WO2023210412A1 - 造粒装置、造粒焼結原料の製造方法および焼結鉱の製造方法 - Google Patents

造粒装置、造粒焼結原料の製造方法および焼結鉱の製造方法 Download PDF

Info

Publication number
WO2023210412A1
WO2023210412A1 PCT/JP2023/015187 JP2023015187W WO2023210412A1 WO 2023210412 A1 WO2023210412 A1 WO 2023210412A1 JP 2023015187 W JP2023015187 W JP 2023015187W WO 2023210412 A1 WO2023210412 A1 WO 2023210412A1
Authority
WO
WIPO (PCT)
Prior art keywords
raw material
sintering
granulated
sintered
producing
Prior art date
Application number
PCT/JP2023/015187
Other languages
English (en)
French (fr)
Inventor
友司 岩見
康成 志村
頌平 藤原
寿幸 廣澤
隆英 樋口
Original Assignee
Jfeスチール株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Jfeスチール株式会社 filed Critical Jfeスチール株式会社
Priority to JP2023546184A priority Critical patent/JPWO2023210412A1/ja
Publication of WO2023210412A1 publication Critical patent/WO2023210412A1/ja

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22BPRODUCTION AND REFINING OF METALS; PRETREATMENT OF RAW MATERIALS
    • C22B1/00Preliminary treatment of ores or scrap
    • C22B1/14Agglomerating; Briquetting; Binding; Granulating
    • C22B1/16Sintering; Agglomerating
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22BPRODUCTION AND REFINING OF METALS; PRETREATMENT OF RAW MATERIALS
    • C22B1/00Preliminary treatment of ores or scrap
    • C22B1/14Agglomerating; Briquetting; Binding; Granulating
    • C22B1/16Sintering; Agglomerating
    • C22B1/20Sintering; Agglomerating in sintering machines with movable grates

Definitions

  • the present invention relates to a granulation device for granulating sintered raw materials, a method for producing granulated sintered raw materials, and a method for producing sintered ore.
  • Sintered ore which is a raw material for blast furnaces, is generally made up of iron-containing raw materials such as iron ore powder, recovered powder in steel works, and sintered ore unsieved powder, CaO-containing raw materials such as limestone and dolomite, and charcoal such as coke powder and anthracite.
  • (solid fuel) as a sintering raw material using a Dwight Lloyd sintering machine (hereinafter sometimes referred to as a "sintering machine"), which is an endless moving sintering machine.
  • the sintering raw material is charged into an endlessly movable pallet of the sintering machine to form a charging layer.
  • the thickness (height) of the charging layer is approximately 400 to 800 mm.
  • the coal material on the surface layer of the charging layer is ignited by an ignition furnace installed above the charging layer.
  • the carbonaceous material in the charging layer is sequentially combusted by sucking air downward through a wind box placed under the pallet. This combustion progresses progressively lower and forward as the pallet moves.
  • the combustion heat generated at this time burns and melts the sintering raw material, producing a sintered cake.
  • the obtained sintered cake is crushed in an ore discharge section, cooled in a cooler, and sized to become a finished sintered ore.
  • Patent Document 1 discloses a method for producing a granulated sintering raw material, in which steam such as water vapor is blown into the sintering raw material during granulation to heat the sintering raw material. According to Patent Document 1, by granulating the sintered raw material while blowing water vapor into it, the sintered raw material is preheated and dried, improving the permeability of the charging layer and improving the production rate of sintered ore. .
  • Patent Document 1 is a method of granulating the sintered raw material while blowing steam, there is a problem with blowing steam in the downstream region (second half) where the sintered raw material moves in the drum mixer. No disclosure or suggestion has been made. For this reason, when the method disclosed in Patent Document 1 is used, the temperature of the granulated and sintered raw material decreases before it is discharged from the discharge port.
  • the method disclosed in Patent Document 2 is a method in which the granulated raw material is heated with a heating device, so even after passing through the heating device, it is difficult to transfer heat into the inside of the raw material, so that the target The temperature may not be reached.
  • the present invention has been made in view of the problems of the prior art, and its purpose is to provide a granulation device and a granulation/sintering device that can efficiently heat the sintering raw material by blowing steam into the sintering raw material. It is an object of the present invention to provide a method for producing a raw material and a method for producing sintered ore using the method for producing the granulated and sintered raw material.
  • a granulator for granulating sintering raw materials including an iron-containing raw material, a CaO-containing raw material, and a coagulant, which includes an input port into which the sintering raw materials are input, and an outlet from which the granulated sintering raw materials are discharged.
  • a cylindrical drum that rotates with the horizontal direction as an axis of rotation;
  • a granulation device comprising: a steam pipe provided only in the latter half; and a plurality of nozzles connected to the steam pipe and jetting steam onto a deposition surface of the sintering raw material.
  • a method for producing a granulated sintered raw material in which a sintered raw material containing an iron-containing raw material, a CaO-containing raw material, and a coagulating material is granulated using a granulating device, the granulating device
  • a cylindrical drum is provided with an input port into which the granulated sintering raw material is input, and a discharge port through which the granulated sintering raw material is discharged, the drum having a cylindrical drum that rotates with a rotation axis in the horizontal direction, and within the drum,
  • a method for producing a granulated sintered raw material wherein steam is blown into the sintered raw material only in the latter half from an intermediate position between the input port and the discharge port to the discharge port to obtain a granulated sintered raw material.
  • the granulation device By using the granulation device according to the present invention, steam can be blown into the sintering raw material to efficiently heat it, so the amount of steam used during granulation can be reduced.
  • the permeability of the charging layer is improved and the production rate of sintered ore is improved. It is possible to improve the production rate and suppress the increase in the manufacturing cost of sintered ore.
  • FIG. 1 is a schematic diagram showing an example of a sintered ore production facility 10 having a drum mixer 32, which is a granulation device according to the present embodiment.
  • FIG. 2 is a graph showing the relationship between the temperature increase of the pseudo particles upon charging into a pallet of the sintering machine and the rate of increase in the productivity of the sintered ore.
  • FIG. 3 is a graph showing the moisture content of the sintering raw materials of Experimental Examples 1 to 3.
  • FIG. 4 is a graph showing the particle diameter of the pseudo particles of Experimental Examples 1 to 3 and the air permeability index JPU of the charging layer.
  • FIG. 5 is a graph showing the production rate of sintered ore in Experimental Examples 1 to 3.
  • FIG. 1 is a schematic diagram showing an example of a sintered ore production facility 10 having a drum mixer 32, which is a granulation device according to the present embodiment.
  • the iron-containing raw material 12 stored in the yard 11 is transported to a mixing tank 22 by a transport conveyor 14.
  • the iron-containing raw material 12 includes various brands of iron ore and dust generated within a steel mill.
  • the raw material supply section 20 includes a plurality of blending tanks 22, 24, 25, 26, and 28.
  • the iron-containing raw material 12 is stored in the blending tank 22 .
  • the blending tank 24 stores a CaO-containing raw material 16 containing limestone, quicklime, etc.
  • the blending tank 25 stores an MgO-containing raw material 17 including dolomite, refined nickel slag, etc.
  • the blending tank 26 stores a coagulating material 18 containing coke powder and anthracite that have been crushed to a particle size of 1 mm or less using a rod mill.
  • the blending tank 28 stores return ore (sintered ore undersieve powder) with a particle size of 5 mm or less, which is the undersieve of the sintered ore.
  • a predetermined amount of each raw material is cut out from the blending tanks 22 to 28 of the raw material supply section 20, and these are blended to form a sintering raw material.
  • the sintering raw material is conveyed to a drum mixer 32 by a conveyor 30.
  • the MgO-containing raw material 17 is an optionally blended raw material, and may or may not be blended with the sintering raw material.
  • the drum mixer 32 is a granulation device that granulates the sintered raw material while blowing steam onto it.
  • the drum mixer 32 includes a cylindrical drum 33 that rotates with the horizontal direction as an axis of rotation, a steam pipe 36, and a plurality of nozzles 37 that are connected to the steam pipe 36 and eject steam 38 onto the surface on which the sintering raw material is deposited.
  • water vapor is an example of steam.
  • the rotation axis of the drum mixer 32 may be substantially horizontal. Further, in order to efficiently discharge the pseudo particles, the rotation axis may be tilted so that the discharge port 35 is located vertically below the input port 34.
  • the cylindrical drum 33 has an input port 34 provided on one end surface of the drum 33 for introducing the sintering raw material, and an input port 34 provided on the other end surface of the drum 33 for receiving the granulated sintering material. (hereinafter referred to as pseudo particles) is provided with an outlet through which the particles are discharged.
  • the steam pipe 36 is provided only in the latter half of the drum 33 between the intermediate position between the input port 34 and the discharge port 35 and the discharge port 35. Steam is blown toward the surface where the crystallizing material is deposited.
  • the average particle diameter of 3.5 mm is higher than that of the sintered raw material that is granulated without blowing water vapor into the sintered raw material.
  • the pseudo particles are transported to a sintering machine 40 by a transport conveyor 39.
  • the average particle size of the pseudo particles is the arithmetic mean particle size, ⁇ (Vi ⁇ di) (where Vi is the abundance ratio of particles in the i-th particle size range, and di is the i It is the particle size defined by the representative particle size of the particle size range.
  • the drum mixer 32 is an example of a granulating device that granulates the sintering raw material.
  • the sintering machine 40 is, for example, a downward suction type Dwight Lloyd type sintering machine.
  • the sintering machine 40 includes a sintering raw material supply device 42, an endlessly movable pallet truck 44, an ignition furnace 46, and a wind box 48.
  • the sintering raw material is charged from the sintering raw material supply device 42 to the pallet truck 44, and a charged layer of the sintering raw material is formed.
  • the charge layer is ignited in an ignition furnace 46 .
  • suctioning air through the wind box 48 the coagulated material 18 is combusted within the charge layer, and the combustion/melting zone within the charge layer is moved below the charge layer. This causes the charging layer to sinter and form a sintered cake.
  • a gaseous fuel supply device 47 may be provided.
  • the gaseous fuel supplied from the gaseous fuel supply device 47 includes blast furnace gas, coke oven gas, blast furnace/coke oven mixed gas, converter gas, city gas, natural gas, methane gas, ethane gas, propane gas, shale gas, and mixtures thereof. Any combustible gas selected from gases.
  • the sintered cake is crushed into sintered ore by a crusher 50.
  • the sintered ore crushed by the crusher 50 is cooled by a cooler 52.
  • the sintered ore cooled by the cooler 52 is sieved by a sieving device 54 having a plurality of sieves, and is separated into finished sintered ore 56 with a particle size of more than 5 mm and return ore 58 with a particle size of 5 mm or less. be done.
  • the finished sintered ore 56 is used as a blast furnace raw material.
  • the return ore 58 is conveyed to the blending tank 28 of the raw material supply section 20 by a conveyor 60.
  • the particle size of the finished sintered ore 56 and the particle size of the return ore 58 mean the particle size that can be sieved by a sieve. This is the particle size that is sieved on the sieve, and the particle size of 5 mm or less is the particle size that is sieved under the sieve using a sieve with an opening of 5 mm.
  • the grain size values of the finished sintered ore 56 and the return ore 58 are just examples, and are not limited to these values.
  • FIG. 2 is a graph showing the relationship between the temperature increase of the pseudo particles charged into the pallet truck 44 of the sintering machine and the rate of increase in the productivity of sintered ore.
  • the horizontal axis in FIG. 2 is the temperature rise (° C.) of the pseudo particles when they are charged into the pallet truck 44 of the sintering machine.
  • the increased temperature is the difference between the average temperature of the pseudo particles granulated by blowing water vapor into them and the average temperature of the pseudo particles granulated without blowing water vapor into them when they are loaded into the pallet truck 44.
  • the average temperature of the pseudo particles granulated without blowing water vapor is 18.3°C, and each plot in the figure shows that the average temperature of the pseudo particles when loaded into the pallet truck 44 is 38.0°C, 35°C. Examples are 0°C, 35.5°C, 45.0°C, and 51.0°C.
  • the vertical axis of FIG. 2 is the improvement effect (%) on the production rate of sintered ore, and is a value calculated by the following formula (1).
  • T1 is the production rate (t/(hr ⁇ m 2 )) of sintered ore when sintered ore is manufactured using pseudo particles granulated without blowing steam
  • T2 is the production rate (t/(hr ⁇ m 2 )) of sintered ore when sintered ore is manufactured using pseudo particles granulated by blowing water vapor into the sintered ore.
  • FIG. 3 is a graph showing the moisture content of the sintering raw materials of Experimental Examples 1 to 3.
  • the bar graph shown with diagonal hatching shows the moisture content (mass%) of the sintered raw material at the side entering the drum mixer, and the bar graph shown with horizontal hatching shows the water content (mass%) of the sintered raw material at the time of charging into the sintering machine. %).
  • Experimental Example 1 is a production example using pseudo particles in which the average temperature of the sintering raw material at the time of charging into the sintering machine is 33°C.
  • Experimental example 2 is a production example using pseudo particles in which the average temperature of the sintering raw material at the time of charging into the sintering machine is 60°C.
  • Experimental example 3 is a production example using pseudo particles in which the average temperature of the sintering raw material at the time of charging into the sintering machine is 62°C.
  • FIG. 4 is a graph showing the particle diameter of the pseudo particles of Experimental Examples 1 to 3 and the air permeability index JPU of the charging layer.
  • the bar graph indicated by diagonal hatching indicates the particle diameter (mm) of the pseudo particles
  • the bar graph indicated by horizontal hatching indicates the air permeability index JPU (-) ((-) means dimensionless.) shows.
  • the particle diameter of the pseudo particles is the above-mentioned calculated average particle diameter
  • the air permeability index JPU of the charging layer is an index calculated using the following formula (2).
  • V is the air volume (m 3 /min)
  • S is the effective area of the sintering machine (m 2 )
  • h is the charging layer height (mm)
  • ⁇ P is the pressure loss (mmH 2 O).
  • FIG. 5 is a graph showing the production rate of sintered ore in Experimental Examples 1 to 3.
  • the production rate of sintered ore is the amount of finished sintered ore produced in 1 hour per m 2 of charging layer (t).
  • the production rate of Experimental Example 1 was 1.29
  • the production rate of Experimental Example 3 was 1.39
  • the production rate of sintered ore was greatly increased.
  • the improvement in production rate in Experimental Example 3 is considered to be due to the improvement in air permeability shown in FIG.
  • Experimental Example 2 the air permeability of the charging layer was significantly reduced, sintering did not proceed, and the sintering raw material was not agglomerated.
  • the amount of water evaporation was confirmed when the pseudo particles discharged from the drum mixer 32 were heated to an average temperature of 80°C or higher, the water content after granulation was 2.0% by mass or more and 4.5%. It was confirmed that the amount of water less than % by mass evaporated.
  • the moisture content after granulation in the sintered raw material during granulation must be 0.5% by mass or more. It is preferable to further add water within a range of 5% by mass or less. Thereby, even if the pseudo particles are heated to 60° C. or higher, the amount of moisture necessary for granulation can be ensured, and pseudo particles having a particle diameter of about 3 mm heated to 60° C. or higher can be produced from the sintered raw material. By producing sintered ore using these heated pseudo-particles, the permeability of the charging layer is improved, thereby realizing an improvement in the production rate of sintered ore.
  • the sintered raw material during granulation is further added with a water content of 0.5% by mass or more and 3.0% by mass or less after granulation. It is preferable to add water, and when the average temperature of the pseudo particles is 80° C. or higher, it is preferable to further add water in an amount of 2.0% by mass or more and 4.5% by mass or less in terms of the amount of water after granulation.
  • the amount of water to be added may be determined within the above range by measuring the water content of the pseudo particles discharged from the drum mixer 32 at predetermined intervals. Further, water may be added by adding factory water, hot water, or condensed water to the sintered raw material during granulation.
  • Table 1 shows the results of an experiment in which steam was blown into the sintering raw material by changing the position of the steam pipe 36 to the input port side and the discharge port side. Note that the temperature on the outlet side of the discharge port in the table is the average temperature of the pseudo particles discharged from the drum mixer 32.
  • Experimental Examples 11 and 12 are granulation examples in which the steam pipe 36 is provided only in the first half from the input port 34 to the intermediate position between the input port and the discharge port, and steam is blown into the sintering raw material to granulate it.
  • Experimental Examples 13 to 15 are granulation examples in which the steam pipe 36 is provided only in the latter half between the inlet 34 and the outlet 35 and the outlet 35, and steam is blown into the sintering raw material to granulate it. It is.
  • the drum mixer 32 which is the granulation device according to the present embodiment, can blow steam into the sintering raw material and heat it efficiently. Therefore, if the amount of steam used is the same, the sintering raw material can be heated to a higher temperature, and if the temperature on the outlet side is the same, the sintering raw material can be heated with a smaller amount of steam used.
  • the granulation device according to the present embodiment it is possible to reduce the amount of steam used during the production of sintered ore while heating the sintered raw material to a predetermined temperature, thereby improving the production rate of the sintered ore. It is possible to suppress an increase in the manufacturing cost of sintered ore.
  • Sintered ore production equipment 11 Yard 12 Iron-containing raw material 14 Conveyor 16 CaO-containing raw material 17 MgO-containing raw material 18 Coagulating material 20 Raw material supply section 22 Blending tank 24 Blending tank 26 Blending tank 28 Blending tank 30 Conveyor 32 Drum mixer 33 Drum 34 Input port 35 Discharge port 36 Steam pipe 37 Nozzle 38 Steam 39 Conveyor 40 Sintering machine 42 Sintering raw material supply device 44 Pallet truck 46 Ignition furnace 48 Wind box 50 Crusher 52 Cooler 54 Sieving device 56 Finished sintered ore 58 Return ore 60 Conveyor 62 Sintering raw material

Landscapes

  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Manufacturing & Machinery (AREA)
  • Geochemistry & Mineralogy (AREA)
  • Geology (AREA)
  • General Life Sciences & Earth Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Environmental & Geological Engineering (AREA)
  • Materials Engineering (AREA)
  • Mechanical Engineering (AREA)
  • Metallurgy (AREA)
  • Organic Chemistry (AREA)
  • Manufacture And Refinement Of Metals (AREA)

Abstract

焼結原料に蒸気を吹き込んで、効率的に焼結原料を加熱できる造粒装置、造粒焼結原料の製造方法および当該造粒焼結原料の製造方法を用いた焼結鉱の製造方法を提供する。 鉄含有原料、CaO含有原料および凝結材を含む焼結原料を造粒する造粒装置であって、前記焼結原料が投入される投入口と、造粒された焼結原料が排出される排出口と、が設けられ、横方向を回転軸として回転する筒状のドラムと、前記ドラム内であって、前記投入口と前記排出口との中間位置から前記排出口までの間の後半部分のみに設けられる蒸気配管と、前記蒸気配管に接続され、前記焼結原料の堆積面に蒸気を噴出させる複数のノズルと、を有する。

Description

造粒装置、造粒焼結原料の製造方法および焼結鉱の製造方法
 本発明は、焼結原料を造粒する造粒装置、造粒焼結原料の製造方法および焼結鉱の製造方法に関する。
 高炉用原料である焼結鉱は、一般に、鉄鉱石粉、製鉄所内回収粉、焼結鉱篩下粉などの鉄含有原料と、石灰石及びドロマイトなどの含CaO原料と、粉コークスや無煙炭などの炭材(固体燃料)とを焼結原料として、無端移動型焼結機であるドワイトロイド式焼結機(以下、「焼結機」と記載する場合がある。)を用いて製造される。焼結原料は、焼結機の無端移動式のパレットに装入され、装入層が形成される。装入層の厚さ(高さ)は400~800mm程度である。その後、装入層の上方に設置された点火炉により、装入層表層の炭材に点火される。パレットの下に配設されている風箱を介して空気を下方に吸引することにより、装入層中の炭材を順次燃焼させる。この燃焼は、パレットの移動につれて次第に下層にかつ前方に進行する。このときに発生する燃焼熱によって、焼結原料が燃焼、溶融し、焼結ケーキが生成される。その後、得られた焼結ケーキは、排鉱部において破砕され、クーラーで冷却され、整粒されて成品焼結鉱となる。
 上述した焼結機を用いた焼結鉱の製造では、焼結原料を予熱乾燥することで装入層の湿潤帯が占める割合を縮小させて装入層の通気性を向上させ、焼結鉱の生産性を向上させる技術が知られている。例えば、特許文献1には、焼結原料を造粒する造粒時に水蒸気などの蒸気を吹込み、焼結原料を加熱する造粒焼結原料の製造方法が開示されている。特許文献1によれば、水蒸気を吹込みながら焼結原料を造粒することで焼結原料が予熱乾燥され、装入層の通気性が向上して焼結鉱の生産率が向上できるとしている。
国際公開2019/167888号 特開2022-39966
 特許文献1に開示の方法は、蒸気を吹き込みながら焼結原料を造粒する方法であるものの、ドラムミキサー内において焼結原料が移動する下流側の領域(後半部分)にて蒸気を吹き込むことについての開示や示唆はなされていない。このため、特許文献1に開示された方法を用いた場合には、排出口から排出される前に、造粒焼結原料の温度が低下してしまう。また、特許文献2に開示の方法は、造粒済みの原料を加熱装置にて加熱する方法であるため、加熱装置を経た後であっても、原料内部への熱伝達の困難性から、目標温度に達しない可能性がある。本発明は、このような従来技術の課題を鑑みてなされたものであり、その目的は、焼結原料に蒸気を吹き込んで、効率的に焼結原料を加熱できる造粒装置、造粒焼結原料の製造方法および当該造粒焼結原料の製造方法を用いた焼結鉱の製造方法を提供することである。
上記課題を解決するための手段は、以下の通りである。
[1]鉄含有原料、CaO含有原料および凝結材を含む焼結原料を造粒する造粒装置であって、前記焼結原料が投入される投入口と、造粒された焼結原料が排出される排出口と、が設けられ、横方向を回転軸として回転する筒状のドラムと、前記ドラム内であって、前記投入口と前記排出口との中間位置から前記排出口までの間の後半部分のみに設けられる蒸気配管と、前記蒸気配管に接続され、前記焼結原料の堆積面に蒸気を噴出させる複数のノズルと、を有する、造粒装置。
[2]造粒装置を用いて、鉄含有原料、CaO含有原料および凝結材を含む焼結原料を造粒する造粒焼結原料の製造方法であって、前記造粒装置は前記焼結原料が投入される投入口と、造粒された焼結原料が排出される排出口と、が設けられ、横方向を回転軸として回転する筒状のドラムを有し、前記ドラム内であって、前記投入口と前記排出口との中間位置から前記排出口までの間の後半部分のみで前記焼結原料に蒸気を吹き込んで造粒焼結原料とする、造粒焼結原料の製造方法。
[3]前記造粒装置から排出される造粒焼結原料の温度が60℃以上となる場合に、前記焼結原料に0.5質量%以上4.5質量%以下の水分をさらに添加する、[2]に記載の造粒焼結原料の製造方法。
[4][2]または[3]に記載の造粒焼結原料の製造方法で造粒された造粒焼結原料を焼結機で焼結して焼結鉱を製造する、焼結鉱の製造方法。
 本発明に係る造粒装置を用いることで、焼結原料に蒸気を吹き込んで効率的に加熱できるので、造粒時に用いる蒸気の使用量を削減できる。この加熱された造粒焼結原料を用いることで、装入層の通気性が向上し焼結鉱の生産率が向上するので、本発明に係る造粒装置を用いることで、焼結鉱の生産率の向上と焼結鉱の製造コスト上昇の抑制とが実現できる。
図1は、本実施形態に係る造粒装置であるドラムミキサー32を有する焼結鉱製造設備10の一例を示す模式図である。 図2は、焼結機のパレット装入時の擬似粒子の温度上昇分と、焼結鉱の生産性の上昇率との関係を示すグラフである。 図3は、実験例1~3の焼結原料の水分量を示すグラフである。 図4は、実験例1~3の擬似粒子の粒子径と、装入層の通気性指数JPUを示すグラフである。 図5は、実験例1~3の焼結鉱の生産率を示すグラフである。
 以下、発明の実施形態を通じて本発明を説明する。図1は、本実施形態に係る造粒装置であるドラムミキサー32を有する焼結鉱製造設備10の一例を示す模式図である。ヤード11に保管された鉄含有原料12は、搬送コンベア14によって配合槽22に搬送される。鉄含有原料12は、種々の銘柄の鉄鉱石および製鉄所内発生ダストを含む。
 原料供給部20は、複数の配合槽22、24、25、26、28を備える。配合槽22には、鉄含有原料12が貯留される。配合槽24には、石灰石や生石灰等を含むCaO含有原料16、配合槽25にはドロマイトや精錬ニッケルスラグ等を含むMgO含有原料17がそれぞれ貯留される。配合槽26には、ロッドミルを用いて粒径1mm以下に破砕された粉コークスや無煙炭を含む凝結材18が貯留される。配合槽28には、焼結鉱の篩下となった粒径5mm以下の返鉱(焼結鉱篩下粉)が貯留される。原料供給部20の配合槽22~28から、各原料が所定量切り出され、これらが配合されて焼結原料となる。焼結原料は、搬送コンベア30によってドラムミキサー32に搬送される。MgO含有原料17は、任意配合原料であって、焼結原料に配合されてもよく、配合されなくてもよい。
 ドラムミキサー32は、焼結原料に蒸気を吹き付けながら造粒する造粒装置である。ドラムミキサー32は、横方向を回転軸として回転する筒状のドラム33と、蒸気配管36と、蒸気配管36に接続され、焼結原料の堆積面に水蒸気38を噴出させる複数のノズル37とを有する。なお、水蒸気は蒸気の一例である。ドラムミキサー32における回転軸は、略水平にしてよい。また、擬似粒子を効率良く排出するため、投入口34に対して排出口35が鉛直方向の下方に位置するように回転軸を傾けてもよい。
 筒状のドラム33には、当該ドラム33の一端面側に設けられ、焼結原料が投入される投入口34と、ドラム33の他端面側に設けられ、造粒された造粒焼結原料(以後、擬似粒子と記載する。)が排出される排出口と、が設けられている。蒸気配管36は、ドラム33内であって、投入口34と排出口35との中間位置から排出口35までの間の後半部分となる領域のみに設けられ、当該位置から複数のノズル37を通じて焼結原料の堆積面に向けて水蒸気を吹き込む。
 このように、ドラム33の後半部分において焼結原料に水蒸気を吹き込みながら焼結原料を造粒することで、水蒸気を吹き込まないで造粒された焼結原料よりも高い温度の平均粒径3.0mm程度の擬似粒子を製造している。擬似粒子は、搬送コンベア39によって焼結機40に搬送される。本実施形態において、擬似粒子の平均粒径は算術平均粒径であって、Σ(Vi×di)(但し、Viはi番目の粒度範囲の中にある粒子の存在比率であり、diはi番目の粒度範囲の代表粒径である。)で定義される粒径である。また、ドラムミキサー32は、焼結原料を造粒する造粒装置の一例である。
 焼結機40は、例えば、下方吸引式のドワイトロイド式焼結機である。焼結機40は、焼結原料供給装置42と、無端移動式のパレット台車44と、点火炉46と、ウインドボックス48とを有する。焼結原料供給装置42から焼結原料がパレット台車44に装入され、焼結原料の装入層が形成される。装入層は点火炉46で点火される。ウインドボックス48を通じて空気を吸引することで、装入層内で凝結材18を燃焼させつつ装入層内の燃焼・溶融帯を装入層の下方へ移動させる。これにより、装入層は焼結されて焼結ケーキが形成される。本実施形態では、気体燃料供給装置47を備えても良い。気体燃料供給装置47から供給される気体燃料は、高炉ガス、コークス炉ガス、高炉・コークス炉混合ガス、転炉ガス、都市ガス、天然ガス、メタンガス、エタンガス、プロパンガス、シェールガスおよびそれらの混合ガスのうちから選ばれるいずれかの可燃性ガスである。
 焼結ケーキは、破砕機50によって破砕され焼結鉱にされる。破砕機50で破砕された焼結鉱は、冷却機52によって冷却される。冷却機52によって冷却された焼結鉱は、複数の篩を有する篩分け装置54によって篩分けされ、粒径5mm超の成品焼結鉱56と、粒径5mm以下の返鉱58とに篩分けされる。成品焼結鉱56は、高炉原料として用いられる。一方、返鉱58は、搬送コンベア60によって原料供給部20の配合槽28に搬送される。本実施形態において、成品焼結鉱56の粒径および返鉱58の粒径は、篩によって篩分けられる粒径を意味し、例えば、粒径5mm超とは、目開き5mmの篩を用いて篩上に篩分けされる粒径であり、粒径5mm以下とは、目開き5mmの篩を用いて篩下に篩分けされる粒径である。成品焼結鉱56および返鉱58の粒径の各値は、あくまで一例であり、この値に限定するものではない。
 このように、焼結鉱製造設備10を用いた焼結鉱の製造では、ドラムミキサー32で焼結原料に水蒸気を吹き込んで焼結原料を加熱しながら造粒している。これにより、焼結原料の装入層の通気性が向上し、焼結原料の生産率が向上する。
 図2は、焼結機のパレット台車44へ装入される擬似粒子の上昇温度と、焼結鉱の生産性の上昇率との関係を示すグラフである。図2の横軸は焼結機のパレット台車44への装入時の擬似粒子の上昇温度(℃)である。上昇温度は、パレット台車44への装入時における水蒸気を吹き込んで造粒した擬似粒子の平均温度と水蒸気を吹き込まずに造粒した擬似粒子の平均温度との差である。なお、水蒸気を吹き込まずに造粒した擬似粒子の平均温度は18.3℃であり、図中の各プロットは、パレット台車44装入時の擬似粒子の平均温度が、38.0℃、35.0℃、35.5℃、45.0℃、51.0℃の例である。また、図2の縦軸は焼結鉱の生産率の向上効果(%)であり、下記(1)式で算出される値である。
 (T2-T1)×100/T1・・・(1)
 上記(1)式において、T1は、水蒸気を吹き込まずに造粒した擬似粒子を用いて焼結鉱を製造したときの焼結鉱の生産率(t/(hr×m))であり、T2は、水蒸気を吹き込んで造粒した擬似粒子を用いて焼結鉱を製造した時の焼結鉱の生産率(t/(hr×m))である。
 図2に示すように、パレット台車44への装入時の擬似粒子の平均温度が高くなるに従って、焼結鉱の生産性の上昇率は高くなった。この結果から、ドラムミキサー32で焼結原料に水蒸気を吹き込んで高温の擬似粒子とし、当該擬似粒子を用いて焼結鉱を製造することで、焼結鉱の生産率を向上できることがわかる。
 一方、擬似粒子の平均温度が60℃以上になると、水分が蒸発してしまい、所定の粒径の擬似粒子が造粒されなくなる。擬似粒子の粒径が小さくなると装入層の通気性が悪化し、焼結鉱の生産性が大きく低下する。
 図3は、実験例1~3の焼結原料の水分量を示すグラフである。図3において斜線ハッチングで示した棒グラフはドラムミキサー入り側の焼結原料の水分量(質量%)を示し、横線ハッチングで示した棒グラフは焼結機装入時の焼結原料の水分量(質量%)を示す。実験例1は焼結機への装入時の焼結原料の平均温度が33℃である擬似粒子を用いた製造例である。実験例2は、焼結機への装入時の焼結原料の平均温度が60℃である擬似粒子を用いた製造例である。実験例3は、焼結機への装入時の焼結原料の平均温度が62℃である擬似粒子を用いた製造例である。
 図3に示すように、実験例1と実験例3は、焼結機への装入時においても原料水分量6.5質量%が確保できていることがわかる。一方、実験例2では、ドラムミキサー入り側では6.5質量%の水分量を確保できていたものの加熱によって水分が蒸発したため、焼結機への装入時においては水分量が5.5質量%程度に低下した。
 図4は、実験例1~3の擬似粒子の粒子径と、装入層の通気性指数JPUを示すグラフである。図4において、斜線のハッチングで示した棒グラフは擬似粒子の粒子径(mm)を示し、横線のハッチングで示した棒グラフは通気性指数JPU(-)((-)は無次元を意味する。)を示す。なお、擬似粒子の粒子径は上述した算出平均粒径であり、装入層の通気性指数JPUは、下記(2)式を用いて算出される指数である。
 JPU=V/[S×(ΔP/h)0.6]・・・(2)
 上記(1)式において、Vは風量(m/min)であり、Sは焼結機の有効面積(m)であり、hは装入層高さ(mm)であり、ΔPは圧力損失(mmHO)である。
 図4に示すように、実験例1と実験例3は、粒子径が3mm程度の擬似粒子が造粒されたものの、実験例2では、粒子径が1mm程度の擬似粒子しか造粒されなかった。実験例2の擬似粒子の粒子径の低下は、図3に示した原料水分量の低下によるものと考えられる。実験例3では高温で、且つ、粒子径が3mm程度の擬似粒子が造粒されたので、装入層の通気性指数は17程度になった。実験例1では同等の粒子径の擬似粒子が造粒されたものの当該擬似粒子の平均温度が低いために、装入層の通気性指数は15程度になった。実験例2では高温の擬似粒子となったものの粒子径が1mm程度の擬似粒子しか造粒されなかったため、装入層の通気性指数は12程度に大きく低下した。
 図5は、実験例1~3の焼結鉱の生産率を示すグラフである。焼結鉱の生産率は、装入層1m当たり1時間で製造される成品焼結鉱の製造量(t)である。図5に示すように、実験例1の生産率1.29に対し、実験例3の生産率は1.39になり、焼結鉱の生産率は大きく増加した。実験例3の生産率の向上は、図4に示した通気性の向上によるものと考えられる。一方、実験例2では、装入層の通気性が大きく低下し、焼結が進行せず焼結原料が塊成化されなかった。
 このように、造粒装置から排出される擬似粒子の平均温度が60℃以上となる場合には、当該温度によって水分が蒸発するので、造粒に必要な水分が足りなくなり、所定の粒径の擬似粒子が造粒できず、逆に装入層の通気性が悪化する。そこで、ドラムミキサー32から排出される擬似粒子の平均温度が60℃以上80℃未満になるように加熱した場合の水分蒸発量を確認した所、造粒後の水分量で0.5質量%以上3.0質量%以下の範囲内の水分量が蒸発することが確認された。さらに、ドラムミキサー32から排出される擬似粒子の平均温度が80℃以上になるように加熱した場合に水分蒸発量を確認した所、造粒後の水分量で2.0質量%以上4.5質量%以下の水分量が蒸発することが確認された。
 これらの結果から、造粒装置から排出される擬似粒子の平均温度を60℃以上とする場合には、造粒中の焼結原料に造粒後の水分量で0.5質量%以上4.5質量%以下の範囲内の水分をさらに添加することが好ましい。これにより、擬似粒子を60℃以上に加熱しても造粒に必要な水分量が確保でき、焼結原料から60℃以上に加熱された粒子径3mm程度の擬似粒子を製造できる。この加熱された擬似粒子を用いて焼結鉱を製造することで、装入層の通気性が向上し、これにより、焼結鉱の生産率の向上が実現できる。なお、擬似粒子の平均温度を60℃以上80℃未満とする場合には造粒中の焼結原料に造粒後の水分量で0.5質量%以上3.0質量%以下の水分をさらに添加することが好ましく、擬似粒子の平均温度を80℃以上とする場合には、造粒後の水分量で2.0質量%以上4.5質量%以下の水分をさらに添加することが好ましい。
 添加する水分量は、所定の期間ごとにドラムミキサー32から排出される擬似粒子の水分含有量を測定し、上記範囲内で定めてよい。また、水分の添加は、造粒中の焼結原料に工場用水や熱水あるいは凝縮水を添加すればよい。
 次に、ドラムミキサー32における蒸気配管36の設置位置について説明する。表1は、蒸気配管36の設ける位置を投入口側と排出口側とに変えて、焼結原料への水蒸気の吹き込み実験を行った結果を示す。なお、表中の排出口出側の温度は、ドラムミキサー32から排出される擬似粒子の平均温度である。
Figure JPOXMLDOC01-appb-T000001
 実験例11、12は、蒸気配管36を投入口34から投入口と排出口との中間位置までの前半部分のみに設け、焼結原料に水蒸気を吹き込んで造粒した造粒例である。実験例13~15は、蒸気配管36を投入口34と排出口35との中間位置から排出口35までの間の後半部分のみに設け、焼結原料に水蒸気を吹き込んで造粒した造粒例である。
 実験例11と実験例13との比較、および、実験例12と実験例14との比較から、蒸気配管36を後半部分に設けて水蒸気を吹き込んで造粒した擬似粒子の排出口出側の平均温度は、蒸気配管36を前半部分に設けて水蒸気を吹込んで造粒した擬似粒子の排出口出側の平均温度よりも8~11℃高くなった。また、実験例11と実験例15との比較から、擬似粒子の排出口出側の温度が同じであるなら、蒸気配管36を後半部分に設けた方が造粒中に使用する水蒸気の吹込み量を17%削減できた。これらの結果から、ドラムミキサー32の後半部分のみに複数のノズル37を有する蒸気配管36を設け、当該ノズル37から焼結原料に蒸気を吹込むことで、ドラムミキサー32の他の位置に複数のノズルを有する蒸気配管を設けた場合よりも焼結原料を効率的に加熱できることが確認された。
 以上、説明したように本実施形態に係る造粒装置であるドラムミキサー32は、焼結原料に蒸気を吹き込み、効率的に加熱できる。このため、蒸気使用量が同じであるならば、焼結原料をより高温に加熱でき、排出口出側の温度が同じであるならば、より少ない蒸気使用量で焼結原料を加熱できる。このように、本実施形態に係る造粒装置を用いることで焼結原料を所定温度に加熱しつつ焼結鉱製造時に使用する蒸気量を削減できるので、本焼結鉱の生産率の向上と焼結鉱の製造コスト上昇の抑制とが実現できる。
10 焼結鉱製造設備
11 ヤード
12 鉄含有原料
14 搬送コンベア
16 CaO含有原料
17 MgO含有原料
18 凝結材
20 原料供給部
22 配合槽
24 配合槽
26 配合槽
28 配合槽
30 搬送コンベア
32 ドラムミキサー
33 ドラム
34 投入口
35 排出口
36 蒸気配管
37 ノズル
38 水蒸気
39 搬送コンベア
40 焼結機
42 焼結原料供給装置
44 パレット台車
46 点火炉
48 ウインドボックス
50 破砕機
52 冷却機
54 篩分け装置
56 成品焼結鉱
58 返鉱
60 搬送コンベア
62 焼結原料
 

 

Claims (4)

  1.  鉄含有原料、CaO含有原料および凝結材を含む焼結原料を造粒する造粒装置であって、
     前記焼結原料が投入される投入口と、造粒された焼結原料が排出される排出口と、が設けられ、横方向を回転軸として回転する筒状のドラムと、
     前記ドラム内であって、前記投入口と前記排出口との中間位置から前記排出口までの間の後半部分のみに設けられる蒸気配管と、
     前記蒸気配管に接続され、前記焼結原料の堆積面に蒸気を噴出させる複数のノズルと、を有する、造粒装置。
  2.  造粒装置を用いて、鉄含有原料、CaO含有原料および凝結材を含む焼結原料を造粒する造粒焼結原料の製造方法であって、
     前記造粒装置は前記焼結原料が投入される投入口と、造粒された焼結原料が排出される排出口と、が設けられ、横方向を回転軸として回転する筒状のドラムを有し、
     前記ドラム内であって、前記投入口と前記排出口との中間位置から前記排出口までの間の後半部分のみで前記焼結原料に蒸気を吹き込んで造粒焼結原料とする、造粒焼結原料の製造方法。
  3.  前記造粒装置から排出される造粒焼結原料の温度が60℃以上となる場合に、前記焼結原料に0.5質量%以上4.5質量%以下の水分をさらに添加する、請求項2に記載の造粒焼結原料の製造方法。
  4.  請求項2または請求項3に記載の造粒焼結原料の製造方法で造粒された造粒焼結原料を焼結機で焼結して焼結鉱を製造する、焼結鉱の製造方法。
     

     
PCT/JP2023/015187 2022-04-28 2023-04-14 造粒装置、造粒焼結原料の製造方法および焼結鉱の製造方法 WO2023210412A1 (ja)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2023546184A JPWO2023210412A1 (ja) 2022-04-28 2023-04-14

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2022-073926 2022-04-28
JP2022073926 2022-04-28

Publications (1)

Publication Number Publication Date
WO2023210412A1 true WO2023210412A1 (ja) 2023-11-02

Family

ID=88518553

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2023/015187 WO2023210412A1 (ja) 2022-04-28 2023-04-14 造粒装置、造粒焼結原料の製造方法および焼結鉱の製造方法

Country Status (3)

Country Link
JP (1) JPWO2023210412A1 (ja)
TW (1) TW202346608A (ja)
WO (1) WO2023210412A1 (ja)

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS50104103A (ja) * 1974-01-25 1975-08-16
JP2022039966A (ja) * 2020-08-28 2022-03-10 Jfeスチール株式会社 焼結鉱の製造方法および焼結鉱の製造設備

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS50104103A (ja) * 1974-01-25 1975-08-16
JP2022039966A (ja) * 2020-08-28 2022-03-10 Jfeスチール株式会社 焼結鉱の製造方法および焼結鉱の製造設備

Also Published As

Publication number Publication date
TW202346608A (zh) 2023-12-01
JPWO2023210412A1 (ja) 2023-11-02

Similar Documents

Publication Publication Date Title
JP5315659B2 (ja) 焼結鉱の製造方法
JP2021120479A (ja) 焼結鉱の製造方法および焼結機
JP6686974B2 (ja) 焼結鉱の製造方法
JP2007284744A (ja) 焼結鉱の製造方法
JPH024658B2 (ja)
AU2019391453B2 (en) Sintered ore manufacturing method
WO2023210412A1 (ja) 造粒装置、造粒焼結原料の製造方法および焼結鉱の製造方法
AU2019228862B2 (en) Method for Manufacturing Granulated Raw Material for Sintering
JP2019218614A (ja) 焼結鉱の製造方法
JP4830728B2 (ja) 焼結鉱の製造方法
WO2023210411A1 (ja) 造粒装置、造粒焼結原料の製造方法および焼結鉱の製造方法
JP6734370B2 (ja) 原料処理装置及び原料処理方法
JP6333770B2 (ja) フェロニッケルの製造方法
JP7328537B2 (ja) 焼結鉱の製造方法
JP5126580B2 (ja) 焼結鉱の製造方法
KR101149156B1 (ko) 소결광의 제조방법
CN112601827A (zh) 氧化物矿石的冶炼方法
JP3642027B2 (ja) 高炉操業方法
JP4996211B2 (ja) 鉄鉱石ペレットを製造する際の造粒原料の粒度決定方法
JP6809446B2 (ja) 炭材内装粒子の製造方法および炭材内装焼結鉱の製造方法
JP2005248271A (ja) 焼結原料の造粒方法
JPH08199250A (ja) 焼結鉱の製造方法
JP2001271121A (ja) 高炉用焼結鉱の製造方法
JPH11279667A (ja) 焼結鉱の製造方法
Das et al. Agglomeration

Legal Events

Date Code Title Description
WWE Wipo information: entry into national phase

Ref document number: 2023546184

Country of ref document: JP

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 23796155

Country of ref document: EP

Kind code of ref document: A1