WO2019167293A1 - 鉛蓄電池用正極格子体及び鉛蓄電池 - Google Patents

鉛蓄電池用正極格子体及び鉛蓄電池 Download PDF

Info

Publication number
WO2019167293A1
WO2019167293A1 PCT/JP2018/018216 JP2018018216W WO2019167293A1 WO 2019167293 A1 WO2019167293 A1 WO 2019167293A1 JP 2018018216 W JP2018018216 W JP 2018018216W WO 2019167293 A1 WO2019167293 A1 WO 2019167293A1
Authority
WO
WIPO (PCT)
Prior art keywords
frame bone
positive electrode
horizontal
vertical
bone
Prior art date
Application number
PCT/JP2018/018216
Other languages
English (en)
French (fr)
Inventor
祐太朗 川口
由涼 荻野
篤志 佐藤
真也 菅
克弥 温井
章宏 西村
嵩清 竹本
亮 田井中
雅 松下
英貴 萩原
将樹 下津谷
古川 淳
Original Assignee
古河電池株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 古河電池株式会社 filed Critical 古河電池株式会社
Priority to BR112020006555-2A priority Critical patent/BR112020006555A2/pt
Priority to CN201880064041.3A priority patent/CN111164809B/zh
Priority to EP18907954.4A priority patent/EP3657583B1/en
Publication of WO2019167293A1 publication Critical patent/WO2019167293A1/ja
Priority to US16/831,228 priority patent/US11158861B2/en

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/64Carriers or collectors
    • H01M4/66Selection of materials
    • H01M4/68Selection of materials for use in lead-acid accumulators
    • H01M4/685Lead alloys
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C11/00Alloys based on lead
    • C22C11/06Alloys based on lead with tin as the next major constituent
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/06Lead-acid accumulators
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/14Electrodes for lead-acid accumulators
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/64Carriers or collectors
    • H01M4/70Carriers or collectors characterised by shape or form
    • H01M4/72Grids
    • H01M4/73Grids for lead-acid accumulators, e.g. frame plates
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M50/00Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
    • H01M50/50Current conducting connections for cells or batteries
    • H01M50/572Means for preventing undesired use or discharge
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M2004/026Electrodes composed of, or comprising, active material characterised by the polarity
    • H01M2004/028Positive electrodes
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M2220/00Batteries for particular applications
    • H01M2220/20Batteries in motive systems, e.g. vehicle, ship, plane
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Definitions

  • the positive electrode grid body 1 according to the first embodiment suppresses peeling or dropping of the positive electrode active material, and further prevents bending of the inner bone of the first region AR1 located below the negative electrode current collector ear 11B. be able to. As a result, it is possible to prevent a decrease in battery performance such as discharge capacity and output characteristics, and it is possible to particularly suppress the growth toward the upper left, which directly causes an internal short circuit. Furthermore, since the positive electrode grid body 1 according to the first embodiment applies the reinforcing portion having a larger cross-sectional area of the plurality of horizontal rails 15a only to the portion necessary for suppressing the growth and does not apply it to the center side, Both long life and light weight can be achieved.
  • the cross-sectional area of the horizontal beam 15a is increased means, for example, the thickness of the plurality of horizontal beams 15a in addition to the form in which the width of the plurality of horizontal beams 15a is increased as in the example shown in FIG. The thickness may be increased.
  • the crosspiece 15a has a cross-sectional area that increases from the side of the second vertical frame bone 14b toward the portion connected to the first vertical frame bone 14a.
  • the area of the plurality of openings 16 in plan view decreases in a stepwise manner from the second lateral frame bone 13b side toward the first lateral frame bone 13a side.
  • the average area of the plurality of openings 16 adjacent to the first vertical frame bone 14a and the second vertical frame bone 14b in a plan view is the same as that of the remaining plurality of openings 16 excluding the plurality of openings 16. It is smaller than the average area seen.
  • First opening group 17 (C1) Among the plurality of openings 16, a plurality of openings 16 adjacent to the second lateral frame bone 13 b are defined as a first opening group 17, and a plurality of vertical portions defining the first opening group 17. At least a part of the crosspiece 15b ′ is disposed so as to be shifted in the lateral direction X with respect to the vertical crosspiece 15b that defines the plurality of openings 16 adjacent to the first opening group 17 in the vertical direction Y.
  • the first region is 25% of the length W Y in the vertical direction Y of the first vertical frame bone 14a from the first horizontal frame bone 13a toward the second horizontal frame bone 13b. It is defined by a section and a section of about 45% of the length W X in the lateral direction X of the crosspiece 15a from the first vertical frame bone 14a. Further, in FIG. 2, the plurality of horizontal bars 15a located below the first region are directed from the second vertical frame bone 14b side toward the first vertical frame bone 14a. In the section of about 20% of the length W X in the horizontal direction X, the cross-sectional area is formed to be large.
  • the first region in which the cross-sectional area of the plurality of horizontal rails 15a is increased is the length in the vertical direction Y of the first vertical frame bone 14a from the first horizontal frame bone 13a toward the second horizontal frame bone 13b. Since it is defined by a section of 17% to 25% of W Y and a section of 20% to 45% of the length W X in the lateral direction X of the cross beam 15a from the first vertical frame bone 14a, 1 has the effect of achieving both growth suppression and weight reduction.
  • FIG. 3 is an enlarged view of a portion surrounded by (A1, A2) in FIG.
  • the cross-sectional area of the portion connected to the first vertical frame bone 14a is closer to the horizontal rail 15a closer to the first horizontal frame bone 13a. Becomes larger.
  • the change section of the cross-sectional area is longer, and the change section is stepwise from the first horizontal frame bone 13a toward the second horizontal frame bone 13b. Shorter.
  • FIG. 4 is an enlarged view of a portion surrounded by (A3) in FIG.
  • the plurality of horizontal rails 15a described in (A3) is 17% to the length in the vertical direction Y of the second vertical frame bone 14b from the first horizontal frame bone 13a toward the second horizontal frame bone 13b.
  • the first vertical frame bone 14a To a portion connected to the second vertical frame bone 14b.
  • the vertical direction of the second region is described. Also by making the length, that is, the length in the longitudinal direction Y of the second vertical frame bone 14b from the first horizontal frame bone 13a toward the second horizontal frame bone 13b, at least the same as the first region. A sufficient reinforcing effect can be obtained.
  • the vertical length of the second region is the length W Y in the vertical direction Y of the second vertical frame bone 14b from the first horizontal frame bone 13a toward the second horizontal frame bone 13b. It is preferable to reduce the weight to 17% to 25%.
  • (B) Area of Opening 16 (B1)
  • the configuration of (B1) of the positive electrode grid body 1 according to the second embodiment will be described with reference to FIGS. 2 and 3.
  • the average area of the plurality of openings 16 adjacent to the first vertical frame bone 14a and the plurality of openings 16 adjacent to the second vertical frame bone 14b in plan view is the plurality of openings.
  • the average area of the remaining plurality of openings 16 excluding the portion 16 is made smaller.
  • the average area of the plurality of openings 16 adjacent to at least the first vertical frame bone 14a and the plurality of openings 16 adjacent to the second vertical frame bone 14b in plan view is determined as the plurality of openings.
  • the ratio of the positive electrode active material filled in the plurality of openings 16 in contact with a certain area of the positive electrode grid 1 is different from that of the other. This is larger than the positive electrode active material filled in the plurality of openings 16. Therefore, the adhesiveness between the positive electrode active material filled in the plurality of openings 16 and the positive electrode grid body 1 is improved as compared with other portions, and separation or dropping of the positive electrode active material can be suppressed.
  • the horizontal beam 15a or the vertical beam 15b forming the opening 16 is increased, or the same area is formed.
  • a method such as increasing the number of the horizontal bars 15a or the vertical bars 15b in FIG.
  • the reduced area of the average area in plan view of the opening 16 is adjacent to the first vertical frame bone 14a and the second vertical frame bone 14b. It is desirable to limit to the part to be.
  • the configuration of (B2) of the positive electrode grid body 1 according to the second embodiment will be described with reference to FIGS. 2 and 3.
  • the area of the plurality of openings 16 in plan view is the second horizontal width when the first horizontal frame bone 13a and the second horizontal frame bone 13b are compared on the same vertical line.
  • the size is gradually reduced from the frame bone 13b side toward the first horizontal frame bone 13a side. That is, in the example shown in FIG. 2 and FIG. 3, the area of one opening 16 located on the same vertical line from the upper side is the y′th position of the opening 16 located on the same vertical line. Make it smaller than the area.
  • the area of the plurality of openings 16 continuously arranged in the vertical direction on the same vertical line is the second horizontal frame bone from the second horizontal frame bone 13b side toward the first horizontal frame bone 13a side. It is preferable to reduce the size stepwise within a range not exceeding 0.85 times and 0.99 times the area of the opening 16 on the 13b side.
  • the average area of the plurality of openings 16 adjacent to the first vertical frame bone 14 a and the second vertical frame bone 14 b in plan view is the average of the remaining plurality of openings 16 excluding the plurality of openings 16. Make it smaller than the average area.
  • the areas of the plurality of openings 16 in plan view are the first horizontal frame bone 13a and the second horizontal frame bone.
  • the width is gradually reduced from the second lateral frame bone 13b side toward the first lateral frame bone 13a side.
  • the positive electrode active material filled in the plurality of opening portions 16 per unit area of the positive electrode lattice body 1 is the same as the configuration of (B1).
  • the ratio of contact with the positive electrode lattice body 1 increases as compared with the opening 16 having a large area located on the lower side.
  • the area ratio exceeds 0.99 times, the area difference between the upper side and the lower side of the positive electrode grid body 1 is small, so that the effect of selectively increasing the reinforcement on the upper side of the positive electrode grid body 1 is reduced. .
  • the filling of the positive electrode active material is improved by reducing the size of the opening 16 on the upper side of the positive electrode grid 1, but the opening 16 on the lower side is relatively large. As a result, the output characteristics and the retention of the positive electrode active material may be reduced.
  • the positive electrode active material expands and contracts due to charge and discharge, the expansion and contraction force is propagated from the central portion of the positive electrode lattice body toward the outer peripheral portion.
  • the first and second vertical frame bones are particularly elongated as the total propagation, and the positive electrode active material is peeled off at the openings adjacent to the first and second vertical frame bones. It was found that detachment is likely to occur. Peeling or dropping off can be suppressed to some extent by reducing the area in plan view of the plurality of openings adjacent to the first and second vertical frame bones as described in the configuration of (B1) above. is there.
  • an area difference (a volume difference when the thickness of the positive electrode grid body is constant) in plan view of openings continuously arranged in the vertical direction on the same perpendicular line. It has been found that the interfacial stress generated between the openings can be relaxed by the difference between the expansion force and the contraction force of the positive electrode active material, and the separation or dropping of the positive electrode active material can be more significantly suppressed.
  • the plurality of openings 16 are viewed in plan view as approaching from the lower second lateral frame bone 13b side to the upper first lateral frame bone 13a side on the same vertical line in FIGS.
  • the accelerated growth is likely to occur and the positive electrode active material 1 is significantly expanded and contracted between the positive electrode active material 1 surface and the positive electrode active material between the openings 16 on the upper side of the positive electrode active material 1.
  • the generated interfacial stress can be relieved and the positive electrode active material can be prevented from peeling or falling off.
  • the upper side of the positive electrode grid body 1 is increased. Mechanical strength is improved. Therefore, even if growth occurs upward, the horizontal rail 15a located on the upper side of the positive electrode grid body 1 suppresses upward bending, and the upper part of the positive electrode plate and a part of the negative electrode such as the negative electrode plate or the negative electrode strap Internal short circuit due to contact can be suppressed.
  • the number of horizontal bars 15a and vertical bars 15b in the positive grid 1 is relatively small on the lower side of the positive grid 1 that is less affected by expansion and contraction of the positive electrode active material. Is not impaired.
  • the plurality of openings 16 do not have to be provided with a first opening group 17 described later. That is, the opening 16 constituting the first opening group 17 may have the same area as the opening 16 adjacent on the upper side.
  • (B3) The configuration of (B3) of the positive electrode grid body 1 according to the second embodiment will be described with reference to FIG.
  • the area of the plurality of openings 16 in plan view is from the center side of the positive electrode grid body 1 toward the first vertical frame bone 14a side, and the positive electrode grid The size is gradually reduced from the center side of the body 1 toward the second vertical frame bone 14b side. That is, in the positive electrode grid body 1, the area of the plurality of openings 16 in plan view decreases stepwise from the center side of the positive electrode grid body 1 toward both left and right ends.
  • the first and second vertical frame bones 14a and 14b located at both the left and right ends of the positive electrode grid body 1 are provided in the same manner as the effect of the configuration (B2) of the positive electrode grid body 1. It is possible to prevent the positive electrode active material from peeling or falling off in the vicinity of.
  • each of the plurality of horizontal bars 15a is formed so that the cross-sectional area increases from the second vertical frame bone 14b side toward the portion connected to the first vertical frame bone 14a.
  • the positive electrode grid body 1 having the configuration of (B3) the number of horizontal bars 15a and vertical bars 15b in the positive electrode grid body 1 on the center side of the positive electrode grid body 1 that is less affected by the expansion and contraction of the positive electrode active material. Since there are relatively few, weight reduction of lead acid battery is not spoiled.
  • FIG. 5 is an enlarged view of a portion surrounded by the reference numeral (C1) in the positive electrode grid body 1 of FIG.
  • the plurality of openings 16 adjacent to the second horizontal frame bone 13 b are defined as a first opening group 17.
  • At least a part of the plurality of vertical bars 15b ′ defining the first opening group 17 is a plurality of vertical bars 15b defining the plurality of openings 16 adjacent to the first opening group 17 in the vertical direction Y.
  • they are displaced in the lateral direction X. That is, in the configuration of (C1), the vertical beam 15b is connected to the horizontal beam 15a defining the upper side of the first opening group 17 at least partially in an inverted T shape.
  • the positive electrode grid body 1 Since the positive electrode grid body 1 according to the second embodiment has the configuration of (C1), even if growth occurs and a plurality of vertical bars 15b extend downward, the vertical bars 15b and the first bars At the intersection where the horizontal beam 15a defining the upper side of the opening group 17 is connected in an inverted T shape, the horizontal beam 15a is bent downward with the adjacent vertical beam 15b ′ as a fulcrum, and the displacement due to the extension is changed. Can be absorbed. As a result, since the downward extension of the plurality of vertical bars 15b is absorbed by the inner bones including the horizontal bars 15a and the vertical bars 15b, the growth toward the lower side of the entire positive electrode grid body 1 can be suppressed.
  • the upper end of the positive electrode plate is one of the negative electrodes such as the negative strap.
  • the upward growth can be prevented by absorbing the downward growth by the inner bone including the horizontal beam 15a and the vertical beam 15b, and the upper end of the positive electrode plate. And internal short circuit due to contact with a part of the negative electrode such as the negative electrode strap can be suppressed.
  • all of the plurality of vertical bars 15 b ′ defining the first opening group 17 are adjacent to the first opening group 17 in the vertical direction Y.
  • regulates 16 in the horizontal direction X was demonstrated, it is not limited to this.
  • “at least a part of the plurality of vertical bars 15b ′ defining the first opening group 17” includes a plurality of vertical bars 15b ′ positioned immediately below the positive electrode current collector ear 11A, and in the horizontal direction X. 50% or more, preferably 70% or more, of the plurality of vertical bars 15b ′ arranged.
  • (D) Shape of the vertical beam 15b (D1) The configuration of (D1) of the positive electrode grid body 1 according to the second embodiment will be described with reference to FIG. As shown in the portion surrounded by the reference numeral (D1) in the positive electrode grid body 1 of FIG. 2, at least a part of the plurality of vertical bars 15b arranged immediately below the positive electrode current collector ear 11A is the first The cross-sectional area is the largest at the portion connected to the horizontal frame bone 13a, and the first horizontal frame bone 13a (ie, the upper side shown in FIG. 2) from the second horizontal frame bone 13b side (ie, the lower side shown in FIG. 2). It is formed so that the cross-sectional area becomes larger toward.
  • the positive electrode grid body 1 includes a vertical beam 15b having a configuration of (D1) and having a connection portion with the first horizontal frame bone 13a reinforced. For this reason, in the vicinity of the positive electrode current collecting ear 11A where the positive electrode grid body 1 is likely to corrode with a large current density, breakage due to the corrosion of the vertical bars 15b can be prevented, and the mechanical strength is improved. Can be suppressed. As a result, peeling or dropping of the positive electrode active material can be suppressed, and the accelerated growth of the positive electrode lattice body 1 can be suppressed. Further, the positive grid 1 has a relatively small cross-sectional area of the plurality of vertical bars 15b on the lower side of the positive grid 1 that is less affected by the expansion and contraction of the positive active material. It will not be damaged.
  • the vertical cross section 15b arranged immediately below the positive electrode current collecting ear 11A having the maximum current density is formed to have a large cross-sectional area toward the upper side so that the portion connected to the first horizontal frame bone 13a is maximized.
  • the plurality of vertical bars 15b shown in FIG. 2 are the first of all the vertical bars 15b including the plurality of vertical bars 15b positioned immediately below the positive electrode current collecting ear 11A surrounded by the symbol (D1).
  • Such a configuration is preferable because the current density is large and the mechanical strength on the upper side of the positive electrode grid body 1 that is easily corroded is improved, and the potential distribution in the vertical direction Y of the positive electrode grid body 1 becomes more uniform. As a result, the growth toward the upper side of the positive electrode grid body 1 can be further suppressed, and the input / output characteristics of the lead storage battery including the positive electrode grid body 1 can be further improved.
  • At least some of the plurality of vertical bars 15b arranged immediately below the positive electrode current collector ear 11A have a configuration in which the cross-sectional area increases toward the upper side.
  • the average cross-sectional area is preferably maximized.
  • “To increase the cross-sectional area of the plurality of vertical bars 15b” means that the plurality of vertical bars 15b increase the cross-sectional area continuously and / or stepwise. That is, as in the example shown in FIG. 2, the vertical rail 15b may be formed so that the cross-sectional area increases by having a constant taper angle continuously from the lower side to the upper end, or from the lower side to the upper end. There may be a plurality of sections having a constant cross-sectional area, and the plurality of sections may be formed so that the cross-sectional area increases over several stages.
  • the example in which the plurality of vertical bars 15b shown in the portion surrounded by (D1) in the positive electrode grid body 1 has the same shape is shown, but the present invention is not limited to this.
  • the plurality of vertical bars 15b may have different shapes.
  • the length of the section in which the cross-sectional area is formed large in the plurality of vertical bars 15b and the cross-sectional area change form may be different. That is, for example, the plurality of vertical bars 15b may be formed such that one has a stepwise area and the other has a continuously increasing cross-sectional area.
  • “increasing the cross-sectional area of the vertical beam” is not limited to increasing the width of the vertical beam 15b when the positive electrode grid body 1 is viewed in plan as in the example shown in FIG.
  • the thickness of the plurality of vertical bars 15b may be increased.
  • FIG. 6A is an enlarged plan view showing one opening 16 disposed adjacent to the first horizontal frame bone 13a of the positive electrode grid body 1 shown in FIG.
  • roundness R ⁇ b> 1 is formed at the four corners of the plurality of openings 16 formed in the positive electrode grid body 1 in plan view.
  • the magnitude of the roundness R1 can be defined by the radius of curvature of the roundness R1, for example.
  • round R1 By forming round R1 at the four corners of the opening 16 in plan view, the filling property of the positive electrode active material into the opening 16 is improved, and the unfilled region is reduced. For this reason, the adhesiveness of the positive electrode grid body 1 and a positive electrode active material can be improved. Furthermore, since the mechanical strength of the four corners of the opening 16 is improved, deformation of the positive electrode grid 1 can be prevented, and an internal short circuit due to contact between the positive electrode plate and a part of the negative electrode such as the negative electrode plate or the negative electrode strap, or the positive electrode It is possible to prevent the active material from peeling or dropping and the accompanying accelerated growth.
  • the roundness R1 provided in the plurality of openings 16 is not limited to the example shown in FIG. 6A, and the arrangement or size thereof is appropriately selected according to the ease of peeling or dropping of the positive electrode active material. May be. Further, it has been described that the size of the roundness R1 can be defined by the radius of curvature, but the roundness R is not limited to a circular arc. For example, it may be a polygon close to an arc. The size of the roundness R1 may be defined by, for example, the ratio of the area change due to the roundness R1 as compared to the case where the opening 16 is rectangular.
  • (E2) The configuration of (E2) of the positive electrode grid body 1 according to the second embodiment will be described with reference to FIGS.
  • the configuration of (E2) among the plurality of openings 16 adjacent to the frame bone, at least the four corners in plan view of the openings 16 located at the four corners of the frame bone are the openings 16 located other than the four corners of the frame bone. In comparison, a large roundness R is provided. In the openings located at the four corners of the frame bone, the size of the roundness R of the corner closest to the corner of the frame bone in the opening is maximized.
  • FIG. 6 has shown the opening part 16 arrange
  • R2 the roundness of the upper left corner closest to the corner of the frame bone
  • R1 the roundness of the other three corners in the opening 16 is indicated as R1.
  • the size of the roundness R1, R2 is defined by, for example, the radius of curvature of the roundness R, and the roundness R2 is larger than the roundness R1.
  • the openings 16 arranged at the other three corners of the frame bone are also provided with a large roundness R2 at the corner closest to the corner of the frame bone, as in FIG. Except for the openings 16 arranged at the four corners of the frame bone, small roundness R1 is provided at the four corners in the opening 16 as in FIG.
  • the filling property of the positive electrode active material into the openings 16 of the positive electrode lattice body 1 is improved. Since an unfilled area
  • a large roundness R ⁇ b> 2 is selectively formed with respect to four corners in the openings 16 arranged at the four corners of the frame bone where the positive electrode active material is easily peeled off or dropped. Provided. Therefore, it is possible to more effectively prevent the positive electrode active material from peeling or dropping from the positive electrode grid 1 and the positive electrode grid 1 to grow without causing an unnecessary increase in the weight of the positive electrode grid 1.
  • roundness R1, R2 provided in the some opening part 16 is not limited to the example shown to (a), (b) of FIG. 6,
  • size are easy to peel or drop
  • two or more types of roundness R may be provided at the four corners in the opening 16. For example, among the four corners in the opening 16, the roundness R at one corner and the remaining three corners are made different from each other. Of the four corners in the opening 16, the rounding R at the two corners and the two corners are made different from each other.
  • the roundness R at all corners is made different from each other, the rounding R at the two corners or three corners among the four corners in the opening 16 is made different from each other, and the rounding R is not provided at the remaining one corner or the two corners.
  • the size of the roundness R1 or R2 can be defined by the radius of curvature, the roundness R1 or R2 is not limited to a circular arc. For example, it may be a polygon close to an arc.
  • the size of the roundness R1 or R2 may be defined by a method of how much the area is reduced by the roundness R1 or R2 as compared with the case where the opening 16 is rectangular, for example.
  • FIG. 7 is an enlarged view of a portion surrounded by the reference numeral (F1) in the positive electrode grid body 1 of FIG.
  • the positive electrode current collector ear 11A is formed so that the width gradually increases from the end 11Bb opposite to the connection end 11Ba to the first horizontal frame bone 13a toward the connection end 11Ba.
  • the positive electrode current collecting ear 11A has a width of W1 at the opposite end 11Bb.
  • the positive electrode current collecting ear 11A has a constant portion with a width of W1 from the opposite end 11Bb to the lower side.
  • the positive electrode grid body 1 according to the second embodiment has the configuration (F1), the potential distribution during charging and discharging of the entire positive electrode grid body 1 can be made uniform. For this reason, the electricity taken out from the positive electrode active material by the charge / discharge reaction can be efficiently collected even on the lower side of the positive electrode grid body 1 that is located away from the positive electrode current collection ear 11A, and the lead provided with the positive electrode grid body 1 The input / output characteristics of the storage battery can be improved.
  • the positive electrode current collector ear 11 ⁇ / b> A includes a portion having a constant width and a portion having a width that continuously increases from the upper side to the connection end 11 ⁇ / b> Ba at the lower end.
  • the above-described internal short circuit can be suppressed by forming the constant width portion of the positive electrode current collecting ear 11A into a rectangular plate shape, and at the same time, using a general-purpose manufacturing facility, the lead storage battery can be manufactured at low cost. Can be manufactured.
  • the lead alloy which comprises a positive electrode grid body has added the component element of Ca, Sn, Al, and Ag in the specific range, both the corrosion resistance of the obtained lead alloy and mechanical strength are obtained. It becomes possible to improve.
  • the addition of Ca improves the mechanical strength of the positive electrode grid. If the Ca content is less than 0.02% by mass, the effect is small, and if it exceeds 0.08% by mass, the corrosion resistance may decrease.
  • the addition of Sn improves the flowability of the molten lead alloy and improves the mechanical strength of the positive grid. If the amount of Sn is less than 0.4% by mass, the effect is small, and if it exceeds 2.5% by mass, the corrosion resistance may be lowered.
  • the addition of Al prevents the loss of Ca due to the oxidation of the molten metal, and further improves the mechanical strength of the positive electrode grid. If the added amount of Al is less than 0.005% by mass, the effect is small, and if it exceeds 0.04% by mass, Al tends to precipitate as dross.
  • the addition of Ag improves the mechanical strength, and in particular improves the creep resistance at high temperatures. If the addition amount of Ag is less than 0.001% by mass, the effect is small, and if it exceeds 0.0049% by mass, an increase in the effect due to the increase in the addition amount cannot be expected.
  • the positive electrode grid 1 according to the second embodiment includes the above-described (A1) to (A3), (B1) to (B3), (C1), (D1), (E1), (E1), Since the configurations of E2), (F1), and (G1) are provided, the effects described in the respective configurations can be obtained.
  • the following effects (1) to (5) can be obtained mainly in the positive electrode grid body 1 according to the second embodiment.
  • the mechanical strength in the lateral direction X increases, and growth can be suppressed.
  • the plurality of vertical bars arranged immediately below the positive electrode current collector ear is formed so that the cross-sectional area increases from the lower side to the upper side, the current density is large and the corrugation easily occurs.
  • the mechanical strength on the upper side of the positive electrode lattice body is improved, and the mechanical strength in the longitudinal direction Y of the positive electrode lattice body is increased to suppress growth.
  • the growth in the longitudinal direction Y can be absorbed by deformation of the inner bone in the first opening group.
  • the positive electrode grid according to the second embodiment has an opening in plan view as it approaches the upper, right, and left ends of the positive electrode grid. Since the area of the portion is formed to be small, the contact area of the inner bone including the horizontal beam and the vertical beam with respect to the positive electrode active material filled in the positive electrode grid body is increased. Adhesiveness between the positive electrode grid and the positive electrode active material becomes good in the vicinity. As a result, the positive electrode active material can be prevented from exfoliating or falling off from the positive electrode grid when the positive electrode active material expands or contracts due to charge / discharge, and the positive electrode active material is exfoliated or dropped off.
  • the positive electrode grid according to the second embodiment can satisfactorily equalize the potential distribution during charge and discharge by specifying the shapes of the plurality of vertical bars and the positive electrode current collecting ears of the positive electrode grid. As a result, even on the lower side of the positive electrode grid body away from the positive electrode current collecting ear, the electric power extracted from the positive electrode active material by the charge / discharge reaction can be collected efficiently, and at the time of charge / discharge of the lead storage battery including the positive electrode grid body The input / output characteristics can be improved.
  • the lead storage battery located immediately below the negative electrode current collector ear provided on the negative electrode plate or the negative electrode strap to which the negative electrode current collector ear is connected may be divided by auxiliary bars. According to such a configuration, the mechanical strength of the positive electrode grid body arranged at a position corresponding to the negative electrode current collecting ear or the like is improved, and the upward growth of the positive electrode grid body that causes an internal short circuit between the positive electrode plate and the negative electrode plate is prevented. It can be suppressed more remarkably.
  • the positive electrode lattice body according to the third embodiment may not include all the configurations described in the second embodiment, and in addition to the configuration of (A1), (A1) to (A3), (B1 ) To (B3), (C1), (D1), (E1), (E2), (F1), and (G1). According to such a structure, the synergistic effect which combined the effect demonstrated by the item of each structure selected is acquired.
  • the positive electrode grid body 1 also includes the configuration (B1) when the configuration (B2) is provided, and also includes the configuration (E1) when the configuration (E2) is provided.
  • a positive electrode lattice body in which the configurations of (C1) and (D1) are combined is more preferable from the viewpoint of preventing deformation due to growth.
  • the positive electrode lattice body which combined the structure of (D1) and (F1) is more preferable from the point of the uniformity of the electrical potential distribution at the time of charging / discharging at the time of incorporating in a lead acid battery, and the improvement of an output characteristic.
  • the positive electrode lattice body in which the above-described configuration is combined with the configuration (G1) is more preferable in terms of preventing deformation due to growth because mechanical strength and corrosion resistance are improved.
  • FIG. 8 is a perspective view showing a lead storage battery 100 according to the fourth embodiment.
  • a lead storage battery 100 according to the fourth embodiment includes the positive electrode grid body 1 according to the first to third embodiments.
  • the configuration of the lead storage battery 100 according to the fourth embodiment is not particularly limited, except that at least the positive electrode grid body 1 according to the first to third embodiments is used for the positive electrode plate.
  • a lead storage battery 100 is a lead storage battery having an electromotive force of 2 V made of a single cell, and includes a positive electrode plate P, a negative electrode plate N, dilute sulfuric acid as an electrolyte, and a separator S (glass fiber retainer mat). Etc.), battery case 20, lid (not shown) and other members.
  • the positive electrode plates P and the negative electrode plates N are alternately stacked one by one, and the positive electrode current collector ears 11A and the negative electrode current collector ears 11B are stacked. These are connected with each other by a positive electrode strap 12A and a negative electrode strap 12B to constitute an electrode plate group 10.
  • a positive electrode pole column 18A and a negative electrode column 18B extending upward are connected to the positive electrode strap 12A and the negative electrode strap 12B.
  • the electrode plate group 10 is put into the battery case 20 through the opening 21 of the battery case, and a lid is fitted, and a hollow positive electrode terminal (not shown) and a negative electrode terminal (not shown) provided on the lid.
  • each positive pole 18A and negative pole 18B are inserted and welded.
  • a lead acid battery 100 having an electromotive force of 2 V is completed by injecting dilute sulfuric acid, which is an electrolytic solution, from an injection port provided in the lid and then performing chemical conversion.
  • the positive plate P and the negative plate N or the negative strap 12B due to the deformation of the positive grid 1 or the like. It is possible to prevent an internal short circuit due to contact with a part of the negative electrode, improve the durability of the lead storage battery 100, and realize a long life.
  • the horizontal frame bone and the plurality of horizontal bars 15a of the positive grid 1 are arranged in parallel, and the horizontal frame bone and the plurality of horizontal bars 15a are arranged on the vertical frame bone and the plurality of vertical bars 15b.
  • positioned with respect to a right angle was demonstrated, it is not limited to this.
  • the horizontal frame bones 13a and 13b and the plurality of horizontal bars 15a may not be arranged in parallel to each other, and may be arranged at a desired angle with each other.
  • the vertical frame bones 14a and 14b and the plurality of vertical bars 15b may not be arranged in parallel to each other, and may be arranged at a desired angle.
  • the horizontal frame bones 13a and 13b and the vertical frame bones 14a and 14b constituting the frame bone, and the plurality of horizontal beams 15a and the vertical beam 15b constituting the inner bone are mainly linear, for example. Although demonstrated, it is not limited to this, You may be curvilinear or branched.
  • the shape of the plurality of openings 16 is a rectangular shape or a rectangular shape with rounded corners R at the four corners, but the present invention is not limited to this.
  • the shape of the plurality of openings 16 may be other polygonal shapes or circular shapes, for example.
  • roundness R may be provided at the four corners of the rectangular opening 16.
  • the radius of curvature of the roundness R the area of the opening 16 can be adjusted.
  • the positive electrode current collecting ear 11A is formed so as to gradually increase in width from the upper side to the lower side.
  • the shape may be appropriately changed in consideration of the current collecting performance and strength.
  • it may be a fan shape, a triangle, or a rectangular shape with rounded corners.
  • the width of the positive electrode current collecting ear 11A may be appropriately changed.
  • the configurations shown in the first to fourth embodiments described above can be combined as appropriate.
  • the positive electrode current collector ear 11A is unevenly distributed on the opposite side of the positive electrode lattice body 1 of the present invention.
  • the positional relationship between the left and right may be reversed.
  • embodiment of the positive electrode grid body 1 for lead acid batteries and the lead acid battery 100 using the same was described concretely, it is not limited to these embodiment, Various based on the technical idea of this invention Can be changed.
  • Each of the plurality of horizontal rails has a constant cross-sectional area at the center, and in the first region, has a tapered shape in which the cross-sectional area increases from the center side to the portion connected to the first vertical frame bone on the left side.
  • the first region is a 20 mm section of the longitudinal beam from the connection portion with the first horizontal frame bone to the second horizontal frame bone, and the second vertical portion from the connection portion with the first vertical frame bone. It is defined by a 45 mm section of a horizontal rail that faces the frame bone.
  • the positive electrode grid A has a first and a second one counted from the first horizontal frame bone side in a section from the second vertical frame bone side (right side) to a portion connected to the first vertical frame bone.
  • a positive electrode grid C similar to the positive electrode grid B was prepared except for the configuration described below.
  • a positive electrode grid D similar to the positive electrode grid A was prepared except that it has a configuration described below.
  • the average area of the plurality of openings adjacent to the first vertical frame bone and the second vertical frame bone is 28 mm 2, and the remaining areas excluding the plurality of openings are excluded.
  • the average area of the plurality of openings was 45 mm 2 .
  • each of the openings is 0. 0 from the second horizontal frame bone side toward the first horizontal frame bone side.
  • the area was gradually reduced in the range of 85 times to 0.99 times, and the area was gradually reduced in the range of 0.70 times to 0.98 times from the center side of the positive electrode grid to the left and right sides. .
  • a positive electrode grid E similar to the positive electrode grid A was prepared except for the configuration described below.
  • the 13 vertical bars defining the first opening group adjacent to the second horizontal frame bone of the positive electrode grid E are used as the first horizontal frame of the positive electrode grid E.
  • the twelve vertical bars connected to the bone were formed by shifting in the lateral direction X so as to be discontinuous.
  • a positive electrode grid F similar to the positive electrode grid A was prepared except that it has a configuration described below.
  • the two vertical bars located immediately below the positive electrode current collecting ear have a cross-sectional area of 1 at the portion connected to the first horizontal frame bone side. and .206Mm 2, and was larger cross-sectional area toward the second lateral frame bone side cross-sectional area 1.00 mm 2 from a first lateral frame bone side of the (bottom) (upper).
  • Other 10 vertical crossbars is a cross-sectional area at a portion connected to the first transverse frame bone side is 1.00 mm 2, and was larger cross-sectional area toward the cross-sectional area 0.90 mm 2 in the lower to the upper.
  • each of the fourteen horizontal bars had no taper portion and had a constant cross-sectional area (0.56 mm 2 ) in all the sections.
  • Example 1 A lead-acid battery was manufactured by the following method using the positive electrode grid A manufactured by the method described above.
  • a positive electrode active material paste prepared according to a conventional method was filled into a positive electrode grid A having a height of 113.0 mm and a width of 105.0 mm to produce a positive electrode filling plate.
  • a lead alloy containing lead as a main component and containing Ca and Sn has a height, width and thickness of 0.8 mm which is the same as that of the positive electrode grid by continuous casting, and the current collector ear is in a symmetric position with the positive electrode grid.
  • a negative electrode grid having a shape was prepared, and the negative electrode active material paste prepared according to a conventional method was filled into the negative electrode grid to produce a negative electrode-filled plate. Subsequently, the positive electrode filling plate and the negative electrode filling plate were aged and dried according to a conventional method to obtain an unformed positive electrode aged plate and negative electrode aged plate, respectively.
  • the negative electrode aging plate was accommodated in a polyethylene resin bag-shaped separator, and the negative electrode current collecting tab of the negative electrode aging plate was pulled out from the opening of the bag-shaped separator.
  • the seven positive electrode aging plates and the eight negative electrode aging plates housed in the bag-like separator were alternately laminated via a retainer mat obtained by making glass fibers.
  • the current collecting ears of the positive electrode aging plate and the current collecting ears of the negative electrode aging plate were connected by strap welding to form a positive electrode strap and a negative electrode strap to form an electrode plate group.
  • the positive electrode strap and the negative electrode strap were provided with inter-cell connectors or pole column terminals.
  • the electrode plate groups were respectively stored in a plurality of cell chambers provided in a 12V type battery case. Adjacent electrode plate groups were electrically connected in series by resistance-welding inter-cell connectors provided on the respective straps. Subsequently, after fitting a lid to the opening of the battery case, the pole column terminal was passed through the bushing of the lid, and this was welded by heat sealing. Then, a predetermined amount of dilute sulfuric acid electrolyte adjusted in specific gravity to 1.240 was injected into the battery case through the injection port opened in the lid, and the inside of the battery case was sealed by screwing the injection stopper and the exhaust stopper. Then, chemical conversion was performed based on a predetermined current value, temperature, and time. After the chemical conversion was completed, the electrolyte solution was replenished to produce a 32-Ah M-42 type lead storage battery with a 5-hour rate capacity.
  • Examples 2 to 6 and Comparative Example 1 A lead storage battery was manufactured in the same manner as in Example 1 using the positive electrode grids B, C, D, E, F, and G manufactured by the above-described method.
  • the lead acid battery was discharged at a discharge current of 25 A for 2 minutes in a 75 ° C. environment, and then charged for 10 minutes at a charge voltage of 14.8 V and a maximum charge current of 25 A. Further, each time the above process is repeated 480 cycles, the height position Y2 of the first horizontal frame bone of the positive electrode grid body is measured from the distance from the top surface of the lid to the first horizontal frame bone of the positive electrode grid body, The difference from the height position Y1 of the first horizontal frame bone of the positive grid before the test is obtained, and the height of 113.0 mm excluding the positive current collecting ear of the positive grid before the test is expressed by the following formula (1). Based on this, the growth rate R Y [%] in the vertical direction Y was calculated. When the growth rate RY reached 5.3% or more, it was determined that the contact life with the negative electrode plate might cause an internal short circuit, and that the lifetime was determined.
  • the battery determined to have a lifetime is disassembled, the maximum width X2 in the lateral direction X of the positive electrode grid is measured with a ruler, and the width of the positive grid before the test is 105.0 mm and the width X in the horizontal direction X is calculated based on the following equation (2).
  • the growth rate R X [%] was calculated.
  • the life cycle numbers of Examples 1 to 6 in Table 1 are relative cycle numbers when the life cycle number of Comparative Example 1 is 100.
  • 60% growth rate R X are each, 56%, 53%, 57%, 58%, is suppressed to 59%, 15% the number of life cycles, respectively, 30%, 40%, that was improved by 25%, 18% Recognize.
  • the lead storage batteries of Examples 1 to 6 showed almost no peeling. In the lead storage battery of No. 1, peeling was significant.
  • the area of the opening is formed small in the portion where the positive electrode active material is easily peeled off or dropped off, thereby suppressing the peeling or dropping off of the active material, It is thought that the cycle life was improved.
  • the portion where the vertical beam is connected in an inverted T shape is provided in the lowermost opening, so that the downward growth is absorbed by the inner bone. It is presumed that internal short circuit is prevented and cycle life is improved.
  • the positive electrode grid G incorporated in the lead storage battery of Comparative Example 1 was greatly deformed by the growth, and the positive electrode active material was significantly peeled off. It is inferred that the positive electrode grid G has reached the end of its service life early due to corrosion and accelerated growth caused by contact with the electrolyte at the peeled location.
  • the present invention it is possible to provide a positive electrode grid for lead storage battery and a lead storage battery that can prevent internal short circuit due to deformation of the positive electrode grid and improve the life of the lead storage battery.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Electrochemistry (AREA)
  • General Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Manufacturing & Machinery (AREA)
  • Mechanical Engineering (AREA)
  • Metallurgy (AREA)
  • Organic Chemistry (AREA)
  • Cell Electrode Carriers And Collectors (AREA)

Abstract

鉛蓄電池用正極格子体は、横方向に延びる第1の横枠骨及び第2の横枠骨と、縦方向に延びる第1の縦枠骨と第2の縦枠骨とを備える矩形枠状の枠骨;枠骨内に配置され、枠骨と接続して格子状に設けられる複数本の横桟及び縦桟を備える内骨;枠骨と複数本の横桟及び縦桟とによって囲まれる領域、及び複数本の横桟及び縦桟によって囲まれる領域、で規定される複数の開口部;及び第2の縦枠骨側に位置する第1の横枠骨と接続する正極集電耳;を備える。第1の横枠骨側から第2の横枠骨側に向けて、少なくとも第1の横枠骨側に位置する複数本の前記横桟は、第1の縦枠骨から横桟の横方向の少なくとも開口部1マス分以上の長さの第1の領域において、第2の縦枠骨側から第1の縦枠骨に接続する部分に向けて断面積が大きくなる。

Description

鉛蓄電池用正極格子体及び鉛蓄電池
 本発明は、鉛蓄電池用正極格子体及び鉛蓄電池に関する。
 近年の環境問題の深刻化と排出ガス規制に対応するため、停車時に一時的にエンジンを停止させるアイドリングストップ機能を搭載した自動車(以下、「ISS車」と表記する。)が普及しつつある。ISS車は、信号待ち等で停車した際のアイドリングによる燃料の消費を抑制できる。このため、燃費が向上しさらに排出ガス量も低減できる。
 前記の様なISS車に搭載された鉛蓄電池は、早期寿命に至り易いことが知られている。この理由は、ISS車では信号待ち等でエンジンが停止した際、エアコン、ライト、ワイパー、カーナビ等の機器へ電力を供給するためである。その結果、鉛蓄電池が深い放電深度まで使用されること、発進時にエンジンを再始動するための放電と、オルタネーターや回生ブレーキによる充電を繰り返すことなどにより、鉛蓄電池に大きな負荷がかかることが挙げられる。
 鉛蓄電池は、積層構造の極板群を電槽内に収納した後、当該電槽内に電解液である希硫酸を注液する工程を経て製造される。積層構造の極板群は、主として鉛又は鉛合金からなる格子体にペースト状の活物質が充填された正極板及び負極板とセパレータとが交互に積層されている。当該格子体は、例えば枠骨と当該枠骨に囲まれた内骨とを有する構造のものが従来知られている。枠骨は、上側に配置され集電耳が形成される第1の横枠骨と、下側に配置される第2の横枠骨と、第1,2の横枠骨の端部同士を接続する第1,2の縦枠骨とを有する。内骨は、複数本の縦桟及び横桟を有する。格子体は少なくとも、枠骨と内骨とによって囲まれる領域として規定される開口部に活物質が充填されている。
 このような鉛蓄電池の寿命要因の一つが、正極格子体の腐食と膨張に伴う正極格子体全体の膨張、変形である。正極格子体の変形は、グロースと呼ばれている。グロースが生じると、正極格子体の一部が湾曲して折損し、その折損端がセパレータを突き破り対向する負極板と接触する、又は上側へ膨張して負極ストラップ等の負極の一部に接触して内部短絡を起こし、鉛蓄電池が早期に寿命に至る虞がある。また、正極格子体の変形は、正極活物質の剥離又は脱落を招き、早期の容量低下の原因になる。上述するような事情より、鉛蓄電池を設計する際には、正極格子体のグロースへの対策を講じる必要がある。
 グロースが生じる機構は、次のように考えられる。鉛蓄電池における腐食は、正極格子体を形成する鉛又は鉛合金が、充放電により、主に電解液や活物質中に含まれる硫酸イオンと反応してPbO(x:1~2)又はPbSO等からなる多層構造の腐食反応生成物へと変化する酸化反応に起因する。当該腐食は充放電の繰り返しに伴って進行する。このとき、電解液と接触する正極格子体の表面近傍において、腐食反応生成物の層が成長する。当該腐食反応生成物の成長は、正極格子体の体積の増加を伴うため、腐食が進行すると正極格子体の表面近傍の腐食反応生成物と内部の正極格子体自体の膨張度合いの差により大きな応力が発生する。結果として、当該応力が正極格子体を延伸させる引張応力となり、正極格子体全体の膨張に伴うグロースを生じる。
 鉛蓄電池の極板群は、ストラップから上側に延出するよう設けた極柱又はセル間の接続部材によって、蓋又は電槽の上部に固定されている。このため、グロースが生じると正極板はまず固定されていない左右側と下側に向けて伸びる。初期のグロースでは、正極板の左右側への伸び代と比較して下側への伸び代は小さくなる場合が多い。これは、当該極板群を支持するために、当該極板群の下端が電槽底面又は当該底面に設けた鞍部に当接していることによる。従って、グロースが生じると、正極板の下側への伸びは上側への伸びに転じるため、正極板の上端が負極ストラップ等の負極の一部に接触して内部短絡を生じる虞がある。
 正極格子体の上側へのグロースによる内部短絡を防止する手段として、出願人は特開2001-351671号公報及び実開平5-45901号公報において、極板群を保持する電槽の鞍部をスポンジ又は発泡性樹脂で形成した鉛蓄電池を提案している。電槽の鞍部をスポンジ又は発泡性樹脂で形成することによって、正極格子体にグロースが生じた際、下側への伸びを鞍部が潰れて吸収する。このため、正極格子体の上側への伸びを抑制して負極ストラップ等への接触、内部短絡を防止できる。
 これに対し、前記2つの公報の構成と異なる形態で正極格子体と負極格子体の内部短絡を抑制する発明が種々提案されている。特開2012-079609号公報には、正極板を宙吊り状態とし、正極板の下側が電槽底部に接触しない構造を有する鉛蓄電池が開示されている。この鉛蓄電池では、グロースが生じた際に正極板が下側へ優先的に伸びるため、上側への伸びとそれに伴う正極板と負極板との接触による内部短絡が抑制される。
 特許第5103385号公報及び特開2013-16499号公報には、グロースによる正極板と負極板の接触を抑制する手法として、正極格子体の所定の部分に切り欠き又はくびれ部分等、機械的強度の低い箇所を設けた鉛蓄電池が開示されている。正極格子体の一部に機械的強度の低い箇所を形成することによって、グロースが生じた際に、機械的強度の低い箇所が優先的に折損又は変形し、正極格子体全体の膨張が抑制される。
 また、腐食による正極格子体のグロースを抑制する技術の他に、充放電サイクル中の活物質の膨張、収縮による変形を防止して鉛蓄電池の寿命を向上することも検討されている。
 特開平2-281563号公報には、正極格子体において、内骨を構成する縦桟及び横桟の配列間隔を、中心部から周辺部に向かって小さくした鉛蓄電池が開示されている。このように縦桟及び横桟の配列間隔を中心部から周辺部に向かって小さくすることによって、正極格子体の周辺部ほど縦桟及び横桟が密に配置される。このため、正極格子体の機械的強度が向上する。その故、正極活物質が充電によって面方向に膨張した際の正極格子体の特に横方向への変形が抑制され、鉛蓄電池のサイクル特性が向上する。
 しかしながら、特開2001-351671号公報、実開平5-45901号公報及び特開2012-079609号公報に記載の鉛蓄電池は、静置した状態で使用される据置電源用の鉛蓄電池を想定したものである。このため、激しい振動が想定される用途、例えば車載用の始動用電源としては耐久性に改良すべき点があった。前記3つの公報に記載の鉛蓄電池では、重量の大きい極板群がほぼ上側のストラップと接続した集電耳のみで支持・保持された状態となる。このため、激しい振動が加わると極板群が集電耳の部分で破断する虞がある。
 一方、特許第5103385号公報及び特開2013-16499号公報に記載の鉛蓄電池は、正極格子体の一部に切り欠き又はくびれを設けるため、当該部分において電気抵抗が局所的に大きくなり、充放電時の電位分布が不均一化して集電効率が低下し、出力特性等の低下を招く虞がある。また切り欠き又はくびれ部分を設けると、正極格子体の製造に使用される金型の形状が複雑化し、製造コストの増大又は歩留まりの低下等を招く虞がある。特に、鋳造による正極格子体の製造においては、金型内に溶融した鉛又は鉛合金が湯回り不良を生じて目切れ等の鋳造欠陥も危惧される。
 特開平2-281563号公報に記載の正極格子体のように、内骨を構成する縦桟及び横桟の配列間隔を中心部から周辺部に向かって小さくすると、正極格子体の周辺部に位置する開口部は正極格子体の中心部に位置するものと比較して面積が小さくなる。このため、正極格子体の中心部に位置する開口部の面積が大きくなる。一般的に、正極格子体における充放電時の電流密度は、上側の正極集電耳付近に位置するほど大きく、下側に位置するほど小さくなる。また正極活物質の膨張、収縮は充放電反応に伴って生じ、その充放電反応は電流密度に比例する。このため、正極格子体の上側では正極活物質の膨張、収縮が大きく、下側では小さくなる。その結果、特開平2-281563号公報のように、開口部の面積の分布を正極格子体の中心部を基点として点対称的にすると、電流密度の分布を考慮した場合、必ずしも正極活物質の膨張、収縮を最も効率的に防ぐ方法とはいえず、改良の余地があった。また、特開平2-281563号公報にも記載されるように、縦桟及び横桟の本数を増やすことは鉛蓄電池自体の重量の増加を伴う。このため、正極活物質の膨張、収縮の防止に対して寄与の小さい正極格子体の下側まで縦桟及び横桟の配列間隔を密にすることは、鉛蓄電池の軽量化を損なう。
 本発明は前記事情を鑑み、正極格子体の変形に起因する内部短絡を防止でき、鉛蓄電池の寿命を向上し得る鉛蓄電池用正極格子体及び鉛蓄電池を提供することを目的とする。
 前記の課題を解決するために、一つの実施形態によると、横方向に延びる第1の横枠骨及び第2の横枠骨と、縦方向に延びる第1の縦枠骨と第2の縦枠骨とを備える矩形枠状の枠骨;枠骨内に配置され、枠骨と接続して格子状に設けられる複数本の横桟及び縦桟を備える内骨;枠骨と複数本の横桟及び縦桟とによって囲まれる領域、及び複数本の横桟及び縦桟によって囲まれる領域、で規定される複数の開口部;及び第2の縦枠骨側に位置する第1の横枠骨と接続する正極集電耳;を備え、少なくとも第1の横枠骨側に位置する複数本の横桟は、第1の縦枠骨から横桟の横方向の少なくとも開口部1マス分以上の長さの領域において、第2の縦枠骨側から第1の縦枠骨に接続する部分に向けて断面積が大きくなる鉛蓄電池用正極格子体が提供される。
 前記の課題を解決するために、別の実施形態によると、上述する鉛蓄電池用正極格子体を備える鉛蓄電池が提供される。
図1は、第1の実施形態に係る正極格子体の平面図である。 図2は、第2の実施形態に係る正極格子体の平面図である。 図3は、図2に示す正極格子体の一部を拡大して示す平面図である。 図4は、図2に示す正極格子体の一部を拡大して示す平面図である。 図5は、図2に示す正極格子体の一部を拡大して示す平面図である。 図6は、図2に示す正極格子体の一部を拡大して示す平面図である。 図7は、図2に示す正極格子体の一部を拡大して示す平面図である。 図8は、第4の実施形態に係る鉛蓄電池を示す斜視図である。
 <第1の実施形態>
 図1は、第1の実施形態に係る鉛蓄電池用正極格子体1の平面図を示す。
 正極格子体1は、枠骨と、当該枠骨内に配置される内骨と、正極集電耳11Aとを備えている。枠骨は、矩形枠状であって、横方向Xに延び当該横方向Xの中間からずれた位置に正極集電耳11Aが接続される第1の横枠骨13a、及び第2の横枠骨13bと、縦方向Yに延びる第1の縦枠骨14aと第2の縦枠骨14bとを備えている。なお本明細書中では、図1に示すように、第1の横枠骨13a及び第2の横枠骨13bが延びる方向を横方向X、第1の縦枠骨14a及び第2の縦枠骨14bが延びる方向を縦方向Yと定義する。また、第1の横枠骨13aが配置される部位を上側、第2の横枠骨13bが配置される部位を下側、第1の縦枠骨14aが配置される部位を左側、第2の縦枠骨14bが配置される部位を右側と定義する。
 枠骨内には、枠骨と接続して、格子状に配列される複数本の横桟15a及び縦桟15bを備える内骨が配置されている。複数本の横桟15aは、例えば、第1の縦枠骨14a及び第2の縦枠骨14bにそれぞれ接続して、横方向Xに延びている。複数本の縦桟15bは、第1の横枠骨13a及び第2の横枠骨13bにそれぞれ接続して縦方向Yに延びている。複数本の横桟15aは、例えば縦方向Yに互いに離間してそれぞれの軸が平行に配列されている。複数本の縦桟15bは、例えば横方向Xに互いに離間してそれぞれの軸が平行に配列されている。複数本の縦桟15b及び複数本の横桟15aは、例えばそれぞれの軸を互いに直角に交差して配置されている。
 正極格子体1において、複数の開口部16は枠骨と複数本の横桟15a及び縦桟15bとによって囲まれる領域、及び複数本の横桟15a及び縦桟15bによって囲まれる領域、で規定される。複数の開口部16は、それぞれ四角形、例えば矩形状又は台形状を有する。なお、複数の開口部16を平面視した形状は前記四角形に限定されず、例えば斜めの補強桟が入る場合などには、その他の四角形や三角形などの多角形に形成されていてもよい。
 第2の縦枠骨14b側に位置する第1の横枠骨13aは、正極格子体1を外部に接続するための正極集電耳11Aが接続されている。正極集電耳11Aは、例えば矩形板状であり、図1に示す第1の横枠骨13aの右側から上方に延びるように接続されている。後述するように正極板と負極板とを積層して極板群を構成すると、正極集電耳11Aと負極集電耳11Bとは、極板群の積層方向に向かって透視した時、第1の横枠骨13aの長さ方向に互いにずれて配置され、同極性の集電耳同士のみ重なるように配置される。特に図1に示す例では、正極集電耳11Aと負極集電耳11Bとは、正極格子体1の横方向Xの中心線を基準にして互いに左右対称の位置に配置されている。
 ここで、第1の横枠骨13a(すなわち図1に示す上端)から第2の横枠骨13b側(すなわち図1に示す下側)に向けて配列された複数本の横桟15aのうち、少なくとも正極格子体1の第1の横枠骨側(上側)に位置する複数本の横桟15aに着目する。少なくとも第1の横枠骨13a側に位置する複数本の横桟15aは、第1の縦枠骨14aから当該横桟15aの横方向Xの少なくとも開口部16の1マス分以上の長さの領域において、第2の縦枠骨14b側から第1の縦枠骨14aに接続する部分に向けて断面積が大きくなる。好ましくは、第1の横枠骨13aから第2の横枠骨13b側に向かう第1の縦枠骨14aの縦方向Yの長さWの17%~25%の区間、及び第1の縦枠骨14a(すなわち図1に示す左端)から当該横桟15aの横方向Xの長さWの20%~45%の区間、で規定される第1の領域AR1において、当該複数本の横桟15aは第2の縦枠骨14b側(すなわち図1に示す右側)から第1の縦枠骨14a(すなわち図1に示す左側)に接続する部分に向けて断面積が大きくなる。この複数本の横桟15aの形状の構成を、(A1)とする。図1に示す例では、上側から縦方向Yの長さWの約25%の区間(3本の横桟15aが設けられた区間)、及び左側から横桟15aの横方向Xの長さWの約40%の区間、で規定される第1の領域AR1において、横桟15aは右側から左側に向けて断面積が大きくなる。
 次に、第1の実施形態に係る正極格子体1の作用を説明する。
 背景技術で説明したように、鉛蓄電池の正極板を含む極板群は、上側においては、第1の横枠骨13aの右側に接続される正極集電耳11Aを介して蓋又は電槽の上部に固定されている。一方、前記極板群は下側においては、当該極板群を支持する電槽の底面、又は底面に設けた鞍部に当接している。そのため正極格子体1は、正極集電耳11Aによって固定されている右上側、及び電槽と当接している下側では、当該方向への膨張が制限されるためグロースが起こり難い。
 しかしながら、正極格子体1のうち、正極集電耳11Aによって固定されない左上側、及び左右側の電槽と当接していない箇所ではグロースが生じ易い。特に、正極格子体1の左上方向へのグロースによって正極板の上端が負極ストラップ等の負極の一部に接触して内部短絡を生じる虞がある。
 また、発明者等が見出した、グロースが助長されるメカニズムについて以下に述べる。グロースにより正極格子体が拡張するように変形すると、正極活物質が枠骨又は内骨から剥離したり、開口部から脱落したり、隙間を生じたりする。当該隙間に電解液が侵入して正極格子体と接触すると、充放電に伴う正極格子体の腐食が促されるため、グロースが加速的に進行する。以下、このような正極格子体の縦枠骨に接した正極活物質の剥離又は脱落に伴うグロースの著しい進行を「加速的グロース」と表記する。一般的に、正極格子体の断面積が大きいほど、腐食時のグロース度合も大きくなることが知られている。従って、正極格子体の縦枠骨が外側に湾曲することにより正極活物質との剥離又は脱落を生じた場合、放電容量や出力特性のような電池性能の低下のみならず、上下方向への加速的グロースを招く。
 加えて、正極活物質と正極格子体が密着した状態であれば、当該正極活物質と正極格子体表面との間に結合に必要な腐食層が形成される。正極活物質と正極格子体の間に腐食層が介在されると、正極活物質が正極格子体を引っ張る力が働くため、正極格子体のグロースを抑制する。しかしながら、剥離又は脱落が生じた状態では前記作用が働かず、加速的グロースが助長される。
 第1の実施形態に係る正極格子体1では、第1の領域AR1に配置される複数本の横桟15aの断面積を、第2の縦枠骨14b側(右側)から第1の縦枠骨14aに接続する部分にかけて大きくしている。そのため、第1の横枠骨13aに正極集電耳11Aが接続しない側(すなわち図1に示す左側)へ上向きのグロースが生じても、正極格子体1の左上側の第1の領域AR1における複数本の横桟15aの機械的強度を高めることができる。すなわち、第1の領域AR1における複数本の横桟15aを補強できる。それ故、グロースに伴う複数本の前記横桟15aの上側への湾曲を防ぎ、正極板と負極板又は負極ストラップ等の負極の一部との接触による内部短絡を抑制できる。同様に、断面積を大きくした複数本の横桟15aは、腐食による折損が生じにくく、左側への引っ張り力に対しても抗しえる。このため、第1の縦枠骨14aの外側への湾曲を防止し、正極活物質の剥離又は脱落を防ぐことにより上側への加速的グロースも抑制できる。前述した正極活物質の剥離又は脱落は、概ね正極格子体1の開口部16の1マスを単位として生じるため、複数本の前記横桟15aの補強は当該複数の開口部16の平均幅1マス分を単位として施すことが望ましい。また、正極板の上側に向かうグロースに伴う内部短絡への影響が少ない正極格子体1の中央側において、複数本の横桟15aに補強を施さない、つまり断面積を大きくしないため、鉛蓄電池の軽量化が損なわれない。
 さらに発明者等は、第1の実施形態のように開口部16を小さく形成することによって、後述する作用により正極活物質の剥離又は脱落が抑制される効果が得られることを見出した。第1の実施形態によれば、正極格子体1の左上側の第1の領域AR1において、複数本の横桟15aの断面積を大きく(図1では当該横桟15aの幅を広く)したことによって、第1の領域AR1の開口部16の面積は他の開口部16よりも小さくなる。小さい開口部16に充填された正極活物質は、他の大きい開口部16の正極活物質と比べて接する正極格子体1の表面積の割合が大きくなる。そのため、正極格子体1と正極活物質との間の密着性が高められ、正極活物質の剥離又は脱落を抑制できる。
 このように第1の実施形態に係る正極格子体1は、正極活物質の剥離又は脱落が抑制され、さらに負極集電耳11Bの下部に位置する第1の領域AR1の内骨の湾曲を防ぐことができる。その結果、放電容量や出力特性のような電池性能の低下を防止できるとともに、内部短絡の直接の原因となる左上側に向かうグロースを特に抑制できる。さらに第1の実施形態に係る正極格子体1は、複数の横桟15aの断面積を大きくした補強箇所をグロースの抑制に必要な箇所にのみ施し、中央側には施さないため、鉛蓄電池の長寿命化と軽量化とを両立できる。
 なお、正極格子体1を構成する枠骨、複数本の横桟15a及び縦桟15bを備える内骨、及び正極集電耳11Aは、例えば鉛又は鉛合金からなり、一体成形されている。鉛合金に添加する金属元素は限定されず、公知のものを使用することができる。特に、Ca、Sn、Al又はAgを所定量添加した場合は、正極格子体1の機械的強度及び耐腐食性を向上できるため、グロースによる変形の抑制においてより好ましい。正極格子体1は、例えば、鉛又は鉛合金からなる圧延板の打ち抜き格子体、エキスパンド格子体、又は圧延板を放電ワイヤーカット法等により切り抜いて作製することができる。また、ブックモールド法等により鋳造格子体として作製してもよい。特に、正極格子体1のグロースは鉛又は鉛合金を含む結晶粒が配向した圧延板から成形される格子体で生じやすい。このため、グロースを抑制する効果は、打ち抜き格子体、エキスパンド格子体、又は放電ワイヤーカット法等により圧延板から作製された格子体の場合、顕著に得られる。
 また、「横桟15aの断面積が大きくなる」とは、連続的及び/又は段階的に断面積が大きくなることを示す。すなわち、図1に示す例のように、複数の横桟15aは右側から左端にかけて連続的に一定のテーパー角を形成して断面積を大きくしてもよく、右側から左端にかけて不連続に同じ断面積が一定距離続く部分を形成し、何段階かに亘って断面積を大きくしてもよい。
 さらに、図1に示す例では、第1の領域AR1における複数の横桟15aが同様の形状を有する正極格子体1を例示したが、複数の横桟15aの形状はこれに限定されない。具体的には、当該複数の横桟15aは互いに形状が異なっていてもよく、例えば、断面積を変化させる区間の長さや、テーパー角をそれぞれ変えて断面積の変化率が異なるようにしてもよい。当該複数本の横桟15aは、例えば、一方は段階的、他方は連続的に断面積を変化させてもよい。また、「横桟15aの断面積が大きくなる」とは、図1に示す例のように複数の前記横桟15aの幅を大きくする形態の他に、例えば、当該複数の横桟15aの厚さを大きくしてもよい。
 第1の実施形態では、内骨の横方向及び縦方向の特定の区間で規定した第1の領域において、横桟15aの断面積を特定した。第1の実施形態では、第1の縦枠骨14aに沿う内骨の長さの区間、及び第1の縦枠骨14aから横桟15aの長さの20%~45%の区間、で規定される領域において、複数本の横桟15aは第2の縦枠骨14b側から第1の縦枠骨14aに接続する部分に向けて断面積を大きくしてもよい。このような構成では、全ての横桟15aは第1の縦枠骨14aの接続部で断面積を大きくしているため、第1の領域AR1に配置される横桟15aが第1の縦枠骨14aの接続部で断面積を大きくしている場合に比べて機械的強度を増大できる、つまり補強した横桟15aの本数を増加できる。このため、グロースに伴う複数本の横桟15aの上側への湾曲を防ぎ、正極板と負極板又は負極ストラップ等の負極の一部との接触による内部短絡を抑制する等の効果をより一層助長できる。
 ただし、全ての横桟15aは第1の縦枠骨14aの接続部で断面積を大きくすると、正極格子体1の断面積を大きくする部分が増大し、その分、重量が増加するため、正極格子体1の軽量化が損なわれる。
 これに対し、第1の縦枠骨14aの接続部で断面積を大きくする横桟15aを第1の領域AR1に限定することにより、正極格子体1の断面積を大きくする部分が減少し、その分、重量が低下するため、正極格子体1の軽量化が損なわれない。
 <第2の実施形態>
 第2の実施形態に係る正極格子体に関して、図面を参照しながら説明する。なお、第1の実施形態と同一の構成要素に関しては同一の符号を付して説明を省略する。
 図2は、第2の実施形態に係る正極格子体1を示す平面図である。第2の実施形態に係る正極格子体1では、第1の実施形態で説明した(A1)の構成に加えて、以下の(A2),(A3)、(B1)~(B3)、(C1)、(D1)、(E1),(E2)、(F1)、及び(G1)の構成を有する。図2には、このうち(A1)~(A3)、(C1)、(D1)、(E1),(E2)、(F1)、及び(G1)の構成が特に表れている部分を点線で囲み符号を付して示している。図3~図7は、それぞれ図2の当該構成が特に表れている部分を拡大して示す平面図である。
 (A)横桟15aの形状
 (A1) 第1の横枠骨13aから第2の横枠骨13b側に向かう第1の縦枠骨14aの縦方向Yの長さWの17%~25%の区間、及び第1の縦枠骨14a側から複数本の横桟15aの横方向Xの長さWの20%~45%の区間、で規定される第1の領域において、複数の横桟15aは第2の縦枠骨14b側から第1の縦枠骨14aに接続する部分に向けて断面積が大きくなる。
 (A2) (A1)に記載の第1の領域に位置する複数本の横桟15aのうち、第1の横枠骨13a側に近い横桟15aほど、第1の縦枠骨14aに接続する部分の断面積が大きくなる。同時に、第1の横枠骨14aに近い横桟15aほど、断面積の変化区間が長く、第1の横枠骨13aから第2の横枠骨13b側に向けて当該変化区間が段階的に短くなる。ここで、断面積の変化区間は第2の縦枠骨14b側から第1の縦枠骨14aに接続する部分に向けて断面積が大きくなる、例えばテーパー形状を有する、区間である。
 (A3) 少なくとも第1の縦枠骨14aの縦方向Yの長さWの17%~25%の区間、及び第2の縦枠骨14b側から横桟15aの横方向Xの長さWの10%~30%の区間、で規定される第2の領域において、複数本の横桟15aは第1の縦枠骨14a側から第2の縦枠骨14bに接続する部分に向けて断面積が大きくなる。
 (B)開口部16の面積
 (B1) 第1の縦枠骨14aに隣接する複数の開口部16及び第2の縦枠骨14bに隣接する複数の開口部16を平面視した平均面積は、当該複数の開口部16を除く残りの複数の開口部16を平面視した平均面積と比較して小さくしている。
 (B2) 複数の開口部16を平面視した面積は、第2の横枠骨13b側から第1の横枠骨13a側に向けて段階的に小さくなる。また、第1の縦枠骨14a及び第2の縦枠骨14bに隣接する複数の開口部16を平面視した平均面積は、当該複数の開口部16を除く残りの複数の開口部16を平面視した平均面積と比較して小さくしている。
 (B3) 複数の開口部16を平面視した面積は、正極格子体1(内骨)の中央側から第1の縦枠骨14a側に向けて段階的に小さくなり、正極格子体1(内骨)の中央側から第2の縦枠骨14b側に向けて段階的に小さくなる。
 (C)第1の開口部群17
 (C1) 複数の開口部16のうち、第2の横枠骨13bに隣接する複数の開口部16を第1の開口部群17とし、前記第1の開口部群17を規定する複数の縦桟15b’の少なくとも一部は、第1の開口部群17と縦方向Yに隣接する複数の開口部16を規定する縦桟15bに対して横方向Xにずれて配置されている。
 (D)縦桟15bの形状
 (D1) 正極集電耳11Aの直下に配置される複数本の縦桟15bは、第2の横枠骨13b側から前記第1の横枠骨13aに向けて連続的又は段階的に断面積が大きくなり、第1の横枠骨13aに接続する部分で断面積が最大になるように形成されている。
 (E)開口部16の形状
 (E1) 正極格子体1に形成された複数の開口部16を平面視した四隅は、丸みRが設けられている。
 (E2) 枠骨に隣接する複数の開口部16のうち、少なくとも当該枠骨の四隅に位置する開口部16を平面視した四隅は、枠骨の四隅以外に位置する開口部16と比較して大きな丸みRが設けられている。枠骨の四隅に位置する開口部16において、当該開口部16内の枠骨の角に最も近い隅の丸みRの大きさが最大になる。
 (F)正極集電耳11Aの形状
 (F1) 正極集電耳11Aは、第1の横枠骨13aとの接続端11Baと反対側の端11Bbから、接続端11Baに向けて段階的に幅が大きくなるように形成されている。
 (G)鉛合金に添加される元素
 (G1) 正極格子体1は、Caが0.02~0.08質量%、Snが0.4~2.5質量%、Alが0.005~0.04質量%、Agが0.001~0.0049質量%、及び残部がPbと不可避的不純物からなる鉛合金から形成されている。
 以下、上述する(A)~(G)の特徴に関して図面を用いて詳細に説明する。
 (A)横桟15aの形状
 (A1) 図2を用いて、第2の実施形態に係る正極格子体1の(A1)の構成を説明する。図2に示す例では、第1の横枠骨13aから第2の横枠骨13b側に向けて、少なくとも縦桟15bの縦方向Yの長さWの25%までに位置する複数本の横桟15aは、第1の領域の第2の縦枠骨14b側(すなわち図1に示す右側)から第1の縦枠骨14a側(すなわち図1に示す左側)まで断面積が大きくなるように形成されている。また図2の例において、第1の領域は第1の横枠骨13aから第2の横枠骨13b側に向かう第1の縦枠骨14aの縦方向Yの長さWの25%の区間、及び第1の縦枠骨14aから横桟15aの横方向Xの長さWの約45%の区間、で規定される。また、図2において、第1の領域より下方に位置する複数本の横桟15aは、第2の縦枠骨14b側から第1の縦枠骨14aに向けて、当該複数本の横桟15aの横方向Xの長さWの約20%の区間において、断面積が大きくなるように形成されている。
 第2の実施形態に係る正極格子体1では、上述のように(A1)の構成を有するため、第1の実施形態と同様の効果を得られる。さらに図2に示す例では、図1に示す例と比較して、全ての横桟15aは所定の領域において右側から左側の第1の縦枠骨14aに接続する部分に向けて断面積が大きくなるように形成されている。このため、第1の縦枠骨14a側(正極集電耳11Aの接続箇所から外れる側)に位置する全ての複数本の横桟15aの機械的強度を高くでき、正極格子体1の左側で上向きのグロースが生じても、グロースに伴う複数本の前記横桟15aの上側への湾曲を防止できる。その結果、正極板と負極板又は負極ストラップ等の負極の一部との接触による内部短絡を顕著に抑制できる。同様に、断面積を大きくした複数本の横桟15aは、腐食による折損が生じにくく、正極格子体1の左側に引っ張る力に対しても抗することができる。その結果、第1の縦枠骨14aの外側への湾曲を防止し、上側への加速的グロースも顕著に抑制できる。
 複数本の横桟15aの断面積が大きくなる第1の領域は、第1の横枠骨13aから第2の横枠骨13b側に向かう第1の縦枠骨14aの縦方向Yの長さWの17%~25%の区間、及び第1の縦枠骨14aから横桟15aの横方向Xの長さWの20%~45%の区間、で規定されるため、正極格子体1のグロース抑制と軽量化とを両立する効果を奏する。
 (A2) 図2及び図3を用いて、第2の実施形態に係る正極格子体1の(A2)の構成を説明する。図3は、図2のうち(A1,A2)の符号を付して囲んだ部分の拡大図である。(A1)で説明する第1の領域に位置する複数本の横桟15aのうち、第1の横枠骨13aに近い横桟15aほど、第1の縦枠骨14aに接続する部分の断面積が大きくなる。同時に、第1の横枠骨13aに近い横桟15aほど、断面積の変化区間が長く、第1の横枠骨13aから第2の横枠骨13b側に向けて当該変化区間が段階的に短くなる。具体的には、上から数えてy番目の横桟15aの第1の縦枠骨14aに接続する部分の断面積は、y+1番目の横桟15aのそれと比較して、長い区間に亘り大きくなっている。また、第1の領域に配置される複数本の横桟15aは、全体として、上側に配置される横桟15aほど長い区間に亘り平均的な断面積が大きくなるように形成されている。
 第2の実施形態に係る正極格子体1では、上述のように(A1)の構成に加えて(A2)の構成を有するため、正極格子体1の左側(第1の縦枠骨14a側)及び上側(第1の横枠骨14a側)への変形に対し機械的強度をより高めることができる。それ故、正極板と負極板又は負極ストラップ等の負極の一部との接触による内部短絡をより顕著に抑制できる。加えて、正極板の左側及び上側に向かうグロースの抑制への影響が少ない正極格子体1の中央側に位置する、複数本の横桟15aに補強を施さない、つまり断面積を大きくしないため、鉛蓄電池の軽量化が損なわれない。
 (A3) 図2及び図4を用いて、第2の実施形態に係る正極格子体1の(A3)の構成を説明する。図4は、図2のうち(A3)の符号を付して囲んだ部分の拡大図である。(A3)で説明する複数本の横桟15aは、第1の横枠骨13aから第2の横枠骨13b側に向かう第2の縦枠骨14bの縦方向Yの長さの17%~25%の区間、及び第2の縦枠骨14bから横桟15aの横方向Xの長さの10%~30%の区間、で規定される第2の領域において、第1の縦枠骨14aから第2の縦枠骨14bに接続する部分に向けて断面積が大きくなるように形成されている。
 図2において、(A1)で説明する複数本の横桟15aの構成と(A3)の構成と合わせて説明する。第1の領域に位置する複数本の横桟15aは、それぞれ第2の縦枠骨14b側から第1の縦枠骨14aに接続する部分に向けて、断面積が大きくなるように形成されている。また、第2の領域に位置する複数本の横桟15aは、それぞれ中央側から第2の縦枠骨14bに接続する部分に向けて、断面積が大きくなるように形成されている。さらに、第1の領域と第2の領域との間の中央側の領域において、当該複数本の横桟15aはそれぞれ断面積が一定となるように形成されている。すなわち、複数本の横桟15aは、それぞれ中央側から右側及び左側に向けて断面積が大きくなるように形成されている。
 図2に示す第2の実施形態に係る正極格子体1では、上述のように(A1)の構成に加えて(A3)の構成を有するため、図1に示す第1の実施形態に係る正極格子体1と比較して横桟15aの断面積が左側から右側に向けて大きくなる。その結果、第1の横枠骨13aに接続した正極集電耳11Aの位置よりも右側に位置する正極格子体1の機械的強度は中央側に位置する正極格子体1の機械的強度よりも増大する。このため、正極集電耳11Aの位置より右側において上向きのグロースが生じても、当該グロースに伴って複数本の前記横桟15aの右側部分が上側に湾曲するのを防止できる。これによって、例えば、正極板と負極板の右上部における脱落活物質の堆積に伴うブリッジショート等による内部短絡が顕著に抑制される。同時に、正極格子体1の右側の第2の領域において、中央側から右側に向けて断面積が大きくなるように形成された複数本の横桟15aは、腐食による折損が生じにくく、右側に引っ張る力に対しても抗することができる。このため、第2の縦枠骨14bの外側への湾曲が防止され、上側への加速的グロースも顕著に抑制される。さらに、第2の実施形態に係る正極格子体1は、正極板の左側及び右側、そして上側に向かうグロースの抑制への影響が少ない正極格子体1の中央側に位置する、複数本の横桟15aに補強が施されない、つまり断面積が大きくなっていないため、鉛蓄電池の軽量化が損なわれない。特に、複数本の横桟15aの断面積が第2の縦枠骨14bの接続部で大きくなる第2の領域は、第2の縦枠骨14bから複数本の横桟15aの横方向Xの長さの10%~30%の区間に規定しているため、グロース抑制と軽量化を両立できる。
 なお、第2の実施形態では、横桟15aを第2の領域内で補強した例を示したが、正極格子体1の一層の軽量化が求められる場合には、第2の領域の縦方向長さ、つまり第1の横枠骨13aから第2の横枠骨13b側に向かう第2の縦枠骨14bの縦方向Yの長さ、を少なくとも第1の領域と同じにすることによっても、十分な補強効果を得られる。具体的には、第2の領域の縦方向長さは第1の横枠骨13aから第2の横枠骨13b側に向かう第2の縦枠骨14bの縦方向Yの長さWの17%~25%にすることが軽量化において好ましい。
 第1の領域と第2の領域を比較したときに、第1の領域の面積の方が、第2の領域の面積よりも大きくすることが好ましい。理由は、正極集電耳11Aが存在する正極格子体1の右側に位置する第2の領域よりも、正極格子体1の左側に位置する第1の領域の方が、グロースによる変形が大きいためである。また、同様の理由から第1の領域における横桟15aの断面積の平均値と、第2の領域における横桟15aの断面積の平均値を比較した場合、第1の領域における横桟15aの断面積の平均値の方が大きくすることが、グロースの抑制において好ましい。
 第2の実施形態では、内骨の横方向及び縦方向の特定の区間で規定した第2の領域において、横桟15aの断面積を特定した。第2の実施形態では、第2の縦枠骨14bに沿う内骨の長さの区間、及び第2の縦枠骨14bから横桟15aの長さの10%~30%の区間、で規定される領域において、複数本の横桟15aは第1の縦枠骨14a側から第2の縦枠骨14bに接続する部分に向けて断面積を大きくしてもよい。このような構成では、全ての横桟15aは第2の縦枠骨14bの接続部で断面積を大きくしているため、第2の領域に配置される横桟15aが第2の縦枠骨14bの接続部で断面積を大きくしている場合に比べて機械的強度を高めた横桟15aの本数を増加できる。このため、グロースに伴う複数本の横桟15aの上側への湾曲を防ぎ、正極板と負極板又は負極ストラップ等の負極の一部との接触による内部短絡を抑制する等の効果をより一層助長できる。
 ただし、全ての横桟15aは第2の縦枠骨14bの接続部で断面積を大きくすると、正極格子体1の断面積を大きくする部分が増大し、その分、重量が増加するため、正極格子体1の軽量化が損なわれる。
 これに対し、第2の縦枠骨14bの接続部で断面積を大きくする横桟15aを第2の領域に限定することにより、正極格子体1の断面積を大きくする部分が減少し、その分、重量が低下するため、正極格子体1の軽量化が損なわれない。
 (B)開口部16の面積
 (B1) 図2及び図3を用いて、第2の実施形態に係る正極格子体1の(B1)の構成を説明する。(B1)の構成において、第1の縦枠骨14aに隣接する複数の開口部16及び第2の縦枠骨14bに隣接する複数の開口部16を平面視した平均面積は、当該複数の開口部16を除く残りの複数の開口部16の平均面積よりも小さくする。
 このように、少なくとも前記第1の縦枠骨14aに隣接する複数の開口部16及び第2の縦枠骨14bに隣接する複数の開口部16を平面視した平均面積を、当該複数の開口部16を除く残りの複数の開口部16の平均面積よりも小さくすることによって、当該複数の開口部16に充填された正極活物質は、正極格子体1の一定の面積当たりに接する割合が他の複数の開口部16に充填された正極活物質と比べて大きくなる。そのため、当該複数の開口部16に充填された正極活物質と正極格子体1との密着性が他の部分よりも向上し、当該正極活物質の剥離又は脱落を抑制できる。従って、当該複数の開口部16に充填された正極活物質の剥離又は脱落に伴う、放電容量や出力特性などの電池性能の低下を抑制できる。同時に、前記正極格子体1の第1の縦枠骨14a及び第2の縦枠骨14bの加速的グロースを防止することが可能となる。
 なお、正極格子体1の開口部16を平面視した際の面積を小さくするには、例えば当該開口部16を形成する枠骨、横桟15a又は縦桟15bの幅を拡大したり、同一面積における横桟15a又は縦桟15bの本数を増やしたりするなどの方法が考えられる。しかしながら、いずれも正極格子体1の重量増加とトレードオフの関係にあるため、開口部16を平面視した平均面積の縮小箇所を第1の縦枠骨14a及び第2の縦枠骨14bに隣接する部分に限定することが望ましい。
 (B2) 次に、図2及び図3を用いて、第2の実施形態に係る正極格子体1の(B2)の構成を説明する。(B2)の構成において複数の開口部16を平面視した面積は、第1の横枠骨13aと第2の横枠骨13bとを縦断する同一垂線上で比較した場合に、第2の横枠骨13b側から第1の横枠骨13a側に向けて段階的に小さくする。すなわち、図2及び図3に示す例では、同一垂線上で上側から数えてy’番目に位置する1つの開口部16の面積を、同一垂線上のy’+1番目に位置する開口部16の面積に対して、小さくする。ここで、同一垂線上において上下に連続して並ぶ複数の開口部16の面積は、第2の横枠骨13b側から前記第1の横枠骨13a側に向けて、第2の横枠骨13b側の開口部16の面積に対して0.85倍以上、0.99倍を超えない範囲で段階的に小さくすることが好ましい。加えて、第1の縦枠骨14a及び第2の縦枠骨14bに隣接する複数の開口部16を平面視した平均面積は、その複数の開口部16を除く残りの複数の開口部16の平均面積と比較して小さくする。
 次に、(B2)の構成の作用を説明する。
 上述の通り、(B2)の構成を有する第2の実施形態に係る正極格子体1では、複数の開口部16を平面視した面積を、第1の横枠骨13aと第2の横枠骨13bとを縦断する同一垂線上で比較した場合に、第2の横枠骨13b側から第1の横枠骨13a側に向けて段階的に小さくする。このように正極格子体1の上側の面積が小さい開口部16では、(B1)の構成と同様に、当該複数の開口部16に充填された正極活物質は正極格子体1の一定の面積当たりに接する割合が正極格子体1の下側に位置する面積が大きい開口部16に比べて増加する。このため、当該開口部16に充填された正極活物質と正極格子体1との密着性が向上し、前記正極格子体1の加速的グロースを防止することが可能になる。ここで、上下に連続した複数の開口部16の面積比は、下側の開口部16に対して上側の開口部16の面積が0.85倍以上、0.99倍を超えない範囲、すなわち、(上側の開口部)/(下側の開口部)の面積比=0.85~0.99にすることが、加速的グロースの防止においてより望ましい。面積比が0.99倍を超える場合は、正極格子体1の上側と下側とでの面積差が小さいため、前記正極格子体1の上側の補強を選択的に高めることの効果が小さくなる。また面積比が0.85倍未満の場合は、正極格子体1の上側の開口部16を小さくしたことによる正極活物質の充填性が向上するものの、下側の開口部16が相対的に大きくなって出力特性や正極活物質の保持性の低下を招く虞がある。
 次に、正極活物質の膨張、収縮による正極格子体1の変形が、第2の実施形態に係る正極格子体1の(B2)の構成によって、抑制される作用について説明する。
 充放電により正極活物質が膨張、収縮した際に、その膨張、収縮力は正極格子体の中央部から外周部に向かって伝搬される。発明者等の研究により、当該伝搬の総和として特に第1,第2の縦枠骨に大きな伸びが生じ、当該第1,第2の縦枠骨に隣接する開口部において正極活物質の剥離又は脱離を生じやすくなることが判った。剥離又は脱落は、上述の(B1)の構成に記載のように、第1,第2の縦枠骨に隣接する複数の開口部を平面視した面積を小さくすることによって、ある程度まで抑制可能である。さらに、同一垂線上で上下に連続して並ぶ開口部を平面視した面積差(正極格子体の厚みが一定である場合は体積差)を小さくすることによって、前記上下に連続した開口部同士の正極活物質の膨張力と収縮力の差により当該開口部間に生じる界面応力を緩和し、正極活物質の剥離又は脱落をより顕著に抑制できることが判った。
 このようなことから、図2及び図3において同一垂線上で下側の第2の横枠骨13b側から上側の第1の横枠骨13a側に近づくに従って、複数の開口部16を平面視した面積を小さくすることによって、加速的グロースが生じやすく、正極活物質の膨張収縮が著しい正極格子体1の上側において、開口部16間での正極格子体1表面と正極活物質との間に生じる界面応力を緩和し、正極活物質の剥離又は脱落を防止することができる。
 さらに、(B2)の構成では、正極格子体1の上側に位置するほど、正極格子体1に占める横桟15aと縦桟15bの本数が相対的に多くなるため、正極格子体1の上側の機械的強度が向上する。したがって、上向きにグロースが生じても、正極格子体1の上側に位置する横桟15aほど、上側への湾曲が抑えられ、正極板の上部と負極板又は負極ストラップ等の負極の一部との接触による内部短絡を抑制できる。また、正極活物質の膨張、収縮の影響の少ない正極格子体1の下側において、正極格子体1に占める横桟15aと縦桟15bの本数が相対的に少なくなるため、鉛蓄電池の軽量化が損なわれない。
 なお、複数の開口部16の面積が下側から上側に向けて段階的に小さくするとき、当該複数の開口部16には後述する第1の開口部群17を設けなくてよい。すなわち、第1の開口部群17を構成する開口部16は、その上側に隣接する開口部16と同等の面積にしてもよい。
 (B3) 図2を用いて、第2の実施形態に係る正極格子体1の(B3)の構成を説明する。(B3)の構成を有する正極格子体1において、複数の開口部16を平面視した面積は、前記正極格子体1の中心側から第1の縦枠骨14a側に向けて、及び前記正極格子体1の中心側から第2の縦枠骨14b側に向けて段階的に小さくする。すなわち、正極格子体1において、複数の開口部16を平面視した面積は正極格子体1の中心側から左右の両端に向けて、段階的に小さくなる。このような構成によれば、正極格子体1の(B2)の構成が奏する作用効果と同様に、正極格子体1の左右の両端部に位置する第1,第2の縦枠骨14a,14bの近傍における正極活物質の剥離又は脱落を防止できる。
 前述した正極格子体1の開口部16を平面視した面積を部分的に小さくするには、例えば当該開口部16を形成する枠骨、横桟15a又は縦桟15bの幅を拡大したり、同一面積における内骨の横桟15a、縦桟15bの本数を増やしたりするなどの方法が考えられる。しかしながら、いずれも正極板の重量増加とトレードオフの関係にあるため、開口部16を平面視した面積を部分的に小さくする補強は必要な箇所に選択的に施すことが望ましい。例えば、図2に示す第2の実施形態では複数本の縦桟15bが正極格子体1の中心側から第1の縦枠骨14a側に向けて、及び正極格子体1の中心側から第2の縦枠骨14b側に向けて、それぞれ段階的に間隔が狭くなる。同時に、複数本の横桟15aはそれぞれ第2の縦枠骨14b側から第1の縦枠骨14aに接続する部分に向けて、断面積が大きくなるように形成されている。
 さらに(B3)の構成では、正極格子体1の左右両端側に位置するほど、正極格子体1に占める横桟15aと縦桟15bの本数が相対的に多くなるため、正極格子体1の横方向Xにおける左右両端部の機械的強度が向上する。その結果、正極格子体1の横方向Xへのグロースが生じても、複数本の縦桟15bの外側への湾曲を防止できるとともに、当該正極格子体1の左右両端側に位置する正極活物質の剥離又は脱落をより効果的に防止することができる。従って、正極格子体1の加速的グロースを抑制できる。
 また(B3)の構成を有する正極格子体1は、正極活物質の膨張、収縮の影響の少ない正極格子体1の中央側において、正極格子体1に占める横桟15aと縦桟15bの本数が相対的に少ないため、鉛蓄電池の軽量化が損なわれない。
 (C)第1の開口部群17
 (C1) 図2及び図5を用いて、第2の実施形態に係る正極格子体1の(C1)の構成を説明する。図5は、図2の正極格子体1において(C1)の符号を付して囲んだ部分の拡大図である。正極格子体1に形成された複数の開口部16のうち、第2の横枠骨13bに隣接する複数の開口部16を第1の開口部群17とする。第1の開口部群17を規定する複数の縦桟15b’の少なくとも一部は、第1の開口部群17と縦方向Yに隣接する複数の開口部16を規定する複数の縦桟15bに対して横方向Xにずれて配置されている。すなわち、(C1)の構成において、前記縦桟15bは前記第1の開口部群17の上辺を規定する横桟15aと、少なくとも一部で逆T字状に接続される。
 第2の実施形態に係る正極格子体1では、(C1)の構成を有するため、グロースが生じて複数本の縦桟15bが下側に向けて延伸しても、当該縦桟15bと第1の開口部群17の上辺を規定する横桟15aとが逆T字状に接続する交点において、当該横桟15aが近傍の縦桟15b’を支点として下側に湾曲してその延伸による変位を吸収できる。その結果、複数本の縦桟15bの下側への延伸が横桟15a及び縦桟15bを含む内骨により吸収されるため、正極格子体1全体の下側に向かうグロースを抑制できる。背景技術で述べたように、極板群を支持する電槽の底面、又は底面に設けた鞍部によって、下向きに生じたグロースは上向きに転じるため、正極板の上端が負極ストラップ等の負極の一部に接触して内部短絡を生じる虞がある。第2の実施形態の(C1)の構成によれば、下側に向かうグロースを横桟15a及び縦桟15bを含む内骨により吸収することによって、上側に向かうグロースを防止でき、正極板の上端と負極ストラップ等の負極の一部との接触による内部短絡を抑制できる。
 なお、図2及び図5に示す例では、第1の開口部群17を規定する複数の縦桟15b’の全てが、第1の開口部群17と縦方向Yに隣接する複数の開口部16を規定する縦桟15bに対して横方向Xにずれて配置されている例を説明したが、これに限定されない。
 また、「第1の開口部群17を規定する複数の縦桟15b’の少なくとも一部」は、正極集電耳11Aの直下に位置する複数本の縦桟15b’を含み、横方向Xに配列される複数本の縦桟15b’の50%以上、好ましくは70%以上とすることが好ましい。
 (D)縦桟15bの形状
 (D1) 図2を用いて、第2の実施形態に係る正極格子体1の(D1)の構成を説明する。図2の正極格子体1において(D1)の符号を付して囲んだ部分に示すように、正極集電耳11Aの直下に配置される複数本の縦桟15bの少なくとも一部は、第1の横枠骨13aに接続する部分で断面積が最大であり、第2の横枠骨13b側(すなわち図2に示す下側)から第1の横枠骨13a(すなわち図2に示す上側)に向けて断面積が大きくなるように形成されている。
 第2の実施形態に係る正極格子体1では、(D1)の構成を有し、第1の横枠骨13aとの接続部が補強された縦桟15bを備えている。このため、電流密度が大きく、正極格子体1が腐食しやすい正極集電耳11Aの近傍において、縦桟15bの腐食に伴う折損を防止できるとともに、機械的強度を向上して、正極格子体1の変形を抑制できる。その結果、正極活物質の剥離又は脱落を抑制して、正極格子体1の加速的グロースを抑制できる。また、正極格子体1は正極活物質の膨張、収縮の影響の少ない正極格子体1の下側において、複数本の縦桟15bの断面積が相対的に小さくなるため、鉛蓄電池の軽量化が損なわれない。
 また、電流密度が最大となる正極集電耳11Aの直下に配置される縦桟15bを、第1の横枠骨13aに接続する部分が最大となるように上側に向けて断面積を大きく形成することによって、正極格子体1全体の充放電時の電位分布を均一化できる。その結果、正極格子体1に充填された正極活物質から充放電反応によって取り出される電力を効率良く集電でき、当該正極格子体1を備える鉛蓄電池の入出力特性を向上できる。
 なお、図2に示す複数本の縦桟15bは、(D1)の符号で囲む正極集電耳11Aの直下に位置する複数本の縦桟15bを含む、全ての縦桟15bにおいて、第1の横枠骨13aに接続する部分で断面積が最大で、かつ第2の横枠骨13b側から第1の横枠骨13aに向けて断面積が大きくなるように形成してもよい。このような構成によると、電流密度が大きく、腐食しやすい正極格子体1の上側の機械的強度が向上するとともに、正極格子体1における縦方向Yにおける電位分布がより一層均一になるため好ましい。その結果、正極格子体1の上側に向かうグロースをより抑制することができ、当該正極格子体1を備える鉛蓄電池の入出力特性をさらに向上できる。
 正極格子体1の電位分布をより良好に均一化する観点から、正極集電耳11Aの直下に配置される複数本の縦桟15bの少なくとも一部は上側に向けて断面積が大きくなる構成に加え、平均的な断面積も最も大きくすることが好ましい。
 「複数本の縦桟15bの断面積を大きくする」とは、当該複数本の縦桟15bが連続的及び/又は段階的に断面積を大きくすることを意味する。すなわち、図2に示す例のように、縦桟15bは下側から上端にかけて連続的に一定のテーパー角を有することにより断面積が大きくなるように形成してもよく、又は下側から上端に向けて断面積が一定となる複数の区間を有し、当該複数の区間が何段階かに亘って断面積が大きくなるように形成してもよい。
 図2に示す例では、正極格子体1において(D1)で囲む部分に示す複数本の縦桟15bが同様の形状を有する例を示したが、これに限定されない。例えば、当該複数本の縦桟15bは互いに形状が異なっていてもよい。具体的には、当該複数本の縦桟15bにおいて断面積を大きく形成する区間の長さや、断面積の変化形態がそれぞれ異なってもよい。すなわち、当該複数本の縦桟15bは例えば、一方は段階的、他方は連続的に断面積が大きくなるように形成してもよい。また、「縦桟の断面積を大きくする」とは、図2に示す例のように、正極格子体1を平面視した際の縦桟15bの幅が大きくすることに限定されず、例えば、複数本の縦桟15bの厚さを大きくしてもよい。
 (E)開口部16の形状
 (E1) 図2及び図6を用いて、第2の実施形態に係る正極格子体1の(E1)の構成を説明する。図6の(a)は、図2に示す正極格子体1の第1の横枠骨13aに隣接して配置される1つの開口部16を拡大して示す平面図である。図2及び図6の(a)に示すように、正極格子体1に形成された複数の開口部16を平面視した四隅は、丸みR1が形成されている。丸みR1の大小は、例えば、丸みR1の曲率半径で規定することができる。
 開口部16を平面視した四隅に丸みR1を形成することによって、当該開口部16への正極活物質の充填性が向上し、未充填領域が減少する。このため、正極格子体1と正極活物質との密着性を向上できる。さらに、当該開口部16の四隅の機械的強度が向上するため、正極格子体1の変形を防止でき、正極板と負極板又は負極ストラップ等の負極の一部との接触による内部短絡、又は正極活物質の剥離又は脱落とそれに伴う加速的グロースを防止できる。
 なお、複数の開口部16に設ける丸みR1は、図6の(a)に示す例に限定されず、その配置又は大きさを正極活物質の剥離又は脱落のしやすさに応じて適宜選択してもよい。また、丸みR1の大小が曲率半径で規定し得ることを述べたが、丸みRは円弧であるものに限定されない。例えば、円弧に近い多角形としてもよい。丸みR1の大小は、例えば、開口部16が矩形状である場合と比較して、丸みR1による面積変化の割合で規定してもよい。
 (E2) 図2及び図6を用いて、第2の実施形態に係る正極格子体1の(E2)の構成を説明する。(E2)の構成において、枠骨に隣接する複数の開口部16のうち、少なくとも枠骨の四隅に位置する開口部16を平面視した四隅は、枠骨の四隅以外に位置する開口部16と比較して大きな丸みRが設けられている。枠骨の四隅に位置する前記開口部において、当該開口部内の前記枠骨の角に最も近い隅の丸みRの大きさを最大にする。
 図6の(b)は、正極格子体1において、第1の横枠骨13a及び第1の縦枠骨14aで規定される左上側の隅に配置される開口部16を示している。枠骨の左上側の隅に配置される開口部16は、枠骨の角に最も近い左上の隅の丸みをR2、開口部16内のその他の3つの隅の丸みをR1として示している。丸みR1,R2の大小は、例えば、丸みRの曲率半径で規定され、丸みR2は丸みR1よりも大きくしている。
 また、枠骨の他の3つの隅に配置される開口部16もまた、図6の(b)と同様に、枠骨の角に最も近い隅に大きな丸みR2を設けている。枠骨の4つの隅に配置される開口部16以外では、図6の(a)と同様に開口部16内の4つの隅に小さな丸みR1が設けられている。
 第2の実施形態に係る正極格子体1では、(E1)の構成に加えて(E2)の構成を有するため、正極格子体1の開口部16への正極活物質の充填性が向上し、未充填領域が減少するため、正極格子体1と正極活物質との密着性を向上できる。さらに、当該開口部16内の四隅の機械的強度が向上するため、正極格子体1の変形を防止でき、正極板と負極板又は負極ストラップ等の負極の一部との接触による内部短絡、又は正極活物質の剥離又は脱落とそれに伴う加速的グロースを防止できる。加えて、正極格子体1では複数の開口部16のうち、正極活物質の剥離又は脱落しやすい枠骨の四隅に配置される開口部16内の4隅に対して選択的に大きな丸みR2を設けている。そのため、正極格子体1の不必要な重量の増加を生じることなく、正極格子体1からの正極活物質の剥離又は脱落、及び正極格子体1のグロースをより効果的に防止することができる。
 なお、複数の開口部16に設ける丸みR1,R2は、図6の(a),(b)に示す例に限定されず、その配置や大きさを正極活物質の剥離又は脱落のしやすさに応じて適宜選択してもよい。また、開口部16内の四隅に2種類以上の丸みRを設けてもよい。例えば、開口部16内の四隅のうち、一隅と残りの三隅の丸みRを互いに異ならせる、開口部16内の四隅のうち、二隅と二隅の丸みRを互いに異ならせる、開口部16内の四隅のうち、全ての隅の丸みRを互いに異ならせる、開口部16内の四隅のうち、二隅又は三隅の丸みRを互いに異ならせ、残りの一隅又は二隅に丸みRを設けない等の形態にしてもよい。四隅全てが丸みRを有さない開口部16が内骨の一部に配置する形態にしてもよい。丸みR1又はR2の大小が曲率半径で規定し得ることを述べたが、丸みR1又はR2は円弧であるものに限定されない。例えば、円弧に近い多角形としてもよい。さらに、丸みR1又はR2の大小は、例えば、開口部16が矩形状であった場合と比較して、丸みR1又はR2によって面積がどの程度縮小するかという方法で規定してもよい。
 (F)正極集電耳11Aの形状
 (F1) 図2及び図7を用いて、第2の実施形態に係る正極格子体1の(F1)の構成を説明する。図7は、図2の正極格子体1において(F1)の符号を付して囲んだ部分の拡大図である。正極集電耳11Aは、第1の横枠骨13aとの接続端11Baと反対側の端11Bbから接続端11Baに向けて段階的に幅が大きくなるように形成されている。図7に示す例では、例えば、正極集電耳11Aは当該反対側の端11BbではW1の幅を有している。また正極集電耳11Aは、当該反対側の端11Bbから下側に向けて、W1の幅で一定の部分を有している。さらに正極集電耳11Aは、当該W1の幅で一定の部分から下端の接続端11Baに向けて、連続的に幅が大きくなる部分を有し、当該接続端11BaではW2の幅を有している。ここで幅W2は、幅W1よりも大きければ特に限定されないが、例えば、図7に示す例ではW2はW1の約2.5倍の幅である。
 第2の実施形態に係る正極格子体1では、(F1)の構成を有するため、正極格子体1全体の充放電時の電位分布を均一化できる。このため、正極集電耳11Aから離れた位置である正極格子体1の下側においても、正極活物質から充放電反応によって取り出される電気を効率よく集電でき、当該正極格子体1を備える鉛蓄電池の入出力特性を向上できる。
 また(F1)の構成では、正極集電耳11Aの幅が第1の横枠骨13aとの接続端11Baと反対側の端11Bbから、接続端11Baに向けて段階的に大きくすることによって、当該接続端11Baを中心として第1の横枠骨13aの機械的強度が向上し、正極格子体1の上側に向かうグロースを抑制できる。その結果、正極格子体1の上方への変形を防止でき、上側に向かうグロースに伴う正極板と負極板の内部短絡を抑制できる。
 また図2に示す例では、正極集電耳11Aは幅が一定の部分と、上側から下端の接続端11Baにかけて連続的に幅が大きくなる部分とで構成されている。この構成によれば、当該正極集電耳11Aの一定の幅部分を矩形板状とすることによって、前述した内部短絡の抑制を達成でき、同時に汎用の製造設備を用いて、低コストで鉛蓄電池を製造することが可能になる。
 (G)鉛合金に添加される元素
 (G1) 正極格子体1は、Caが0.02~0.08質量%、Snが0.4~2.5質量%、Alが0.005~0.04質量%、Agが0.001~0.0049質量%、及び残部がPbと不可避的不純物からなる組成の鉛合金から形成されている。
 このように正極格子体を構成する鉛合金は、Ca、Sn、Al、Agの成分元素を特定の範囲で添加されているため、得られた鉛合金の耐腐食性と機械的強度の双方を向上させることが可能になる。Caの添加は正極格子体の機械的強度を向上させる。Caの配合量が0.02質量%未満ではその効果が少なく、0.08質量%を超えると耐腐食性が低下する虞がある。Snの添加は鉛合金の溶湯の湯流れ性を向上させるとともに、正極格子体の機械的強度を向上させる。Snの配合量が0.4質量%未満ではその効果が少なく、2.5質量%を超えると耐腐食性が低下する虞がある。Alの添加は溶湯の酸化によるCaの損失を防止し、さらに正極格子体の機械的強度を向上させる。Alの添加量が0.005質量%未満ではその効果が少なく、0.04質量%を超えるとAlがドロスとして析出し易くなる。Agの添加は機械的強度を向上し、特に高温での耐クリープ特性を高める。Agの添加量が0.001質量%未満ではその効果が少なく、0.0049質量%を超えると添加量の増加に伴う効果の増大を期待できない。
 次に、第2の実施形態に係る正極格子体1の作用を説明する。
 第2の実施形態に係る正極格子体1は、図2に示すように上述する(A1)~(A3)、(B1)~(B3)、(C1)、(D1)、(E1),(E2)、(F1)、及び(G1)の構成を備えているため、それぞれの構成において説明した効果を得ることができる。総合すると、第2の実施形態に係る正極格子体1では、主に以下の(1)~(5)の効果を得ることができる。
 (1)正極格子体の機械的強度の向上;第2の実施形態に係る正極格子体は、当該正極格子体の上側、右側、左側の端部に近づくほど、平面視した開口部の面積が小さくなるように形成されているため、正極格子体に占める横桟と縦桟の本数が相対的に多くなり、機械的強度が高くなる。その結果、正極格子体の横方向X及び縦方向Yへの変形を防止できる。さらに第1の領域及び第2の領域においては、複数本の横桟がその断面積を正極格子体の中央側から外側の縦枠骨に接続する部分に向けて大きくなるように形成しているため、横方向Xの機械的強度が増大し、グロースを抑制できる。また、正極集電耳の直下に配置される複数本の縦桟の少なくとも一部が、下側から上側に向けて断面積が大きくなるように形成しているため、電流密度が大きく腐食しやすい正極格子体の上側の機械的強度が向上するとともに、正極格子体における縦方向Yの機械的強度が増大してグロースを抑制できる。加えて、第1の開口部群において内骨の変形によって縦方向Yのグロースを吸収できる。その上、正極集電耳は第1の横枠骨との接続端にかけて幅が段階的に大きくなるように形成しているため、第1の横枠骨の機械的強度が向上し、充放電による正極格子体の変形に伴う上側への湾曲をより効果的に抑制できる。
 従って、第2の実施形態に係る正極格子体は、その変形を抑制する複数の構成を併せ持つため、充放電の繰り返しによる腐食や活物質の膨張、収縮等が生じても、正極格子体の左右両側での上向きのグロースに伴う、正極板と負極板又は負極ストラップ等の負極の一部との接触による内部短絡をより顕著に防止でき、鉛蓄電池の長寿命化を実現できる。
 (2)正極格子体と正極活物質との密着性の向上;第2の実施形態に係る正極格子体は、当該正極格子体の上側、右側、左側の端部に近づくほど、平面視した開口部の面積が小さくなるように形成しているため、正極格子体に充填された正極活物質に対する横桟及び縦桟を含む内骨の接触面積が増大し、特に上側、右側、左側の端部近傍において正極格子体と正極活物質との密着性が良好となる。その結果、正極活物質が充放電に伴って膨張、収縮などを生じた際の正極格子体からの正極活物質の剥離又は脱落を抑制することができ、正極活物質が剥離又は脱落した正極格子体の表面に電解液が接触することを防ぎ、正極格子体の加速的グロースを抑制できる。それ故、鉛蓄電池の内部短絡を防止でき、鉛蓄電池の長寿命化を実現できる。
 (3)正極格子体の重量増加の防止;第2の実施形態に係る正極格子体は、当該正極格子体に占める横桟と縦桟の本数の増大又は断面積の段階的な増加、及び正極集電耳の段階的な断面積の増加、並びに開口部内の四隅への丸みRの形成による補強を、グロースによる影響が大きく、正極活物質の剥離又は脱落や、正極格子体の変形が生じやすい部分に選択的に施す構成である。このため、正極格子体の軽量化と長寿命化を両立できる。
 (4)第2の実施形態に係る正極格子体は、当該正極格子体の複数本の縦桟及び正極集電耳の形状の特定化により充放電時の電位分布を良好に均一化できる。その結果、当該正極集電耳から離れた正極格子体の下側においても、正極活物質から充放電反応によって取り出される電力を効率よく集電でき、当該正極格子体を備える鉛蓄電池の充放電時の入出力特性を向上できる。
 (5)正極格子体の腐食の防止;正極格子体を構成する鉛合金は所定量のCa、Sn、Al又はAgが添加されているため、正極格子体の機械的強度と耐腐食性を向上できる。
 なお、図示しないが、第1の横枠骨に隣接する上側から一段目の複数の開口部又は当該一段目の複数の開口部に隣接する二段目の複数の開口部のうち、鉛蓄電池の負極板に設けられる負極集電耳、又は負極集電耳が接続された負極ストラップの直下に位置する開口部が、補助桟によって分割されている構成にしてもよい。このような構成によれば、負極集電耳等に対応する位置に配置された正極格子体の機械的強度が向上し、正極板及び負極板の間の内部短絡をもたらす正極格子体の上向きのグロースをより顕著に抑制できる。
 <第3の実施形態>
 第3の実施形態に係る正極格子体は、第2の実施形態で説明した各構成の全てを備えなくてもよく、(A1)の構成に加えて、(A1)~(A3)、(B1)~(B3)、(C1)、(D1)、(E1),(E2)、(F1)、及び(G1)から選ばれるいずれか1つ以上の構成を備えるものである。このような構成によれば、選ばれる各構成の項目で説明した効果を組み合わせた相乗効果が得られる。ここで、正極格子体1は、構成(B2)を備えるときは構成(B1)をも備え、構成(E2)を備えるときは構成(E1)をも備えるものとする。特に、(C1)及び(D1)の構成を組合せた正極格子体は、グロースによる変形を防止する点からより好ましい。また、(D1)及び(F1)の構成を組み合わせた正極格子体は、鉛蓄電池に組込んだ際の充放電時の電位分布の均一化と出力特性の向上の点からより好ましい。また、前記の各構成に(G1)の構成を組み合わせた正極格子体は、機械的強度と耐腐食性が向上するため、グロースによる変形を防止する点からより好ましい。
 <第4の実施形態>
 図8は、第4の実施形態に係る鉛蓄電池100を示す斜視図である。第4の実施形態に係る鉛蓄電池100は、第1~第3の実施形態に係る正極格子体1を備える。第4の実施形態に係る鉛蓄電池100の構成は、少なくとも正極板に第1~第3の実施形態に係る正極格子体1を用いる点を除き、特に限定されるものではない。図8に示すように、鉛蓄電池100は単一のセルからなる起電力2Vの鉛蓄電池であり、正極板P、負極板N、電解液としての希硫酸、セパレータS(ガラス繊維製のリテーナマット等)、電槽20、蓋(図示せず)等の部材から製造される。例えば、正極板Pと負極板Nとの間にセパレータSを介在させながら、正極板Pと負極板Nとを1枚ずつ交互に積層して、正極集電耳11A同士及び負極集電耳11B同士をそれぞれ正極ストラップ12A及び負極ストラップ12Bで連結させ、極板群10を構成する。正極ストラップ12A及び負極ストラップ12Bには、上側に延びる正極極柱18A及び負極極柱18Bが接続されている。この極板群10を電槽の開口部21から電槽20の中に入れて蓋を嵌合し、当該蓋に設けられた中空の正極端子(図示せず)及び負極端子(図示せず)に対して、各正極極柱18A及び負極極柱18Bを挿入して溶接する。蓋に設けられた注液口から、電解液である希硫酸を注液した後に化成を行って起電力2Vの鉛蓄電池100を完成する。
 以上詳述したように、第1~第4の実施形態に係る正極格子体1及び鉛蓄電池100によれば、正極格子体1の変形に起因する正極板Pと負極板N又は負極ストラップ12B等の負極の一部との接触による内部短絡を防止し、鉛蓄電池100の耐久性を向上し長寿命化を実現できる。
 なお、各実施形態では、正極格子体1の横枠骨及び複数本の横桟15aが平行に配置され、横枠骨及び複数本の横桟15aが縦枠骨及び複数本の縦桟15bに対して直角に配置された例を説明したが、これに限定されない。例えば、横枠骨13a,13b及び複数本の横桟15aは、互いに平行に配置されなくてもよく、互いに所望の角度をなして配置されていてもよい。同様に、縦枠骨14a,14b及び複数本の縦桟15bとは、互いに平行に配置されなくてもよく、互いに所望の角度をなして配置されていてもよい。また、枠骨を構成する横枠骨13a,13b及び縦枠骨14a,14b、及び内骨を構成する複数本の横桟15a及び縦桟15bは、主にそれぞれ直線状であるものを例に説明したが、これに限定されず曲線状でも、分岐していてもよい。
 各実施形態では、複数の開口部16の形状が矩形状又は四隅に丸みRを備えた矩形状である例を示したが、これに限定されない。複数の開口部16の形状は、例えば他の多角形状、円形状であってもよい。
 また、上述の通り各実施形態では、正極格子体1の開口部16の面積を小さくする方法として、当該開口部16を規定する枠骨及び内骨を構成する複数の横桟15a及び縦桟15bを配置する間隔を狭くしたものを説明したが、これに限定されない。開口部16の面積を小さくするには、例えば、矩形状の開口部16の四隅に丸みRを設けてもよい。当該丸みRの曲率半径を適宜変更させることで、当該開口部16の面積を調節することができる。あるいは開口部16の面積を小さくするため、当該開口部16を規定する枠骨及び複数本の桟の太さをその部分のみ太くしてもよい。また、上述する開口部16の面積を小さくする方法は、適宜組み合わせてもよい。
 さらに、上述の通り正極集電耳11Aは上方から下方にかけて段階的に幅が大きくなるように形成されることを説明したが、その形状は集電性能及び強度を考慮して適宜変更されてよく、例えば、扇型、三角形、又は角が丸みRを帯びた矩形状であり得る。また、正極集電耳11Aの幅は適宜変更されてよい。
 上述した第1~第4の実施形態において示した構成は、適宜組み合わせることができる。また、これらの実施形態において左右の位置関係は正極集電耳11Aの位置を基準としたため、当該正極集電耳11Aが本発明の正極格子体1と逆側に偏在する正極格子体1では、係る補強は左右の位置関係を逆にすればよい。以上、鉛蓄電池用正極格子体1及びそれを用いた鉛蓄電池100の実施形態について、具体的に説明したが、これらの実施形態に限定されるものではなく、本発明の技術的思想に基づく種々の変更が可能である。
 本発明の鉛蓄電池用正極格子体及び鉛蓄電池について、実施例及び比較例により具体的に説明する。
<正極格子体Aの作製例>
 正極集電耳を形成した第1の横枠骨と第2の横枠骨とを平行に配置した後、前記第1,第2の横枠骨同士と第1,第2の縦枠骨とがそれぞれ直角をなすように接続して矩形の枠骨とした。当該枠骨に囲繞される矩形の空間に、両端が第1,第2の縦枠骨と水平に接続した15本の横桟と、両端が第1,第2の横枠骨と垂直に接続した12本の縦桟とを配置して内骨とした、高さ113.0mm、幅105.0mmの正極格子体Aを得た。
 複数本の前記横桟は、それぞれ中央部の断面積が一定であり、第1の領域において、中央側から左側の当該第1の縦枠骨に接続する部分にかけて断面積が大きくなるテーパー形状を有する。ここで、第1の領域は第1の横枠骨との接続部から第2の横枠骨に向かう縦桟の20mmの区間、及び第1の縦枠骨との接続部から第2の縦枠骨に向かう横桟の45mmの区間、で規定される。特に、正極格子体Aは、第2の縦枠骨側(右側)から第1の縦枠骨と接続する部分までの区間において、第1の横枠骨側から数えて1本目及び2本目の横桟はそれぞれ45mm,35mmの区間に亘って断面積が0.60mmから1.60mmまで大きくなり、3本目の横桟は25mmの区間に亘り断面積が0.60mmから1.20mmまで大きくなるように形成した。
 このような正極格子体AはCaが0.06質量%、Snが1.6質量%、Alが0.02質量%、Agが0.002質量%、残部がPbからなるPb-Ca-Sn-Al-Ag系鉛合金をスラブの素材に用い、スラブ鋳造工程、圧延工程を経て厚さ0.8mmの圧延シートとした後、当該圧延シートをパンチングプレス機によりプレス打ち抜きを行って作製した。
<正極格子体Bの作製例>
 以下に説明する構成を有する以外、正極格子体Aと同様な正極格子体Bを作製した。
 すなわち、正極格子体Bの内骨を構成する15本の横桟はそれぞれ中央部の断面積が一定である。また、正極格子体Aの作製例で記載した第1の領域より下方に位置する区間において、第1の横枠骨側から数えて4~9本目の横桟は第2の縦枠骨側(右側)から第1の縦枠骨と接続する部分に向かう20mmの区間に亘り断面積が0.55mmから1.00mmまで大きくなり、10~15本目の横桟は20mmの区間に亘り断面積が0.45mmから0.80mmまで大きくなるように形成した。
<正極格子体Cの作製例>
 以下に説明する構成を有する以外、正極格子体Bと同様な正極格子体Cを作製した。
 すなわち、正極格子体Cの内骨を構成する15本の横桟はそれぞれ中央部の断面積が一定であり、当該中央部から第1の横枠骨に向かう形状も正極格子体Bと同様である。また、第2の縦枠骨に沿う内骨の長さの区間、及び第2の縦枠骨から横桟の横方向Xの長さ15mmの区間、で規定される領域において、全ての横桟は第1の縦枠骨側から第2の縦枠骨と接続する部分に向けて断面積が50%大きくなるように形成した。
<正極格子体Dの作製例>
 以下に説明する構成を有する以外、正極格子体Aと同様な正極格子体Dを作製した。
 すなわち、正極格子体Dを平面視した際に、第1の縦枠骨及び第2の縦枠骨に隣接する複数の開口部の平均面積を28mmとし、当該複数の開口部を除く残りの複数の開口部の平均面積を45mmとした。また、全ての開口部は、第1,第2の縦枠骨とそれぞれ直交する同一垂線上で比較した際に、第2の横枠骨側から第1の横枠骨側に向けて0.85倍~0.99倍の範囲で段階的に面積を小さくし、かつ正極格子体の中心側から左右両側に向けて0.70倍~0.98倍の範囲で段階的に面積を小さくした。
<正極格子体Eの作製例>
 以下に説明する構成を有する以外、正極格子体Aと同様な正極格子体Eを作製した。
 すなわち、正極格子体Eの第2の横枠骨に隣接する第1の開口部群を規定する13本の縦桟において、当該13本の縦桟を、正極格子体Eの第1の横枠骨に接続する12本の縦桟とは不連続となるように横方向Xにずらして形成した。
<正極格子体Fの作製例>
 以下に説明する構成を有する以外、正極格子体Aと同様な正極格子体Fを作製した。
 すなわち、正極格子体Fの内骨を構成する12本の縦桟において、正極集電耳の直下に位置する2本の縦桟は第1の横枠骨側に接続する部分で断面積を1.206mmとし、かつ第2の横枠骨側(下側)における断面積1.00mmから第1の横枠骨側(上側)に向けて断面積を大きくした。その他10本の縦桟は、第1の横枠骨側に接続する部分で断面積を1.00mmとし、かつ下側における断面積0.90mmから上側に向けて断面積を大きくした。
<正極格子体Gの作製例>
 以下に説明する構成を有する以外、正極格子体Aと同様な正極格子体Gを作製した。
 すなわち、14本の横桟がそれぞれ全ての区間において、テーパー部がなく、一定の断面積(0.56mm)を有するようにした。
(実施例1)
 前述した方法で作製した正極格子体Aを用いて以下の方法により鉛蓄電池を製造した。
 まず、高さ113.0mm、幅105.0mmの正極格子体Aに常法に従って調製した正極活物質ペーストを充填して正極充填板を製造した。また、鉛を主成分としCa、Snを含む鉛合金を連続鋳造によって正極格子体と同じ高さ、幅及び厚さ0.8mmを有し、集電耳が正極格子体と対称位置にあるラジアル形状の負極格子体を用意し、当該負極格子体に常法に従って調製した負極活物質ペーストを充填し負極充填板を製造した。続いて、正極充填板及び負極充填板を常法に従って熟成及び乾燥して、それぞれ未化成の正極熟成板及び負極熟成板を得た。
 次いで、負極熟成板をポリエチレン樹脂製の袋状セパレータに収納し、当該袋状セパレータの開口部から負極熟成板の負極集電耳を外部に引き出した。続いて、7枚の正極熟成板及び袋状セパレータに収納された8枚の負極熟成板を、ガラス繊維を抄造して得たリテーナマットを介して交互に積層した。正極熟成板の集電耳同士及び負極熟成板の集電耳同士をそれぞれストラップ溶接により接続し、正極ストラップ及び負極ストラップを形成して極板群とした。前記正極ストラップ及び負極ストラップには、セル間接続体又は極柱端子を設けた。
 次いで、12Vタイプの電槽に設けた複数のセル室に前記極板群をそれぞれ収納した。隣り合う極板群同士は、それぞれのストラップに設けたセル間接続体を抵抗溶接して電気的に直列に接続した。続いて、電槽の開口部に蓋を嵌合した後、蓋のブッシングに極柱端子を貫通させた状態でこれをヒートシールによって溶着した。そして、比重を1.240に調整した希硫酸電解液を蓋に開口した注液口を通して電槽内に所定量注入し、注液栓と排気栓を螺合して電槽内部を封止した後、所定の電流値、温度、時間に基づいて化成を行った。化成終了後、電解液を補充し、5時間率容量で32AhのM-42型の鉛蓄電池を製造した。
(実施例2~6及び比較例1)
 前述した方法で作製した正極格子体B,C,D,E,F,Gをそれぞれ用いて実施例1と同様な方法により鉛蓄電池を製造した。
<評価試験>
 得られた実施例1~6及び比較例1の鉛蓄電池について、以下の手順に従って高温過充電寿命試験を行い、正極格子体の縦方向Yのグロース率Rと横方向Xのグロース率R、及び寿命サイクル数を測定し、前記横方向Xのグロース率R、及び寿命サイクル数を評価した。評価結果を下記表1に示す。
 本試験は、75℃環境下において、鉛蓄電池を放電電流25Aで2分間放電し、その後、充電電圧14.8V、最大充電電流25Aで10分間充電する工程を繰り返した。さらに前記工程を480サイクル繰り返す毎に、蓋の頂面から正極格子体の第1の横枠骨までの距離から、当該正極格子体の第1の横枠骨の高さ位置Y2を計測し、試験前の正極格子体の第1の横枠骨の高さ位置Y1との差分を求め、試験前の正極格子体の正極集電耳を除いた高さ113.0mmと次式(1)に基づき、縦方向Yのグロース率R[%]を算出した。前記グロース率Rが5.3%以上になった時点で、負極板と接触し内部短絡を起こす可能性があるとし、寿命と判断した。
Figure JPOXMLDOC01-appb-M000001
 寿命と判断した電池は解体し、正極格子体の横方向Xの最大幅X2を定規で測定し、試験前の正極格子体の幅105.0mmと次式(2)に基づき、横方向Xのグロース率R[%]を算出した。
Figure JPOXMLDOC01-appb-M000002
 なお、表1の実施例1~6の寿命サイクル数は、比較例1の寿命サイクル数を100とした場合の相対的なサイクル数を示す。
Figure JPOXMLDOC01-appb-T000003
 前記表1より明らかなように、正極格子体A~Fをそれぞれ組込んだ実施例1~6の鉛蓄電池は、正極格子体Gを組み込んだ比較例1の鉛蓄電池に比べて横方向Xのグロース率Rがそれぞれ60%、56%、53%、57%、58%、59%に抑制され、寿命サイクル数がそれぞれ15%、30%、40%、25%、18%向上したことがわかる。
 また、それぞれの鉛蓄電池について測定終了後に、正極活物質の正極格子体からの剥離の有無を観察した結果、実施例1~6の鉛蓄電池は剥離がほとんど見られなかったのに対し、比較例1の鉛蓄電池では剥離が顕著だった。
 この表1に示す結果から、実施例1の鉛蓄電池に組込んだ正極格子体Aは第1の縦枠骨から内向きに伸びる複数本の横桟の断面積を外側に向けて大きくすることで、横方向Xのグロースが抑制され、第1の縦枠骨によって規定される複数の開口部が拡張されることが防止され、これによって、正極活物質の正極格子体からの剥離が防止されものと推定される。また、同時に剥離箇所への電解液の侵入による正極格子体の腐食と、それに伴う正極格子体の加速的グロースが抑制され、正極格子体全体の変形、及び正極板と負極板又は負極ストラップ等の負極の一部との接触による内部短絡が防止され、サイクル寿命が向上したものと推察される。
 実施例2の鉛蓄電池に組込んだ正極格子体Bでは、さらに第1の領域より下方の横桟を補強したことで、サイクル寿命が向上したものと推測される。
 実施例3の鉛蓄電池に組込んだ正極格子体Cでは、さらに複数本の横桟を第2の領域において補強したことにより、一層顕著にサイクル寿命が向上したものと推察される。
 実施例4の鉛蓄電池に組込んだ正極格子体Dでは、正極活物質の剥離又は脱落が生じやすい箇所において、開口部の面積を小さく形成したことにより、活物質の剥離又は脱落を抑制し、サイクル寿命が向上したものと考えられる。
 他方、実施例5の鉛蓄電池に組込んだ正極格子体Eでは、最下段の開口部において縦桟が逆T字状に接続する部分を設けたため、下側に向かうグロースを内骨において吸収させることができ、内部短絡が防止されてサイクル寿命が向上したものと推測される。
 実施例6の鉛蓄電池に組込んだ正極格子体Fでは、全ての縦桟は第1の横枠骨に接続する部分の断面積が最大となるテーパー形状として形成したため、縦方向Yのグロースが抑制され、活物質の剥離又は脱落を抑制し、サイクル寿命が向上したものと考えられる。
 これに対し、比較例1の鉛蓄電池に組込んだ正極格子体Gはグロースにより大きく変形し、正極活物質の剥離が顕著に発生した。正極格子体Gは、剥離した箇所において、電解液の接触による腐食と加速的グロースも発生し、早期に寿命に到達したものと推察される。
 本発明によれば、正極格子体の変形に起因する内部短絡を防止でき、鉛蓄電池の寿命を向上し得る鉛蓄電池用正極格子体及び鉛蓄電池を提供できる。

Claims (22)

  1.  鉛蓄電池用正極格子体であって、
     横方向に延びる第1の横枠骨及び第2の横枠骨と、縦方向に延びる第1の縦枠骨及び第2の縦枠骨とを備える矩形枠状の枠骨;
     前記枠骨内に配置され、前記枠骨と接続して格子状に設けられる複数本の横桟及び縦桟を備える内骨;
     前記枠骨と複数本の前記横桟及び前記縦桟とによって囲まれる領域、及び複数本の前記横桟及び前記縦桟によって囲まれる領域、で規定される複数の開口部;及び
     前記第2の縦枠骨側に位置する前記第1の横枠骨と接続する正極集電耳;
    を備え、
     少なくとも前記第1の横枠骨側に位置する複数本の前記横桟は、前記第1の縦枠骨から当該横桟の横方向の少なくとも開口部1マス分以上の長さの領域において、前記第2の縦枠骨側から前記第1の縦枠骨に接続する部分に向けて断面積が大きくなる鉛蓄電池用正極格子体。
  2.  前記第1の縦枠骨に沿う前記内骨の長さの区間、及び前記第1の縦枠骨から前記横桟の長さの20%~45%の区間、で規定される領域において、複数本の前記横桟は前記第2の縦枠骨側から前記第1の縦枠骨に接続する部分に向けて断面積が大きくなる請求項1に記載の鉛蓄電池用正極格子体。
  3.  前記第1の横枠骨から前記第2の横枠骨側に向かう前記第1の縦枠骨の縦方向の長さの17%~25%の区間、及び前記第1の縦枠骨から前記横桟の横方向の長さの20%~45%の区間、で規定される第1の領域において、複数本の前記横桟は前記第2の縦枠骨側から前記第1の縦枠骨に接続する部分に向けて断面積が大きくなる請求項1又は2に記載の鉛蓄電池用正極格子体。
  4.  前記第1の領域に位置する複数本の前記横桟のうち、前記第1の横枠骨に近い横桟ほど、前記第1の縦枠骨に接続する部分の断面積が大きく、かつ前記第1の横枠骨に近い横桟ほど、断面積の変化区間が長く、前記第1の横枠骨から前記第2の横枠骨側に向けて当該変化区間が段階的に短くなる請求項3に記載の鉛蓄電池用正極格子体。
  5.  前記第2の縦枠骨に沿う前記内骨の長さの区間、及び前記第2の縦枠骨から前記横桟の横方向の長さの10%~30%の区間、で規定される領域において、複数本の前記横桟は前記第1の縦枠骨側から前記第2の縦枠骨に接続する部分に向けて断面積が大きくなる請求項1~4のいずれか1項に記載の鉛蓄電池用正極格子体。
  6.  前記第1の横枠骨から前記第2の横枠骨側に向かう前記第2の縦枠骨の縦方向の長さの17%~25%の区間、及び前記第2の縦枠骨から前記横桟の横方向の長さの10%~30%の区間、で規定される第2の領域において、複数本の前記横桟は前記第1の縦枠骨側から前記第2の縦枠骨に接続する部分に向けて断面積が大きくなる請求項1~5のいずれか1項に記載の鉛蓄電池用正極格子体。
  7.  複数の前記開口部を平面視した面積は、前記第1の横枠骨と前記第2の横枠骨とを縦断する同一垂線上で比較した場合、前記第2の横枠骨側から前記第1の横枠骨側に向けて段階的に小さくなり、かつ
     前記第1の縦枠骨及び前記第2の縦枠骨に隣接する複数の前記開口部を平面視した平均面積は、複数の当該開口部を除く残りの複数の前記開口部の平均面積と比較して小さい請求項1~6いずれか1項に記載の鉛蓄電池用正極格子体。
  8.  複数の前記開口部を平面視した面積は、前記内骨の中央側から前記第1の縦枠骨側に向けて段階的に小さくなり、かつ前記内骨の中央側から前記第2の縦枠骨側に向けて段階的に小さくなる請求項7に記載の鉛蓄電池用正極格子体。
  9.  前記第2の横枠骨側から前記第1の横枠骨側に向けて上下に連続した複数の開口部において、下側の前記開口部を平面視した面積に対する上側の前記開口部を平面視した面積の比は0.85倍以上、0.99倍を超えない範囲である請求項7又は8に記載の鉛蓄電池用正極格子体。
  10.  複数の前記開口部のうち、前記第2の横枠骨に隣接する複数の前記開口部を第1の開口部群とし、
     前記第1の開口部群を規定する複数の前記縦桟の少なくとも一部は、前記第1の開口部群と縦方向に隣接する複数の前記開口部を規定する縦桟に対して横方向にずれて配置される請求項1~9いずれか1項に記載の鉛蓄電池用正極格子体。
  11.  前記正極集電耳の直下に配置される複数本の前記縦桟は、前記第2の横枠骨側から前記第1の横枠骨に向けて断面積が大きくなり、前記第1の横枠骨に接続する部分で断面積が最大になる請求項1~10いずれか1項に記載の鉛蓄電池用正極格子体。
  12.  複数の前記開口部を平面視した四隅は、丸みRを有する請求項1~11いずれか1項に記載の鉛蓄電池用正極格子体。
  13.  前記枠骨に隣接する複数の前記開口部のうち、少なくとも当該枠骨の四隅に位置する前記開口部を平面視した四隅は、前記枠骨の四隅以外に位置する前記開口部と比較して大きな丸みRが設けられ、前記枠骨の四隅に位置する前記開口部において、当該開口部内の前記枠骨の角に最も近い隅の丸みRの大きさが最大になる請求項12に記載の鉛蓄電池用正極格子体。
  14.  前記正極集電耳は、前記第1の横枠骨との接続端と反対側の端から前記接続端に向けて幅が段階的に大きくなる請求項1~13のいずれか1項に記載の鉛蓄電池用正極格子体。
  15.  鉛又は鉛合金の圧延板の打ち抜き格子体である請求項1~14いずれか1項に記載の鉛蓄電池用正極格子体。
  16.  前記鉛合金は、Caが0.02~0.08質量%、Snが0.4~2.5質量%、Alが0.005~0.04質量%、Agが0.001~0.0049質量%、及び残部がPbと不可避の不純物からなる組成を有する請求項15に記載の鉛蓄電池用正極格子体。
  17.  鉛蓄電池用正極格子体であって、
     横方向に延びる第1の横枠骨及び第2の横枠骨と、縦方向に延びる第1の縦枠骨及び第2の縦枠骨とを備える矩形枠状の枠骨;
     前記枠骨内に配置され、前記枠骨と接続して格子状に設けられる複数本の横桟及び縦桟を備える内骨;
     前記枠骨と複数本の前記横桟及び前記縦桟とによって囲まれる領域、及び複数本の前記横桟及び前記縦桟によって囲まれる領域として規定される複数の開口部;及び
     前記第2の縦枠骨側に位置する前記第1の横枠骨と接続する正極集電耳;
    を備え、
     前記第1の横枠骨から第2の横枠骨側に向かう前記第1の縦枠骨の縦方向の長さの17~20%の区間、及び前記第1の縦枠骨から当該横桟の横方向の長さの20%~45%の区間、で規定される第1の領域において、前記複数本の横桟は前記第2の縦枠骨側から前記第1の縦枠骨に接続する部分に向けて断面積が大きくなり、
     前記第1の領域に位置する複数本の前記横桟のうち、前記第1の横枠骨に近い横桟ほど、前記第1の縦枠骨に接続する部分の断面積が大きく、かつ前記第1の横枠骨に近い横桟ほど、断面積の変化区間が長く、前記第1の横枠骨から前記第2の横枠骨側に向けて当該変化区間が段階的に短くなり、
     前記第1の横枠骨から第2の横枠骨側に向かう前記縦枠骨の縦方向の長さの17~20%の区間、及び前記第2の縦枠骨から当該横桟の横方向の長さの10%~30%の区間、で規定される第2の領域において、複数本の前記横桟は前記第1の縦枠骨側から前記第2の縦枠骨に接続する部分に向けて断面積が大きくなり、
     複数の前記開口部を平面視した面積は、前記第1の横枠骨と第2の横枠骨とを縦断する同一垂線上で比較した場合に、前記第2の横枠骨側から前記第1の横枠骨側に向けて段階的に小さくなり、
     前記第1の縦枠骨及び前記第2の縦枠骨に隣接する複数の前記開口部を平面視した平均面積は、複数の当該開口部を除く残りの複数の前記開口部の平均面積と比較して小さく、
     複数の前記開口部を平面視した面積は、前記内骨の中央側から前記第1の縦枠骨側に向けて段階的に小さくなり、かつ前記内骨の中央側から前記第2の縦枠骨側に向けて段階的に小さくなり、
     複数の前記開口部を平面視した四隅は、丸みRを有し、
     前記正極集電耳は、前記第1の横枠骨との接続端と反対側の端から前記接続端に向けて幅が段階的に大きくなり、
     複数の前記開口部のうち、前記第2の横枠骨に隣接する複数の前記開口部を第1の開口部群とし、前記第1の開口部群を規定する複数の前記縦桟の少なくとも一部は、前記第1の開口部群と縦方向に隣接する複数の前記開口部を規定する縦桟に対して横方向にずれて配置され、かつ
     前記正極集電耳の直下に配置される複数本の前記縦桟は、前記第2の横枠骨側から前記第1の横枠骨に向けて断面積が大きくなり、前記第1の横枠骨に接続する部分で断面積が最大になる
    鉛蓄電池用正極格子体。
  18.  前記第2の横枠骨側から前記第1の横枠骨側に向けて上下に連続した複数の開口部において、下側の前記開口部を平面視した面積に対する上側の前記開口部を平面視した面積の比は0.85倍以上、0.99倍を超えない範囲である請求項17に記載の鉛蓄電池用正極格子体。
  19.  前記枠骨に隣接する複数の前記開口部のうち、少なくとも当枠骨の四隅に位置する前記開口部を平面視した四隅は、前記枠骨の四隅以外に位置する前記開口部と比較して大きな丸みRが設けられ、前記枠骨の四隅に位置する開口部において、当該開口部内の前記枠骨の角に最も近い隅の丸みRの大きさが最大になる請求項17又は18に記載の鉛蓄電池用正極格子体。
  20.  鉛又は鉛合金の圧延板の打ち抜き格子体である請求項17~19いずれか1項に記載の鉛蓄電池用正極格子体。
  21.  前記鉛合金は、Caが0.02~0.08質量%、Snが0.4~2.5質量%、Alが0.005~0.04質量%、Agが0.001~0.0049質量%、及び残部がPbと不可避の不純物からなる組成を有する請求項20に記載の鉛蓄電池用正極格子体。
  22.  請求項1~21いずれか1項に記載の鉛蓄電池用正極格子体を備える鉛蓄電池。
PCT/JP2018/018216 2018-02-28 2018-05-10 鉛蓄電池用正極格子体及び鉛蓄電池 WO2019167293A1 (ja)

Priority Applications (4)

Application Number Priority Date Filing Date Title
BR112020006555-2A BR112020006555A2 (pt) 2018-02-28 2018-05-10 corpo de grade de eletrodo positivo e bateria de chumbo-ácido
CN201880064041.3A CN111164809B (zh) 2018-02-28 2018-05-10 铅蓄电池用正极板栅以及铅蓄电池
EP18907954.4A EP3657583B1 (en) 2018-02-28 2018-05-10 Positive electrode grid for lead storage battery, and lead storage battery
US16/831,228 US11158861B2 (en) 2018-02-28 2020-03-26 Positive electrode grid body for lead-acid battery, and lead-acid battery

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2018-035607 2018-02-28
JP2018035607A JP6456537B1 (ja) 2018-02-28 2018-02-28 鉛蓄電池用正極格子体及び鉛蓄電池

Related Child Applications (1)

Application Number Title Priority Date Filing Date
US16/831,228 Continuation US11158861B2 (en) 2018-02-28 2020-03-26 Positive electrode grid body for lead-acid battery, and lead-acid battery

Publications (1)

Publication Number Publication Date
WO2019167293A1 true WO2019167293A1 (ja) 2019-09-06

Family

ID=65037136

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2018/018216 WO2019167293A1 (ja) 2018-02-28 2018-05-10 鉛蓄電池用正極格子体及び鉛蓄電池

Country Status (6)

Country Link
US (1) US11158861B2 (ja)
EP (1) EP3657583B1 (ja)
JP (1) JP6456537B1 (ja)
CN (1) CN111164809B (ja)
BR (1) BR112020006555A2 (ja)
WO (1) WO2019167293A1 (ja)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN114628689A (zh) * 2020-12-10 2022-06-14 北京好风光储能技术有限公司 一种多孔集流体及采用该多孔集流体的电池

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP7169724B2 (ja) * 2020-04-01 2022-11-11 古河電池株式会社 液式鉛蓄電池
USD984384S1 (en) * 2020-11-09 2023-04-25 The Furukawa Battery Co., Ltd. Battery plate
JP7236427B2 (ja) * 2020-12-17 2023-03-09 本田技研工業株式会社 二次電池用電極

Citations (16)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS513385B1 (ja) 1970-10-09 1976-02-03
JPS5121134B1 (ja) * 1970-11-11 1976-06-30
JPS52106785A (en) * 1976-03-04 1977-09-07 Fuji Electric Co Ltd Gas collector
JPS52123869A (en) * 1976-04-09 1977-10-18 Siemens Ag Multicolor gas discharge display unit and method of controlling same
JPS6084770A (ja) * 1983-10-14 1985-05-14 Japan Storage Battery Co Ltd 鉛電池正極格子
JPH02281563A (ja) 1989-04-24 1990-11-19 Matsushita Electric Ind Co Ltd 鉛蓄電池
JPH0545901U (ja) 1991-11-22 1993-06-18 古河電池株式会社 鉛蓄電池
JP2001236964A (ja) * 2000-02-22 2001-08-31 Shin Kobe Electric Mach Co Ltd 鉛蓄電池用格子体
JP2001524736A (ja) * 1997-11-26 2001-12-04 ジョンソン コントロールズ テクノロジー カンパニー 打抜き型電池グリッド
JP2001351671A (ja) 2000-06-09 2001-12-21 Furukawa Battery Co Ltd:The 鉛蓄電池
JP2004521445A (ja) * 2001-01-05 2004-07-15 ジョンソン コントロールズ テクノロジー カンパニー 合金被覆されたバッテリー格子を製造する方法
JP2007179898A (ja) * 2005-12-28 2007-07-12 Shin Kobe Electric Mach Co Ltd 捲回形鉛蓄電池用格子
WO2007095725A1 (en) * 2006-02-22 2007-08-30 Teck Cominco Metals Ltd. Method and apparatus for continuous manufacture of battery grids
JP2012079609A (ja) 2010-10-05 2012-04-19 Shin Kobe Electric Mach Co Ltd 鉛蓄電池
JP2013016499A (ja) 2005-05-23 2013-01-24 Johnson Controls Technology Co 電池グリッド
CN203312411U (zh) * 2013-05-22 2013-11-27 双登集团股份有限公司 铅酸蓄电池正极板栅

Family Cites Families (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5121134A (ja) 1974-08-16 1976-02-20 Tokyo Shibaura Electric Co Sairisutaseiryusochino koshokenshutsusochi
JPS5432734A (en) 1977-08-16 1979-03-10 Mitsubishi Electric Corp Discharge detecting apparatus
JPS5449548A (en) 1977-09-27 1979-04-18 Toshiba Corp Method of protecting induction motor
US4221852A (en) * 1979-05-21 1980-09-09 Esb United States, Inc. Radial grids for lead acid batteries
US4320183A (en) * 1981-02-09 1982-03-16 Exide Corporation Grid for batteries
JPH0545901A (ja) 1991-08-13 1993-02-26 Minolta Camera Co Ltd 感光体
GB2364452B (en) * 2000-07-04 2002-07-31 Arnot Lindsey Franses Starting motors
US20020182500A1 (en) * 2001-06-04 2002-12-05 Enertec Mexico, S. De R.L. De C.V. Silver-barium lead alloy for lead-acid battery grids
CN100448093C (zh) * 2004-04-28 2008-12-31 松下电器产业株式会社 铅酸电池
CN102738470B (zh) * 2011-03-31 2015-07-29 松下蓄电池(沈阳)有限公司 铅蓄电池用格栅、正极板、极板组、铅蓄电池及其制造方法
CN202817102U (zh) * 2012-07-30 2013-03-20 武汉银泰科技电源股份有限公司 一种电动车用铅酸蓄电池负极板栅
CN107086307B (zh) * 2017-04-14 2023-06-16 天能电池集团股份有限公司 一种铅蓄电池板栅

Patent Citations (16)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS513385B1 (ja) 1970-10-09 1976-02-03
JPS5121134B1 (ja) * 1970-11-11 1976-06-30
JPS52106785A (en) * 1976-03-04 1977-09-07 Fuji Electric Co Ltd Gas collector
JPS52123869A (en) * 1976-04-09 1977-10-18 Siemens Ag Multicolor gas discharge display unit and method of controlling same
JPS6084770A (ja) * 1983-10-14 1985-05-14 Japan Storage Battery Co Ltd 鉛電池正極格子
JPH02281563A (ja) 1989-04-24 1990-11-19 Matsushita Electric Ind Co Ltd 鉛蓄電池
JPH0545901U (ja) 1991-11-22 1993-06-18 古河電池株式会社 鉛蓄電池
JP2001524736A (ja) * 1997-11-26 2001-12-04 ジョンソン コントロールズ テクノロジー カンパニー 打抜き型電池グリッド
JP2001236964A (ja) * 2000-02-22 2001-08-31 Shin Kobe Electric Mach Co Ltd 鉛蓄電池用格子体
JP2001351671A (ja) 2000-06-09 2001-12-21 Furukawa Battery Co Ltd:The 鉛蓄電池
JP2004521445A (ja) * 2001-01-05 2004-07-15 ジョンソン コントロールズ テクノロジー カンパニー 合金被覆されたバッテリー格子を製造する方法
JP2013016499A (ja) 2005-05-23 2013-01-24 Johnson Controls Technology Co 電池グリッド
JP2007179898A (ja) * 2005-12-28 2007-07-12 Shin Kobe Electric Mach Co Ltd 捲回形鉛蓄電池用格子
WO2007095725A1 (en) * 2006-02-22 2007-08-30 Teck Cominco Metals Ltd. Method and apparatus for continuous manufacture of battery grids
JP2012079609A (ja) 2010-10-05 2012-04-19 Shin Kobe Electric Mach Co Ltd 鉛蓄電池
CN203312411U (zh) * 2013-05-22 2013-11-27 双登集团股份有限公司 铅酸蓄电池正极板栅

Non-Patent Citations (2)

* Cited by examiner, † Cited by third party
Title
L. ALBERT ET AL.: "Improved lead alloys for lead/acid positive grids in electric-vehicle applications", JOURNAL OF POWER SOURCES, vol. 67, 1997, pages 257 - 265, XP004095151, doi:10.1016/S0378-7753(97)02556-1 *
See also references of EP3657583A4

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN114628689A (zh) * 2020-12-10 2022-06-14 北京好风光储能技术有限公司 一种多孔集流体及采用该多孔集流体的电池
CN114628689B (zh) * 2020-12-10 2023-11-14 好风光储能技术(成都)有限公司 一种多孔集流体及采用该多孔集流体的电池

Also Published As

Publication number Publication date
CN111164809A (zh) 2020-05-15
JP6456537B1 (ja) 2019-01-23
BR112020006555A2 (pt) 2020-09-15
US11158861B2 (en) 2021-10-26
EP3657583A1 (en) 2020-05-27
EP3657583B1 (en) 2022-07-06
EP3657583A4 (en) 2021-05-05
JP2019153385A (ja) 2019-09-12
US20200227758A1 (en) 2020-07-16
CN111164809B (zh) 2021-06-15

Similar Documents

Publication Publication Date Title
WO2019167293A1 (ja) 鉛蓄電池用正極格子体及び鉛蓄電池
JP6762974B2 (ja) 鉛蓄電池用正極格子体及び鉛蓄電池
JP5587523B1 (ja) 鉛蓄電池
JP5387666B2 (ja) 鉛蓄電池用格子板、極板及びこの極板を備えた鉛蓄電池
WO2012132476A1 (ja) 鉛蓄電池用格子、該格子を用いた正極板、極板群及び鉛蓄電池並びに鉛蓄電池用正極板の製造方法
JP4422829B2 (ja) 鉛蓄電池
JP7149046B2 (ja) 液式鉛蓄電池
JP6762975B2 (ja) 鉛蓄電池用正極格子体及び鉛蓄電池
WO2014097516A1 (ja) 鉛蓄電池
JP6762976B2 (ja) 鉛蓄電池用正極格子体及び鉛蓄電池
JP2008218258A (ja) 鉛蓄電池
JP6197426B2 (ja) 鉛蓄電池
JP4265260B2 (ja) 制御弁式鉛蓄電池
JP2021163676A (ja) 液式鉛蓄電池
JP4904686B2 (ja) 鉛蓄電池
JP4654477B2 (ja) 円筒形密閉鉛蓄電池
JP7169724B2 (ja) 液式鉛蓄電池
JP2006114416A (ja) 鉛蓄電池
JP2002222662A (ja) 鉛蓄電池
JP4802903B2 (ja) 鉛蓄電池
JP4461697B2 (ja) 鉛蓄電池の正極格子体とそれを用いた鉛蓄電池
JP2023013664A (ja) 鉛蓄電池
WO1982001277A1 (en) Battery plate grids
JP2006032027A (ja) 鉛蓄電池用エキスパンド格子体の製造方法、それによる格子体、および該格子体を用いた鉛蓄電池
JPH0817439A (ja) 鉛蓄電池

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 18907954

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2018907954

Country of ref document: EP

Effective date: 20200221

REG Reference to national code

Ref country code: BR

Ref legal event code: B01A

Ref document number: 112020006555

Country of ref document: BR

NENP Non-entry into the national phase

Ref country code: DE

ENP Entry into the national phase

Ref document number: 112020006555

Country of ref document: BR

Kind code of ref document: A2

Effective date: 20200331