予熱ペレットHを焼成する。具体的には出口側に配設されたキルンバーナ(不図示)による燃焼により予熱ペレットHを焼成する。これにより高温の鉄鉱石ペレット1が得られる。
冷却工程S4では、焼成工程S3で得られる高温の鉄鉱石ペレット1を冷却する。冷却工程S4では、アニュラクーラ6が用いられる。冷却工程S4で冷却された鉄鉱石ペレット1は集積され、高炉操業に用いられる。
当該鉄鉱石ペレットの製造方法では、鉄鉱石ペレット1のペレット組織内で微細化されて存在し、鉄鉱石ペレット1のペレット組織の結合力が高まる働きを生じさせるようなドロマイトを添加する。具体的には、ドロマイトのブレーン比表面積を4000cm2/g以上とすることで、ドロマイトが微細化され、ペレット組織に取り込まれる。これによりドロマイトの反応性を高められるとともに、製造される鉄鉱石ペレット1でMgOが破壊起点となることを抑止することができる。従って、鉄鉱石ペレット1のペレット組織の結合力が高められ、鉄鉱石ペレット1の圧潰強度を高めることができる。また、当該鉄鉱石ペレットの製造方法により製造される鉄鉱石ペレット1は、CaO/SiO2質量比が0.8以上、MgO/SiO2質量比が0.4以上であるので、被還元性が高い。
本発明の別の実施形態に係る鉄鉱石ペレットの製造方法は、高炉操業に用いられ、CaO/SiO2質量比が0.8以上で、かつMgO/SiO2質量比が0.4以上である鉄鉱石ペレットの製造方法であり、図1に示すように、ドロマイトを準備する準備工程S1と、鉄鉱石原料及び上記ドロマイトへの造粒水の添加により生ペレットを造粒する造粒工程S2と、上記生ペレットを焼成する焼成工程S3と、焼成工程S3で得られる高温の鉄鉱石ペレットを冷却する冷却工程S4とを備える。また、上記ドロマイトは、上記生ペレット組織内で微細化されて存在するような性状を有する。
当該鉄鉱石ペレットの製造方法の準備工程S1では、所定値以上の温度でドロマイトをか焼する。本発明者らは、この処理により、上記ドロマイトに、生ペレット組織内で微細化されて存在するような性状が付与され、製造される鉄鉱石ペレットの圧潰強度を高めることができることを見出している。
CaCO3→CaO+CO2、MgCO3→MgO+CO2
の反応を起こし、熱分解する。このか焼によって生成したMgOは造粒工程S3の段階で加水を受け、
MgO+H2O→Mg(OH)2
の水和反応を起こし、水酸化マグネシウムとなる。
当該鉄鉱石ペレットの製造方法では、準備工程S1で所定値以上の温度で上記ドロマイトをか焼することにより、上記ドロマイトが焼成前のペレット組織内で微細化されて存在し、鉄鉱石ペレットのペレット組織の結合力が高まる働きを生じさせる。これにより製造される鉄鉱石ペレットの圧潰強度を高めることができる。また、当該鉄鉱石ペレットの製造方法により製造される鉄鉱石ペレットは、CaO/SiO2質量比が0.8以上、MgO/SiO2質量比が0.4以上であるので、被還元性が高い。
なお、本発明は、上記実施形態に限定されるものではない。
CaO/SiO2質量比が1.4、MgO/SiO2質量比が0.8である鉄鉱石ペレットを、図1に示す手順で製造した。準備工程では、ドロマイトの粉砕によりブレーン比表面積を変化させた。なお、焼成温度としては、1230℃又は1250℃とした。
CaO/SiO2質量比が1.40、MgO/SiO2質量比が0.83である鉄鉱石ペレットを、図1に示す手順で製造した。準備工程では、温度900℃~1100℃、処理時間80分間~200分間の範囲でか焼条件を変化させてドロマイトをか焼した。なお、焼成温度としては、1230℃又は1250℃とした。
2 製造装置
3 パンペレタイザ
4 グレート炉
41 トラベリンググレート
42 乾燥室
43 離水室
44 予熱室
45 バーナ
5 キルン
6 アニュラクーラ
61 通風装置
P 生ペレット
H 予熱ペレット
G1 加熱用ガス
G2 燃焼排ガス
G3 冷却ガス
C 煙突
Claims (4)
- 高炉操業に用いられ、CaO/SiO2質量比が0.8以上で、かつMgO/SiO2質量比が0.4以上である鉄鉱石ペレットの製造方法であって、
鉄鉱石原料及びドロマイトへの造粒水の添加により生ペレットを造粒する造粒工程と、
上記生ペレットを焼成する焼成工程と
を備え、
上記ドロマイトが、上記生ペレット組織内で微細化されて存在するような性状を有する鉄鉱石ペレットの製造方法。 - 上記ドロマイトを準備する準備工程をさらに備え、
上記準備工程で、ブレーン比表面積が4000cm2/g以上となるように上記ドロマイトを粉砕する請求項1に記載の鉄鉱石ペレットの製造方法。 - 上記ドロマイトを準備する準備工程をさらに備え、
上記準備工程で、900℃以上の温度で上記ドロマイトをか焼する請求項1に記載の鉄鉱石ペレットの製造方法。 - 上記焼成工程での焼成温度が1250℃以上である請求項1、請求項2又は請求項3に記載の鉄鉱石ペレットの製造方法。
Priority Applications (7)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
EP21935064.2A EP4303329A4 (en) | 2021-04-01 | 2021-05-13 | PROCESS FOR PRODUCING IRON ORE PELLETS |
CA3214315A CA3214315A1 (en) | 2021-04-01 | 2021-05-13 | Method for producing iron ore pellets |
BR112023018032A BR112023018032A2 (pt) | 2021-04-01 | 2021-05-13 | Método de produção de pelotas de minério de ferro |
SE2351219A SE2351219A1 (en) | 2021-04-01 | 2021-05-13 | Method for producing iron ore pellets |
CN202180095893.0A CN116981785A (zh) | 2021-04-01 | 2021-05-13 | 铁矿石球团的制造方法 |
US18/552,247 US20240158886A1 (en) | 2021-04-01 | 2021-05-13 | Method for producing iron ore pellets |
AU2021439033A AU2021439033A1 (en) | 2021-04-01 | 2021-05-13 | Method for producing iron ore pellets |
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2021-062578 | 2021-04-01 | ||
JP2021062578A JP2022158000A (ja) | 2021-04-01 | 2021-04-01 | 鉄鉱石ペレットの製造方法 |
Publications (1)
Publication Number | Publication Date |
---|---|
WO2022208904A1 true WO2022208904A1 (ja) | 2022-10-06 |
Family
ID=83457608
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
PCT/JP2021/018288 WO2022208904A1 (ja) | 2021-04-01 | 2021-05-13 | 鉄鉱石ペレットの製造方法 |
Country Status (10)
Country | Link |
---|---|
US (1) | US20240158886A1 (ja) |
EP (1) | EP4303329A4 (ja) |
JP (1) | JP2022158000A (ja) |
CN (1) | CN116981785A (ja) |
AU (1) | AU2021439033A1 (ja) |
BR (1) | BR112023018032A2 (ja) |
CA (1) | CA3214315A1 (ja) |
CL (1) | CL2023002936A1 (ja) |
SE (1) | SE2351219A1 (ja) |
WO (1) | WO2022208904A1 (ja) |
Citations (6)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS5354200A (en) * | 1976-10-28 | 1978-05-17 | Sumitomo Cement Co | Process for producing high class calcium carbonate |
JPS56105411A (en) * | 1980-01-16 | 1981-08-21 | Midrex Corp | Production of direct reduced iron |
JPS63153228A (ja) * | 1986-12-15 | 1988-06-25 | Nkk Corp | 焼成塊成鉱用生ペレツトの粉コ−クス被覆方法 |
JPH01136936A (ja) | 1987-11-20 | 1989-05-30 | Kobe Steel Ltd | 高炉装入用自溶性ペレットの製造方法 |
US20040221426A1 (en) * | 1997-10-30 | 2004-11-11 | Kabushiki Kaisha Kobe Seiko Sho (Kobe Steel, Ltd.) | Method of producing iron oxide pellets |
JP2009149942A (ja) * | 2007-12-20 | 2009-07-09 | Kobe Steel Ltd | 高炉用自溶性ペレットおよびその製造方法 |
Family Cites Families (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US3754889A (en) * | 1970-10-14 | 1973-08-28 | Bethlehem Steel Corp | Highly fluxed iron oxide pellet |
AU508697B2 (en) * | 1977-12-29 | 1980-03-27 | Kobe Steel Ltd | Iron ore and (ca + mg ferrite) blend pellets |
JP4630304B2 (ja) * | 2007-05-08 | 2011-02-09 | 株式会社神戸製鋼所 | 高炉用自溶性ペレットおよびその製造方法 |
JP5578057B2 (ja) * | 2010-12-14 | 2014-08-27 | 新日鐵住金株式会社 | 気孔偏在焼成ペレット及びその製造方法 |
CN110904334A (zh) * | 2019-11-13 | 2020-03-24 | 鞍钢集团矿业有限公司 | 一种铁矿球团矿的制备方法 |
-
2021
- 2021-04-01 JP JP2021062578A patent/JP2022158000A/ja active Pending
- 2021-05-13 CN CN202180095893.0A patent/CN116981785A/zh active Pending
- 2021-05-13 AU AU2021439033A patent/AU2021439033A1/en active Pending
- 2021-05-13 CA CA3214315A patent/CA3214315A1/en active Pending
- 2021-05-13 SE SE2351219A patent/SE2351219A1/en unknown
- 2021-05-13 EP EP21935064.2A patent/EP4303329A4/en active Pending
- 2021-05-13 BR BR112023018032A patent/BR112023018032A2/pt unknown
- 2021-05-13 US US18/552,247 patent/US20240158886A1/en active Pending
- 2021-05-13 WO PCT/JP2021/018288 patent/WO2022208904A1/ja active Application Filing
-
2023
- 2023-09-29 CL CL2023002936A patent/CL2023002936A1/es unknown
Patent Citations (6)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS5354200A (en) * | 1976-10-28 | 1978-05-17 | Sumitomo Cement Co | Process for producing high class calcium carbonate |
JPS56105411A (en) * | 1980-01-16 | 1981-08-21 | Midrex Corp | Production of direct reduced iron |
JPS63153228A (ja) * | 1986-12-15 | 1988-06-25 | Nkk Corp | 焼成塊成鉱用生ペレツトの粉コ−クス被覆方法 |
JPH01136936A (ja) | 1987-11-20 | 1989-05-30 | Kobe Steel Ltd | 高炉装入用自溶性ペレットの製造方法 |
US20040221426A1 (en) * | 1997-10-30 | 2004-11-11 | Kabushiki Kaisha Kobe Seiko Sho (Kobe Steel, Ltd.) | Method of producing iron oxide pellets |
JP2009149942A (ja) * | 2007-12-20 | 2009-07-09 | Kobe Steel Ltd | 高炉用自溶性ペレットおよびその製造方法 |
Non-Patent Citations (1)
Title |
---|
See also references of EP4303329A4 |
Also Published As
Publication number | Publication date |
---|---|
CN116981785A (zh) | 2023-10-31 |
JP2022158000A (ja) | 2022-10-14 |
CA3214315A1 (en) | 2022-10-06 |
BR112023018032A2 (pt) | 2023-10-24 |
AU2021439033A1 (en) | 2023-10-19 |
EP4303329A1 (en) | 2024-01-10 |
CL2023002936A1 (es) | 2024-03-15 |
SE2351219A1 (en) | 2023-10-25 |
EP4303329A4 (en) | 2024-10-09 |
US20240158886A1 (en) | 2024-05-16 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
EP3221264B1 (en) | Process and apparatus for manufacture of calcined compounds for the production of calcined products | |
JP6460293B2 (ja) | 焼結鉱の製造方法 | |
JPH024658B2 (ja) | ||
JP3043325B2 (ja) | 還元鉄ペレットの製造方法およびこの方法で製造した還元鉄ペレット | |
WO2022208904A1 (ja) | 鉄鉱石ペレットの製造方法 | |
RU2655423C1 (ru) | Печь с вращающимся подом | |
JP2009161791A (ja) | 高炉用含炭非焼成ペレットの製造方法 | |
JPH1053820A (ja) | 鋼ダスト、スラッジ及び/又は鉱石の金属化合物類の処理方法 | |
JP7374870B2 (ja) | 鉄鉱石ペレット | |
WO2024069991A1 (ja) | 鉄鉱石ペレットの製造方法及び鉄鉱石ペレット | |
JP7187971B2 (ja) | 焼結鉱の製造方法 | |
WO2024089903A1 (ja) | 鉄鉱石ペレットの高温性状判定方法、鉄鉱石ペレットの製造方法及び鉄鉱石ペレット | |
JP7424339B2 (ja) | 塊成物製造用の原料粒子、塊成物製造用の原料粒子の製造方法、塊成物、塊成物の製造方法および還元鉄の製造方法 | |
JP2001271121A (ja) | 高炉用焼結鉱の製造方法 | |
RU2141535C1 (ru) | Способ получения известково-магнезиального флюса | |
JP2004315852A (ja) | 回転炉床式還元炉の金属酸化物還元方法 | |
JP2008088533A (ja) | 焼結鉱の製造方法 | |
JP2790025B2 (ja) | 焼成塊成鉱の製造方法 | |
JP2790027B2 (ja) | 焼成塊成鉱原料の造粒方法 | |
JP2023033734A (ja) | 鉄鉱石焼成ペレットの製造方法 | |
JP5434340B2 (ja) | 焼結鉱の製造方法 | |
JP2005139502A (ja) | 半還元塊成鉱の製造方法 | |
JP2006176853A (ja) | 部分還元鉄の製造方法及び部分還元鉄製造用竪型シャフト炉 | |
JPH0430443B2 (ja) | ||
JPH02232322A (ja) | 高炉装入物およびその製造方法 |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
121 | Ep: the epo has been informed by wipo that ep was designated in this application |
Ref document number: 21935064 Country of ref document: EP Kind code of ref document: A1 |
|
REG | Reference to national code |
Ref country code: BR Ref legal event code: B01A Ref document number: 112023018032 Country of ref document: BR |
|
WWE | Wipo information: entry into national phase |
Ref document number: 202180095893.0 Country of ref document: CN |
|
ENP | Entry into the national phase |
Ref document number: 3214315 Country of ref document: CA |
|
WWE | Wipo information: entry into national phase |
Ref document number: 18552247 Country of ref document: US |
|
WWE | Wipo information: entry into national phase |
Ref document number: AU2021439033 Country of ref document: AU Ref document number: 2021439033 Country of ref document: AU |
|
WWE | Wipo information: entry into national phase |
Ref document number: 2021935064 Country of ref document: EP |
|
ENP | Entry into the national phase |
Ref document number: 2021935064 Country of ref document: EP Effective date: 20231005 |
|
ENP | Entry into the national phase |
Ref document number: 2021439033 Country of ref document: AU Date of ref document: 20210513 Kind code of ref document: A |
|
WWE | Wipo information: entry into national phase |
Ref document number: 202347071367 Country of ref document: IN |
|
ENP | Entry into the national phase |
Ref document number: 112023018032 Country of ref document: BR Kind code of ref document: A2 Effective date: 20230905 |
|
WWE | Wipo information: entry into national phase |
Ref document number: 2351219-7 Country of ref document: SE |
|
WWE | Wipo information: entry into national phase |
Ref document number: 2023127990 Country of ref document: RU |
|
NENP | Non-entry into the national phase |
Ref country code: DE |