WO2020115959A1 - 焼結鉱の製造方法 - Google Patents

焼結鉱の製造方法 Download PDF

Info

Publication number
WO2020115959A1
WO2020115959A1 PCT/JP2019/033260 JP2019033260W WO2020115959A1 WO 2020115959 A1 WO2020115959 A1 WO 2020115959A1 JP 2019033260 W JP2019033260 W JP 2019033260W WO 2020115959 A1 WO2020115959 A1 WO 2020115959A1
Authority
WO
WIPO (PCT)
Prior art keywords
raw material
sintering
temperature
steam
granulated
Prior art date
Application number
PCT/JP2019/033260
Other languages
English (en)
French (fr)
Inventor
山本 哲也
隆英 樋口
寿幸 廣澤
一洋 岩瀬
健太 竹原
頌平 藤原
神野 哲也
宗一郎 渡邉
田村 浩一
Original Assignee
Jfeスチール株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Jfeスチール株式会社 filed Critical Jfeスチール株式会社
Priority to CN201980081042.3A priority Critical patent/CN113166842A/zh
Priority to AU2019391453A priority patent/AU2019391453B2/en
Priority to EP19891967.2A priority patent/EP3892744B1/en
Priority to KR1020217014148A priority patent/KR20210072807A/ko
Priority to KR1020237036712A priority patent/KR20230153516A/ko
Priority to BR112021009753-8A priority patent/BR112021009753B1/pt
Priority to JP2020559715A priority patent/JP6959590B2/ja
Publication of WO2020115959A1 publication Critical patent/WO2020115959A1/ja

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22BPRODUCTION AND REFINING OF METALS; PRETREATMENT OF RAW MATERIALS
    • C22B1/00Preliminary treatment of ores or scrap
    • C22B1/14Agglomerating; Briquetting; Binding; Granulating
    • C22B1/16Sintering; Agglomerating
    • C22B1/20Sintering; Agglomerating in sintering machines with movable grates
    • C22B1/205Sintering; Agglomerating in sintering machines with movable grates regulation of the sintering process
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22BPRODUCTION AND REFINING OF METALS; PRETREATMENT OF RAW MATERIALS
    • C22B1/00Preliminary treatment of ores or scrap
    • C22B1/14Agglomerating; Briquetting; Binding; Granulating
    • C22B1/16Sintering; Agglomerating
    • C22B1/212Sintering; Agglomerating in tunnel furnaces
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J2/00Processes or devices for granulating materials, e.g. fertilisers in general; Rendering particulate materials free flowing in general, e.g. making them hydrophobic
    • B01J2/12Processes or devices for granulating materials, e.g. fertilisers in general; Rendering particulate materials free flowing in general, e.g. making them hydrophobic in rotating drums
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22BPRODUCTION AND REFINING OF METALS; PRETREATMENT OF RAW MATERIALS
    • C22B1/00Preliminary treatment of ores or scrap
    • C22B1/14Agglomerating; Briquetting; Binding; Granulating
    • C22B1/16Sintering; Agglomerating
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22BPRODUCTION AND REFINING OF METALS; PRETREATMENT OF RAW MATERIALS
    • C22B1/00Preliminary treatment of ores or scrap
    • C22B1/14Agglomerating; Briquetting; Binding; Granulating
    • C22B1/16Sintering; Agglomerating
    • C22B1/216Sintering; Agglomerating in rotary furnaces
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22BPRODUCTION AND REFINING OF METALS; PRETREATMENT OF RAW MATERIALS
    • C22B1/00Preliminary treatment of ores or scrap
    • C22B1/14Agglomerating; Briquetting; Binding; Granulating
    • C22B1/24Binding; Briquetting ; Granulating
    • C22B1/2406Binding; Briquetting ; Granulating pelletizing
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22BPRODUCTION AND REFINING OF METALS; PRETREATMENT OF RAW MATERIALS
    • C22B1/00Preliminary treatment of ores or scrap
    • C22B1/14Agglomerating; Briquetting; Binding; Granulating
    • C22B1/24Binding; Briquetting ; Granulating
    • C22B1/242Binding; Briquetting ; Granulating with binders
    • C22B1/243Binding; Briquetting ; Granulating with binders inorganic
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22BPRODUCTION AND REFINING OF METALS; PRETREATMENT OF RAW MATERIALS
    • C22B1/00Preliminary treatment of ores or scrap
    • C22B1/14Agglomerating; Briquetting; Binding; Granulating
    • C22B1/24Binding; Briquetting ; Granulating
    • C22B1/242Binding; Briquetting ; Granulating with binders
    • C22B1/244Binding; Briquetting ; Granulating with binders organic
    • C22B1/245Binding; Briquetting ; Granulating with binders organic with carbonaceous material for the production of coked agglomerates
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22BPRODUCTION AND REFINING OF METALS; PRETREATMENT OF RAW MATERIALS
    • C22B1/00Preliminary treatment of ores or scrap
    • C22B1/26Cooling of roasted, sintered, or agglomerated ores

Definitions

  • the present invention relates to a method for producing a sintered ore, and in particular, by using a granulated sintering raw material that contributes to reduce the size of a wet zone appearing in a raw material charging layer on a sintering machine pallet, We propose an effective method to improve the productivity of mine.
  • Patent Document 2 proposes a method of charging lump ore, which is a raw material for a blast furnace to be charged into a blast furnace, into a cooler attached to a sintering machine and drying the lump ore in advance.
  • the blast furnace agglomerate ore is charged into a portion of the cooling device (cooler) of the sintering machine where the temperature inside the device (temperature of the sinter to be cooled) reaches 300 to 600° C. It is a method of drying in advance.
  • the production amount (t/h) of a sintering machine is determined by the production rate (t/(h ⁇ m 2 )) ⁇ sintering machine area (m 2 ). That is, the production volume of sinter is determined by the specifications of the sinter machine (machine width, machine length), the thickness of the charging layer, the bulk density of the sintering raw material, the sintering (combustion) time, the yield of the product sinter. It will be decided by such as. Therefore, in order to increase the production of sinter, the gas permeability (pressure loss) of the charging layer is improved to shorten the sintering time, and the strength of the product sinter is increased to improve the yield. Things are considered to be effective.
  • powdered iron ore as a sintering raw material is in fact being deteriorated in quality due to depletion of high-quality iron ore, and as a result, an increase in the slag component and a further pulverization of the iron ore are caused.
  • the increase in the content of alumina (Al 2 O 3 ) and the increase in the fine powder ratio result in a decrease in granulation property.
  • a low slag ratio is required from the viewpoint of reducing the hot metal production cost and the CO 2 generation amount, and accordingly, the sinter ore having high reducibility and high strength is required. ing.
  • Patent Document 2 is a method in which the heat source of the cooler of the sintering machine is used for preheating the massive iron ore charged into the blast furnace. Therefore, this method is not a technique for improving the productivity and quality of the sintered ore by controlling the wet zone of the raw material charging layer on the pallet by improving the granulated sintering raw material itself.
  • a pelletized feed containing a large amount of fine iron ore with a particle size of 150 ⁇ m or less which is a sinter compounding raw material, has an irregular particle size when it is granulated, and the fine powder is simply agglomerated. It is known to produce various agglomerated particles. Such coarse agglomerated particles have weak bonding strength. Therefore, if they are deposited on the pallet of a sintering machine with a certain layer thickness, they tend to collapse when a load (compressive force) is applied, and the agglomerated particles are easily separated. The powder is pulverized to cause a decrease in the porosity of the charging layer.
  • an object of the present invention is to solve the above-mentioned problems that the conventional technology has, and particularly to use a granulating sintering raw material obtained by heating and humidifying at a certain temperature or higher using steam at the time of granulation in a sintering machine.
  • Another object of the present invention is to propose a method for producing a sintered ore, which can improve the air permeability of the charging layer by charging, and thus the productivity of the sintered ore.
  • a high-speed stirring mixer such as a drum mixer or an Ehrlich mixer used when granulating a sintering compounding material, or a granulator such as a pelletizer
  • steam such as steam
  • the thermal granulation raw material for sintering (granulated sintering raw material, which has been raised to a temperature of 45° C. or higher, more preferably 60° C. or higher and lower than 70° C., which is higher than the initial temperature of the sintering compounded raw material. ), it was loaded on the pallet of the sintering machine.
  • a granulated sintering raw material obtained by granulating a sintering compound raw material containing at least iron ore, carbonaceous material, and auxiliary raw materials is mounted on a pallet that circulates from the raw material ore feeding section of the sintering machine.
  • the granulated sintering raw material is heated to a temperature of 45° C. or higher and lower than 70° C.
  • the granulated sintering raw material is conditioned to a target moisture content of 6 to 10 mass%
  • the granulated sintering raw material having a temperature after granulation exceeding 70° C. has a moisture content of 0.5 mass% to 3.0 mass% more than the target moisture content at 70° C. or less. % Be high, (4)
  • the steam is blown in the granulator, the steam is directly blown toward the sintering compounding material so that the ratio is as follows.
  • W 50 Width of the range in which the temperature rise width due to the blowing of steam is 50% or more of the maximum temperature
  • the steam has the following ratio.
  • W 50 Width of the range in which the temperature rise width due to spraying of water vapor is 50% or more of the maximum temperature Wm: Width in which the blended raw material is present is preferable.
  • the sintering compound raw material when the sintering compound raw material is granulated by a high speed stirring mixer such as a drum mixer, an Erich mixer, or a granulator such as a pelletizer, steam is blown into the starting material to form a starting material ( Sintering is performed because the granulated sintering raw material is heated and conditioned at a temperature 10°C or more higher than the initial temperature of the raw material placed in the yard (the temperature of the sintering compounded raw material before being charged into the granulator).
  • the sintering raw material containing fine iron ore having a particle diameter of 150 ⁇ m or less can be used more as a compounding raw material.
  • the air permeability of the raw material charging layer is improved, so that the production rate of the sintered ore is improved. You will be able to dramatically improve.
  • (a) is a schematic diagram which shows arrangement
  • (b) is sectional drawing which shows the internal condition of a drum mixer. It is a figure which shows the relationship between the steam blowing time and the granulated sintering raw material temperature rise temperature when the steam blowing time is changed. It is a figure which shows the relationship between the temperature of a granulation sintering raw material, and the water
  • the granulated sintering raw material (pseudo particles) charged on the sinter machine pallet for the production of sinter is generally a sinter feed having an arithmetic mean particle size of about 1.0 to 5.0 mm.
  • Called iron ore powder various iron sources such as various dusts generated in iron mills, CaO-containing raw materials such as limestone and quick lime, steelmaking slag, coagulating materials such as powder coke and anthracite, refining nickel slag and dolomite, serpentine as arbitrary blending raw materials
  • the MgO-containing raw materials such as MgO-containing raw materials, the refining nickel slag, and the SiO 2 -containing raw materials such as silica (silica) that are used for compounding are first stored in a hopper, and the hoppers convey these sintering raw materials.
  • a sintered compounding raw material prepared by cutting and mixing the above at a predetermined ratio was placed in the above granulating machine and stirred and mixed while the required humidity was added to granulate, and the arithmetic mean particle size was 3.
  • the granulated sintering raw material (pseudo particle) having a size of about 0 to 6.0 mm is used.
  • the arithmetic mean particle size is a particle size defined by “ ⁇ (di ⁇ Vi)”, and the harmonic mean particle size is defined by “1/ ⁇ (Vi/di)”.
  • the particle size is the abundance ratio of particles in the i-th particle size range, and di is the representative particle diameter in the i-th particle size range.
  • a high-speed stirring mixer or a pelletizer can be used as described above, but a drum mixer as shown in FIG. 1 is used. Are preferred, and a plurality of these groups may be used.
  • a drum mixer will be described as the granulator.
  • the granulated sintering raw material (pseudo particles) obtained by the granulation treatment with the drum mixer is first transferred onto a sinter machine pallet via a charging device arranged on the sinter machine.
  • the raw material charging layer is formed by charging and depositing so as to have a thickness (height) of about 400 to 600 mm.
  • the carbonaceous material contained in the raw material charging layer is ignited by an ignition furnace installed above the raw material charging layer.
  • the carbonaceous material in the raw material charging layer is sequentially burned from the surface layer by downward suction by a wind box arranged under the pallet, and the combustion heat generated at this time causes the charging raw material (simulated Sintering is performed by sequentially combusting and melting a granulated sintering raw material composed mainly of particles).
  • the sinter layer (sintered cake) obtained on the pallet of the sinter machine is sieved through a crusher and a sinter machine cooler to be sized, and the sinter product of 5 mm or more and 5 mm It is recovered by separating it into less than returned mine.
  • FIG. 1 is a diagram for explaining an embodiment of the present invention at the stage of manufacturing (granulating) a granulating and sintering raw material to be supplied to a sintering machine using a granulating machine (drum mixer).
  • a granulator such as the drum mixer 1
  • blowing (injecting) steam into the drum mixer 1 A structure in which the temperature of the sintering compounding raw material at the time of charging the drum mixer 1 is raised to at least 10° C. higher than the initial temperature, for example, the ambient temperature to about 35° C. (drum mixer inlet side temperature).
  • the granulated sintering raw material 2 is preferably heated and humidified so that the temperature of the granulated sintering raw material is 45° C. to less than 70° C. This is a method of using the grain sintering raw material 2.
  • the temperature of the granulated sintering raw material 2 in the charging layer charged on the sinter machine pallet 3 can be made higher than usual, and by extension, the combustion in the charging layer can be performed. It becomes possible to reduce re-aggregation of water evaporated in the melting zone. As a result, according to this method, it is possible to reduce the pressure loss (particularly the wet zone) in the sintering machine, and it is possible to increase the production rate of sinter in the sintering machine.
  • a granulating and sintering raw material (pseudo particles) produced by a granulating method compatible with the present invention and a sintering raw material produced by a granulating method not conforming to the present invention are used together in a sintering machine pallet. It may be charged to produce a sintered ore. In this case, the granulating and sintering raw material produced by the granulating method according to the present invention is charged in an amount of 50 mass% or more with respect to the total amount of the charges to the sintering machine. The desired effect is obtained.
  • the temperatures of the sintering compounding raw material and the granulation sintering raw material may be measured using a contact thermometer such as a thermocouple before and after the granulator, but a non-contact type such as a radiation thermometer may be used. It may be measured using a thermometer.
  • a radiation thermometer when using a radiation thermometer, the emissivity varies depending on the brand of the sintering compounding material within the range of 0.6 to 1.0, and temperature measurement error may occur. It is desirable to set the emissivity by measuring with a thermometer at the same time.
  • the amount of steam to be blown in for raising the temperature to a temperature higher by 10° C. or more than the temperature of the sintering compounding raw material on the inlet side of the drum mixer 1 is 3 kg/ts or more, preferably It is desirable to control the humidity so that the target moisture content of the granulated sintering raw material is 6 to 10 mass% by blowing in an amount of 4 kg/ts to 25 kg/ts.
  • the reason for this is that with this blowing amount, it is possible to secure the desired moisture content (6-10 mass%) as the granulation sintering raw material and to secure good air permeability of the charging layer on the sintering machine pallet 3. This is because it is effective in improving the production rate of sinter. That is, the desirable amount of water varies depending on the water content on the drum mixer inlet side, the iron ore brand used as a raw material, and the particle size, but it is about 6 to 10 mass% for a normal granulated and sintered raw material.
  • FIG. 2 is a diagram showing a temperature change of the granulated sintering raw material after granulation when the steam blowing time is changed.
  • the temperature of the sintering compounding raw material is lower than the temperature of the sintering compounding raw material just before being charged into the drum mixer by the granulation process for about several tens of seconds. It is possible to easily raise the temperature to about 45° C. or higher, which is a high temperature of 10° C. or higher, and preferably to about 70° C.
  • FIG. 3 is a diagram showing changes in the water content of the granulated sintering raw material after granulation on the drum mixer outlet side with respect to the temperature of the granulated sintering raw material.
  • the temperature of the granulated sintering raw material reaches around 70° C.
  • the water content also rises due to the condensation of water vapor due to the temperature increase.
  • the evaporation of water from the so-called granulated sintering raw material occurs. That is, when the opening of the steam pipe is 2/4 and 3/4, the larger the opening is, the faster the water content rises due to the temperature rise.
  • the temperature of the binding raw material exceeds 70° C.
  • the water content is decreased, which is considered to change from humidification to drying.
  • the amount of water condensed by the blowing of steam is taken into consideration in consideration of factory water or hot water.
  • the target water content of the granulated sintering raw material (6 to 10 mass%) is increased by about 0.5 mass% to 3.0 mass%, that is, 6. It has been found that it is preferable to adjust the water content to 5 mass% to 13 mass%.
  • it is desirable that the heat of the blown steam is directly transferred to the blended raw material without passing through the inner surface of the drum of the drum mixer.
  • W 50 is the width of the region (range) in which the temperature is higher than the intermediate temperature that has increased due to the spraying of water vapor. That is, it is the width of the range in which the temperature rise range due to the spraying of steam is 50% or more of the maximum temperature.
  • the relationship between the distance L and the width W 50 is prepared for each type of steam nozzle and each steam blowing speed, and in granulation with an actual drum mixer, the type of steam nozzle, the steam blowing speed, and the firing
  • the direct heat transfer from steam to the raw material mixture is evaluated. It was determined as an index (Fig. 5c).
  • the value of the ratio W 50 /Wm is preferably 1.2 or less, more preferably 0.8 or less, and further preferably 0.6 or less.
  • Wm Width in which the blended raw material exists
  • the fine iron ore (arithmetic mean particle size: 150 ⁇ m or less) in the sintering compound material easily forms granulated particles (pseudo particles) when it contains water. Therefore, it is preferable to crush the iron ore particles in a dry state with a force not to be crushed and then sieve and use.
  • iron-containing raw materials other than the fine iron ore by-products such as iron ore and dust having an arithmetic average particle size of more than 150 ⁇ m to 10,000 ⁇ m, MgO-containing raw materials such as serpentine, and SiO 2 -containing raw materials such as silica stone are used. It is blended with various auxiliary materials containing CaO and carbonaceous materials.
  • the particle size of the granulated sintering raw material (pseudo particle) obtained by the above-described granulation process is preferably about 0.5 to 2 mm in terms of the harmonic mean particle size. The reason is that if it is 0.5 mm or more, ventilation in the sintering machine is promoted, and if it is 2 mm or less, the sintering time can be secured and the strength of the sintered ore after firing can be exhibited.
  • Table 1 is an example in which the examples according to the method of the present invention are compared with the comparative examples according to the conventional method. These examples are Comparative Examples 1 to 3 in which steam is not blown into the drum mixer [however, in this example, the mixture was added as a binder ( ⁇ 2 mass%) to the compound sintering raw material: 35° C. before charging the drum mixer. The temperature of the granulation and sintering raw material is around 42°C due to the effect of heat generation (+7.5°C rise: common in each example) that occurs when CaO present reacts with water to produce CaOH 2 . Based on the above, the air permeability index and the production rate at the time of sintering are compared using a pot testing device simulating a sintering machine.
  • the temperature of the sintering compounding raw material on the inlet side of the drum mixer was 35° C., and the temperature rise of the granulating sintering raw material was 10° C. or more, 55.7° C. to 69.8° C. Therefore, a remarkable effect is exhibited in terms of the breathability index and the production rate.
  • the ratio of the fine powder in the sintering raw material was 15 mass% to 20 mass%, and the effect of improving the production rate when compared with the condition in which steam was not added at the same fine powder ratio was compared. It is larger than. Further, as shown in FIG.
  • Examples 1 to 4 are examples in which steam was blown in under the condition of W 50 /Wm of 1.2.
  • Example 5 is an example in which W 50 /Wm was changed to 0.8 under the same conditions as Example 4.
  • the heating effect and the production rate improvement effect in the sintering machine similar to those in Example 4 were obtained.
  • the ratio W 50 /Wm below was changed to 0.6 basically under the same conditions as in Example 4.
  • the amount of steam injected was 20% less than in Example 4
  • the same heating effect as in Example 4 and the effect of increasing the production rate in the sintering machine were obtained.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Geochemistry & Mineralogy (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Environmental & Geological Engineering (AREA)
  • General Life Sciences & Earth Sciences (AREA)
  • Geology (AREA)
  • Organic Chemistry (AREA)
  • Manufacturing & Machinery (AREA)
  • Materials Engineering (AREA)
  • Mechanical Engineering (AREA)
  • Metallurgy (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Inorganic Chemistry (AREA)
  • Manufacture And Refinement Of Metals (AREA)

Abstract

焼結機パレット上における原料装入層中に現れる湿潤帯の大きさを縮小するのに寄与する造粒焼結原料を用いることによって、焼結鉱の生産性の向上等を図るのに有効な方法について提案するため、焼結機のパレット上に装入する造粒焼結原料として、粒径150μm以下の微粉鉄鉱石を10mass%以上含む前記焼結配合原料を造粒機にて造粒する際に、その造粒機内に水蒸気を吹き込むことにより、該焼結配合原料の当該造粒機内への装入前の当初温度よりも10℃以上高い温度に加熱すると共に調湿した造粒焼結原料を用いて焼結する方法。

Description

焼結鉱の製造方法
 本発明は、焼結鉱の製造方法に関し、特に、焼結機パレット上における原料装入層中に現れる湿潤帯の大きさを縮小するのに寄与する造粒焼結原料を用いることによって、焼結鉱の生産性の向上等を図るのに有効な方法について提案する。
 従来、焼結機の操業に当たっては、パレット上の原料装入層の圧力損失に関して湿潤帯の影響が大きいことが知られており、この湿潤帯が占める割合の縮小を図ることによって、主として炭材使用量の低減を図るとともに焼結生産性の向上を図る努力が払われてきた。例えば、特許文献1には、炭材を含む焼結原料に水とバインダーを加えて造粒し、次いで、ロータリーキルンにより乾燥して得られる造粒焼結原料をパレット上に装入して焼結するという焼結鉱の製造方法が開示されている。しかしながら、この従来技術の場合、ロータリーキルンなどを用いて造粒焼結原料を乾燥するためにロータリーキルンという特別な設備が必要となる。
 その他、特許文献2には、高炉内に装入する高炉用原料である塊鉱石を焼結機に付帯設置されているクーラー内に装入して、その塊鉱石を事前に乾燥する方法の提案がある。即ち、この方法は、焼結機の冷却装置(クーラー)における装置内温度(被冷却焼結鉱の温度)が300~600℃に達している個所に高炉用塊鉱石を装入し、これを事前に乾燥する方法である。
 一般に、焼結機の生産量(t/h)は、生産率(t/(h×m))×焼結機面積(m)によって決定される。即ち、焼結鉱の生産量は、焼結機の仕様(機幅、機長)、装入層の厚さ、焼結原料の嵩密度、焼結(燃焼)時間、成品焼結鉱の歩留などによって決定されることになる。したがって、焼結鉱の生産量を増加させるには、装入層の通気性(圧損)を改善して焼結時間を短縮すること、成品焼結鉱の強度を上げて歩留の向上を図ることなどが有効であると考えられる。
 ところで、焼結原料としての粉鉄鉱石は、近年、高品質鉄鉱石の枯渇によって低品位化しているのが実情であり、その結果、スラグ成分の増加や鉄鉱石のさらなる微粉化を招くだけでなく、アルミナ(Al)含有量の増大や微粉比率の増大によって造粒性の低下を招く結果となっている。その一方で、高炉では溶銑製造コストの低減やCO発生量の低減という観点から低スラグ比が求められており、それに伴い焼結鉱としては、高被還元性かつ高強度のものが求められている。
特開2007-169780号公報 特開2013-119667号公報
 上掲の各従来技術において、焼結鉱の生産性を向上させようとする場合、例えば、造粒焼結原料をロータリーキルンにより予め乾燥するという特許文献1に開示の方法では、新たに専用の設備(ロータリーキルン)が必要で、設備費が嵩む他、焼結プロセスで用いる凝結材以外にも燃料が必要となって、コスト高になるという問題があった。
 また、特許文献2に開示の方法は、焼結機クーラーの熱源を高炉内に装入する塊鉄鉱石の予熱に利用する方法である。従って、この方法は、造粒焼結原料自体の改善を通じて、パレット上の原料装入層の湿潤帯を制御することによって焼結鉱の生産性の向上や、品質の向上を図る技術ではない。
 一般に、ペレットフィードと呼ばれている粒径150μm以下の微粉鉄鉱石を多く含む焼結配合原料は、これを造粒すると、粒径が不揃いになると共に微粉が単に凝集しているにすぎない粗大な凝集粒子を生成することが知られている。このような粗大な凝集粒子は、結合強度が弱いので、焼結機のパレット上に一定の層厚で堆積させると、荷重(圧縮力)が加わったときに崩壊しやすく、当該凝集粒子が容易に粉化して装入層の空隙率の低下を招く。その結果、装入層の通気性を悪化させ、焼結原料の燃焼を阻害する。その結果、焼結鉱の焼結時間が長くなり、焼結鉱の生産性の低下を招く。一方で、焼結時間を短くすると、焼結が不十分となって焼結鉱歩留の低下を招き、ひいては焼結鉱の生産性が低下するという問題があった。
 そこで、本発明の目的は、従来技術が抱えている前述した課題を解決すること、とくに造粒時に水蒸気を使って一定以上の温度に加熱加湿してなる造粒焼結原料を焼結機に装入することで、装入層の通気性の改善を図り、ひいては焼結鉱の生産性の向上を図ることのできる焼結鉱の製造方法を提案すること、にある。
 本発明では、前述の課題を解決するために、焼結配合原料を造粒する際に用いるドラムミキサーやアイリッヒミキサーなどの高速撹拌ミキサーや、ペレタイザーなどの造粒機内に、水蒸気のような蒸気を吹き込んで該焼結配合原料を加熱、調湿しつつ造粒することによって、ドラムミキサーに入れる前の焼結配合原料の当初温度よりも高い温度とすること、例えば該造粒焼結原料の温度を、該焼結配合原料の当初温度よりも高い45℃以上の温度、より好ましくは60℃以上70℃未満の温度にまでに上昇させた焼結用熱造粒原料(造粒焼結原料)として、これを焼結機のパレット上に装入するようにした。
 即ち、本発明は、焼結機の原料給鉱部から循環移動するパレット上に、少なくとも鉄鉱石、炭材、副原料を含む焼結配合原料を造粒してなる造粒焼結原料を装入して装入層を形成し、その後、点火炉を使って前記装入層の炭材に点火する一方、パレット下方のウインドボックスにて前記装入層上のガスを吸引して該装入層中に導入することにより、前記炭材を燃焼させて焼結鉱を製造する方法において、
 前記パレット上に装入する造粒焼結原料として、粒径150μm以下の微粉鉄鉱石を10mass%以上含む前記焼結配合原料を造粒機にて造粒する際に、その造粒機内に水蒸気を吹き込むことにより、該焼結配合原料の当該造粒機内への装入前の当初温度よりも10℃以上高い温度に加熱すると共に調湿した造粒焼結原料を用いることを特徴とする焼結鉱の製造方法である。
 なお、本発明においては、
(1)前記造粒焼結原料は、45℃以上70℃未満の温度に加熱されたものであること、
(2)前記造粒焼結原料は、6~10mass%の目標水分量に調湿すること、
(3)造粒後の温度が70℃を超える前記造粒焼結原料は、該造粒焼結原料の水分量が70℃以下での目標水分量よりも、0.5mass%~3.0mass%高いものにすること、
(4)前記造粒機での水蒸気吹き込みに際しては、該水蒸気を下記比率となるように前記焼結配合原料に向けて直接吹き付けること、
                記
 W50/Wm≦0.8
 ただし、
 W50:水蒸気の吹き付けによる昇温幅が最高温度の50%以上となる範囲の幅
 Wm:配合原料が存在する幅
(5)前記造粒機での水蒸気吹き込みに際しては、該水蒸気を下記比率となるように前記焼結配合原料に向けて直接吹き付けること、
                記
 W50/Wm≦0.6
 ただし、
 W50:水蒸気の吹き付けによる昇温幅が最高温度の50%以上となる範囲の幅
 Wm:配合原料が存在する幅
が好ましい。
 本発明によれば、焼結配合原料をドラムミキサー、アイリッヒミキサーなどの高速撹拌ミキサー、あるいはペレタイザーなどの造粒機にて造粒する際に、水蒸気を吹き込み造粒することにより、出発原料(原料ヤード置き原料)の当初温度(造粒機等へ装入する前の焼結配合原料の温度)よりも10℃以上高い温度に加熱かつ調湿した造粒焼結原料とするので、焼結配合原料として粒径150μm以下の微粉鉄鉱石を含む焼結原料についてもより多く使用することができる。しかも、本発明によれば、こうして得られた造粒焼結原料を焼結機パレット上に装入した場合、原料装入層の通気性が改善されることから、焼結鉱の生産率を飛躍的に向上させることができるようになる。
本発明にかかるプロセスフローを示す図であり、(a)はドラムミキサー及び蒸気配管の配置を示す模式図、(b)はドラムミキサーの内部の状況を示す断面図である。 水蒸気の吹き込み時間を変更したときの蒸気吹き込み時間と造粒焼結原料昇温温度との関係を示す図である。 造粒焼結原料の温度と造粒後の水分との関係を示す図である。 焼結原料中の150μm以下の微粉比率と生産率改善効果との関係を示す図である。 水蒸気の吹き込みに伴う焼結配合原料への伝熱を評価する方法についての説明図(a~c)である。
 焼結鉱製造のために焼結機パレット上に装入される造粒焼結原料(擬似粒子)は、一般に、算術平均粒径で1.0~5.0mm程度の大きさのシンターフィードと呼ばれる鉄鉱石粉、製鉄所内で発生する各種ダスト等の雑鉄源、石灰石や生石灰、製鋼スラグなどのCaO含有原料、粉コークスや無煙炭などの凝結材、任意配合原料として精錬ニッケルスラグやドロマイト、蛇紋岩などからなるMgO含有原料、精錬ニッケルスラグ、硅石(硅砂)などからなるSiO含有原料等の配合用焼結原料を、先ずホッパーに貯蔵し、そして、そのホッパーから、これらの焼結原料をコンベヤ上に所定の割合で切り出して配合してなる焼結配合原料とし、これを、前記造粒機に入れて攪拌混合しながら必要な調湿を加えて造粒し、算術平均粒径が3.0~6.0mm程度の造粒焼結原料(擬似粒子)としている。
 この明細書において、算術平均粒径とは、「Σ(di×Vi)」で定義される粒径であり、調和平均粒径とは、「1/Σ(Vi/di)」で定義される粒径である。但し、Viはi番目の粒度範囲の中にある粒子の存在比率であり、diはi番目の粒度範囲の代表粒径である。
 本発明において、前記焼結配合原料を造粒するために用いる造粒機としては、上述したように高速撹拌ミキサーやペレタイザーの使用も可能であるが、図1に示すようなドラムミキサーを用いることが好ましく、これらを複数基用いてもよい。以下、造粒機としてはドラムミキサーの例で説明する。
 なお、前記ドラムミキサーによる造粒処理をして得られた造粒焼結原料(擬似粒子)は、まず、焼結機上に配置されている装入装置を介して、焼結機パレット上に400~600mm前後の厚さ(高さ)になるように装入し、堆積させて原料装入層を形成する。次いで、その原料装入層の上方に設置した点火炉により、この原料装入層中に含まれている炭材に点火する。そして、前記パレット下に配置したウィンドボックスによる下方吸引により、該原料装入層中の前記炭材を表層のものから順次に燃焼させ、このときに発生する燃焼熱によって、前記装入原料(擬似粒子を主体とした造粒焼結原料)を順次に燃焼溶融させることによって焼結するのである。その後、焼結機のパレット上で得られる焼結層(焼結ケーキ)は、破砕機、焼結機クーラーを経て篩分け処理して整粒され、5mm以上の塊状の成品焼結鉱と5mm未満の返鉱とに分別して回収される。
 図1は、造粒機(ドラムミキサー)を使い、まず焼結機に供給する造粒焼結原料を製造(造粒)する段階の本発明の一実施形態を説明するための図である。この図に示すように、本発明は、焼結配合原料をドラムミキサー1のような造粒機によって造粒する際に、そのドラムミキサー1内に、例えば水蒸気を吹き込む(噴射する)ことにより、該ドラムミキサー1へ装入する時の焼結配合原料の当初温度、例えば大気温度以上~35℃程度の温度(ドラムミキサー入側温度)よりも少なくとも10℃以上高い温度にまで昇温させた造粒焼結原料2となるようにすること、好ましくは該造粒焼結原料の温度が45℃~70℃未満の温度になるように加熱加湿して後述する所定の水分量に調湿した造粒焼結原料2とする方法である。
 このような方法によれば、焼結機パレット3上に装入された装入層内における該造粒焼結原料2の温度を通常よりも高くすることができ、ひいては装入層内の燃焼溶融帯で蒸発した水分が再凝集することを低減することができるようになる。その結果、この方法によれば、焼結機での圧力損失(特に湿潤帯)を低減できるようになり、ひいては焼結機での焼結鉱の生産率を高めることができる。
 なお、本発明に適合する造粒方法によって製造された造粒焼結原料(疑似粒子)と、本発明に適合しない造粒方法によって製造された焼結原料とを併用して焼結機パレットに装入して焼結鉱を製造してもよい。この場合、本発明に適合する造粒方法によって製造された造粒焼結原料を、焼結機への装入物の合計量に対して50mass%以上を装入することで、本発明の所期した効果が得られる。
 なお、焼結配合原料と造粒焼結原料の温度は造粒機の前と後で熱電対などの接触式の温度計を用いて測定してもよいが、放射温度計などの非接触式の温度計を用いて測定してもよい。とくに、放射温度計を用いる場合は、焼結配合原料の銘柄によって放射率が0.6~1.0の範囲で異なり温度の測定誤差が生じる場合があるので、事前に放射温度計と接触式温度計を同時に用いて測定することで放射率を設定しておくことが望ましい。
 ここで、前記ドラムミキサー1の入側での焼結配合原料の温度よりも10℃以上高い温度にまで昇温させるのに必要な水蒸気の吹き込み量としては、3kg/t-s以上、好ましくは4kg/t-s以上25kg/t-s程度までの量を吹き込むことにより、該造粒焼結原料としての目標水分量である6~10mass%となるように調湿することが望ましい。その理由は、この吹き込み量だと、造粒焼結原料としての望ましい水分量(6~10mass%)の確保と、焼結機パレット3上の装入層の良好な通気性の確保を達成でき、ひいては焼結鉱の生産率を向上させる上で有効だからである。即ち、望ましい水分量は、ドラムミキサー入側の水分や原料として使用する鉄鉱石銘柄、粒径により異なるが、通常の造粒焼結原料では、6~10mass%程度である。
 一般に、100℃における水の顕熱は2200kJ/kg以上あり、水の比熱4.2kJ/kgからも水蒸気が液体の水に戻る際の熱量は非常に大きい。図2は、水蒸気の吹き込み時間を変化させたときの造粒後の造粒焼結原料の温度変化を示す図である。この図からわかるように、水蒸気のもつ顕熱を活用する場合、焼結配合原料の温度は数十秒程度の造粒処理により、ドラムミキサーに装入される直前の焼結配合原料の温度よりも10℃以上高い温度である45℃程度以上の、好ましくは70℃程度にまで容易に昇温させることができる。
 ただし、発明者らの研究によると、造粒した造粒焼結原料(擬似粒子)の温度が70℃を超えると、該造粒焼結原料からの蒸発が活発になり、造粒後の擬似粒子の水分低下を招くだけでなく、蒸発潜熱による吸熱が顕著に起きることを突き止めた。
 例えば、図3は、造粒焼結原料の温度に対するドラムミキサー出側での造粒後の造粒焼結原料の水分値の変化を示す図である。この図からわかるように、該造粒焼結原料の温度が70℃付近になると、温度の上昇による水蒸気の凝縮によって水分の上昇も起こるが、同時にこの温度に達すると逆に水分の低下現象が始まり、いわゆる該造粒焼結原料からの水分の蒸発が起こっていることがわかる。即ち、蒸気配管の開度が2/4、3/4の場合、開度が大きい方が昇温による水分の上昇も早いが、発明者らの実験では、図3に示すとおり、造粒焼結原料の温度は、70℃を超えると逆に水分の低下が起っており、加湿から乾燥に変わるものと考えられる。
 そこで、本発明では、前記ドラムミキサーから排出される造粒焼結原料(擬似粒子)の温度が70℃を超えたとき、水蒸気の吹き込みによって凝縮する水分量を考慮して、工場用水や熱水あるいは水蒸気の凝縮水などを添加することによって、例えば、造粒焼結原料の目標水分量(6~10mass%)よりも0.5mass%~3.0mass%程度高くなるように、即ち、6.5mass%~13mass%に水分調整することが好ましいことが分った。
 また、吹き込まれた水蒸気の熱は、ドラムミキサーのドラム内面を介さずに、配合原料に直接伝熱させるようにすることが望ましい。
 次に、水蒸気から焼結配合原料への伝熱を評価する方法について以下に説明する。まず、実験室で、予め厚さ150mm以上の厚さに静置した焼結配合原料に水蒸気を1分間吹き付け、その直後に、該焼結配合原料表面の温度分布をサーモグラフィで測定した。そして水蒸気を吹き付けないときの温度Toと温度が最も高い箇所の温度Tmaxの中間の温度(To+Tmax)/2よりも温度が高くなる範囲(中間温度よりも高い温度域)部分の幅W50を求め、これを図5(a)に示した。なお、この測定においては、該焼結配合原料と蒸気ノズルとの間の距離Lを変化させておこない、距離Lと幅W50の関係として図5(b)に示した。ここで、W50とは水蒸気吹き付けに伴って上昇した中間の温度よりも高い温度となっている領域(範囲)の幅である。即ち、水蒸気吹き付けによる昇温幅が最高温度の50%以上である範囲の幅のことである。
 このようにして、距離Lと幅W50の関係を蒸気ノズルの種類と蒸気吹込み速度毎に準備し、実際のドラムミキサーでの造粒において、蒸気ノズルの種類と、蒸気吹き込み速度と、焼結配合原料と蒸気ノズルとの間の距離Lとから求められる幅W50の、焼結配合原料が存在する幅Wmに対する比率:W50/Wmを水蒸気から配合原料への直接伝熱を評価する指標として求めた(図5c)。その結果、比率W50/Wmの値は1.2以下であることが望ましく、0.8以下がより望ましく、0.6以下がさらに望ましいことが分った。
                記
 W50/Wm≦0.8
 ただし、
 W50:水蒸気の吹き付けによる昇温幅が最高温度の50%以上となる範囲の幅
 Wm:配合原料が存在する幅
 前記焼結配合原料中の微粉鉄鉱石(算術平均粒径150μm以下)は、これが水分を含むと造粒粒子(擬似粒子)を容易に形造るようになる。従って、鉄鉱石の粒子は破砕されない程度の力で乾燥状態で解砕してから篩分けして用いることが好ましい。該微粉鉄鉱石以外の含鉄原料としては、算術平均粒径で150μm超~10000μmの大きさの鉄鉱石やダスト等の副産物、あるいは蛇紋岩などのMgO含有原料や珪石などのSiO含有原料等がCaOを含有する各種副原料ならびに炭材とともに配合される。
 なお、前述のような造粒処理によって得られる造粒焼結原料(擬似粒子)の粒径は、調和平均粒径で0.5~2mm程度の大きさのものが好適である。その理由は、0.5mm以上では焼結機での通気が促進され、2mm以下では、焼結時間が担保できて、焼成後の焼結鉱の強度を発現させることができるからである。
 表1は、本発明方法に適合する実施例と従来方法に従う比較例とを対比した例である。これらの例は、ドラムミキサー内に水蒸気を吹き込まない比較例1~3[ただし、この例はドラムミキサー装入前の配合焼結原料:35℃に対し、バインダーとして添加(≦2mass%)しているCaOが水と反応してCaOHを生成する際に生ずる発熱(+7.5℃の上昇:各例とも共通)の影響により、造粒焼結原料の温度は42℃前後になっている]を基準として、焼結機を模擬した鍋試験装置で焼結時の通気性指数や生産率等を比較したものである。
 なお、比較例2、3では、焼結配合原料中の微粉鉄鉱石の比率が増加しており、微粉比率の増加に伴って、造粒焼結原料の調和平均粒径および通気性指数が低下し、焼結機での生産率も低下している。
 一方、実施例1~4は、ドラムミキサー入側での焼結配合原料の温度を35℃として、造粒焼結原料の温度上昇が10℃以上の55.7℃~69.8℃になっており、そのために、通気性指数や生産率の点で顕著な効果が顕れている。さらに、実施例2および3では、焼結原料中の微粉の比率が15mass%~20mass%であり、同じ微粉比率で蒸気を添加していない条件と比較した場合の生産率の改善効果が比較例に比べて大きくなっている。また、図4に示すように、微粉比率が10mass%以下では、ドラムミキサーでの蒸気添加の条件に対する生産率の改善効果は、4%前後にとどまっているのに対し、微粉比率が15mass%以上のものでは、6%以上と大きくなっている。これは、微粉比率が高いほど、焼結機上で水分の再凝集に伴って形成される湿潤帯における造粒粒子が崩壊してしまう比率が高いからである。これに対し、本発明方法を適用することで、水分の再凝集が起こりにくくなり、湿潤帯の形成が抑制される結果、造粒粒子の崩壊が抑制できるためと考えられる。したがって、焼結配合原料中の微粉の比率が15mass%以上の場合に、本発明方法を適用することで、より顕著な効果が得られることが確かめられた。
 また、実施例1~4は、W50/Wmが1.2の条件で蒸気を吹き込んだ例である。一方、実施例5は、基本的に実施例4と同じ条件の下で、W50/Wmを0.8に変化させた例である。その結果、実施例4よりも10%少ない水蒸気吹込み量(18.1kg/t-s)で、実施例4と同等の加熱効果と焼結機での生産率向上効果が得られた。実施例6として、基本的に実施例4と同じ条件の下で下記比率W50/Wmを0.6に変化させた。その結果、実施例4に対して20%少ない水蒸気吹込み量でも、実施例4と同等の加熱効果と焼結機での生産率上昇効果が得られた。
Figure JPOXMLDOC01-appb-T000001
 本発明に係る前述した技術は、水蒸気を用いて焼結配合原料を加熱する例で説明したが、加熱用蒸気については他のものの利用も可能である。
1 ドラムミキサー
2 造粒焼結原料
3 焼結機パレット

Claims (6)

  1.  焼結機の原料給鉱部から循環移動するパレット上に、少なくとも鉄鉱石、炭材、副原料を含む焼結配合原料を造粒してなる造粒焼結原料を装入して装入層を形成し、その後、点火炉を使って前記装入層の炭材に点火する一方、パレット下方のウインドボックスにて前記装入層上のガスを吸引して該装入層中に導入することにより、前記炭材を燃焼させて焼結鉱を製造する方法において、
     前記パレット上に装入する造粒焼結原料として、粒径150μm以下の微粉鉄鉱石を10mass%以上含む前記焼結配合原料を造粒機にて造粒する際に、その造粒機内に水蒸気を吹き込むことにより、該焼結配合原料の当該造粒機内への装入前の当初温度よりも10℃以上高い温度に加熱すると共に調湿した造粒焼結原料を用いることを特徴とする焼結鉱の製造方法。
  2.  前記造粒焼結原料は、45℃以上70℃未満の温度に加熱されたものであることを特徴とする請求項1に記載の焼結鉱の製造方法。
  3.  前記造粒焼結原料は、6~10mass%の目標水分量に調湿することを特徴とする、請求項1または2に記載の焼結鉱の製造方法。
  4.  造粒後の温度が70℃を超える前記造粒焼結原料は、該造粒焼結原料の水分量が70℃以下での目標水分量よりも、0.5mass%~3.0mass%高いものにすることを特徴とする、請求項1~3のいずれか1に記載の焼結鉱の製造方法。
  5.  前記造粒機での水蒸気吹き込みに際しては、該水蒸気を下記比率となるように前記焼結配合原料に向けて直接吹き付けることを特徴とする、請求項1~4のいずれか1に記載の焼結鉱の製造方法。
                    記
     W50/Wm≦0.8
     ただし、
     W50:水蒸気による昇温幅が最高温度の50%以上となる範囲の幅
     Wm:配合原料が存在する幅
  6.  前記造粒機での水蒸気吹き込みに際しては、該水蒸気を下記比率となるように前記焼結配合原料に向けて直接吹き付けることを特徴とする請求項1~4のいずれか1に記載の焼結鉱の製造方法。
                    記
     W50/Wm≦0.6
     ただし、
     W50:水蒸気の吹き付けによる昇温幅が最高温度の50%以上となる範囲の幅
     Wm:配合原料が存在する幅
PCT/JP2019/033260 2018-12-07 2019-08-26 焼結鉱の製造方法 WO2020115959A1 (ja)

Priority Applications (7)

Application Number Priority Date Filing Date Title
CN201980081042.3A CN113166842A (zh) 2018-12-07 2019-08-26 烧结矿的制造方法
AU2019391453A AU2019391453B2 (en) 2018-12-07 2019-08-26 Sintered ore manufacturing method
EP19891967.2A EP3892744B1 (en) 2018-12-07 2019-08-26 Sintered ore manufacturing method
KR1020217014148A KR20210072807A (ko) 2018-12-07 2019-08-26 소결광의 제조 방법
KR1020237036712A KR20230153516A (ko) 2018-12-07 2019-08-26 소결광의 제조 방법
BR112021009753-8A BR112021009753B1 (pt) 2018-12-07 2019-08-26 Método de fabricação de minério sinterizado
JP2020559715A JP6959590B2 (ja) 2018-12-07 2019-08-26 焼結鉱の製造方法

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2018229940 2018-12-07
JP2018-229940 2018-12-07

Publications (1)

Publication Number Publication Date
WO2020115959A1 true WO2020115959A1 (ja) 2020-06-11

Family

ID=70975000

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2019/033260 WO2020115959A1 (ja) 2018-12-07 2019-08-26 焼結鉱の製造方法

Country Status (7)

Country Link
EP (1) EP3892744B1 (ja)
JP (1) JP6959590B2 (ja)
KR (2) KR20230153516A (ja)
CN (1) CN113166842A (ja)
AU (1) AU2019391453B2 (ja)
TW (1) TWI729473B (ja)
WO (1) WO2020115959A1 (ja)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2022039966A (ja) * 2020-08-28 2022-03-10 Jfeスチール株式会社 焼結鉱の製造方法および焼結鉱の製造設備
CN114480839A (zh) * 2021-12-24 2022-05-13 武汉悟拓科技有限公司 基于粉体燃料静电分散的烧结混合料磁化水造粒工艺

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS58120749A (ja) * 1982-01-14 1983-07-18 Kawasaki Steel Corp 焼結副原料の添加方法
JPS59229423A (ja) * 1983-06-09 1984-12-22 Sumitomo Metal Ind Ltd 焼結鉱の製造方法
JP2007169780A (ja) 2005-11-25 2007-07-05 Jfe Steel Kk 焼結鉱の製造方法
JP2013119667A (ja) 2011-12-09 2013-06-17 Jfe Steel Corp 鉱石事前処理方法
CN107304461A (zh) * 2016-04-25 2017-10-31 中冶长天国际工程有限责任公司 用于烧结生产的强力混合工艺及其装置
WO2019167888A1 (ja) * 2018-02-28 2019-09-06 Jfeスチール株式会社 造粒焼結原料の製造方法

Family Cites Families (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4022941B2 (ja) * 1997-06-27 2007-12-19 住友金属工業株式会社 還元鉄製造原料の成形方法
KR101311609B1 (ko) * 2008-12-03 2013-09-26 제이에프이 스틸 가부시키가이샤 소결광의 제조 방법 및 소결기
JP4837799B2 (ja) * 2009-03-16 2011-12-14 新日本製鐵株式会社 焼結鉱の製造方法
JP6686974B2 (ja) * 2016-06-22 2020-04-22 Jfeスチール株式会社 焼結鉱の製造方法
WO2018142331A1 (en) * 2017-02-03 2018-08-09 Kashyap Rakesh System and method for maintaining optimum moisture content in granulated mix
CN108546821A (zh) * 2018-05-09 2018-09-18 攀钢集团攀枝花钢钒有限公司 烧结混合料增湿点火烧结方法

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS58120749A (ja) * 1982-01-14 1983-07-18 Kawasaki Steel Corp 焼結副原料の添加方法
JPS59229423A (ja) * 1983-06-09 1984-12-22 Sumitomo Metal Ind Ltd 焼結鉱の製造方法
JP2007169780A (ja) 2005-11-25 2007-07-05 Jfe Steel Kk 焼結鉱の製造方法
JP2013119667A (ja) 2011-12-09 2013-06-17 Jfe Steel Corp 鉱石事前処理方法
CN107304461A (zh) * 2016-04-25 2017-10-31 中冶长天国际工程有限责任公司 用于烧结生产的强力混合工艺及其装置
WO2019167888A1 (ja) * 2018-02-28 2019-09-06 Jfeスチール株式会社 造粒焼結原料の製造方法

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP3892744A4

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2022039966A (ja) * 2020-08-28 2022-03-10 Jfeスチール株式会社 焼結鉱の製造方法および焼結鉱の製造設備
CN114480839A (zh) * 2021-12-24 2022-05-13 武汉悟拓科技有限公司 基于粉体燃料静电分散的烧结混合料磁化水造粒工艺

Also Published As

Publication number Publication date
EP3892744A4 (en) 2021-10-13
CN113166842A (zh) 2021-07-23
TWI729473B (zh) 2021-06-01
JP6959590B2 (ja) 2021-11-02
AU2019391453A1 (en) 2021-06-03
BR112021009753A2 (pt) 2021-08-17
KR20230153516A (ko) 2023-11-06
AU2019391453B2 (en) 2022-09-29
JPWO2020115959A1 (ja) 2021-09-02
TW202022128A (zh) 2020-06-16
EP3892744A1 (en) 2021-10-13
EP3892744B1 (en) 2022-12-28
KR20210072807A (ko) 2021-06-17

Similar Documents

Publication Publication Date Title
JP5315659B2 (ja) 焼結鉱の製造方法
WO2020115959A1 (ja) 焼結鉱の製造方法
JP2007284744A (ja) 焼結鉱の製造方法
JP6421666B2 (ja) 焼結鉱の製造方法
JPH024658B2 (ja)
JPH0127133B2 (ja)
EP3760747B1 (en) Method for manufacturing granulated raw material for sintering
JP2000178660A (ja) 高品質低SiO2 焼結鉱の製造方法
JP2001348623A (ja) 高炉用高品質低SiO2焼結鉱の製造方法
RU2774518C1 (ru) Способ получения спечённой руды
WO2024069991A1 (ja) 鉄鉱石ペレットの製造方法及び鉄鉱石ペレット
JP4379083B2 (ja) 半還元塊成鉱の製造方法
WO2024089903A1 (ja) 鉄鉱石ペレットの高温性状判定方法、鉄鉱石ペレットの製造方法及び鉄鉱石ペレット
BR112021009753B1 (pt) Método de fabricação de minério sinterizado
CN1871365B (zh) 使用烧结混合物增强剂所进行的烧结
JP2001348622A (ja) 高炉用高品質低SiO2焼結鉱の製造方法
JP2019123919A (ja) 焼結鉱の製造方法
JP2001271121A (ja) 高炉用焼結鉱の製造方法
KR101634071B1 (ko) 성형탄 및 그 제조 방법
SU903295A1 (ru) Способ окусковани фосфоритовой мелочи
JPS60255935A (ja) 製鉄用の塊成鉱を製造する方法
JPH04168233A (ja) 焼結鉱の製造方法
JPS63149334A (ja) 焼成塊成鉱の製造方法

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 19891967

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2020559715

Country of ref document: JP

Kind code of ref document: A

ENP Entry into the national phase

Ref document number: 20217014148

Country of ref document: KR

Kind code of ref document: A

REG Reference to national code

Ref country code: BR

Ref legal event code: B01A

Ref document number: 112021009753

Country of ref document: BR

ENP Entry into the national phase

Ref document number: 2019391453

Country of ref document: AU

Date of ref document: 20190826

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

ENP Entry into the national phase

Ref document number: 2019891967

Country of ref document: EP

Effective date: 20210707

ENP Entry into the national phase

Ref document number: 112021009753

Country of ref document: BR

Kind code of ref document: A2

Effective date: 20210519