WO2019167135A1 - バルブタイミング調整装置の制御装置及び制御方法 - Google Patents

バルブタイミング調整装置の制御装置及び制御方法 Download PDF

Info

Publication number
WO2019167135A1
WO2019167135A1 PCT/JP2018/007310 JP2018007310W WO2019167135A1 WO 2019167135 A1 WO2019167135 A1 WO 2019167135A1 JP 2018007310 W JP2018007310 W JP 2018007310W WO 2019167135 A1 WO2019167135 A1 WO 2019167135A1
Authority
WO
WIPO (PCT)
Prior art keywords
lock pin
advance
engagement groove
rotating body
retard
Prior art date
Application number
PCT/JP2018/007310
Other languages
English (en)
French (fr)
Inventor
拓也 近山
横山 雅之
Original Assignee
三菱電機株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 三菱電機株式会社 filed Critical 三菱電機株式会社
Priority to US16/761,134 priority Critical patent/US10989079B2/en
Priority to PCT/JP2018/007310 priority patent/WO2019167135A1/ja
Priority to DE112018006580.4T priority patent/DE112018006580B4/de
Priority to JP2019571370A priority patent/JP6683409B2/ja
Publication of WO2019167135A1 publication Critical patent/WO2019167135A1/ja

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01LCYCLICALLY OPERATING VALVES FOR MACHINES OR ENGINES
    • F01L1/00Valve-gear or valve arrangements, e.g. lift-valve gear
    • F01L1/34Valve-gear or valve arrangements, e.g. lift-valve gear characterised by the provision of means for changing the timing of the valves without changing the duration of opening and without affecting the magnitude of the valve lift
    • F01L1/344Valve-gear or valve arrangements, e.g. lift-valve gear characterised by the provision of means for changing the timing of the valves without changing the duration of opening and without affecting the magnitude of the valve lift changing the angular relationship between crankshaft and camshaft, e.g. using helicoidal gear
    • F01L1/3442Valve-gear or valve arrangements, e.g. lift-valve gear characterised by the provision of means for changing the timing of the valves without changing the duration of opening and without affecting the magnitude of the valve lift changing the angular relationship between crankshaft and camshaft, e.g. using helicoidal gear using hydraulic chambers with variable volume to transmit the rotating force
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01LCYCLICALLY OPERATING VALVES FOR MACHINES OR ENGINES
    • F01L1/00Valve-gear or valve arrangements, e.g. lift-valve gear
    • F01L1/34Valve-gear or valve arrangements, e.g. lift-valve gear characterised by the provision of means for changing the timing of the valves without changing the duration of opening and without affecting the magnitude of the valve lift
    • F01L1/344Valve-gear or valve arrangements, e.g. lift-valve gear characterised by the provision of means for changing the timing of the valves without changing the duration of opening and without affecting the magnitude of the valve lift changing the angular relationship between crankshaft and camshaft, e.g. using helicoidal gear
    • F01L1/3442Valve-gear or valve arrangements, e.g. lift-valve gear characterised by the provision of means for changing the timing of the valves without changing the duration of opening and without affecting the magnitude of the valve lift changing the angular relationship between crankshaft and camshaft, e.g. using helicoidal gear using hydraulic chambers with variable volume to transmit the rotating force
    • F01L2001/3445Details relating to the hydraulic means for changing the angular relationship
    • F01L2001/34453Locking means between driving and driven members
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01LCYCLICALLY OPERATING VALVES FOR MACHINES OR ENGINES
    • F01L1/00Valve-gear or valve arrangements, e.g. lift-valve gear
    • F01L1/34Valve-gear or valve arrangements, e.g. lift-valve gear characterised by the provision of means for changing the timing of the valves without changing the duration of opening and without affecting the magnitude of the valve lift
    • F01L1/344Valve-gear or valve arrangements, e.g. lift-valve gear characterised by the provision of means for changing the timing of the valves without changing the duration of opening and without affecting the magnitude of the valve lift changing the angular relationship between crankshaft and camshaft, e.g. using helicoidal gear
    • F01L1/3442Valve-gear or valve arrangements, e.g. lift-valve gear characterised by the provision of means for changing the timing of the valves without changing the duration of opening and without affecting the magnitude of the valve lift changing the angular relationship between crankshaft and camshaft, e.g. using helicoidal gear using hydraulic chambers with variable volume to transmit the rotating force
    • F01L2001/3445Details relating to the hydraulic means for changing the angular relationship
    • F01L2001/34453Locking means between driving and driven members
    • F01L2001/34456Locking in only one position
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01LCYCLICALLY OPERATING VALVES FOR MACHINES OR ENGINES
    • F01L1/00Valve-gear or valve arrangements, e.g. lift-valve gear
    • F01L1/34Valve-gear or valve arrangements, e.g. lift-valve gear characterised by the provision of means for changing the timing of the valves without changing the duration of opening and without affecting the magnitude of the valve lift
    • F01L1/344Valve-gear or valve arrangements, e.g. lift-valve gear characterised by the provision of means for changing the timing of the valves without changing the duration of opening and without affecting the magnitude of the valve lift changing the angular relationship between crankshaft and camshaft, e.g. using helicoidal gear
    • F01L1/3442Valve-gear or valve arrangements, e.g. lift-valve gear characterised by the provision of means for changing the timing of the valves without changing the duration of opening and without affecting the magnitude of the valve lift changing the angular relationship between crankshaft and camshaft, e.g. using helicoidal gear using hydraulic chambers with variable volume to transmit the rotating force
    • F01L2001/3445Details relating to the hydraulic means for changing the angular relationship
    • F01L2001/34453Locking means between driving and driven members
    • F01L2001/34463Locking position intermediate between most retarded and most advanced positions
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01LCYCLICALLY OPERATING VALVES FOR MACHINES OR ENGINES
    • F01L1/00Valve-gear or valve arrangements, e.g. lift-valve gear
    • F01L1/34Valve-gear or valve arrangements, e.g. lift-valve gear characterised by the provision of means for changing the timing of the valves without changing the duration of opening and without affecting the magnitude of the valve lift
    • F01L1/344Valve-gear or valve arrangements, e.g. lift-valve gear characterised by the provision of means for changing the timing of the valves without changing the duration of opening and without affecting the magnitude of the valve lift changing the angular relationship between crankshaft and camshaft, e.g. using helicoidal gear
    • F01L1/3442Valve-gear or valve arrangements, e.g. lift-valve gear characterised by the provision of means for changing the timing of the valves without changing the duration of opening and without affecting the magnitude of the valve lift changing the angular relationship between crankshaft and camshaft, e.g. using helicoidal gear using hydraulic chambers with variable volume to transmit the rotating force
    • F01L2001/3445Details relating to the hydraulic means for changing the angular relationship
    • F01L2001/34453Locking means between driving and driven members
    • F01L2001/34466Locking means between driving and driven members with multiple locking devices
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01LCYCLICALLY OPERATING VALVES FOR MACHINES OR ENGINES
    • F01L1/00Valve-gear or valve arrangements, e.g. lift-valve gear
    • F01L1/34Valve-gear or valve arrangements, e.g. lift-valve gear characterised by the provision of means for changing the timing of the valves without changing the duration of opening and without affecting the magnitude of the valve lift
    • F01L1/344Valve-gear or valve arrangements, e.g. lift-valve gear characterised by the provision of means for changing the timing of the valves without changing the duration of opening and without affecting the magnitude of the valve lift changing the angular relationship between crankshaft and camshaft, e.g. using helicoidal gear
    • F01L1/3442Valve-gear or valve arrangements, e.g. lift-valve gear characterised by the provision of means for changing the timing of the valves without changing the duration of opening and without affecting the magnitude of the valve lift changing the angular relationship between crankshaft and camshaft, e.g. using helicoidal gear using hydraulic chambers with variable volume to transmit the rotating force
    • F01L2001/3445Details relating to the hydraulic means for changing the angular relationship
    • F01L2001/34453Locking means between driving and driven members
    • F01L2001/34469Lock movement parallel to camshaft axis

Definitions

  • the present invention relates to a control device and a control method for a valve timing adjusting device for engaging a lock pin at an intermediate position set between a most advanced angle position and a most retarded angle position.
  • valve timing adjusting device for controlling the opening / closing timing of the intake or exhaust valve.
  • the valve timing adjusting device includes a first rotating body, a second rotating body capable of rotating at a predetermined angle relative to the first rotating body, and a lock mechanism for locking the second rotating body at an intermediate position when the engine is started. It has.
  • a control device for a valve timing adjusting device supplies hydraulic pressure to an advance hydraulic chamber and applies an advance side rotational force to a second rotating body to attach an advance lock pin to an advance engagement hole.
  • the hydraulic pressure is supplied to the advance angle engagement hole and the retard angle engagement hole to release the engagement of the delay angle lock pin from the delay angle engagement groove.
  • the control device supplies hydraulic pressure to the retard hydraulic chamber to apply a retard rotational force to the second rotating body, and releases the advance lock pin away from the peripheral surface of the advance engagement hole. It was necessary to follow the procedure.
  • the control device of the valve timing adjusting device according to Patent Document 1 needs to supply advance hydraulic pressure, lock pin release hydraulic pressure, and retard hydraulic pressure in order to release the intermediate lock. Therefore, it takes a long time to release the intermediate lock and operate the valve timing adjusting device, and there is a problem that the responsiveness is poor.
  • the present invention has been made to solve the above-described problems, and it is an object of the present invention to shorten the time required to release the intermediate lock and operate the valve timing adjusting device and improve the responsiveness. .
  • a control device for a valve timing adjusting device has a first rotating body having a working hydraulic chamber, and a vane that is housed in the first rotating body and divides the working hydraulic chamber into an advance side and a retard side.
  • a second rotating body that rotates relative to the first rotating body, and a lock mechanism that locks the second rotating body at an intermediate position between the most advanced angle position and the most retarded angle position.
  • a through hole formed in the vane in the axial direction of the second rotating body, and a cylindrical cylindrical member incorporated in the through hole in a state in which axial sliding and radial rotation with the through hole are restricted A first lock pin and a second lock pin that are coaxially disposed inside the cylindrical member, a first engagement groove formed on the first rotating body and engaged with the first lock pin and the second lock pin, and The second engagement groove and the first lock pin are urged in the direction of the first engagement groove to move the second lock pin.
  • a first lock pin that is formed on the outer peripheral surface of the cylindrical member or the inner peripheral surface of the through hole and supplies lock pin release hydraulic pressure to the first engagement groove.
  • a release oil passage and a second lock pin release oil passage that is formed on the outer peripheral surface of the cylindrical member or the inner peripheral surface of the through hole and supplies the lock pin release oil pressure supplied to the first engagement groove to the second engagement groove.
  • the first lock pin is engaged with the first engagement groove
  • the second lock pin is engaged with the second engagement groove
  • the second rotating body is moved to the intermediate position.
  • the lock pin releasing oil pressure is supplied to the first lock pin releasing oil passage to disengage the first lock pin from the first engaging groove, and the second rotating body is advanced or retarded.
  • a hydraulic pressure is supplied to the working hydraulic chamber on the side where the second rotating body is allowed to rotate to rotate the second rotating body, and the lock pin release hydraulic pressure of the first engagement groove is changed to the clearance and the second rotating body.
  • the second lock pin is supplied to the second engaging groove via the lock pin releasing oil passage to disengage the second lock pin to release the lock of the second rotating body.
  • the intermediate lock is released by supplying the lock pin releasing hydraulic pressure and either the advance angle or the retarded oil pressure, the intermediate lock is released and the valve is released as compared with the conventional case.
  • the time required for operating the timing adjustment device can be shortened, and the responsiveness can be improved.
  • FIG. 1 is an exploded perspective view showing a configuration example of a valve timing adjustment device according to Embodiment 1.
  • FIG. 1 is an exploded perspective view showing a configuration example of a valve timing adjustment device according to Embodiment 1.
  • FIG. 1 is a front view illustrating a configuration example of a valve timing adjustment device according to a first embodiment. It is a figure which shows the structural example of the press-fit member of Embodiment 1, FIG. 4A shows the end surface by the side of a plate, FIG. 4B shows a cross section, FIG. 4C shows the end surface by the side of a cover.
  • FIG. 4 is a cross-sectional view of the locking mechanism of the first embodiment taken along line PP in FIG. 3 and shows a locked state.
  • FIG. 4 is a cross-sectional view of the locking mechanism of the first embodiment taken along line PP in FIG. 3 and shows a locked state.
  • FIG. 4 is a cross-sectional view of the lock mechanism of the first embodiment cut along the line PP in FIG. 3 and shows a lock release state.
  • FIG. 6 is a front view showing a shape example of an advance angle engagement groove and a retard angle engagement groove according to the first embodiment.
  • FIG. 4 is a cross-sectional view of the lock mechanism of the second embodiment taken along the line PP in FIG. 3 and shows a locked state.
  • FIG. 10 is a front view showing a shape example of an advance angle engagement groove and a retard angle engagement groove according to the second embodiment.
  • FIG. 10 is a cross-sectional view of the locking mechanism of the third embodiment taken along the line PP in FIG. 3, showing a locked state.
  • FIG. 6 is a front view showing a shape example of an advance angle engagement groove and a retard angle engagement groove according to the first embodiment.
  • FIG. 4 is a cross-sectional view of the lock mechanism of the second embodiment taken along the line PP in FIG. 3 and shows a locked state.
  • FIG. 10 is a cross-sectional view of the lock mechanism of the fourth embodiment, taken along line QQ in FIG. 3, and shows a locked state.
  • FIG. 10 is a front view showing a shape example of an advance angle engagement groove and a retard angle engagement groove of a fourth embodiment.
  • FIG. 10 is a diagram illustrating a configuration example related to operation control of a valve timing adjustment device according to a fifth embodiment.
  • 14A and 14B are views showing a state in which the valve timing adjusting device is locked at an intermediate position.
  • FIG. 14A is a cross-sectional view taken along line QQ in FIG. 3, and FIG. 14B is along line PP in FIG. It is sectional drawing cut
  • FIG. 15A is a view showing a state where the advance lock pin is disengaged and the retard lock pin release oil passage is opened
  • FIG. 15A is a cross-sectional view taken along the line QQ of FIG. 3, and FIG. It is sectional drawing cut
  • FIG. 16A is a cross-sectional view taken along the line QQ of FIG. 3 and FIG. 16B is a cross-sectional view of FIG. It is sectional drawing cut
  • FIGS. 17A and 17B are views showing a state in which the rotor is operated to the retard side upon receiving the retard oil pressure
  • FIG. 17A is a cross-sectional view taken along the line QQ in FIG. 3, and FIG. It is sectional drawing cut
  • FIG. 10 is a flowchart showing a lock release procedure of the valve timing adjustment device according to the fifth embodiment. 10 is a graph showing a phase control duty, an actual phase, a release oil passage supply / discharge state, an advance angle lock pin engagement state, and a retard angle lock pin engagement state when lock release is performed in the fifth embodiment.
  • FIG. 4 is a view showing a state in which the rotor is on the advance side, and is a cross-sectional view taken along the line QQ in FIG. 3.
  • FIG. 4 is a view showing a state in which a retard lock pin is engaged with a step portion of a retard engagement groove, and is a cross-sectional view taken along the line QQ in FIG. 3.
  • FIG. 4 is a view showing a state in which the valve timing adjusting device is locked at an intermediate position, and is a cross-sectional view taken along the line QQ in FIG. 3.
  • 10 is a flowchart illustrating a locking procedure of the valve timing adjustment device according to the fifth embodiment.
  • 16 is a graph showing a phase control duty, an actual phase, a release oil passage supply / discharge state, an advance lock pin engagement state, and a retard lock pin engagement state at the time of locking in the fifth embodiment.
  • FIG. 10 is an exploded perspective view illustrating a configuration example of a rotor and a press-fitting member in a valve timing adjustment device according to a sixth embodiment.
  • FIG. 10 is a cross-sectional view of the lock mechanism of the sixth embodiment, taken along line PP in FIG. 3, showing a locked state.
  • FIG. 1 is an exploded perspective view showing a configuration example of a valve timing adjusting apparatus 100 according to Embodiment 1, as viewed from the front side.
  • FIG. 2 is an exploded perspective view showing a configuration example of the valve timing adjusting apparatus 100 according to Embodiment 1, as viewed from the back side.
  • the coil spring 8 is not shown.
  • FIG. 3 is a front view showing a configuration example of the valve timing adjusting device 100 according to the first embodiment, and shows a locked state in which the case 2 is locked at an intermediate position. In FIG. 3, the illustration of the plate 3 is omitted.
  • the case 2 has a plurality of shoes 11 that project to the inner periphery and form a plurality of working hydraulic chambers.
  • the rotor 1 has a plurality of vanes 12 that divide the working hydraulic chamber of the case 2 into an advance hydraulic chamber 16 and a retard hydraulic chamber 17.
  • the plate 3, the case 2, and the cover 4 are integrated by screws or the like. Due to the integration, both sides of the case 2 are closed by the plate 3 and the cover 4, and the working hydraulic chamber is sealed.
  • the case 2, the plate 3 and the cover 4 constitute a first rotating body.
  • the second rotating body is constituted by the rotor 1.
  • the second rotator is rotatable relative to the first rotator.
  • the sprocket 2a is formed on the outer periphery of the case 2.
  • the driving force of the engine crankshaft is transmitted to the case 2 by a timing belt (not shown) attached to the sprocket 2a, and the first rotating body constituted by the case 2, the plate 3 and the cover 4 rotates synchronously with the crankshaft.
  • the rotor 1 is fixed to a camshaft 20 shown in FIG. 5, which will be described later, and rotates synchronously with the camshaft.
  • each advance oil passage 18 communicates with each advance hydraulic chamber 16, and each retard oil passage 19 communicates with each retard hydraulic chamber 17.
  • the rotor side lock pin release oil passage 14 communicates with an advance lock pin release oil passage 5a described later.
  • OCV 102 oil control valve 102
  • OCV 102 oil control valve 102
  • the vane 12 of the rotor 1 is provided with a lock mechanism for locking the rotor 1 at an intermediate position between the most advanced position and the most retarded position.
  • the intermediate position may be any position between the most advanced position and the most retarded position, and does not need to be strictly an intermediate position. The details of the locking mechanism will be described below with reference to FIGS.
  • FIG. 4 is a diagram showing a configuration example of the press-fitting member 5
  • FIG. 4A shows an end face on the plate 3 side
  • FIG. 4B shows a cross section
  • FIG. 4C shows an end face on the cover 4 side.
  • FIG. 5 is a cross-sectional view of the locking mechanism of the first embodiment taken along the line PP in FIG. 3, and shows a locked state.
  • 6 is a cross-sectional view of the locking mechanism of the first embodiment taken along the line PP in FIG. 3, and shows the unlocked state.
  • FIG. 7 is a front view showing a shape example of the advance engagement groove 9 and the retard engagement groove 10 of the first embodiment.
  • the outer shape of the advance angle engaging groove 9 is shown by a solid line
  • the outer shape of the retard angle engaging groove 10 is shown by a broken line
  • the outer shapes of the advance angle lock pin 6 and the retard angle lock pin 7 are two-dot chain lines. Indicated.
  • a through hole 13 is formed in the vane 12 so as to penetrate the vane 12 in the axial direction of the case 2.
  • a cylindrical press-fitting member 5 is press-fitted into the through hole 13.
  • the press-fitting member 5 is incorporated into the through-hole 13 in a state where axial sliding and radial rotation with the through-hole 13 are restricted by being press-fitted into the through-hole 13.
  • the press-fitting member 5 only needs to be connected to the rotor-side lock pin release oil passage 14 of the rotor 1 to form a lock pin release oil passage, as will be described later. There is no. For example, even if the cylindrical member is inserted into the through-hole 13, if the cylindrical member does not slide in the axial direction and does not rotate in the radial direction, the same function as the press-fitting member 5 can be achieved. it can.
  • an advance lock pin 6 and a retard lock pin 7 are arranged coaxially.
  • An arc-shaped groove along the radius of curvature of the rotation direction of the case 2 is formed at a position facing the advance lock pin 6 on the plate 3, and a notch 5 b of a press-fitting member 5 described later faces the arc-shaped groove from the arc-shaped groove.
  • Grooves projecting in the direction to be formed are also formed, and the advance engagement grooves 9 are constituted by these grooves.
  • an arc-shaped groove along the radius of curvature of the case 2 in the rotational direction of the case 2 is formed in the cover 4 at a position facing the retard lock pin 7, and a notch 5c2 of a press-fitting member 5 described later is formed from the arc-shaped groove. Grooves projecting in the direction facing each other are also formed, and the retard engagement grooves 10 are constituted by these grooves.
  • One coil spring 8 as an urging member is disposed between the advance lock pin 6 and the retard lock pin 7.
  • the coil spring 8 urges the advance lock pin 6 in the direction of the advance engagement groove 9 to engage the advance lock pin 6 with the advance engagement groove 9 and also retards the retard lock pin 7.
  • the retard lock pin 7 is engaged with the retard engagement groove 10 by urging in the direction of the corner engagement groove 10.
  • a groove extending from the rotor-side lock pin release oil passage 14 to the advance engagement groove 9 is formed on the outer peripheral surface of the press-fitting member 5, and this groove serves as an advance lock pin release oil passage 5a.
  • This groove is closed and sealed by the inner peripheral surface of the through-hole 13 and the inner surface of the plate 3.
  • the press-fitting member 5 is notched at a portion facing the advance angle engaging groove 9 in the advance angle lock pin releasing oil passage 5a to form a notch portion 5b. Due to the presence of the notch 5b, the advance lock pin releasing oil passage 5a and the advance engagement groove 9 communicate with each other.
  • the lock pin releasing oil pressure supplied to the rotor side lock pin releasing oil passage 14 is transferred from the rotor side lock pin releasing oil passage 14 to the advance angle engaging groove 9 via the advance angle lock pin releasing oil passage 5a and the notch portion 5b. Supplied with.
  • the lock pin releasing hydraulic pressure supplied to the advance angle engaging groove 9 causes the advance angle lock pin 6 to retreat from the advance angle engaging groove 9 against the urging force of the coil spring 8, and the advance angle lock pin 6 and the advance angle are advanced.
  • the engagement with the engagement groove 9 is released.
  • the oil stored in the advance angle engaging groove 9 is discharged to the rotor side lock pin releasing oil passage 14 via the advance angle lock pin releasing oil passage 5a.
  • a groove extending from the advance engagement groove 9 to the retard engagement groove 10 and notches 5c1 and 5c2 in which both ends of the groove are notched are formed on the outer peripheral surface of the press-fitting member 5.
  • These grooves and the notches 5c1 and 5c2 form a retard lock pin releasing oil passage 5c.
  • These grooves and the notches 5c1 and 5c2 are closed and sealed by the inner peripheral surface of the through hole 13, the inner surface of the plate 3, and the inner surface of the cover 4.
  • the retard lock pin release oil passage 5c communicates with the notch 5c1 on the advance engagement groove 9 side. Further, the notch 5 c 2 is formed at a position facing the retarding engagement groove 10. The lock pin releasing hydraulic pressure supplied to the advance angle engaging groove 9 is delayed from the clearance generated between the advance angle lock pin 6 and the advance angle engaging groove 9 via the retard angle lock pin releasing oil passage 5c. It is supplied to the corner engaging groove 10.
  • the lock pin releasing hydraulic pressure supplied to the retard engagement groove 10 causes the retard lock pin 7 to retreat from the retard engagement groove 10 against the urging force of the coil spring 8, so that the retard lock pin 7 and the retard angle are retarded.
  • the engagement with the engagement groove 10 is released.
  • the oil stored in the retard engagement groove 10 is released through the retard lock pin release oil passage 5c, the advance engagement groove 9, and the advance lock pin release oil passage 5a. It is discharged to the oil passage 14.
  • the groove of the advance lock pin release oil passage 5a or the groove of the retard lock pin release oil passage 5c may have a linear shape or an arbitrary shape such as a spiral shape.
  • the advance angle lock pin release oil passage 5a and the retard angle lock pin release oil passage 5c are arranged at equal intervals, but the positional relationship between the both oil passages may be arbitrary.
  • the biasing force of the coil spring 8 acts to engage the advance lock pin 6 with the advance engagement groove 9, and the retard lock pin 7 with the retard engagement groove 10.
  • the rotor 1 is locked at the intermediate position.
  • the lock pin release hydraulic pressure supplied from the rotor side lock pin release oil passage 14 acts to disengage the advance lock pin 6 from the advance engagement groove 9, and In a state where the retard lock pin 7 is disengaged from the retard engagement groove 10, the rotor 1 can be relatively rotated.
  • the lock mechanism of the first embodiment is configured to first disengage the advance lock pin 6 that does not receive cam torque, and then to disengage the retard lock pin 7. With this configuration, the advance lock pin 6 can be reliably disengaged prior to the retard lock pin 7.
  • the length of the notch 5b in the axial direction of the case 2 is “A”.
  • the length of the gap between the advance lock pin 6 and the advance engagement groove 9 in the axial direction of the case 2 is “B”.
  • the gap “B” is a gap that is generated when the advance lock pin 6 is disengaged from the advance engagement groove 9, and the lock pin from the advance engagement groove 9 to the retard lock pin release oil passage 5c.
  • the oil passage is supplied with the release hydraulic pressure.
  • the magnitude relationship between A and B is A> B in the locked state shown in FIG. 5, and A ⁇ B in the unlocked state shown in FIG. Because of this magnitude relationship, the retard lock pin release oil passage 5c is not secured unless the advance lock pin 6 is disengaged in the locked state of FIG. 5, and therefore the advance lock pin 6 is securely engaged. Can be canceled.
  • a fluid drainage path 5 d that is a through hole that communicates the inside and outside of the press-fitting member 5 is formed.
  • a fluid drain passage 5 e that is a groove that communicates the fluid drain passage 5 d and the rotor-side fluid drain passage 15 is formed.
  • the through hole 13 constituting the locking mechanism of the first embodiment is formed inside the vane 12 in the axial direction of the case 2 that is the second rotating body.
  • the press-fitting member 5 is a cylindrical member, and is incorporated into the through-hole 13 in a state in which axial sliding and radial rotation with the through-hole 13 are restricted.
  • the advance lock pin 6 and the retard lock pin 7 are arranged coaxially inside the press-fitting member 5.
  • the advance angle engaging groove 9 and the retard angle engaging groove 10 are formed in the plate 3 and the cover 4 as the first rotating body, and the advance angle lock pin 6 and the retard angle lock pin 7 are engaged with each other.
  • the coil spring 8 urges the advance lock pin 6 toward the advance engagement groove 9 and urges the retard lock pin 7 toward the retard engagement groove 10.
  • the advance lock pin release oil passage 5 a is formed on the outer peripheral surface of the press-fitting member 5 and supplies lock pin release oil pressure to the advance engagement groove 9.
  • the retard lock pin release oil passage 5 c is formed on the outer peripheral surface of the press-fitting member 5, and supplies the lock pin release hydraulic pressure supplied to the advance engagement groove 9 to the retard engagement groove 10.
  • the press-fitting member 5 of the first embodiment has a notch portion 5b in which a portion facing the advance angle engaging groove 9 in the advance angle lock pin releasing oil passage 5a is notched.
  • the advance lock pin 6 when the advance lock pin 6 is engaged with the advance engagement groove 9, the advance lock pin 6 communicates with the advance lock pin release oil passage 5 c in the axial direction of the case 2 to advance.
  • the length B of the gap with the corner engaging groove 9 is less than the length A of the notch 5b.
  • the advance lock pin 6 communicates with the advance lock pin release oil passage 5c in the axial direction of the case 2 and the advance angle.
  • the length B of the gap with the engagement groove 9 is equal to or longer than the length A of the notch 5b.
  • the press-fitting member 5 has fluid drain paths 5d and 5e for discharging the fluid between the advance lock pin 6 and the retard lock pin 7 to the outside.
  • the vane 12 side it is only necessary to process a vertical hole communicating with the fluid drain paths 5d, 5e, that is, the rotor side fluid drain path 15.
  • a method of machining a horizontal hole in the rotor 1 to obtain a rotor-side fluid drainage path is often used.
  • a vertical hole can be machined in the rotor 1 to obtain the rotor-side fluid drainage path 15.
  • the fluid drainage path can be realized by easier processing than in the past.
  • the structure which does not provide the fluid drainage path 5e but directly communicates the fluid drainage path 5d with the rotor-side fluid drainage path 15 may be used.
  • the coil spring 8 of the first embodiment may have a linear spring constant or a non-linear spring constant.
  • the coil spring 8 having a non-linear spring constant is an unequal pitch spring or the like whose urging force changes during expansion and contraction.
  • the retard lock pin 7 is set to the retard engagement groove 10 as compared with the force for urging the advance lock pin 6 toward the advance engagement groove 9. Increase the force to urge in the direction of.
  • the retarded angle lock pin 6 is released before the advanced angle lock pin 6 is disengaged from the advanced angle engaged groove 9. 7 can be prevented from being disengaged from the retarded engagement groove 10.
  • FIG. 8 is a cross-sectional view of the lock mechanism of the second embodiment taken along the line PP in FIG. 3, and shows a locked state.
  • FIG. 9 is a front view showing a shape example of the advance angle engaging groove 9 and the retard angle engaging groove 10 of the second embodiment.
  • the outer shape of the advance angle engaging groove 9 is shown by a solid line
  • the outer shape of the retard angle engaging groove 10 is shown by a broken line
  • the outer shapes of the advance angle lock pin 6 and the retard angle lock pin 7 are two-dot chain lines.
  • the same or corresponding parts as those in FIGS. 1 to 7 are designated by the same reference numerals and the description thereof is omitted.
  • the press-fitting member 5 has the notch 5b, but in the second embodiment, a recess 9a is formed instead of the notch 5b. That is, the advance angle engaging groove 9 has a recessed portion 9a in which a portion facing the advance angle lock pin releasing oil passage 5a is recessed. Due to the presence of the recess 9a, the advance lock pin release oil passage 5a and the advance engagement groove 9 communicate with each other. The lock pin release hydraulic pressure supplied to the rotor side lock pin release oil passage 14 is transferred from the rotor side lock pin release oil passage 14 to the advance engagement groove 9 via the advance lock pin release oil passage 5a and the recess 9a. Supplied.
  • the recess 10a may be formed in the retard engagement groove 10 instead of the notch 5c2 on the retard side.
  • the lock pin releasing hydraulic pressure supplied to the advance angle engaging groove 9 is transferred from the advance angle engaging groove 9 to the retard angle engaging groove 10 via the notch 5c1, the retard angle lock pin releasing oil passage 5c, and the recess 10a. Supplied.
  • the length of the concave portion 9a in the axial direction of the case 2 is assumed to be “A”.
  • the length of the gap between the advance lock pin 6 and the advance engagement groove 9 in the axial direction of the case 2 is “B”.
  • the magnitude relationship between A and B is A> B in the locked state shown in FIG. 8, and A ⁇ B in the unlocked state (not shown). Because of this magnitude relationship, in the locked state of FIG. 8, unless the advance lock pin 6 is disengaged, the retard lock pin release oil passage 5c is not secured, so that the advance lock pin 6 is securely engaged. Can be canceled.
  • the advance angle engaging groove 9 of the second embodiment has the recessed portion 9a in which the portion facing the advance angle lock pin releasing oil passage 5a is recessed.
  • the advance lock pin 6 communicates with the advance lock pin release oil passage 5 c in the axial direction of the case 2 to advance.
  • the length B of the gap with the corner engaging groove 9 is less than the length A of the recess 9a.
  • the advance lock pin 6 communicates with the advance lock pin release oil passage 5c in the axial direction of the case 2 and the advance angle.
  • the length B of the gap with the engagement groove 9 is not less than the length A of the recess 9a.
  • FIG. 10 is a cross-sectional view of the locking mechanism of the third embodiment taken along the line PP in FIG. 3, and shows a locked state. 10, parts that are the same as or correspond to those in FIGS. 1 to 9 are given the same reference numerals, and descriptions thereof are omitted.
  • the press-fitting member 5 has the notch 5b, but in the third embodiment, the recess 9a shown in the second embodiment is formed in addition to the notch 5b. That is, the advance angle engaging groove 9 has a concave portion 9a in which a portion facing the notch portion 5b of the press-fitting member 5 is recessed. Due to the presence of the notch 5b and the recess 9a, the advance lock pin releasing oil passage 5a and the advance engagement groove 9 communicate with each other.
  • the lock pin release hydraulic pressure supplied to the rotor side lock pin release oil passage 14 is advanced from the rotor side lock pin release oil passage 14 via the advance lock pin release oil passage 5a, the notch 5b, and the recess 9a. It is supplied to the groove 9.
  • a recess 10a may be formed in the retard engagement groove 10 on the retard side in addition to the notch 5c2.
  • the lock pin release hydraulic pressure supplied to the advance engagement groove 9 is retarded via the advance engagement groove 9 via the notch 5c1, the retard lock pin release oil passage 5c, the notch 5c2, and the recess 10a. It is supplied to the groove 10.
  • the length obtained by adding the length of the notch 5b and the length of the recess 9a in the axial direction of the case 2 is defined as “A”.
  • the length of the gap between the advance lock pin 6 and the advance engagement groove 9 in the axial direction of the case 2 is “B”.
  • the magnitude relationship between A and B is A> B in the locked state shown in FIG. 10, and A ⁇ B in the unlocked state (not shown). Because of this magnitude relationship, in the locked state of FIG. 10, unless the advance angle lock pin 6 is disengaged, the retard angle lock pin release oil passage 5c is not secured, so the advance angle lock pin 6 is reliably engaged. Can be canceled.
  • the press-fitting member 5 of the third embodiment has the cutout portion 5b in which the portion facing the advance angle engagement groove 9 in the advance angle lock pin releasing oil passage 5a is notched. Further, the advance angle engaging groove 9 has a recess 9a in which a portion facing the notch 5b is recessed. In this configuration, when the advance lock pin 6 is engaged with the advance engagement groove 9, the advance lock pin 6 communicates with the advance lock pin release oil passage 5 c in the axial direction of the case 2 to advance.
  • the length B of the gap with the corner engaging groove 9 is less than the length A obtained by adding the length of the notch 5b and the length of the recess 9a.
  • the advance lock pin 6 communicates with the advance lock pin release oil passage 5c in the axial direction of the case 2 and the advance angle.
  • the length B of the gap with the engagement groove 9 is equal to or longer than the length A obtained by adding the length of the notch 5b and the length of the recess 9a.
  • one coil spring 8 is used, but in the third embodiment, two coil springs 8a and 8b are used.
  • a coil spring 8 a corresponding to the first coil spring biases the advance lock pin 6 toward the advance engagement groove 9.
  • a coil spring 8 b corresponding to the second coil spring biases the retard lock pin 7 toward the retard engagement groove 10.
  • the urging force of the coil spring 8b may be made stronger than the urging force of the coil spring 8a.
  • FIG. 11 is a cross-sectional view of the locking mechanism of the fourth embodiment, taken along line QQ in FIG. 3, and shows a locked state.
  • FIG. 12 is a front view showing an example of the shape of the advance engagement groove 9 and the retard engagement groove 10 of the fourth embodiment.
  • the depths of the advance angle engaging groove 9 and the retard angle engagement groove 10 are constant in the relative rotation direction, but in the fourth embodiment, the retard angle side of the advance angle engagement groove 9 is set.
  • the advancement engaging groove 9 has a multi-step depth.
  • at least one stepped portion 10b is formed on the advance side of the retard engagement groove 10, and the depth of the retard engagement groove 10 is multistage. Note that the depth may be multi-stage only on the advance side or only the retard side, or the depths on both the advance side and the retard side may be multi-stage.
  • the stepped portion 9b and the stepped portion 10b may be formed in the advance angle engaging groove 9 and the retard angle engaging groove 10.
  • FIG. 13 is a diagram illustrating a configuration example relating to operation control of the valve timing adjusting apparatus 100 according to the fifth embodiment. Since the valve timing adjusting device 100 according to the first embodiment has the same configuration as the valve timing adjusting device 100 according to the first to fourth embodiments, FIG. 1 to FIG. 12 are used.
  • the valve timing adjustment system shown in FIG. 13 includes an engine control unit 101 (hereinafter referred to as “ECU 101”) that is a control device of the valve timing adjustment device 100, an OCV 102, and a valve timing adjustment device 100.
  • ECU 101 engine control unit 101
  • the ECU 101 controls the operation of the OCV 102 to thereby establish a communication state between the OCV 102 and the rotor side lock pin release oil passage 14, a communication state between the OCV 102 and the advance oil passage 18, and the OCV 102 and the retard oil passage 19 Switch the communication status of.
  • the OCV 102 supplies oil supplied from an oil pump (not shown) to the rotor side lock pin releasing oil passage 14, the advance oil passage 18, or the retard oil passage 19 in accordance with the control of the ECU 101.
  • the OCV 102 discharges the oil supplied to the rotor side lock pin releasing oil passage 14, the advance oil passage 18, or the retard oil passage 19 following a path opposite to that at the time of supply in accordance with the control of the ECU 101. .
  • the ECU 101 is a computer or microcomputer including a processor 101a and a memory 101b.
  • the function of the ECU 101 is realized by software, firmware, or a combination of software and firmware.
  • Software or firmware is described as a program and stored in the memory 101b.
  • the processor 101a realizes the function of the ECU 101 by reading and executing a program stored in the memory 102b. That is, the ECU 101 includes a memory 102b for storing a program that, when executed by the processor 101a, results in the steps shown in the flowcharts of FIGS. It can also be said that this program causes a computer or microcomputer to execute the procedure or method shown in the flowcharts of FIGS.
  • valve timing adjusting device 100 by the ECU 101 will be described.
  • the unlocking procedure of the locking mechanism will be described with reference to the locking mechanism of FIGS. 14 to 17, the flowchart of FIG. 18, and the graph of FIG.
  • the valve timing adjusting apparatus 100 according to the fourth embodiment is used as an example.
  • FIG. 14 is a view showing a state in which the valve timing adjusting device 100 is locked at an intermediate position.
  • FIG. 14A is a cross-sectional view taken along the line QQ in FIG. 3, and FIG. It is sectional drawing cut
  • 15 is a view showing a state in which the advance lock pin 6 is disengaged and the retard lock pin release oil passage 5c is opened
  • FIG. 15A is a cross-sectional view taken along the line QQ in FIG.
  • FIG. 16A is a cross-sectional view taken along the line QQ in FIG. FIG.
  • FIG. 17 is a view showing a state in which the rotor 1 operates to the retard angle side upon receiving the retard oil pressure
  • FIG. 17A is a cross-sectional view taken along the line QQ in FIG. 3
  • FIG. 17B is a diagram in FIG.
  • FIG. 6 is a cross-sectional view taken along line PP.
  • FIG. 18 is a flowchart showing the unlocking procedure of the valve timing adjusting apparatus 100 according to the fifth embodiment.
  • FIG. 19 is a graph showing the phase control duty, the actual phase, the release oil passage supply / discharge state, the engagement state of the advance lock pin 6, and the engagement state of the retard lock pin 7 when the lock release is performed in the fifth embodiment. It is.
  • the phase control duty is a value for controlling the current of the OCV 102, and the hydraulic pressure in the advance hydraulic chamber 16 and the retard hydraulic chamber 17 is controlled by the ECU 101 adjusting the phase control duty.
  • the actual phase is a relative rotation angle of the camshaft 20 with respect to the crankshaft obtained from a detection value of an angle sensor or the like.
  • the release oil passage supply / discharge state is a value indicating the state of oil supplied / discharged from the OCV 102 to the rotor side lock pin release oil passage 14, and the larger the value, the more oil supplied to the rotor side lock pin release oil passage 14 The amount increases.
  • the release oil passage supply / discharge state is controlled by the ECU 101.
  • the engagement state includes the positional relationship of the advance lock pin 6 that operates in accordance with the release oil passage supply / discharge state, and the positional relationship of the retard lock pin 7 with respect to the retard engagement groove 10. Show. Engagement is a state in which the lock pin has advanced into the engagement groove and is completely fitted, and release is a state in which the lock pin has retreated from the engagement groove and has completely come out.
  • step ST1 when the unlocking request is received from the vehicle side (step ST1 “YES”), the ECU 101 proceeds to step ST2, and otherwise (step ST1 “NO”), repeats step ST1.
  • step ST2 the ECU 101 performs lock pin release control. Specifically, the ECU 101 controls the OCV 102 so as to supply the lock pin release hydraulic pressure to the rotor side lock pin release oil passage 14.
  • the lock pin release hydraulic pressure is supplied to the advance engagement groove 9 via the rotor side lock pin release oil passage 14, the advance lock pin release oil passage 5a, and the notch 5b.
  • FIG. 15A the lock pin releasing hydraulic pressure supplied to the advance angle engaging groove 9 acts on the advance angle lock pin 6, and the advance angle lock pin 6 is disengaged from the advance angle engagement groove 9. Is done.
  • FIG. 15B a gap is formed between the advance lock pin 6 and the advance engagement groove 9, the retard lock pin release oil passage 5c is opened, and the lock pin release hydraulic pressure is advanced. It is supplied from the joint groove 9 to the retard lock pin releasing oil passage 5c.
  • step ST3 the ECU 101 starts timing from the time when the lock pin release control is performed, and determines whether or not a predetermined set time has elapsed. If the set time has elapsed (step ST3 “YES”), the ECU 101 proceeds to step ST4, and if the set time has not elapsed (step ST3 “NO”), repeats step ST3.
  • the set time is the time required for the lock pin release hydraulic pressure to be supplied to the rotor side lock pin release oil passage 14 and the advance angle lock pin 6 to be disengaged from the advance angle engagement groove 9, and in the graph of FIG. This corresponds to the time from lock pin release control to advance angle operation control. Note that the ECU 101 may appropriately adjust a predetermined set time according to the hydraulic pressure, the oil temperature, and the like.
  • step ST4 the ECU 101 performs advance operation control. Specifically, the ECU 101 controls the OCV 102 so as to supply hydraulic pressure to the advance oil passage 18. This hydraulic pressure is supplied to the advance hydraulic chamber 16 via the advance oil passage 18.
  • the retard lock pin 7 receives cam torque and is pressed against the retard side wall of the retard engagement groove 10 and is not easily removed.
  • the retard lock pin 7 is separated from the side wall of the retard engagement groove 10 to eliminate the catch of both, and the retard lock pin 7 is in a state in which engagement can be released.
  • the lock pin releasing hydraulic pressure supplied from the retard lock pin releasing oil passage 5c to the retard engaging groove 10 acts on the retard lock pin 7, and the retard lock pin 7 is retarded. The engagement is released from the corner engagement groove 10.
  • the advance lock pin 6 and the retard lock pin 7 are disengaged by the control of the steps ST1 to ST4 by the ECU 101, and the intermediate lock of the rotor 1 is released. Thereafter, the ECU 101 controls the OCV 102 to supply the hydraulic pressure to the advance hydraulic chamber 16 or the retard hydraulic chamber 17 so that the target actual phase is obtained, and operates the rotor 1 to the advance side or the retard side.
  • FIG. 20 is a view showing a state in which the rotor 1 is on the advance side, and is a cross-sectional view taken along the line QQ in FIG. 21 is a view showing a state in which the retard lock pin 7 is engaged with the stepped portion 10b of the retard engagement groove 10, and is a cross-sectional view taken along the line QQ in FIG. 22 is a view showing a state in which the valve timing adjusting device 100 is locked at the intermediate position, and is a cross-sectional view taken along the line QQ in FIG.
  • FIG. 23 is a flowchart showing a locking procedure of the valve timing adjusting apparatus 100 according to the fifth embodiment.
  • FIG. 24 is a graph showing the phase control duty, the actual phase, the release oil passage supply / discharge state, the engagement state of the advance lock pin 6 and the engagement state of the retard lock pin 7 at the time of locking in the fifth embodiment. is there.
  • step ST11 the ECU 101 proceeds to step ST12 when receiving a lock request from the vehicle side (step ST11 “YES”), and repeats step ST11 otherwise (step ST11 “NO”).
  • step ST12 the ECU 101 controls the OCV 102 so as to supply the lock pin releasing oil pressure to the rotor side lock pin releasing oil passage 14, and supplies the lock pin releasing oil pressure to the advance angle engaging groove 9 and the retard angle engaging groove 10. .
  • step ST13 the ECU 101 performs advance angle operation control. Specifically, the ECU 101 supplies hydraulic pressure to the advance hydraulic chamber 16 via the advance oil passage 18 and discharges the hydraulic pressure in the retard hydraulic chamber 17 via the retard oil passage 19. Thus, the OCV 102 is controlled to move the rotor 1 to the most advanced position.
  • step ST14 the ECU 101 determines whether or not the actual phase has reached the most advanced position as shown in FIG. If the actual phase is the most advanced position (step ST14 “YES”), the ECU 101 proceeds to step ST15. If the actual phase is not the most advanced position (step ST14 “NO”), step ST14 is repeated.
  • step ST15 the ECU 101 performs retarded angle operation control. Specifically, the ECU 101 supplies the hydraulic pressure to the retard hydraulic chamber 17 via the retard oil passage 19 and discharges the hydraulic pressure in the advance hydraulic chamber 16 via the advance oil passage 18.
  • the OCV 102 is controlled. Thereby, as shown in FIG. 21, the rotor 1 moves to the retard side.
  • step ST16 the ECU 101 discharges the lock pin release hydraulic pressure of the advance engagement groove 9 and the retard engagement groove 10 through the rotor side lock pin release oil passage 14 simultaneously with the retard operation control of step ST15.
  • the OCV 102 is controlled.
  • the rotor 1 moves toward the retard side, and as shown in FIG. 21, the retard lock pin 7 is first engaged with the step portion 10 b and then is engaged with the retard engagement groove 10. .
  • the retard lock pin 7 abuts against the retard side wall of the retard engagement groove 10 to restrict the retard operation beyond the intermediate position of the rotor 1, and the advance lock pin 6 is also an advance engagement groove. 9 is engaged. As a result, the rotor 1 is locked at the intermediate position as shown in FIG.
  • step ST17 the ECU 101 determines whether or not the actual phase is stopped at the intermediate position.
  • the ECU 101 engages the advance lock pin 6 with the advance engagement groove 9 and the retard lock pin 7 retards as shown in FIG. It is determined that the rotor 1 is locked at the intermediate position by engaging with the engaging groove 10, and the operation shown in the flowchart of FIG.
  • step ST17 “NO” the ECU 101 proceeds to step ST18.
  • the advance lock pin 6 and the retard lock pin 7 are not engaged with the advance engagement groove 9 and the retard engagement groove 10.
  • step ST18 the ECU 101 determines whether or not the actual phase is retarded from the intermediate position.
  • the advance lock pin 6 and the retard lock pin 7 advance before the lock pin release hydraulic pressure is completely discharged from the advance engagement groove 9 and the retard engagement groove 10. It is considered that the engagement could not be performed because the angular engagement groove 9 and the retarded engagement groove 10 were passed, or the lock pin releasing hydraulic pressure had been discharged but the engagement failed. Therefore, when the actual phase is on the retard side with respect to the intermediate position (step ST18 “YES”), the ECU 101 returns to step ST12 and again executes the lock control routine.
  • step ST18 “NO”) the ECU 101 returns to step ST17.
  • the ECU 101 supplies the lock pin release hydraulic pressure to the advance lock pin release oil passage 5a to advance the advance lock from the advance engagement groove 9.
  • the pin 6 is disengaged to make the case 2 rotatable to the advance side, and communicated with the retard lock pin release oil passage 5 c between the advance lock pin 6 and the advance engagement groove 9. Create a gap.
  • the ECU 101 supplies hydraulic pressure to the advance hydraulic chamber 16 to rotate the rotor 1, and causes the lock pin release hydraulic pressure of the advance engagement groove 9 to pass through the clearance and the retard lock pin release oil passage 5 c.
  • the retard lock pin 7 is supplied to the retard engagement groove 10 to release the engagement.
  • the ECU 101 can shorten the time required to release the intermediate lock and operate the valve timing adjusting device 100 as compared with the prior art, and can improve the responsiveness.
  • the ECU 101 supplies the lock pin release hydraulic pressure to the advance angle engagement groove 9 and the retard angle engagement groove 10 and supplies the oil pressure to the advance angle hydraulic chamber 16.
  • the rotor 1 is rotated to the most advanced position.
  • the ECU 101 discharges the lock pin releasing hydraulic pressure from the advance angle engaging groove 9 and the retard angle engaging groove 10, supplies the oil pressure to the retard angle hydraulic chamber 17, and rotates the rotor 1 in the direction of the intermediate position.
  • the advance lock pin 6 is engaged with the advance engagement groove 9, and the retard lock pin 7 is engaged with the retard engagement groove 10. Accordingly, the ECU 101 automatically moves the advance lock pin 6 and the retard lock pin 7 to the advance engagement groove 9 and the retard engagement groove by operating the rotor 1 from the most advanced position to the retard side. 10 can be engaged.
  • FIG. 25 is an exploded perspective view showing a configuration example of the rotor 1 and the press-fitting member 5 in the valve timing adjustment device 100 according to the sixth embodiment.
  • FIG. 26 is a cross-sectional view of the lock mechanism of the sixth embodiment, taken along line PP in FIG. 3, and shows a locked state.
  • the press-fitting member 5 is configured to have the advance lock pin release oil passage 5a.
  • the through hole 13 is configured to have the advance lock pin release oil passage 13a. is there.
  • a groove extending from the rotor side lock pin releasing oil passage 14 to the cutout portion 5 b of the press-fitting member 5 is formed on the inner peripheral surface of the through-hole 13. It becomes the advance lock pin release oil passage 13a.
  • the press-fitting member 5 has a configuration having the retard lock pin release oil passage 5c
  • the through hole 13 may have a configuration having the retard lock pin release oil passage 13b.
  • a groove extending from the advance engagement groove 9 to the retard engagement groove 10 is formed on the inner peripheral surface of the through hole 13, and this groove is the retard lock. It becomes the pin release oil passage 13b.
  • the vertical groove having a simple shape formed on the inner peripheral surface of the through-hole 13 is used as the advance lock pin release oil passage 13a and the retard lock pin release oil passage 13b, There is no need to process a lock pin release oil passage with a complicated shape.
  • the “first” side which is the upstream side where the lock pin release hydraulic pressure is supplied first
  • the “second” side which is the downstream side
  • the “first lock pin” corresponds to the advance lock pin 6
  • the “second lock pin” corresponds to the retard lock pin 7.
  • the “first engagement groove” corresponds to the advance engagement groove 9
  • the “second engagement groove” corresponds to the retard engagement groove 10.
  • the “first lock pin release oil passage” corresponds to the advance lock pin release oil passages 5a and 13a
  • the “second lock pin release oil passage” corresponds to the retard lock pin release oil passages 5c and 13b.
  • the advance lock pin 6 and the advance engagement groove 9 function as a retard lock pin and the retard engagement groove
  • the retard lock pin 7 and the retard engagement groove 10 are the advance lock pin and the advance engagement groove. Functions as a groove.
  • the advance lock pin release oil passages 5a and 13a function as retard lock pin release oil passages
  • the retard lock pin release oil passages 5c and 13b function as advance lock pin release oil passages.
  • the retard side is “first” and the advance side is “second”.
  • the advance lock pin 6 that functions as a retard lock pin is first disengaged, and then the retard lock pin 7 that functions as an advance lock pin is disengaged.
  • the advance lock pin 6 that functions as a retard lock pin is difficult to come off upon receiving cam torque.
  • the coil spring 8 having a non-linear spring constant or the two coil springs 8a and 8b are used to weaken the force for urging the advance lock pin 6 that functions as a retard lock pin and function as an advance lock pin. It is desirable that the advance lock pin 6 functioning as the retard lock pin is surely disengaged first by increasing the force that urges the retard lock pin 7 to be engaged.
  • the ECU 101 When the advance angle and the retard angle are opposite, the ECU 101 performs the retard angle operation control in step ST4 of the flowchart shown in FIG. Further, the ECU 101 performs the retard operation control in step ST13 of the flowchart shown in FIG. 23, determines whether or not the actual phase is the most retarded position in step ST15, and performs the advance operation control in step ST15. In step ST18, it is determined whether or not the actual phase is on the advance side from the intermediate position.
  • control device of the valve timing adjusting device is configured to lock the rotor at the intermediate position by the two lock pins, the control device of the valve timing adjusting device for adjusting the opening / closing timing of the intake valve and the exhaust valve of the engine Suitable for use in etc.

Landscapes

  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Valve Device For Special Equipments (AREA)

Abstract

ECU(101)は、進角ロックピン解除油路(5a)にロックピン解除油圧を供給して進角係合溝(9)から進角ロックピン(6)を係合解除させ、ロータ(1)を進角側へ回転可能状態にすると共に進角係合溝(9)と進角ロックピン(6)との間に遅角ロックピン解除油路(5c)へ連通する隙間を生じさせる。次に、ECU(101)は、進角油圧室(16)に油圧を供給してロータ(1)を回転させ、ロックピン解除油圧を隙間及び遅角ロックピン解除油路(5c)を経由して遅角係合溝(10)に供給して遅角ロックピン(7)を係合解除させる。

Description

バルブタイミング調整装置の制御装置及び制御方法
 この発明は、最進角位置と最遅角位置との間に設定された中間位置にロックピンを係合させるバルブタイミング調整装置の制御装置及び制御方法に関するものである。
 従来から吸気又は排気バルブの開閉タイミングを制御するバルブタイミング調整装置が考案されている。上記バルブタイミング調整装置は、第1回転体と、第1回転体に対して所定角度相対回転可能な第2回転体と、第2回転体をエンジン始動時に中間位置でロックするためのロック機構とを備えている。
 例えば、特許文献1に係るバルブタイミング調整装置の制御装置は、進角油圧室に油圧を供給して第2回転体に進角側の回転力を与えて進角ロックピンを進角係合穴の周面に押し付けた状態にし、その状態で進角係合穴及び遅角係合穴にロックピンに油圧を供給して先ず遅角ロックピンを遅角係合溝から係合解除させる。その後、制御装置は、遅角油圧室に油圧を供給して第2回転体に遅角側の回転力を与え、進角ロックピンを進角係合穴の周面から離して係合解除させるという手順を踏む必要があった。
国際公開第2015/033676号公報
 特許文献1に係るバルブタイミング調整装置の制御装置は、中間ロックを解除するために進角油圧、ロックピン解除油圧、及び遅角油圧を順に供給する必要があった。そのため、中間ロックを解除してバルブタイミング調整装置を動作させるまでに長い時間を要し、応答性が悪いという課題があった。
 この発明は、上記のような課題を解決するためになされたもので、中間ロックを解除してバルブタイミング調整装置を動作させるまでに要する時間を短縮し、応答性を向上させることを目的とする。
 この発明に係るバルブタイミング調整装置の制御装置は、作動油圧室を有する第1回転体と、第1回転体に収容されて作動油圧室を進角側と遅角側とに区分するベーンを有し、第1回転体に対して相対回転する第2回転体と、第2回転体を最進角位置と最遅角位置との間の中間位置にロックするロック機構とを備え、ロック機構は、ベーンの内部に第2回転体の軸方向に形成された貫通孔と、貫通孔との軸方向摺動及び径方向回転動作が規制された状態で貫通孔に組み込まれた円筒形状の円筒部材と、円筒部材の内部に同軸上に配置された第1ロックピン及び第2ロックピンと、第1回転体に形成されて第1ロックピン及び第2ロックピンが係合する第1係合溝及び第2係合溝と、第1ロックピンを第1係合溝の方向へ付勢し第2ロックピンを第2係合溝の方向へ付勢する付勢部材と、円筒部材の外周面又は貫通孔の内周面に形成され、第1係合溝へロックピン解除油圧を供給する第1ロックピン解除油路と、円筒部材の外周面又は貫通孔の内周面に形成され、第1係合溝へ供給されたロックピン解除油圧を第2係合溝へ供給する第2ロックピン解除油路とを備えるバルブタイミング調整装置の制御装置であって、第1ロックピンが第1係合溝に係合し第2ロックピンが第2係合溝に係合して第2回転体を中間位置にロックした状態において、第1ロックピン解除油路にロックピン解除油圧を供給して第1係合溝から第1ロックピンを係合解除させ、第2回転体を進角側又は遅角側へ回転可能状態にすると共に第1係合溝と第1ロックピンとの間に第2ロックピン解除油路に連通する隙間を生じさせ、第2回転体が回転可能状態となった側の作動油圧室に油圧を供給して第2回転体を回転させ、第1係合溝のロックピン解除油圧を隙間及び第2ロックピン解除油路を経由して第2係合溝に供給して第2ロックピンを係合解除させて第2回転体のロックを解除するものである。
 この発明によれば、ロックピン解除油圧と、進角又は遅角のいずれか一方の油圧とを供給して中間ロックを解除するようにしたので、従来に比べて、中間ロックを解除してバルブタイミング調整装置を動作させるまでに要する時間を短縮でき、応答性を向上させることができる。
実施の形態1に係るバルブタイミング調整装置の構成例を示す分解斜視図である。 実施の形態1に係るバルブタイミング調整装置の構成例を示す分解斜視図である。 実施の形態1に係るバルブタイミング調整装置の構成例を示す正面図である。 実施の形態1の圧入部材の構成例を示す図であり、図4Aはプレート側の端面、図4Bは断面、図4Cはカバー側の端面を示す。 実施の形態1のロック機構を図3のP-P線に沿って切断した断面図であり、ロック状態を示す。 実施の形態1のロック機構を図3のP-P線に沿って切断した断面図であり、ロック解除状態を示す。 実施の形態1の進角係合溝及び遅角係合溝の形状例を示す正面図である。 実施の形態2のロック機構を図3のP-P線に沿って切断した断面図であり、ロック状態を示す。 実施の形態2の進角係合溝及び遅角係合溝の形状例を示す正面図である。 実施の形態3のロック機構を図3のP-P線に沿って切断した断面図であり、ロック状態を示す。 実施の形態4のロック機構を図3のQ-Q線に沿って切断した断面図であり、ロック状態を示す。 実施の形態4の進角係合溝及び遅角係合溝の形状例を示す正面図である。 実施の形態5に係るバルブタイミング調整装置の動作制御に関する構成例を示す図である。 バルブタイミング調整装置が中間位置でロックされている状態を示す図であり、図14Aは図3のQ-Q線に沿って切断した断面図、図14Bは図3のP-P線に沿って切断した断面図である。 進角ロックピンが係合解除され、遅角ロックピン解除油路が開口した状態を示す図であり、図15Aは図3のQ-Q線に沿って切断した断面図、図15Bは図3のP-P線に沿って切断した断面図である。 進角ロックピンに加えて遅角ロックピンも係合解除された状態を示す図であり、図16Aは図3のQ-Q線に沿って切断した断面図、図16Bは図3のP-P線に沿って切断した断面図である。 遅角油圧を受けてロータが遅角側に動作する状態を示す図であり、図17Aは図3のQ-Q線に沿って切断した断面図、図17Bは図3のP-P線に沿って切断した断面図である。 実施の形態5に係るバルブタイミング調整装置のロック解除手順を示すフローチャートである。 実施の形態5におけるロック解除実施時の位相制御デューティ、実位相、解除油路給排状態、進角ロックピンの係合状態、遅角ロックピンの係合状態を示すグラフである。 ロータが進角側にある状態を示す図であり、図3のQ-Q線に沿って切断した断面図である。 遅角ロックピンが遅角係合溝の段差部に係合した状態を示す図であり、図3のQ-Q線に沿って切断した断面図である。 バルブタイミング調整装置が中間位置でロックされた状態を示す図であり、図3のQ-Q線に沿って切断した断面図である。 実施の形態5に係るバルブタイミング調整装置のロック手順を示すフローチャートである。 実施の形態5におけるロック実施時の位相制御デューティ、実位相、解除油路給排状態、進角ロックピンの係合状態、遅角ロックピンの係合状態を示すグラフである。 実施の形態6に係るバルブタイミング調整装置のうちのロータと圧入部材の構成例を示す分解斜視図である。 実施の形態6のロック機構を図3のP-P線に沿って切断した断面図であり、ロック状態を示す。
 以下、この発明をより詳細に説明するために、この発明を実施するための形態について、添付の図面に従って説明する。
実施の形態1.
 図1は、実施の形態1に係るバルブタイミング調整装置100の構成例を示す分解斜視図であり、正面側から見た状態である。図2は、実施の形態1に係るバルブタイミング調整装置100の構成例を示す分解斜視図であり、背面側から見た状態である。なお、図1及び図2においてコイルスプリング8は図示を省略している。図3は、実施の形態1に係るバルブタイミング調整装置100の構成例を示す正面図であり、ケース2が中間位置でロックされたロック状態である。なお、図3においてプレート3は図示を省略している。
 ケース2は、内周に突出し複数の作動油圧室を形成するための複数のシュー11を有する。ロータ1は、ケース2の作動油圧室を進角油圧室16と遅角油圧室17とに区画する複数のベーン12を有する。ケース2の内部にロータ1が収容された状態で、プレート3とケース2とカバー4とはねじ等によって一体化される。一体化により、ケース2の両面がプレート3及びカバー4で塞がれて、作動油圧室が密封される。これらケース2、プレート3及びカバー4により、第1回転体が構成される。第2回転体は、ロータ1により構成される。第2回転体は、第1回転体に対して相対回転可能である。
 ケース2の外周にはスプロケット2aが形成される。このスプロケット2aに装着される不図示のタイミングベルトにより、エンジンのクランクシャフトの駆動力がケース2に伝達され、ケース2、プレート3及びカバー4により構成された第1回転体がクランクシャフトと同期回転する。一方、ロータ1は、後述する図5に示されるカムシャフト20に固定され、カムシャフトと同期回転する。
 ロータ1の内部には、複数の進角油路18、複数の遅角油路19、及び1つのロータ側ロックピン解除油路14が形成されている。各進角油路18は、各進角油圧室16に連通し、各遅角油路19は、各遅角油圧室17に連通する。ロータ側ロックピン解除油路14は、後述する進角ロックピン解除油路5aに連通する。
 後述する図13に示されるオイルコントロールバルブ102(以下、「OCV102」と称する。)から給排される油圧は、進角油路18及び遅角油路19を経由して進角油圧室16及び遅角油圧室17に給排される。進角油圧室16に油圧が供給されることにより、第1回転体に対する第2回転体の相対位相が進角側に調整されると、クランクシャフトに対するカムシャフトの相対位相が進角側に変化してエンジンの吸気バルブ又は排気バルブの開閉タイミングも変化する。一方、遅角油圧室17に油圧が供給されることにより、第1回転体に対する第2回転体の相対位相が遅角側に調整されると、クランクシャフトに対するカムシャフトの相対位相が遅角側に変化してエンジンの吸気バルブ又は排気バルブの開閉タイミングも変化する。図3では、ケース2に対してロータ1が時計回りに回転する方向が進角側、反時計回りに回転する方向が遅角側である。
 また、ロータ1のベーン12には、ロータ1を最進角位置と最遅角位置との間の中間位置にロックするためのロック機構が設けられている。なお、中間位置は、最進角位置と最遅角位置との間の任意の位置であればよく、厳密に中間位置である必要はない。以下、図4~図7を用いて、ロック機構の詳細を説明する。
 図4は、圧入部材5の構成例を示す図であり、図4Aはプレート3側の端面、図4Bは断面、図4Cはカバー4側の端面を示す。図5は、実施の形態1のロック機構を図3のP-P線に沿って切断した断面図であり、ロック状態を示す。図6は、実施の形態1のロック機構を図3のP-P線に沿って切断した断面図であり、ロック解除状態を示す。図7は、実施の形態1の進角係合溝9及び遅角係合溝10の形状例を示す正面図である。図7において、進角係合溝9の外形は実線で示され、遅角係合溝10の外形は破線で示され、進角ロックピン6及び遅角ロックピン7の外形は二点鎖線で示される。
 ベーン12には、このベーン12をケース2の軸方向に貫通する貫通孔13が形成されている。貫通孔13には、円筒形状の圧入部材5が圧入されている。圧入部材5は、貫通孔13に圧入されることにより、貫通孔13との軸方向の摺動及び径方向の回転動作が規制された状態で貫通孔13に組み込まれる。なお、圧入部材5は、後述するようにロータ1のロータ側ロックピン解除油路14に連通してロックピン解除油路を構成すればよいため、貫通孔13に圧入されることによって組み込まれる必要はない。例えば、円筒部材が貫通孔13に挿入された構成であっても、この円筒部材が軸方向に摺動せず、径方向に回転動作しなければ、圧入部材5と同等の機能を果たすことができる。
 圧入部材5の内部には、進角ロックピン6及び遅角ロックピン7が同軸上に配置されている。プレート3において進角ロックピン6と対面する位置に、ケース2の回転方向の曲率半径に沿った円弧形状の溝が形成され、この円弧形状の溝から後述する圧入部材5の切欠部5bと対面する方向へ突き出した溝も形成され、これらの溝により進角係合溝9が構成される。また、カバー4において遅角ロックピン7と対面する位置に、ケース2の回転方向の曲率半径に沿った円弧形状の溝が形成され、この円弧形状の溝から後述する圧入部材5の切欠部5c2と対面する方向へ突き出した溝も形成され、これらの溝により遅角係合溝10が構成される。
 進角ロックピン6と遅角ロックピン7との間には、付勢部材であるコイルスプリング8が1つ配置されている。このコイルスプリング8は、進角ロックピン6を進角係合溝9の方向に付勢して進角ロックピン6を進角係合溝9に係合させると共に、遅角ロックピン7を遅角係合溝10の方向に付勢して遅角ロックピン7を遅角係合溝10に係合させる。
 圧入部材5の外周面には、ロータ側ロックピン解除油路14から進角係合溝9へとのびる溝が形成されており、この溝が進角ロックピン解除油路5aとなる。この溝は、貫通孔13の内周面とプレート3の内面とで塞がれて密封される。また、圧入部材5は、進角ロックピン解除油路5aにおける進角係合溝9に対向する部分が切り欠かれ、切欠部5bが形成されている。切欠部5bが存在することにより、進角ロックピン解除油路5aと進角係合溝9とが連通する。ロータ側ロックピン解除油路14へ供給されたロックピン解除油圧は、ロータ側ロックピン解除油路14から進角ロックピン解除油路5a及び切欠部5bを経由して進角係合溝9へと供給される。進角係合溝9へ供給されたロックピン解除油圧は、コイルスプリング8の付勢力に抗して進角ロックピン6を進角係合溝9から後退させ、進角ロックピン6と進角係合溝9との係合を解除させる。係合時、進角係合溝9に貯留したオイルは、進角ロックピン解除油路5aを経由してロータ側ロックピン解除油路14へと排出される。
 また、圧入部材5の外周面には、進角係合溝9から遅角係合溝10へとのびる溝と、溝の両端部が切り欠かれた切欠部5c1,5c2とが形成されており、これらの溝と切欠部5c1,5c2とが遅角ロックピン解除油路5cとなる。これらの溝と切欠部5c1,5c2とは、貫通孔13の内周面とプレート3の内面とカバー4の内面とで塞がれて密封される。ただし、進角ロックピン6が進角係合溝9から後退し係合が解除された場合には、進角ロックピン6と進角係合溝9との間に隙間が生じ、この隙間が遅角ロックピン解除油路5cの進角係合溝9側の切欠部5c1に連通する。また、切欠部5c2は、遅角係合溝10に対向する位置に形成されている。進角係合溝9へ供給されたロックピン解除油圧は、進角ロックピン6と進角係合溝9との間に生じた上記隙間から遅角ロックピン解除油路5cを経由して遅角係合溝10へと供給される。遅角係合溝10へ供給されたロックピン解除油圧は、コイルスプリング8の付勢力に抗して遅角ロックピン7を遅角係合溝10から後退させ、遅角ロックピン7と遅角係合溝10との係合を解除させる。係合時、遅角係合溝10に貯留したオイルは、遅角ロックピン解除油路5c、進角係合溝9、及び進角ロックピン解除油路5aを経由してロータ側ロックピン解除油路14へと排出される。
 なお、進角ロックピン解除油路5aの溝又は遅角ロックピン解除油路5cの溝は、直線形状であってもよいし、螺旋形状等の任意の形状であってもよい。
 また、図示例では、進角ロックピン解除油路5aと遅角ロックピン解除油路5cとが等間隔に配置されたが、両油路の位置関係は任意でよい。
 図5に示されるように、コイルスプリング8の付勢力が作用して、進角ロックピン6が進角係合溝9に係合し、かつ、遅角ロックピン7が遅角係合溝10に係合している状態では、ロータ1は中間位置にロックされる。一方、図6に示されるように、ロータ側ロックピン解除油路14から供給されるロックピン解除油圧が作用して、進角ロックピン6が進角係合溝9から係合解除され、かつ、遅角ロックピン7が遅角係合溝10から係合解除されている状態では、ロータ1は相対回転可能である。なお、進角係合溝9及び遅角係合溝10から後退した進角ロックピン6及び遅角ロックピン7が圧入部材5のストッパ5fに当接することによって、進角ロックピン6及び遅角ロックピン7のこれ以上の後退が規制される。
 進角ロックピン6は、遅角方向のカムトルクを受けていないため、進角係合溝9から抜けやすい。一方、遅角ロックピン7は、カムトルクを受けて遅角係合溝10の遅角側の側壁に押し付けられるため、遅角係合溝10から抜けにくい。そのため、実施の形態1のロック機構は、カムトルクを受けない進角ロックピン6の係合を最初に解除し、その後に遅角ロックピン7の係合を解除する構成である。この構成により、遅角ロックピン7より先に、進角ロックピン6を確実に係合解除できる。
 また、遅角ロックピン7より先に進角ロックピン6を確実に係合解除するために、以下に説明する構成とすることが望ましい。
 ケース2の軸方向における切欠部5bの長さを「A」とする。また、ケース2の軸方向における進角ロックピン6と進角係合溝9との隙間の長さを「B」とする。「B」の隙間は、進角ロックピン6が進角係合溝9から係合解除されたときに生じる隙間であり、進角係合溝9から遅角ロックピン解除油路5cへロックピン解除油圧が供給される油路となる。AとBの大小関係は、図5に示されるロック状態においてはA>Bであり、図6に示されるロック解除状態においてはA≦Bである。この大小関係であることにより、図5のロック状態においては進角ロックピン6が係合解除されない限り、遅角ロックピン解除油路5cが確保されないので、進角ロックピン6を確実に係合解除できる。
 圧入部材5のストッパ5fの位置には、圧入部材5の内外を連通する貫通孔である流体抜き路5dが形成されている。また、圧入部材5の外周面には、流体抜き路5dとロータ側流体抜き路15とを連通する溝である流体抜き路5eが形成されている。圧入部材5と進角ロックピン6との間及び圧入部材5と遅角ロックピン7との間には、進角ロックピン6及び遅角ロックピン7を摺動させるための隙間が必ず存在する。この隙間を通じて圧入部材5の内部にオイル及び空気が入り込む。このオイル及び空気は、流体抜き路5d及び流体抜き路5eを経由して、ロータ側流体抜き路15から外部へと排出される。
 以上のように、実施の形態1のロック機構を構成する貫通孔13は、ベーン12の内部に、第2回転体であるケース2の軸方向に形成される。圧入部材5は、円筒形状の部材であって、貫通孔13に、貫通孔13との軸方向摺動及び径方向回転動作が規制された状態に組み込まれる。進角ロックピン6及び遅角ロックピン7は、圧入部材5の内部に同軸上に配置される。進角係合溝9及び遅角係合溝10は、第1回転体であるプレート3及びカバー4に形成され、進角ロックピン6及び遅角ロックピン7が係合する。コイルスプリング8は、進角ロックピン6を進角係合溝9の方向へ付勢し、遅角ロックピン7を遅角係合溝10の方向へ付勢する。進角ロックピン解除油路5aは、圧入部材5の外周面に形成され、進角係合溝9へロックピン解除油圧を供給する。遅角ロックピン解除油路5cは、圧入部材5の外周面に形成され、進角係合溝9へ供給されたロックピン解除油圧を遅角係合溝10へ供給する。このように、圧入部材5の外周面に形成された単純な形状の縦溝を進角ロックピン解除油路5a及び遅角ロックピン解除油路5cとしたので、ベーン12の内部に複雑な形状のロックピン解除油路を加工する必要がなく、ベーン12には単純な形状の貫通孔13を加工するだけでよい。
 また、実施の形態1の圧入部材5は、進角ロックピン解除油路5aにおける進角係合溝9に対向する部分が切り欠かれた切欠部5bを有する。この構成において、進角ロックピン6が進角係合溝9に係合している状態では、ケース2の軸方向において、遅角ロックピン解除油路5cに連通する進角ロックピン6と進角係合溝9との隙間の長さBは、切欠部5bの長さA未満である。一方、進角ロックピン6が進角係合溝9から係合解除している状態では、ケース2の軸方向において、遅角ロックピン解除油路5cに連通する進角ロックピン6と進角係合溝9との隙間の長さBは、切欠部5bの長さA以上である。これにより、遅角ロックピン7より先に、進角ロックピン6を確実に係合解除できる。
 また、実施の形態1の圧入部材5は、進角ロックピン6と遅角ロックピン7との間の流体を外部へ排出する流体抜き路5d,5eを有する。一方、ベーン12側には、流体抜き路5d,5eに連通する縦穴、つまりロータ側流体抜き路15を加工すれば足りる。従来は、ロータ1に横穴を加工してロータ側流体抜き路とする方法がよく用いられるが、実施の形態1ではロータ1に縦穴を加工してロータ側流体抜き路15とすることができる。これにより、従来に比べて容易な加工により流体抜き路を実現できる。
 なお、流体抜き路5eを設けず、流体抜き路5dをロータ側流体抜き路15に直接連通させる構成であってもよい。
 また、実施の形態1のコイルスプリング8は、線形のばね定数を持つものであってもよいし、非線形のばね定数を持つものであってもよい。非線形のばね定数を持つコイルスプリング8は、伸縮途中で付勢力が変化する不等ピッチスプリング等である。例えば、非線形のばね定数を持つコイルスプリング8を用いて、進角ロックピン6を進角係合溝9の方向へ付勢する力に比べて、遅角ロックピン7を遅角係合溝10の方向へ付勢する力を強くする。これにより、ロック解除時、ロックピン解除油圧が隙間を通じて遅角係合溝10へ漏れ出たとしても、進角ロックピン6が進角係合溝9から係合解除する前に遅角ロックピン7が遅角係合溝10から係合解除する事態を防止できる。
実施の形態2.
 実施の形態2に係るバルブタイミング調整装置100は、ロック機構以外、実施の形態1に係るバルブタイミング調整装置100と同じ構成であるため、図1~図7を援用する。図8は、実施の形態2のロック機構を図3のP-P線に沿って切断した断面図であり、ロック状態を示す。図9は、実施の形態2の進角係合溝9及び遅角係合溝10の形状例を示す正面図である。図9において、進角係合溝9の外形は実線で示され、遅角係合溝10の外形は破線で示され、進角ロックピン6及び遅角ロックピン7の外形は二点鎖線で示される。図8及び図9において、図1~図7と同一又は相当する部分は、同一の符号を付し説明を省略する。
 実施の形態1では、圧入部材5が切欠部5bを有する構成であったが、実施の形態2では、この切欠部5bに代えて凹部9aが形成される。つまり、進角係合溝9は、進角ロックピン解除油路5aに対向する部分が凹んだ凹部9aを有する。凹部9aが存在することにより、進角ロックピン解除油路5aと進角係合溝9とが連通する。ロータ側ロックピン解除油路14へ供給されたロックピン解除油圧は、ロータ側ロックピン解除油路14から進角ロックピン解除油路5a及び凹部9aを経由して進角係合溝9へと供給される。
 なお、進角側と同様に、遅角側の切欠部5c2に代えて、遅角係合溝10に凹部10aが形成されてもよい。進角係合溝9へ供給されたロックピン解除油圧は、進角係合溝9から切欠部5c1、遅角ロックピン解除油路5c及び凹部10aを経由して遅角係合溝10へと供給される。
 ここで、ケース2の軸方向における凹部9aの長さを「A」とする。また、実施の形態1と同様に、ケース2の軸方向における進角ロックピン6と進角係合溝9との隙間の長さを「B」とする。AとBの大小関係は、図8に示されるロック状態においてはA>Bであり、図示しないロック解除状態においてはA≦Bである。この大小関係であることにより、図8のロック状態においては進角ロックピン6が係合解除されない限り、遅角ロックピン解除油路5cが確保されないので、進角ロックピン6を確実に係合解除できる。
 以上のように、実施の形態2の進角係合溝9は、進角ロックピン解除油路5aに対向する部分が凹んだ凹部9aを有する。この構成において、進角ロックピン6が進角係合溝9に係合している状態では、ケース2の軸方向において、遅角ロックピン解除油路5cに連通する進角ロックピン6と進角係合溝9との隙間の長さBは、凹部9aの長さA未満である。一方、進角ロックピン6が進角係合溝9から係合解除している状態では、ケース2の軸方向において、遅角ロックピン解除油路5cに連通する進角ロックピン6と進角係合溝9との隙間の長さBは、凹部9aの長さA以上である。これにより、遅角ロックピン7より先に、進角ロックピン6を確実に係合解除できる。
実施の形態3.
 実施の形態3に係るバルブタイミング調整装置100は、ロック機構以外、実施の形態1に係るバルブタイミング調整装置100と同じ構成であるため、図1~図7を援用する。図10は、実施の形態3のロック機構を図3のP-P線に沿って切断した断面図であり、ロック状態を示す。図10において、図1~図9と同一又は相当する部分は、同一の符号を付し説明を省略する。
 実施の形態1では、圧入部材5が切欠部5bを有する構成であったが、実施の形態3では、この切欠部5bに加えて、実施の形態2で示された凹部9aが形成される。つまり、進角係合溝9は、圧入部材5の切欠部5bに対向する部分が凹んだ凹部9aを有する。切欠部5b及び凹部9aが存在することにより、進角ロックピン解除油路5aと進角係合溝9とが連通する。ロータ側ロックピン解除油路14へ供給されたロックピン解除油圧は、ロータ側ロックピン解除油路14から進角ロックピン解除油路5a、切欠部5b及び凹部9aを経由して進角係合溝9へと供給される。
 なお、進角側と同様に、遅角側も切欠部5c2に加えて、遅角係合溝10に凹部10aが形成されてもよい。進角係合溝9へ供給されたロックピン解除油圧は、進角係合溝9から切欠部5c1、遅角ロックピン解除油路5c、切欠部5c2及び凹部10aを経由して遅角係合溝10へと供給される。
 ここで、ケース2の軸方向における切欠部5bの長さと凹部9aの長さとを足した長さを「A」とする。また、実施の形態1と同様に、ケース2の軸方向における進角ロックピン6と進角係合溝9との隙間の長さを「B」とする。AとBの大小関係は、図10に示されるロック状態においてはA>Bであり、図示しないロック解除状態においてはA≦Bである。この大小関係であることにより、図10のロック状態においては進角ロックピン6が係合解除されない限り、遅角ロックピン解除油路5cが確保されないので、進角ロックピン6を確実に係合解除できる。
 以上のように、実施の形態3の圧入部材5は、進角ロックピン解除油路5aにおける進角係合溝9に対向する部分が切り欠かれた切欠部5bを有する。また、進角係合溝9は、切欠部5bに対向する部分が凹んだ凹部9aを有する。この構成において、進角ロックピン6が進角係合溝9に係合している状態では、ケース2の軸方向において、遅角ロックピン解除油路5cに連通する進角ロックピン6と進角係合溝9との隙間の長さBは、切欠部5bの長さと凹部9aの長さとを足した長さA未満である。一方、進角ロックピン6が進角係合溝9から係合解除している状態では、ケース2の軸方向において、遅角ロックピン解除油路5cに連通する進角ロックピン6と進角係合溝9との隙間の長さBは、切欠部5bの長さと凹部9aの長さとを足した長さA以上である。これにより、遅角ロックピン7より先に、進角ロックピン6を確実に係合解除できる。
 また、実施の形態1では、1つのコイルスプリング8が使用されたが、実施の形態3では2つのコイルスプリング8a,8bが使用される。第1コイルスプリングに相当するコイルスプリング8aは、進角ロックピン6を進角係合溝9の方向へ付勢する。第2コイルスプリングに相当するコイルスプリング8bは、遅角ロックピン7を遅角係合溝10の方向へ付勢する。なお、コイルスプリング8aの付勢力より、コイルスプリング8bの付勢力を強くしてもよい。これにより、ロック解除時、ロックピン解除油圧が隙間を通じて遅角係合溝10へ漏れ出たとしても、進角ロックピン6が進角係合溝9から係合解除する前に遅角ロックピン7が遅角係合溝10から係合解除する事態を防止できる。
実施の形態4.
 実施の形態4に係るバルブタイミング調整装置100は、ロック機構以外、実施の形態1に係るバルブタイミング調整装置100と同じ構成であるため、図1~図7を援用する。図11は、実施の形態4のロック機構を図3のQ-Q線に沿って切断した断面図であり、ロック状態を示す。図12は、実施の形態4の進角係合溝9及び遅角係合溝10の形状例を示す正面図である。
 実施の形態1では、進角係合溝9及び遅角係合溝10の深さは、相対回転方向において一定であったが、実施の形態4では、進角係合溝9の遅角側に少なくとも1段の段差部9bが形成され、進角係合溝9の深さが多段階になっている。また、遅角係合溝10の進角側に少なくとも1段の段差部10bが形成され、遅角係合溝10の深さが多段階になっている。なお、進角側のみ、または遅角側のみ、深さが多段階になっていてもよいし、進角側及び遅角側の両方の深さが多段階になっていてもよい。これにより、進角ロックピン6又は遅角ロックピン7のいずれか一方が係合状態である場合にバルブタイミング調整装置100が振動を受けたとしても、進角ロックピン6又は遅角ロックピン7が、進角係合溝9と段差部9bとで構成される壁又は遅角係合溝10と段差部10bとで構成される壁に当接し、ロータ1の相対回転が防止される。
 なお、実施の形態2及び実施の形態3に係るバルブタイミング調整装置100において、進角係合溝9及び遅角係合溝10に段差部9b及び段差部10bが形成されてもよい。
実施の形態5.
 図13は、実施の形態5に係るバルブタイミング調整装置100の動作制御に関する構成例を示す図である。実施の形態1にバルブタイミング調整装置100は、実施の形態1~4に係るバルブタイミング調整装置100と同じ構成であるため、図1~図12を援用する。図13に示されるバルブタイミング調整システムは、バルブタイミング調整装置100の制御装置であるエンジンコントロールユニット101(以下、「ECU101」と称する。)と、OCV102と、バルブタイミング調整装置100とを含む。
 ECU101は、OCV102の動作を制御することによって、OCV102とロータ側ロックピン解除油路14との間の連通状態、OCV102と進角油路18との連通状態、及びOCV102と遅角油路19との連通状態を切り替える。OCV102は、図示しないオイルポンプから供給されるオイルを、ECU101の制御に従い、ロータ側ロックピン解除油路14、進角油路18、又は遅角油路19へ供給する。また、OCV102は、ECU101の制御に従い、ロータ側ロックピン解除油路14、進角油路18、又は遅角油路19へ供給されたオイルを、供給時とは逆の経路を辿って排出させる。
 ECU101は、プロセッサ101a及びメモリ101bを備えるコンピュータ又はマイクロコンピュータである。ECU101の機能は、ソフトウェア、ファームウェア、又はソフトウェアとファームウェアとの組み合わせにより実現される。ソフトウェア又はファームウェアはプログラムとして記述され、メモリ101bに格納される。プロセッサ101aは、メモリ102bに格納されたプログラムを読みだして実行することにより、ECU101の機能を実現する。即ち、ECU101は、プロセッサ101aにより実行されるときに、後述する図18及び図23のフローチャートで示されるステップが結果的に実行されることになるプログラムを格納するためのメモリ102bを備える。また、このプログラムは、後述する図18及び図23のフローチャートで示される手順又は方法をコンピュータ又はマイクロコンピュータに実行させるものであるとも言える。
 次に、ECU101によるバルブタイミング調整装置100の制御方法を説明する。
 まず、ロック機構のロック解除手順を、図14~図17のロック機構、図18のフローチャート、及び図19のグラフを参照しながら説明する。なお、実施の形態5では、実施の形態4に係るバルブタイミング調整装置100を例に用いる。
 図14は、バルブタイミング調整装置100が中間位置でロックされている状態を示す図であり、図14Aは図3のQ-Q線に沿って切断した断面図、図14Bは図3のP-P線に沿って切断した断面図である。図15は、進角ロックピン6が係合解除され、遅角ロックピン解除油路5cが開口した状態を示す図であり、図15Aは図3のQ-Q線に沿って切断した断面図、図15Bは図3のP-P線に沿って切断した断面図である。図16は、進角ロックピン6に加えて遅角ロックピン7も係合解除された状態を示す図であり、図16Aは図3のQ-Q線に沿って切断した断面図、図16Bは図3のP-P線に沿って切断した断面図である。図17は、遅角油圧を受けてロータ1が遅角側に動作する状態を示す図であり、図17Aは図3のQ-Q線に沿って切断した断面図、図17Bは図3のP-P線に沿って切断した断面図である。
 また、図18は、実施の形態5に係るバルブタイミング調整装置100のロック解除手順を示すフローチャートである。図19は、実施の形態5におけるロック解除実施時の位相制御デューティ、実位相、解除油路給排状態、進角ロックピン6の係合状態、遅角ロックピン7の係合状態を示すグラフである。位相制御デューティは、OCV102の電流を制御する値であり、ECU101が位相制御デューティを調整することで進角油圧室16及び遅角油圧室17の油圧が制御される。実位相は、角度センサ等の検出値から求まるクランクシャフトに対するカムシャフト20の相対回転角度である。解除油路給排状態は、OCV102からロータ側ロックピン解除油路14に給排されるオイルの状態を示す値であり、この値が大きいほどロータ側ロックピン解除油路14に供給されるオイル量が多くなる。解除油路給排状態は、ECU101により制御される。係合状態は、解除油路給排状態に応じて動作する進角ロックピン6の進角係合溝9に対する位置関係と、遅角ロックピン7の遅角係合溝10に対する位置関係とを示す。係合は、ロックピンが係合溝に進出して完全に嵌り込んでいる状態であり、解除は、ロックピンが係合溝から後退して完全に抜け出た状態である。
 ロータ1が中間位置でロックされている状態、つまり図14A及び図14Bのように進角ロックピン6と遅角ロックピン7がそれぞれ進角係合溝9と遅角係合溝10に係合している状態でエンジンが始動すると、車両側からECU101へロック解除要求が通知される。
 ステップST1において、ECU101は、車両側からロック解除要求を受けた場合(ステップST1“YES”)、ステップST2へ進み、それ以外の場合(ステップST1“NO”)、ステップST1を繰り返す。
 ステップST2において、ECU101は、ロックピン解除制御を実施する。具体的には、ECU101は、ロータ側ロックピン解除油路14へロックピン解除油圧を供給するよう、OCV102を制御する。ロックピン解除油圧は、ロータ側ロックピン解除油路14、進角ロックピン解除油路5a、及び切欠部5bを経由して、進角係合溝9へ供給される。すると、図15Aに示されるように、進角係合溝9へ供給されたロックピン解除油圧が進角ロックピン6に作用し、進角ロックピン6が進角係合溝9から係合解除される。また、図15Bに示されるように、進角ロックピン6と進角係合溝9との間に隙間が生じ、遅角ロックピン解除油路5cが開口し、ロックピン解除油圧が進角係合溝9から遅角ロックピン解除油路5cへ供給される。
 ステップST3において、ECU101は、ロックピン解除制御を実施した時点から計時を開始し、予め定められた設定時間が経過したか否かを判定する。ECU101は、設定時間が経過した場合(ステップST3“YES”)、ステップST4へ進み、設定時間が経過していなければ(ステップST3“NO”)、ステップST3を繰り返す。設定時間は、ロータ側ロックピン解除油路14へロックピン解除油圧が供給されて進角ロックピン6が進角係合溝9から係合解除するまでに要する時間であり、図19のグラフにおいてロックピン解除制御から進角動作制御までの時間に相当する。なお、ECU101は、予め定められている設定時間を、油圧及び油温等に応じて適宜調整してもよい。
 ステップST4において、ECU101は、進角動作制御を実施する。具体的には、ECU101は、進角油路18へ油圧を供給するよう、OCV102を制御する。この油圧は、進角油路18を経由して進角油圧室16へ供給される。上述したように、遅角ロックピン7は、カムトルクを受けて遅角係合溝10の遅角側の側壁に押し付けられた状態であり、抜けにくい。進角動作制御によって、図16Aに示されるようにロータ1が進角側に動作すると、遅角ロックピン7が遅角係合溝10の側壁から離れ両者の引っかかりが解消され、遅角ロックピン7が係合解除可能な状態となる。そして、図16Bに示されるように、遅角ロックピン解除油路5cから遅角係合溝10へ供給されたロックピン解除油圧が遅角ロックピン7に作用し、遅角ロックピン7が遅角係合溝10から係合解除される。
 ECU101によるステップST1~ST4の制御により、進角ロックピン6及び遅角ロックピン7が係合解除され、ロータ1の中間ロックが解除される。その後、ECU101は、目的の実位相になるように、OCV102を制御して進角油圧室16又は遅角油圧室17に油圧を供給させ、ロータ1を進角側又は遅角側へ動作させる。
 次に、ロック機構のロック手順を、図20~図22のロック機構、図23のフローチャート、及び図24のグラフを参照しながら説明する。
 図20は、ロータ1が進角側にある状態を示す図であり、図3のQ-Q線に沿って切断した断面図である。図21は、遅角ロックピン7が遅角係合溝10の段差部10bに係合した状態を示す図であり、図3のQ-Q線に沿って切断した断面図である。図22は、バルブタイミング調整装置100が中間位置でロックされた状態を示す図であり、図3のQ-Q線に沿って切断した断面図である。
 図23は、実施の形態5に係るバルブタイミング調整装置100のロック手順を示すフローチャートである。図24は、実施の形態5におけるロック実施時の位相制御デューティ、実位相、解除油路給排状態、進角ロックピン6の係合状態、遅角ロックピン7の係合状態を示すグラフである。
 進角ロックピン6及び遅角ロックピン7の各係合が解除されて、ロータ1が進角側及び遅角側に動作可能な状態でエンジンが停止すると、車両側からECU101へロック要求が通知される。
 ステップST11において、ECU101は、車両側からロック要求を受けた場合(ステップST11“YES”)、ステップST12へ進み、それ以外の場合(ステップST11“NO”)、ステップST11を繰り返す。
 ステップST12において、ECU101は、ロータ側ロックピン解除油路14へロックピン解除油圧を供給するようOCV102を制御し、進角係合溝9及び遅角係合溝10にロックピン解除油圧を供給する。これにより、続くステップST13におけるロータ1の進角動作中に、進角ロックピン6及び遅角ロックピン7が誤って進角係合溝9及び遅角係合溝10に係合しないようにする。
 ステップST13において、ECU101は、進角動作制御を実施する。具体的には、ECU101は、進角油路18を経由して進角油圧室16へ油圧を供給するよう、かつ、遅角油圧室17の油圧を遅角油路19を経由して排出するよう、OCV102を制御し、ロータ1を最進角位置へ動作させる。
 ステップST14において、ECU101は、図20に示されるように実位相が最進角位置になったか否かを判定する。ECU101は、実位相が最進角位置である場合(ステップST14“YES”)、ステップST15へ進み、実位相が最進角位置でない場合(ステップST14“NO”)、ステップST14を繰り返す。
 ステップST15において、ECU101は、遅角動作制御を実施する。具体的には、ECU101は、遅角油路19を経由して遅角油圧室17へ油圧を供給するよう、かつ、進角油圧室16の油圧を進角油路18を経由して排出するよう、OCV102を制御する。これにより、図21に示されるように、ロータ1は遅角側へ動作する。
 ステップST16において、ECU101は、ステップST15の遅角動作制御と同時に、進角係合溝9及び遅角係合溝10のロックピン解除油圧をロータ側ロックピン解除油路14を経由して排出するよう、OCV102を制御する。これにより、ロータ1が遅角側へ動作していき、図21に示されるように最初に遅角ロックピン7が段差部10bに係合し、続いて遅角係合溝10に係合する。遅角ロックピン7が遅角係合溝10の遅角側の側壁に当接することによってロータ1の中間位置より先への遅角動作を規制し、進角ロックピン6も進角係合溝9に係合する。これにより、図22に示されるようにロータ1が中間位置でロックされる。
 ステップST17において、ECU101は、実位相が中間位置で停止した状態になったか否かを判定する。ECU101は、実位相が中間位置である場合(ステップST17“YES”)、図22に示されるように進角ロックピン6が進角係合溝9に係合し遅角ロックピン7が遅角係合溝10に係合してロータ1が中間位置でロックされたと判断し、図23のフローチャートに示される動作を終了する。一方、ECU101は、実位相が中間位置でない場合(ステップST17“NO”)、ステップST18へ進む。実位相が中間位置でない場合、進角ロックピン6と遅角ロックピン7が進角係合溝9と遅角係合溝10に係合していない状態である。
 ステップST18において、ECU101は、実位相が中間位置より遅角側であるか否かを判定する。実位相が中間位置より遅角側である場合、進角係合溝9及び遅角係合溝10からロックピン解除油圧を排出し終える前に進角ロックピン6及び遅角ロックピン7が進角係合溝9及び遅角係合溝10を通り過ぎたため係合できなかった、又は、ロックピン解除油圧を排出し終えていたが係合に失敗したと考えられる。そのため、ECU101は、実位相が中間位置より遅角側である場合(ステップST18“YES”)、ステップST12へ戻り、再びロック制御ルーチンを実施する。一方、実位相が中間位置より遅角側でない場合、進角ロックピン6及び遅角ロックピン7は、まだ進角係合溝9及び遅角係合溝10へ到達していないと考えられる。そのため、ECU101は、実位相が中間位置より遅角側でない場合(ステップST18“NO”)、ステップST17へ戻る。
 以上のように、実施の形態5においてロータ1の中間ロックを解除する場合、ECU101は、進角ロックピン解除油路5aにロックピン解除油圧を供給して進角係合溝9から進角ロックピン6を係合解除させ、ケース2を進角側へ回転可能な状態にすると共に、進角ロックピン6と進角係合溝9との間に遅角ロックピン解除油路5cに連通する隙間を生じさせる。次に、ECU101は、進角油圧室16に油圧を供給してロータ1を回転させ、進角係合溝9のロックピン解除油圧を上記隙間及び遅角ロックピン解除油路5cを経由して遅角係合溝10に供給して遅角ロックピン7を係合解除させる。これにより、ECU101は、従来に比べて、中間ロックを解除してバルブタイミング調整装置100を動作させるまでに要する時間を短縮でき、応答性を向上させることができる。
 また、実施の形態5においてロータ1を中間ロックする場合、ECU101は、進角係合溝9及び遅角係合溝10にロックピン解除油圧を供給し、進角油圧室16に油圧を供給してロータ1を最進角位置へ回転させる。次に、ECU101は、進角係合溝9及び遅角係合溝10からロックピン解除油圧を排出し、遅角油圧室17に油圧を供給して中間位置の方向にロータ1を回転させ、進角ロックピン6を進角係合溝9に係合させ遅角ロックピン7を遅角係合溝10に係合させる。これにより、ECU101は、ロータ1を最進角位置から遅角側へ動作させることにより、進角ロックピン6及び遅角ロックピン7を自動的に進角係合溝9及び遅角係合溝10に係合させることができる。
実施の形態6.
 実施の形態6に係るバルブタイミング調整装置100は、ロック機構以外、実施の形態1~4に係るバルブタイミング調整装置100と同じ構成であるため、図1~図12を援用する。図25は、実施の形態6に係るバルブタイミング調整装置100のうちのロータ1と圧入部材5の構成例を示す分解斜視図である。図26は、実施の形態6のロック機構を図3のP-P線に沿って切断した断面図であり、ロック状態を示す。
 実施の形態1~4では、圧入部材5が進角ロックピン解除油路5aを有する構成であったが、実施の形態6では、貫通孔13が進角ロックピン解除油路13aを有する構成である。図25及び図26に示されるように、貫通孔13の内周面には、ロータ側ロックピン解除油路14から圧入部材5の切欠部5bへとのびる溝が形成されており、この溝が進角ロックピン解除油路13aとなる。
 同様に、圧入部材5が遅角ロックピン解除油路5cを有する構成であったが、貫通孔13が遅角ロックピン解除油路13bを有する構成であってもよい。図25及び図26に示されるように、貫通孔13の内周面には、進角係合溝9から遅角係合溝10へとのびる溝が形成されており、この溝が遅角ロックピン解除油路13bとなる。
 実施の形態6では、貫通孔13の内周面に形成された単純な形状の縦溝を進角ロックピン解除油路13a及び遅角ロックピン解除油路13bとしたので、ベーン12の内部に複雑な形状のロックピン解除油路を加工する必要がない。
 上記説明では、ロックピン解除油圧が先に供給される上流側である「第1」側を進角とし、下流側である「第2」側を遅角とした。そのため、「第1ロックピン」は進角ロックピン6に相当し、「第2ロックピン」は遅角ロックピン7に相当する。また、「第1係合溝」は進角係合溝9に相当し、「第2係合溝」は遅角係合溝10に相当する。さらに、「第1ロックピン解除油路」は進角ロックピン解除油路5a,13aに相当し、「第2ロックピン解除油路」は遅角ロックピン解除油路5c,13bに相当する。
 ただし、バルブタイミング調整装置100をエンジンに取り付ける向き等によっては、進角と遅角とが逆になる。つまり、進角ロックピン6及び進角係合溝9が遅角ロックピン及び遅角係合溝として機能し、遅角ロックピン7及び遅角係合溝10が進角ロックピン及び進角係合溝として機能する。また、進角ロックピン解除油路5a,13aが遅角ロックピン解除油路として機能し、遅角ロックピン解除油路5c,13bが進角ロックピン解除油路として機能する。この場合、遅角側が「第1」となり、進角側が「第2」となる。そして、遅角ロックピンとして機能する進角ロックピン6が最初に係合解除され、その後に進角ロックピンとして機能する遅角ロックピン7が係合解除される。なお、遅角ロックピンとして機能する進角ロックピン6は、カムトルクを受けて抜けにくくなる。そこで、非線形のばね定数を持つコイルスプリング8又は2つのコイルスプリング8a,8bを用いて、遅角ロックピンとして機能する進角ロックピン6を付勢する力を弱くし、進角ロックピンとして機能する遅角ロックピン7を付勢する力を強くすることによって、遅角ロックピンとして機能する進角ロックピン6が確実に最初に係合解除されるよう構成することが望ましい。
 進角と遅角とが逆である場合、ECU101は、図18に示されるフローチャートのステップST4において、遅角動作制御を実施する。また、ECU101は、図23に示されるフローチャートのステップST13において遅角動作制御を実施し、ステップST15において実位相が最遅角位置であるか否かを判定し、ステップST15において進角動作制御を実施し、ステップST18において実位相が中間位置より進角側であるか否かを判定する。
 なお、本発明はその発明の範囲内において、各実施の形態の自由な組み合わせ、各実施の形態の任意の構成要素の変形、又は各実施の形態の任意の構成要素の省略が可能である。
 この発明に係るバルブタイミング調整装置の制御装置は、2つのロックピンによってロータを中間位置にロックする構成にしたので、エンジンの吸気バルブ及び排気バルブの開閉タイミングを調整するバルブタイミング調整装置の制御装置等に用いるのに適している。
 1 ロータ(第2回転体)、2 ケース(第1回転体)、2a スプロケット、3 プレート(第1回転体)、4 カバー(第1回転体)、5 圧入部材(円筒部材)、5a,13a 進角ロックピン解除油路(第1ロックピン解除油路)、5b,5c1,5c2 切欠部、5c,13b 遅角ロックピン解除油路(第2ロックピン解除油路)、5d,5e 流体抜き路、5f ストッパ、6 進角ロックピン(第1ロックピン)、7 遅角ロックピン(第2ロックピン)、8,8a,8b コイルスプリング(付勢部材)、9 進角係合溝(第1係合溝)、9a,10a 凹部、9b,10b 段差部、10 遅角係合溝(第2係合溝)、11 シュー、12 ベーン、13 貫通孔、14 ロータ側ロックピン解除油路、15 ロータ側流体抜き路、16 進角油圧室、17 遅角油圧室、18 進角油路、19 遅角油路、20 カムシャフト、100 バルブタイミング調整装置、101 ECU(制御装置)、101a プロセッサ、101b メモリ、102 OCV。

Claims (4)

  1.  作動油圧室を有する第1回転体と、
     前記第1回転体に収容されて前記作動油圧室を進角側と遅角側とに区分するベーンを有し、前記第1回転体に対して相対回転する第2回転体と、
     前記第2回転体を最進角位置と最遅角位置との間の中間位置にロックするロック機構とを備え、
     前記ロック機構は、
     前記ベーンの内部に前記第2回転体の軸方向に形成された貫通孔と、
     前記貫通孔との軸方向摺動及び径方向回転動作が規制された状態で前記貫通孔に組み込まれた円筒形状の円筒部材と、
     前記円筒部材の内部に同軸上に配置された第1ロックピン及び第2ロックピンと、
     前記第1回転体に形成されて前記第1ロックピン及び前記第2ロックピンが係合する第1係合溝及び第2係合溝と、
     前記第1ロックピンを前記第1係合溝の方向へ付勢し前記第2ロックピンを前記第2係合溝の方向へ付勢する付勢部材と、
     前記円筒部材の外周面又は前記貫通孔の内周面に形成され、前記第1係合溝へロックピン解除油圧を供給する第1ロックピン解除油路と、
     前記円筒部材の外周面又は前記貫通孔の内周面に形成され、前記第1係合溝へ供給された前記ロックピン解除油圧を前記第2係合溝へ供給する第2ロックピン解除油路とを備えるバルブタイミング調整装置の制御装置であって、
     前記第1ロックピンが前記第1係合溝に係合し前記第2ロックピンが前記第2係合溝に係合して前記第2回転体を前記中間位置にロックした状態において、前記第1ロックピン解除油路に前記ロックピン解除油圧を供給して前記第1係合溝から前記第1ロックピンを係合解除させ、前記第2回転体を進角側又は遅角側へ回転可能状態にすると共に前記第1係合溝と前記第1ロックピンとの間に前記第2ロックピン解除油路へ連通する隙間を生じさせ、前記第2回転体が回転可能状態となった側の前記作動油圧室に油圧を供給して前記第2回転体を回転させ、前記第1係合溝の前記ロックピン解除油圧を前記隙間及び前記第2ロックピン解除油路を経由して前記第2係合溝に供給して前記第2ロックピンを係合解除させて前記第2回転体のロックを解除することを特徴とするバルブタイミング調整装置の制御装置。
  2.  前記第2回転体を前記中間位置にロックする場合、
     前記第1係合溝及び前記第2係合溝に前記ロックピン解除油圧を供給し、進角側又は遅角側のいずれか一方の前記作動油圧室に油圧を供給して前記第2回転体を最進角位置又は最遅角位置のいずれか一方へ回転させ、前記第1係合溝及び前記第2係合溝から前記ロックピン解除油圧を排出し、進角側又は遅角側のいずれか他方の前記作動油圧室に油圧を供給して前記中間位置の方向に前記第2回転体を回転させ、前記第1ロックピンを前記第1係合溝に係合させ前記第2ロックピンを前記第2係合溝に係合させて、前記第2回転体をロックすることを特徴とする請求項1記載のバルブタイミング調整装置の制御装置。
  3.  作動油圧室を有する第1回転体と、
     前記第1回転体に収容されて前記作動油圧室を進角側と遅角側とに区分するベーンを有し、前記第1回転体に対して相対回転する第2回転体と、
     前記第2回転体を最進角位置と最遅角位置との間の中間位置にロックするロック機構とを備え、
     前記ロック機構は、
     前記ベーンの内部に前記第2回転体の軸方向に形成された貫通孔と、
     前記貫通孔との軸方向摺動及び径方向回転動作が規制された状態で前記貫通孔に組み込まれた円筒形状の円筒部材と、
     前記円筒部材の内部に同軸上に配置された第1ロックピン及び第2ロックピンと、
     前記第1回転体に形成されて前記第1ロックピン及び前記第2ロックピンが係合する第1係合溝及び第2係合溝と、
     前記第1ロックピンを前記第1係合溝の方向へ付勢し前記第2ロックピンを前記第2係合溝の方向へ付勢する付勢部材と、
     前記円筒部材の外周面又は前記貫通孔の内周面に形成され、前記第1係合溝へロックピン解除油圧を供給する第1ロックピン解除油路と、
     前記円筒部材の外周面又は前記貫通孔の内周面に形成され、前記第1係合溝へ供給された前記ロックピン解除油圧を前記第2係合溝へ供給する第2ロックピン解除油路とを備えるバルブタイミング調整装置の制御方法であって、
     前記第1ロックピンが前記第1係合溝に係合し前記第2ロックピンが前記第2係合溝に係合して前記第2回転体を前記中間位置にロックした状態において、前記第1ロックピン解除油路に前記ロックピン解除油圧を供給して前記第1係合溝から前記第1ロックピンを係合解除させ、前記第2回転体を進角側又は遅角側へ回転可能状態にすると共に前記第1係合溝と前記第1ロックピンとの間に前記第2ロックピン解除油路へ連通する隙間を生じさせ、前記第2回転体が回転可能状態となった側の前記作動油圧室に油圧を供給して前記第2回転体を回転させ、前記第1係合溝の前記ロックピン解除油圧を前記隙間及び前記第2ロックピン解除油路を経由して前記第2係合溝に供給して前記第2ロックピンを係合解除させて前記第2回転体のロックを解除することを特徴とするバルブタイミング調整装置の制御方法。
  4.  前記第2回転体を前記中間位置にロックする場合、
     前記第1係合溝及び前記第2係合溝に前記ロックピン解除油圧を供給し、進角側又は遅角側のいずれか一方の前記作動油圧室に油圧を供給して前記第2回転体を最進角位置又は最遅角位置のいずれか一方へ回転させ、前記第1係合溝及び前記第2係合溝から前記ロックピン解除油圧を排出し、進角側又は遅角側のいずれか他方の前記作動油圧室に油圧を供給して前記中間位置の方向に前記第2回転体を回転させ、前記第1ロックピンを前記第1係合溝に係合させ前記第2ロックピンを前記第2係合溝に係合させて、前記第2回転体をロックすることを特徴とする請求項3記載のバルブタイミング調整装置の制御方法。
PCT/JP2018/007310 2018-02-27 2018-02-27 バルブタイミング調整装置の制御装置及び制御方法 WO2019167135A1 (ja)

Priority Applications (4)

Application Number Priority Date Filing Date Title
US16/761,134 US10989079B2 (en) 2018-02-27 2018-02-27 Control device and control method for valve timing adjustment device
PCT/JP2018/007310 WO2019167135A1 (ja) 2018-02-27 2018-02-27 バルブタイミング調整装置の制御装置及び制御方法
DE112018006580.4T DE112018006580B4 (de) 2018-02-27 2018-02-27 Steuergerät und Steuerungsverfahren für Ventilsteuerungseinstellvorrichtung
JP2019571370A JP6683409B2 (ja) 2018-02-27 2018-02-27 バルブタイミング調整装置の制御装置及び制御方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/JP2018/007310 WO2019167135A1 (ja) 2018-02-27 2018-02-27 バルブタイミング調整装置の制御装置及び制御方法

Publications (1)

Publication Number Publication Date
WO2019167135A1 true WO2019167135A1 (ja) 2019-09-06

Family

ID=67806118

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2018/007310 WO2019167135A1 (ja) 2018-02-27 2018-02-27 バルブタイミング調整装置の制御装置及び制御方法

Country Status (4)

Country Link
US (1) US10989079B2 (ja)
JP (1) JP6683409B2 (ja)
DE (1) DE112018006580B4 (ja)
WO (1) WO2019167135A1 (ja)

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007270625A (ja) * 2006-03-30 2007-10-18 Denso Corp バルブタイミング調整装置
JP2010255472A (ja) * 2009-04-22 2010-11-11 Aisin Seiki Co Ltd 弁開閉時期制御装置
JP2013224619A (ja) * 2012-04-23 2013-10-31 Hitachi Automotive Systems Ltd 内燃機関のバルブタイミング制御装置及びこのバルブタイミング制御装置の作動油給排構造
JP2013256899A (ja) * 2012-06-13 2013-12-26 Hitachi Automotive Systems Ltd 内燃機関の可変動弁装置

Family Cites Families (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002327607A (ja) 2001-04-27 2002-11-15 Unisia Jecs Corp 内燃機関のバルブタイミング制御装置
GB2413168A (en) 2004-04-13 2005-10-19 Mechadyne Plc Variable phase drive mechanism
JP5288043B2 (ja) 2010-12-24 2013-09-11 トヨタ自動車株式会社 内燃機関の可変動弁装置
WO2012086085A1 (ja) 2010-12-24 2012-06-28 トヨタ自動車 株式会社 内燃機関の可変動弁装置
JP5541317B2 (ja) * 2012-02-08 2014-07-09 株式会社デンソー バルブタイミング調整装置
DE102012203635A1 (de) 2012-03-08 2013-09-12 Schaeffler Technologies AG & Co. KG Nockenwellenversteller
US8893677B2 (en) 2013-03-14 2014-11-25 Borgwarner Inc. Dual lock pin phaser
WO2015033676A1 (ja) 2013-09-03 2015-03-12 三菱電機株式会社 バルブタイミング調整装置の制御装置

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007270625A (ja) * 2006-03-30 2007-10-18 Denso Corp バルブタイミング調整装置
JP2010255472A (ja) * 2009-04-22 2010-11-11 Aisin Seiki Co Ltd 弁開閉時期制御装置
JP2013224619A (ja) * 2012-04-23 2013-10-31 Hitachi Automotive Systems Ltd 内燃機関のバルブタイミング制御装置及びこのバルブタイミング制御装置の作動油給排構造
JP2013256899A (ja) * 2012-06-13 2013-12-26 Hitachi Automotive Systems Ltd 内燃機関の可変動弁装置

Also Published As

Publication number Publication date
JP6683409B2 (ja) 2020-04-22
US20200271021A1 (en) 2020-08-27
DE112018006580B4 (de) 2022-10-06
US10989079B2 (en) 2021-04-27
JPWO2019167135A1 (ja) 2020-04-09
DE112018006580T5 (de) 2020-11-12

Similar Documents

Publication Publication Date Title
EP2418360B1 (en) Variable valve timing mechanism with intermediate locking mechanism and fabrication method thereof
JP5360511B2 (ja) 弁開閉時期制御装置
JP4640510B2 (ja) バルブタイミング調整装置
US8297245B2 (en) Valve timing adjuster
US10337363B2 (en) Valve opening and closing timing control apparatus
US8240280B2 (en) Device for camshaft adjustment in an internal combustion engine
WO2019167135A1 (ja) バルブタイミング調整装置の制御装置及び制御方法
JP6141435B2 (ja) バルブタイミング調整装置の制御装置
JP2009257256A (ja) バルブタイミング調整装置
WO2019167134A1 (ja) バルブタイミング調整装置
JP4304878B2 (ja) バルブタイミング調整装置
WO2017208548A1 (ja) 内燃機関のバルブタイミング制御装置
JP2005233049A (ja) 弁開閉時期制御装置
JP4327047B2 (ja) バルブタイミング調整装置
JP6104392B2 (ja) バルブタイミング調整装置
JP4371186B2 (ja) 弁開閉時期制御装置
JP3804837B2 (ja) 弁開閉時期制御装置
JP6797342B2 (ja) バルブタイミング調整装置
CN210033556U (zh) 阀正时调节装置
JP2001227308A (ja) 内燃機関のバルブタイミング制御装置
JPH09317410A (ja) 弁開閉時期制御装置
JP2003343217A (ja) バルブタイミング調整装置
JP2017057742A (ja) 内燃機関のバルブタイミング制御装置
JP2000130119A (ja) 弁開閉時期制御装置
JP2003278512A (ja) 弁開閉時期制御装置

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 18907725

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2019571370

Country of ref document: JP

Kind code of ref document: A

122 Ep: pct application non-entry in european phase

Ref document number: 18907725

Country of ref document: EP

Kind code of ref document: A1