WO2019163532A1 - ハニカム構造体の製造方法 - Google Patents

ハニカム構造体の製造方法 Download PDF

Info

Publication number
WO2019163532A1
WO2019163532A1 PCT/JP2019/004437 JP2019004437W WO2019163532A1 WO 2019163532 A1 WO2019163532 A1 WO 2019163532A1 JP 2019004437 W JP2019004437 W JP 2019004437W WO 2019163532 A1 WO2019163532 A1 WO 2019163532A1
Authority
WO
WIPO (PCT)
Prior art keywords
titania
powder
honeycomb structure
particle diameter
average particle
Prior art date
Application number
PCT/JP2019/004437
Other languages
English (en)
French (fr)
Inventor
雄也 山本
孝浩 伊藤
Original Assignee
イビデン株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by イビデン株式会社 filed Critical イビデン株式会社
Publication of WO2019163532A1 publication Critical patent/WO2019163532A1/ja

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D39/00Filtering material for liquid or gaseous fluids
    • B01D39/14Other self-supporting filtering material ; Other filtering material
    • B01D39/20Other self-supporting filtering material ; Other filtering material of inorganic material, e.g. asbestos paper, metallic filtering material of non-woven wires
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01GCOMPOUNDS CONTAINING METALS NOT COVERED BY SUBCLASSES C01D OR C01F
    • C01G23/00Compounds of titanium
    • C01G23/04Oxides; Hydroxides
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B35/00Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/01Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on oxide ceramics
    • C04B35/46Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on oxide ceramics based on titanium oxides or titanates
    • C04B35/462Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on oxide ceramics based on titanium oxides or titanates based on titanates
    • C04B35/478Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on oxide ceramics based on titanium oxides or titanates based on titanates based on aluminium titanates
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B38/00Porous mortars, concrete, artificial stone or ceramic ware; Preparation thereof

Definitions

  • the present invention relates to a method for manufacturing a honeycomb structure.
  • exhaust gas discharged from an internal combustion engine such as a diesel engine contains particulate matter (hereinafter also referred to as PM).
  • PM particulate matter
  • various honeycomb filters made of a honeycomb structure using cordierite, silicon carbide, aluminum titanate, or the like have been proposed as filters for collecting PM in the exhaust gas and purifying the exhaust gas.
  • the honeycomb structure using aluminum titanate has a higher melting temperature than the honeycomb structure using cordierite, so that it is difficult for melting damage to occur when burning PM as a honeycomb filter, Since the thermal expansion coefficient is lower than that of a honeycomb structure using silicon carbide, it is known that even a large filter is not easily broken by thermal stress applied during PM combustion.
  • Patent Document 1 in a method for producing a ceramic honeycomb structure made of aluminum titanate by firing a clay made by mixing a TiO 2 source powder and an Al 2 O 3 source powder, 0.2 to 4 ⁇ m The use of a TiO 2 source powder having relatively small particle size in the range and relatively large particle size in the range of 10-100 ⁇ m is described. According to the method described in Patent Document 1, it is said that an aluminum titanate ceramic honeycomb structure having few cracks and a large average pore diameter can be obtained while maintaining the excellent performance of a low thermal expansion coefficient.
  • the present invention has been made to solve the above problems, and provides a method for producing a honeycomb structure having a low coefficient of thermal expansion, a low firing shrinkage ratio, and a sharp pore distribution. Objective.
  • a method for manufacturing a honeycomb structure of the present invention includes a step of obtaining a honeycomb formed body by molding a raw material composition containing titania powder and alumina powder, and a step of firing the honeycomb formed body.
  • the titania powder includes a titania coarse powder and a titania fine powder having an average particle diameter D50 smaller than that of the titania coarse powder.
  • the titania coarse powder includes the titania fine powder. It contains more iron than powder.
  • a titania coarse powder having a large average particle diameter and a titania fine powder having a small average particle diameter are used in combination as the titania powder.
  • titania coarse particles having a large average particle diameter and titania fine particles having a small average particle diameter are used in combination as titania particles.
  • the sinterability is reduced by using titania coarse particles.
  • the inclusion of iron that facilitates sintering in the titania coarse powder results in uniform sintering, so the spacing between the alumina particles and the titania coarse particles is uniform, and uniform pores are formed in the gaps. can do.
  • the titania fine particles are present, the synthesis reaction and sintering of aluminum titanate are facilitated, so that deterioration of the thermal expansion coefficient and strength can be suppressed.
  • the average particle diameter D50 of the titania coarse powder is 5 to 25 ⁇ m, and the average particle diameter D50 of the titania fine powder is 0.1 to 1.5 ⁇ m. preferable.
  • the thermal expansion coefficient can be lowered, the firing shrinkage rate can be reduced, and the pore distribution of the fired aluminum titanate porous body can be sharpened.
  • the average particle size D50 of the titania coarse powder is equal to or smaller than the average particle size D50 of the alumina powder. Is preferred. In this case, shrinkage during firing can be further suppressed.
  • the iron content in the titania coarse powder is preferably 0.1 to 0.3%. Moreover, it is preferable that the iron content of the titania fine powder is less than 0.1%. In this case, the synthesis reaction and sintering of aluminum titanate are likely to proceed.
  • Fig. 1 (a) is a perspective view schematically showing an example of a honeycomb structure manufactured by the manufacturing method of the present invention
  • Fig. 1 (b) is an A of the honeycomb structure shown in Fig. 1 (a).
  • FIG. 1 (a) is a perspective view schematically showing an example of a honeycomb structure manufactured by the manufacturing method of the present invention
  • Fig. 1 (b) is an A of the honeycomb structure shown in Fig. 1 (a).
  • the method for manufacturing a honeycomb structured body of the present invention includes a forming step for obtaining a honeycomb formed body by forming a raw material composition, and a firing step for firing the honeycomb formed body.
  • a honeycomb formed body is obtained by forming the raw material composition.
  • the raw material composition includes titania powder and alumina powder.
  • the raw material composition preferably further contains silica powder and magnesia powder.
  • a raw material composition further contains a pore former.
  • the titania powder includes a titania coarse powder and a fine titania powder having an average particle diameter D50 smaller than that of the titania coarse powder.
  • the average particle diameter D50 of the titania powder is a particle diameter corresponding to 50% cumulative from the smaller diameter side of the volume-based cumulative particle diameter by the laser diffraction / scattering particle size distribution measurement method.
  • the average particle diameter D50 of the titania coarse powder is not particularly limited as long as it is larger than the average particle diameter D50 of the titania fine powder. Is preferably small.
  • the average particle diameter D50 of the titania coarse powder is preferably 5 ⁇ m or more, and more preferably 10 ⁇ m or more. Further, the average particle diameter D50 of the titania coarse powder is preferably 25 ⁇ m or less, and more preferably 20 ⁇ m or less.
  • the average particle diameter D50 of the titania fine powder is preferably 0.1 ⁇ m or more, and more preferably 0.4 ⁇ m or more.
  • the average particle diameter D50 of the titania fine powder is preferably 1.5 ⁇ m or less, and more preferably 1 ⁇ m or less.
  • the titania coarse powder contains more iron than the titania fine powder.
  • the titania fine powder may contain iron or may not contain iron (that is, it may be below the detection limit).
  • the iron content of titania powder is measured by ICP emission spectroscopic analysis.
  • the iron content of the titania crude powder is preferably 0.1 to 0.3%. Further, the iron content of the titania fine powder is preferably less than 0.1%, more preferably less than 0.01%.
  • the mixing ratio of the titania coarse powder and the titania fine powder is preferably 40:60 to 80:20, more preferably 45:55 to 75:25, in terms of weight ratio. .
  • the titania powder is preferably contained in the raw material composition in an amount of 15 to 40% by weight in total of the titania coarse powder and the titania fine powder.
  • the average particle diameter D50 of the alumina powder is not particularly limited, but it is preferably equal to the average particle diameter D50 of the titania coarse powder or larger than the average particle diameter D50 of the titania coarse powder.
  • the average particle diameter D50 of the alumina powder is preferably 10 ⁇ m or more, and more preferably 15 ⁇ m or more. Moreover, the average particle diameter D50 of the alumina powder is preferably 40 ⁇ m or less, and more preferably 30 ⁇ m or less.
  • the alumina powder is preferably contained in the raw material composition in an amount of 20 to 45% by weight.
  • the raw material composition preferably further includes silica powder and magnesia powder.
  • silica powder and magnesia powder When the silicon element derived from silica and the magnesium element derived from magnesia are dissolved in the aluminum titanate, thermal decomposition of the aluminum titanate can be suppressed, and use at a high temperature is possible.
  • the average particle diameter D50 of the silica powder is preferably 0.1 ⁇ m or more.
  • the average particle diameter D50 of the silica powder is preferably 10 ⁇ m or less, and more preferably 5 ⁇ m or less.
  • the silica powder is preferably contained in the raw material composition in an amount of 0.5 to 5% by weight.
  • the average particle diameter D50 of the magnesia powder is preferably 1 ⁇ m or more, and more preferably 2 ⁇ m or more. Moreover, it is preferable that the average particle diameter D50 of a magnesia powder is 10 micrometers or less. The average particle diameter D50 of the magnesia powder is preferably larger than the average particle diameter D50 of the silica powder.
  • the magnesia powder is preferably contained in the raw material composition in an amount of 0.5 to 5% by weight.
  • a raw material composition further contains a pore former.
  • pore former examples include acrylic resin, graphite, and starch.
  • the average particle diameter D50 of the pore former is preferably 5 ⁇ m or more, and more preferably 10 ⁇ m or more.
  • the average particle diameter D50 of the pore former is preferably 50 ⁇ m or less, and more preferably 40 ⁇ m or less.
  • the pore former is preferably contained in the raw material composition in an amount of 5 to 40% by weight.
  • the raw material composition may contain a molding aid, an organic binder, and a dispersion medium.
  • the molding aid include ethylene glycol, dextrin, fatty acid, fatty acid soap, and polyalcohol.
  • the organic binder include hydrophilic organic polymers such as carboxymethyl cellulose, polyvinyl alcohol, methyl cellulose, and ethyl cellulose.
  • the dispersion medium include a dispersion medium composed only of water, or a dispersion medium composed of 50% by volume or more of water and an organic solvent.
  • the organic solvent include alcohols such as benzene and methanol.
  • the raw material composition may further contain other materials.
  • other materials include plasticizers, dispersants, lubricants, and the like.
  • plasticizer include polyoxyalkylene compounds such as polyoxyethylene alkyl ether and polyoxypropylene alkyl ether.
  • dispersant include sorbitan fatty acid esters.
  • lubricant include glycerin.
  • the raw material composition is formed to obtain a honeycomb formed body.
  • the raw material composition put into an extruder is extruded in the mold direction while being mixed and kneaded in a sealed state using a screw having various shapes, etc., to obtain a kneaded state suitable for extrusion molding, Extrusion molding is performed through a mold to produce a continuous body of honeycomb molded bodies in which a large number of through holes are arranged in parallel in the longitudinal direction with a wall portion therebetween.
  • a formed body corresponding to a part of the shape of the honeycomb structure may be formed. That is, a molded body having the same shape as the honeycomb structure may be manufactured by forming a formed body corresponding to a part of the shape of the honeycomb structure and combining the formed bodies.
  • microwave dryer, hot air dryer, dielectric dryer, vacuum dryer, vacuum Drying is performed using a dryer, a freeze dryer, or the like, followed by a degreasing process for decomposing and eliminating organic components in the honeycomb formed body.
  • the honeycomb formed body obtained in the forming step is fired to obtain a fired body.
  • the reaction between the alumina particles and the titania particles proceeds to form an aluminum titanate phase.
  • the firing temperature is preferably 1300 to 1600 ° C. Firing can be performed using a known single furnace, a so-called batch furnace, or a continuous furnace.
  • the firing time is not particularly limited, but it is preferable to hold at the above firing temperature for 1 to 20 hours.
  • the oxygen concentration may be adjusted by mixing an inert gas such as nitrogen gas or argon gas in the air atmosphere.
  • honeycomb structure made of aluminum titanate can be manufactured.
  • FIG. 1 (a) is a perspective view schematically showing an example of a honeycomb structure manufactured by the manufacturing method of the present invention
  • Fig. 1 (b) is an A of the honeycomb structure shown in Fig. 1 (a).
  • FIG. The honeycomb structure 10 shown in FIG. 1 (a) has a columnar shape, and the exhaust gas introduction cell 11a and the exhaust gas whose cross-sectional shape perpendicular to the longitudinal direction (the direction indicated by the double arrow a in FIG. 1 (a)) is substantially rectangular. Many discharge cells 11b are formed.
  • the exhaust gas introduction cell 11a and the exhaust gas discharge cell 11b are formed with a cell partition wall 13 therebetween.
  • An outer peripheral wall 16 is formed on the outer periphery of the honeycomb structure 10.
  • the exhaust gas discharge cell 11b is sealed by the sealing portion 12b on the end surface 14 on the side where the exhaust gas is introduced, and the exhaust gas introduction cell 11a is open.
  • the exhaust gas introduction cell 11a is sealed by the sealing portion 12a, and the exhaust gas discharge cell 11b is open.
  • the exhaust gas G introduced into the exhaust gas introduction cell 11a from the end surface 14 passes through the cell partition wall 13 which is a porous wall, and then passes through the exhaust gas exhaust cell 11b. It is discharged from the end face 15. During this time, PM in the exhaust gas is collected by the cell partition wall 13 and the exhaust gas is purified.
  • the honeycomb structure manufactured by the method for manufacturing a honeycomb structure of the present invention preferably functions as a honeycomb filter that removes PM in exhaust gas. Moreover, the honeycomb structure manufactured by the method for manufacturing a honeycomb structure of the present invention may be used as a catalyst carrier by supporting various catalysts and the like without sealing.
  • Example 1 Titanium coarse powder with D50 of 13.6 ⁇ m (iron content 0.25%): 11.1 wt%, titania fine powder with D50 of 0.6 ⁇ m (iron content less than 0.01%): 11.1 wt% Alumina powder with D50 of 21.5 ⁇ m: 30.4% by weight Silica powder with D50 of 1.1 ⁇ m: 2.8% by weight, magnesia powder with D50 of 3.8 ⁇ m: 1.4% by weight, D50 of 31.
  • the prepared raw material composition was put into an extruder and subjected to extrusion to produce a honeycomb formed body having the shape shown in FIG. 1A and having no cells sealed.
  • the cells of the honeycomb formed body were alternately plugged using a sealing material having the same composition as the raw material composition. After drying and degreasing, a cylindrical honeycomb structure was produced by firing at 1450 ° C. for 15 hours in an air atmosphere and firing.
  • Example 2 A honeycomb structure was manufactured in the same manner as in Example 1 except that the titania coarse powder was changed to 15.5 wt% and the titania fine powder was changed to 6.7 wt%.
  • the titania coarse powder was 0% by weight, the titania fine powder was 19.6% by weight, the alumina powder was 26.8% by weight, the silica powder was 2.5% by weight, the magnesia powder was 1.3% by weight, and the pore former was 28%.
  • a honeycomb structure was obtained in the same manner as in Example 1 except that the content was changed to 1% by weight, the organic binder 6.3% by weight, the molding aid 4.2% by weight, and the dispersion medium 11.2% by weight.
  • Example 2 A honeycomb structure was produced in the same manner as in Example 1 except that the titania coarse powder was changed to 22.2 wt% and the titania fine powder was changed to 0 wt%.
  • Example 3 A honeycomb structure was fabricated in the same manner as in Example 1 except that a titania coarse powder having an iron content of less than 0.01% was used.
  • Firing shrinkage rate (%) [(full length before firing) ⁇ (full length after firing)] / (full length before firing)] ⁇ 100
  • the breaking load was measured for ten three-point bending strength measurement samples, and the average value was taken as the bending strength.
  • the three-point bending strength test was performed using an Instron 5582 with reference to JIS R 1601, a span distance of 30 mm, and a speed of 1 mm / min.
  • AT conversion rate [AT conversion rate] X-ray diffraction measurement was performed using a powder having a particle size of 0.5 mm or less produced by pulverizing a part of the obtained honeycomb structure, and the integrated intensity I AT (101) of the (101) plane of aluminum titanate from the integrated intensity I TiO2 of TiO 2 (110) plane (111) was determined AT conversion ratio from the following equation.
  • AT conversion rate (%) [I AT (101) / (I AT (101) + I TiO2 (111) )] ⁇ 100
  • thermomechanical analyzer NETZSCH DIL402C
  • the average thermal expansion coefficient between 50 and 1000 ° C. was measured by measuring the increase in length in the full length direction when heated from room temperature to 1000 ° C. at a temperature rising rate of 10 ° C./min while applying a constant load of 20 g. Asked.
  • the obtained honeycomb structure was cut out to 10 mm ⁇ 10 mm ⁇ 10 mm to prepare a sample for pore distribution measurement.
  • the pore distribution was measured with a porosimeter (manufactured by Shimadzu Corporation, Autopore III 9420) using a sample for pore distribution measurement.
  • the contact angle was 130 ° and the surface tension was 485 mN / m by mercury porosimetry.
  • the pore distribution was measured in the range of 1 to 100 ⁇ m, and the pore distribution curve was drawn with the pore diameter ( ⁇ m) on the X axis and the log differential pore volume (mL / g) on the Y axis.
  • d10, d50, and d90 were calculated from each pore distribution curve.
  • a value represented by the formula (d90-d10) / d50 was calculated and used as the pore sharpness. It can be said that the smaller the value, the sharper the shape of the pore distribution curve.
  • d10, d50, and d90 are pore diameters corresponding to cumulative 10%, cumulative 50%, and cumulative 90% from the small diameter side of the cumulative pore volume in the pore distribution curve.
  • Example 1 a baking shrinkage rate is small and bending strength is high. Further, the AT conversion rate is 100%, and the thermal expansion coefficient is low. Furthermore, it has a sharp pore distribution.
  • Comparative Example 1 where no titania coarse powder is used, the firing shrinkage rate is large.
  • Comparative Example 2 where no titania fine powder is used, the AT conversion rate is low, the bending strength is low, and the thermal expansion coefficient is high.
  • Comparative Example 3 in which the iron content of the titania coarse powder is small, the AT conversion rate is low, the thermal expansion coefficient is high, and the pore sharpness is large.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Organic Chemistry (AREA)
  • Ceramic Engineering (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Geology (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Manufacturing & Machinery (AREA)
  • Materials Engineering (AREA)
  • Structural Engineering (AREA)
  • Environmental & Geological Engineering (AREA)
  • General Life Sciences & Earth Sciences (AREA)
  • Inorganic Chemistry (AREA)
  • Filtering Materials (AREA)
  • Porous Artificial Stone Or Porous Ceramic Products (AREA)

Abstract

本発明のハニカム構造体の製造方法は、チタニア粉末及びアルミナ粉末を含む原料組成物を成形することにより、ハニカム成形体を得る工程と、上記ハニカム成形体を焼成する工程とを含む、チタン酸アルミニウムからなるハニカム構造体の製造方法であって、上記チタニア粉末は、チタニア粗粉末と、上記チタニア粗粉末よりも平均粒子径D50の小さいチタニア微粉末とを含み、上記チタニア粗粉末は、上記チタニア微粉末よりも多くの鉄分を含有することを特徴とする。

Description

ハニカム構造体の製造方法
本発明は、ハニカム構造体の製造方法に関する。
従来、ディーゼルエンジン等の内燃機関から排出される排ガス中には、パティキュレートマター(以下、PMともいう)が含まれており、近年、このPMが環境や人体に害を及ぼすことが問題となっている。
そこで、排ガス中のPMを捕集して排ガスを浄化するフィルタとして、コージェライト、炭化珪素、チタン酸アルミニウムなどを用いたハニカム構造体からなるハニカムフィルタが種々提案されている。
これらのなかで、チタン酸アルミニウムを用いたハニカム構造体は、コージェライトを用いたハニカム構造体よりも溶融温度が高いので、ハニカムフィルタとしてPMを燃焼させる際に溶損が発生しにくく、また、炭化珪素を用いたハニカム構造体よりも熱膨張率が低いので、大型のフィルタであってもPMの燃焼に際してかかる熱応力によって破壊されにくいことが知られている。
特許文献1には、TiO源粉末及びAl源粉末を混合してなる坏土を焼成することによりチタン酸アルミニウムからなるセラミックハニカム構造体を製造する方法において、0.2~4μmの範囲にある比較的小さな粒径の粒子と10~100μmの範囲にある比較的大きな粒径の粒子とを有するTiO源粉末を使用することが記載されている。特許文献1に記載の方法によれば、低熱膨張係数という優れた性能を維持しつつ、割れが少なく、かつ大きな平均細孔径を有するチタン酸アルミニウム質セラミックハニカム構造体が得られるとされている。
国際公開第2008/078747号
しかしながら、特許文献1に記載の方法では、チタニア等の粒子径を大きくすることで焼結性が悪化することがあり、その結果、得られるハニカム構造体の強度の低下や気孔分布の不均一化を引き起こすおそれがある。
本発明は、上記の問題を解決するためになされたものであり、熱膨張係数が低く、焼成収縮率が小さく、かつ、シャープな気孔分布を有するハニカム構造体を製造する方法を提供することを目的とする。
本発明のハニカム構造体の製造方法は、チタニア粉末及びアルミナ粉末を含む原料組成物を成形することにより、ハニカム成形体を得る工程と、上記ハニカム成形体を焼成する工程とを含む、チタン酸アルミニウムからなるハニカム構造体の製造方法であって、上記チタニア粉末は、チタニア粗粉末と、上記チタニア粗粉末よりも平均粒子径D50の小さいチタニア微粉末とを含み、上記チタニア粗粉末は、上記チタニア微粉末よりも多くの鉄分を含有することを特徴とする。
本発明のハニカム構造体の製造方法では、チタニア粉末として、平均粒子径の大きいチタニア粗粉末と平均粒子径の小さいチタニア微粉末を併用している。言い換えると、チタニア粒子として、平均粒子径の大きいチタニア粗粒子と平均粒子径の小さいチタニア微粒子を併用している。上述のとおり、チタニア粗粒子を用いることによって焼結性は低下する。しかし、焼結を進行させやすい鉄分をチタニア粗粉末に含有させることにより、全体が均一に焼結するため、アルミナ粒子とチタニア粗粒子との間隔が均一になり、その隙間に均一な気孔を形成することができる。
また、チタニア粗粒子が存在することにより、粒子径の大きいアルミナ粒子及びチタニア粗粒子が焼成時に位置を維持しやすくなるため、焼成時の収縮が小さくなる。
さらに、チタニア微粒子が存在することにより、チタン酸アルミニウムの合成反応や焼結が進行しやすくなるため、熱膨張係数及び強度の悪化を抑制することができる。
本発明のハニカム構造体の製造方法において、上記チタニア粗粉末の平均粒子径D50は、5~25μmであり、上記チタニア微粉末の平均粒子径D50は、0.1~1.5μmであることが好ましい。
この場合、熱膨張係数を低く、焼成収縮率を小さくし、かつ、焼成後のチタン酸アルミニウム多孔体の気孔分布をシャープにすることができる。
本発明のハニカム構造体の製造方法において、上記チタニア粗粉末の平均粒子径D50は、上記アルミナ粉末の平均粒子径D50と同等であるか、又は、上記アルミナ粉末の平均粒子径D50よりも小さいことが好ましい。
この場合、焼成時の収縮をさらに抑えることができる。
本発明のハニカム構造体の製造方法において、上記チタニア粗粉末の鉄分含有量は、0.1~0.3%であることが好ましい。また、上記チタニア微粉末の鉄分含有量は、0.1%未満であることが好ましい。
この場合、チタン酸アルミニウムの合成反応や焼結が進行しやすくなる。
図1(a)は、本発明の製造方法により製造されるハニカム構造体の一例を模式的に示す斜視図であり、図1(b)は、図1(a)に示すハニカム構造体のA-A線断面図である。
(発明の詳細な説明)
以下、本発明のハニカム構造体の製造方法について説明する。
本発明のハニカム構造体の製造方法は、原料組成物を成形することにより、ハニカム成形体を得る成形工程と、上記ハニカム成形体を焼成する焼成工程とを含む。
(成形工程)
成形工程では、原料組成物を成形することにより、ハニカム成形体を得る。
原料組成物は、チタニア粉末及びアルミナ粉末を含む。原料組成物は、シリカ粉末及びマグネシア粉末をさらに含むことが好ましい。また、原料組成物は、造孔材をさらに含むことが好ましい。
チタニア粉末は、チタニア粗粉末と、上記チタニア粗粉末よりも平均粒子径D50の小さいチタニア微粉末とを含む。
本明細書において、チタニア粉末の平均粒子径D50は、レーザー回折・散乱式粒度分布測定法による体積基準の累積粒径の小径側から累積50%に相当する粒子径である。アルミナ粉末などの平均粒子径D50も同様である。
チタニア粗粉末の平均粒子径D50は、チタニア微粉末の平均粒子径D50よりも大きい限り特に限定されないが、アルミナ粉末の平均粒子径D50と同等であるか、又は、アルミナ粉末の平均粒子径D50よりも小さいことが好ましい。
チタニア粗粉末の平均粒子径D50は、5μm以上であることが好ましく、10μm以上であることがより好ましい。また、チタニア粗粉末の平均粒子径D50は、25μm以下であることが好ましく、20μm以下であることがより好ましい。
チタニア微粉末の平均粒子径D50は、0.1μm以上であることが好ましく、0.4μm以上であることがより好ましい。また、チタニア微粉末の平均粒子径D50は、1.5μm以下であることが好ましく、1μm以下であることがより好ましい。
チタニア粗粉末は、チタニア微粉末よりも多くの鉄分を含有している。チタニア微粉末は、鉄分を含有していてもよいし、鉄分を含有していなくてもよい(すなわち、検出限界以下であってもよい)。
本明細書において、チタニア粉末の鉄分含有量は、ICP発光分光分析により測定される。
チタニア粗粉末の鉄分含有量は、0.1~0.3%であることが好ましい。また、チタニア微粉末の鉄分含有量は、0.1%未満であることが好ましく、0.01%未満であることがより好ましい。
チタニア粗粉末とチタニア微粉末の配合比は、重量比で、チタニア粗粉末:チタニア微粉末=40:60~80:20であることが好ましく、45:55~75:25であることがより好ましい。
チタニア粉末は、チタニア粗粉末とチタニア微粉末の合計で、原料組成物中に15~40重量%含まれていることが好ましい。
アルミナ粉末の平均粒子径D50は特に限定されないが、チタニア粗粉末の平均粒子径D50と同等であるか、又は、チタニア粗粉末の平均粒子径D50よりも大きいことが好ましい。
アルミナ粉末の平均粒子径D50は、10μm以上であることが好ましく、15μm以上であることがより好ましい。また、アルミナ粉末の平均粒子径D50は、40μm以下であることが好ましく、30μm以下であることがより好ましい。
アルミナ粉末は、原料組成物中に20~45重量%含まれていることが好ましい。
上記のとおり、原料組成物は、シリカ粉末及びマグネシア粉末をさらに含むことが好ましい。
シリカ由来のケイ素元素、及び、マグネシア由来のマグネシウム元素が、チタン酸アルミニウムに固溶することにより、チタン酸アルミニウムの熱分解を抑制することができ、高温での使用を可能にする。
原料組成物がシリカ粉末を含む場合、シリカ粉末の平均粒子径D50は、0.1μm以上であることが好ましい。また、シリカ粉末の平均粒子径D50は、10μm以下であることが好ましく、5μm以下であることがより好ましい。
原料組成物がシリカ粉末を含む場合、シリカ粉末は、原料組成物中に0.5~5重量%含まれていることが好ましい。
原料組成物がマグネシア粉末を含む場合、マグネシア粉末の平均粒子径D50は、1μm以上であることが好ましく、2μm以上であることがより好ましい。また、マグネシア粉末の平均粒子径D50は、10μm以下であることが好ましい。マグネシア粉末の平均粒子径D50は、シリカ粉末の平均粒子径D50よりも大きいことが好ましい。
原料組成物がマグネシア粉末を含む場合、マグネシア粉末は、原料組成物中に0.5~5重量%含まれていることが好ましい。
また、原料組成物は、造孔材をさらに含むことが好ましい。
造孔材としては、アクリル樹脂、グラファイト、デンプンが挙げられる。
原料組成物が造孔材を含む場合、造孔材の平均粒子径D50は、5μm以上であることが好ましく、10μm以上であることがより好ましい。また、造孔材の平均粒子径D50は、50μm以下であることが好ましく、40μm以下であることがより好ましい。
原料組成物が造孔材を含む場合、造孔材は、原料組成物中に5~40重量%含まれていることが好ましい。
原料組成物は、成形助剤、有機バインダー及び分散媒を含んでいてもよい。
成形助剤としては、エチレングリコール、デキストリン、脂肪酸、脂肪酸石鹸、ポリアルコールが挙げられる。有機バインダーとしては、カルボキシメチルセルロース、ポリビニルアルコール、メチルセルロース、エチルセルロース等の親水性有機高分子が挙げられる。分散媒としては、水のみからなる分散媒、又は、50体積%以上の水と有機溶剤とからなる分散媒が挙げられる。有機溶剤としては、ベンゼン、メタノール等のアルコールが挙げられる。
また、原料組成物は、その他の材料をさらに含んでいてもよい。その他の材料としては、例えば、可塑剤、分散剤、潤滑剤等が挙げられる。
可塑剤としては、例えば、ポリオキシエチレンアルキルエーテル、ポリオキシプロピレンアルキルエーテル等のポリオキシアルキレン系化合物が挙げられる。分散剤としては、例えば、ソルビタン脂肪酸エステルが挙げられる。潤滑剤としては、例えば、グリセリンが挙げられる。
成形工程では、原料組成物を成形してハニカム成形体を得る。
例えば、押出成形機に投入された原料組成物を種々の形状を有するスクリュー等を用いて密閉状態で混合及び混練を行いながら金型方向に押し出し、押出成形に適した混練状態とした後、金型を介して押出成形を行い、多数の貫通孔が壁部を隔てて長手方向に並設されたハニカム成形体の連続体を作製する。
また、成形工程では、ハニカム構造体の一部の形状に対応する成形体を成形してもよい。すなわち、ハニカム構造体の一部の形状に対応する成形体を成形し、それらの成形体を組み合わせることによってハニカム構造体と同一形状を有するハニカム成形体を作製してもよい。
その後、必要に応じて、貫通孔が露出した両端面において、多数の貫通孔のうち所定の貫通孔の目封じを行い、マイクロ波乾燥機、熱風乾燥機、誘電乾燥機、減圧乾燥器、真空乾燥機、凍結乾燥機等を用いて乾燥させ、続いてハニカム成形体中の有機分を分解消失させる脱脂処理を行う。
(焼成工程)
焼成工程では、成形工程により得られたハニカム成形体を焼成して焼成体とする。
焼成工程では、アルミナ粒子とチタニア粒子との反応が進行して、チタン酸アルミニウムの相が形成される。
焼成温度は、1300~1600℃とすることが好ましい。
焼成は、公知の単独炉、いわゆるバッチ炉や、連続炉を用いて行うことができる。焼成時間は特に限定されないが、上記の焼成温度において1~20時間保持することが好ましい。また、焼成工程は大気雰囲気下で行うことが好ましい。大気雰囲気に窒素ガスやアルゴンガス等の不活性ガスを混合することにより、酸素濃度を調整してもよい。
上記工程を経ることにより、チタン酸アルミニウムからなるハニカム構造体を製造することができる。
図1(a)は、本発明の製造方法により製造されるハニカム構造体の一例を模式的に示す斜視図であり、図1(b)は、図1(a)に示すハニカム構造体のA-A線断面図である。
図1(a)に示すハニカム構造体10は円柱形状であり、長手方向(図1(a)中、両矢印aで示す方向)に垂直な断面の形状が略四角形の排ガス導入セル11a及び排ガス排出セル11bが多数形成されている。排ガス導入セル11aと排ガス排出セル11bとは、セル隔壁13を隔てて形成されている。また、ハニカム構造体10の外周には外周壁16が形成されている。
図1(b)に示すように、排ガスが導入される側の端面14では、排ガス排出セル11bが封止部12bにより目封じされており、排ガス導入セル11aは開口している。一方、排ガスが排出される側の端面15では、排ガス導入セル11aが封止部12aにより目封じされており、排ガス排出セル11bは開口している。
排ガス導入セル11aの端面15は目封じされているため、端面14から排ガス導入セル11aに導入された排ガスGは、多孔質壁であるセル隔壁13を通過した後、排ガス排出セル11bを通って端面15から排出される。この間に排ガス中のPMがセル隔壁13で捕集され、排ガスが浄化される。
本発明のハニカム構造体の製造方法により製造されるハニカム構造体は、排ガス中のPMを除去するハニカムフィルタとして機能することが好ましい。また、本発明のハニカム構造体の製造方法により製造されるハニカム構造体は、目封じすることなく、種々の触媒等を担持することにより触媒担体として使用してもよい。
以下、本発明のハニカム構造体の製造方法をさらに具体化した実施例について説明する。
[ハニカム構造体の作製]
(実施例1)
D50が13.6μmのチタニア粗粉末(鉄分含有量0.25%):11.1重量%、D50が0.6μmのチタニア微粉末(鉄分含有量0.01%未満):11.1重量%、D50が21.5μmのアルミナ粉末:30.4重量%、D50が1.1μmのシリカ粉末:2.8重量%、D50が3.8μmのマグネシア粉末:1.4重量%、D50が31.9μmのアクリル樹脂(造孔材):18.5重量%、メチルセルロース(有機バインダー):7.1重量%、成形助剤(エステル型ノニオン):4.7重量%、イオン交換水(分散媒):12.9重量%からなる組成のものを混合機で混合し、原料組成物を作製した。
原料組成物の作製に使用したチタニア粗粉末とチタニア微粉末の配合比は、重量比で、チタニア粗粉末:チタニア微粉末=50:50である。
作製した原料組成物を押出成形機に投入して押出成形を行うことにより、図1(a)に示す形状を有し、セルが封止されていないハニカム成形体を作製した。
上記原料組成物と同じ組成の封止材を用いて、ハニカム成形体のセルを互い違いに目封止した。乾燥、脱脂の後、大気雰囲気下、1450℃で15時間保持して焼成することにより、円柱状のハニカム構造体を作製した。
(実施例2)
チタニア粗粉末を15.5重量%、チタニア微粉末を6.7重量%に変更したことを除いて、実施例1と同様にハニカム構造体を作製した。
原料組成物の作製に使用したチタニア粗粉末とチタニア微粉末の配合比は、重量比で、チタニア粗粉末:チタニア微粉末=70:30である。
(比較例1)
チタニア粗粉末を0重量%、チタニア微粉末を19.6重量%、アルミナ粉末を26.8重量%、シリカ粉末を2.5重量%、マグネシア粉末を1.3重量%、造孔材を28.1重量%、有機バインダーを6.3重量%、成形助剤を4.2重量%、分散媒を11.2重量%に変更したことを除いて、実施例1と同様にハニカム構造体を作製した。
原料組成物の作製に使用したチタニア粗粉末とチタニア微粉末の配合比は、重量比で、チタニア粗粉末:チタニア微粉末=0:100である。
(比較例2)
チタニア粗粉末を22.2重量%、チタニア微粉末を0重量%に変更したことを除いて、実施例1と同様にハニカム構造体を作製した。
原料組成物の作製に使用したチタニア粗粉末とチタニア微粉末の配合比は、重量比で、チタニア粗粉末:チタニア微粉末=100:0である。
(比較例3)
鉄分含有量が0.01%未満であるチタニア粗粉末を使用したことを除いて、実施例1と同様にハニカム構造体を作製した。
原料組成物の作製に使用したチタニア粗粉末とチタニア微粉末の配合比は、重量比で、チタニア粗粉末:チタニア微粉末=50:50である。
[焼成収縮率]
得られたハニカム構造体の焼成前後の全長を測定して、以下の式から焼成収縮率を算出した。
焼成収縮率(%)=[(焼成前の全長)-(焼成後の全長)]/(焼成前の全長)]×100
[機械的強度]
ハニカム構造体の機械的強度として、以下の方法により、曲げ強度を測定した。
まず、3点曲げ強度測定用サンプルとして、各実施例及び比較例と同じ配合で混合、混練した原料組成物を直方体に成形して、同条件で脱脂、焼成後に6mm×6mm×40mmに加工した部材を10本準備した。3点曲げ強度測定用サンプルの主面(サンプルの外周面のうち広い方の面)に対して垂直な方向に荷重を印加し、破壊荷重(サンプルが破壊した荷重)を測定した。10本の3点曲げ強度測定用サンプルについて破壊荷重を測定し、その平均値を曲げ強度とした。3点曲げ強度試験は、JIS R 1601を参考に、インストロン5582を用い、スパン間距離:30mm、スピード1mm/minで行った。
[AT化率]
得られたハニカム構造体の一部を粉砕して作製した粒径0.5mm以下の粉末を用いてX線回折測定を行い、チタン酸アルミニウムの(101)面の積分強度IAT(101)とTiOの(110)面の積分強度ITiO2(111)より、以下の式からAT化率を求めた。
AT化率(%)=[IAT(101)/(IAT(101)+ITiO2(111))]×100
[熱膨張係数]
得られたハニカム構造体から、断面形状4.8mm×4.8mm×全長20mmの寸法のサンプルを、全長の方向が流路方向にほぼ一致するように切り出し、熱機械分析装置(NETZSCH DIL402C)を用いて、一定荷重20gをかけながら、昇温速度10℃/minで室温から1000℃まで加熱したときの全長方向の長さの増加量を測定して、50~1000℃間の平均熱膨張係数を求めた。
[気孔分布]
得られたハニカム構造体を10mm×10mm×10mmに切り出して、気孔分布測定用サンプルを準備した。気孔分布測定用サンプルを用いて、水銀圧入法によるポロシメーター(島津製作所社製、オートポアIII 9420)により気孔分布を測定した。水銀圧入法にて接触角を130°、表面張力を485mN/mの条件とした。細孔直径1~100μmの範囲で細孔分布を測定してX軸に細孔直径(μm)を、Y軸にlog微分細孔容積(mL/g)をとって気孔分布曲線を描いた。
各気孔分布曲線から、d10、d50、d90の値を算出した。
また、気孔分布曲線の形状がシャープであるかの指標として、(d90-d10)/d50の式で示される値を算出し、気孔シャープ度とした。この値が小さいほど気孔分布曲線の形状はシャープであるといえる。
d10、d50、d90は、気孔分布曲線における累積細孔容積の小径側から累積10%、累積50%、累積90%に相当する細孔径である。
各測定結果をまとめて表1に示す。
Figure JPOXMLDOC01-appb-T000001
表1より、実施例1及び実施例2では、焼成収縮率が小さく、曲げ強度が高い。また、AT化率が100%であり、熱膨張係数が低い。さらに、シャープな気孔分布を有している。
これに対し、チタニア粗粉末を使用しない比較例1では、焼成収縮率が大きい。チタニア微粉末を使用しない比較例2では、AT化率が低く、曲げ強度が低く、熱膨張係数が高い。チタニア粗粉末の鉄分含有量が少ない比較例3では、AT化率が低く、熱膨張係数が高く、気孔シャープ度が大きい。
以上の結果から、チタニア粗粉末とチタニア微粉末を併用し、かつ、チタニア粗粉末に鉄分を含有させることにより、熱膨張係数が低く、焼成収縮率が小さく、かつ、シャープな気孔分布を有するハニカム構造体が得られると考えられる。
10 ハニカム構造体
11a 排ガス導入セル
11b 排ガス排出セル
12a,12b 封止部
13 セル隔壁
14 排ガスが導入される側の端面
15 排ガスが排出される側の端面
16 外周壁
G 排ガス

Claims (5)

  1. チタニア粉末及びアルミナ粉末を含む原料組成物を成形することにより、ハニカム成形体を得る工程と、
    前記ハニカム成形体を焼成する工程とを含む、チタン酸アルミニウムからなるハニカム構造体の製造方法であって、
    前記チタニア粉末は、チタニア粗粉末と、前記チタニア粗粉末よりも平均粒子径D50の小さいチタニア微粉末とを含み、
    前記チタニア粗粉末は、前記チタニア微粉末よりも多くの鉄分を含有することを特徴とするハニカム構造体の製造方法。
  2. 前記チタニア粗粉末の平均粒子径D50は、5~25μmであり、
    前記チタニア微粉末の平均粒子径D50は、0.1~1.5μmである請求項1に記載のハニカム構造体の製造方法。
  3. 前記チタニア粗粉末の平均粒子径D50は、前記アルミナ粉末の平均粒子径D50と同等であるか、又は、前記アルミナ粉末の平均粒子径D50よりも小さい請求項1又は2に記載のハニカム構造体の製造方法。
  4. 前記チタニア粗粉末の鉄分含有量は、0.1~0.3%である請求項1~3のいずれか1項に記載のハニカム構造体の製造方法。
  5. 前記チタニア微粉末の鉄分含有量は、0.1%未満である請求項4に記載のハニカム構造体の製造方法。
PCT/JP2019/004437 2018-02-26 2019-02-07 ハニカム構造体の製造方法 WO2019163532A1 (ja)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2018-032272 2018-02-26
JP2018032272A JP2019147700A (ja) 2018-02-26 2018-02-26 ハニカム構造体の製造方法

Publications (1)

Publication Number Publication Date
WO2019163532A1 true WO2019163532A1 (ja) 2019-08-29

Family

ID=67687229

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2019/004437 WO2019163532A1 (ja) 2018-02-26 2019-02-07 ハニカム構造体の製造方法

Country Status (2)

Country Link
JP (1) JP2019147700A (ja)
WO (1) WO2019163532A1 (ja)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN115335328A (zh) * 2020-03-31 2022-11-11 住友化学株式会社 粒子、粉体组合物、固体组合物、液体组合物及成形体

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH07277819A (ja) * 1994-04-14 1995-10-24 Shinagawa Refract Co Ltd チタン酸アルミニウムクリンカ−及び該クリンカ−を用いた耐火物
WO2008078747A1 (ja) * 2006-12-27 2008-07-03 Hitachi Metals, Ltd. チタン酸アルミニウム質セラミックハニカム構造体の製造方法
WO2009119748A1 (ja) * 2008-03-26 2009-10-01 京セラ株式会社 多孔質セラミック部材およびその製法ならびにフィルタ

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH07277819A (ja) * 1994-04-14 1995-10-24 Shinagawa Refract Co Ltd チタン酸アルミニウムクリンカ−及び該クリンカ−を用いた耐火物
WO2008078747A1 (ja) * 2006-12-27 2008-07-03 Hitachi Metals, Ltd. チタン酸アルミニウム質セラミックハニカム構造体の製造方法
WO2009119748A1 (ja) * 2008-03-26 2009-10-01 京セラ株式会社 多孔質セラミック部材およびその製法ならびにフィルタ

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
GOTO, KIYOSHI: "Improvement in the Properties of Aluminum Titanate Ceramics", AICHI INDUSTRIAL TECHNOLOGY INSTITUTE (AITEC, vol. 3, November 2004 (2004-11-01), pages 94 - 95 *

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN115335328A (zh) * 2020-03-31 2022-11-11 住友化学株式会社 粒子、粉体组合物、固体组合物、液体组合物及成形体
CN115335328B (zh) * 2020-03-31 2023-11-17 住友化学株式会社 粒子、粉体组合物、固体组合物、液体组合物及成形体

Also Published As

Publication number Publication date
JP2019147700A (ja) 2019-09-05

Similar Documents

Publication Publication Date Title
JP5054460B2 (ja) ハニカム構造体の製造方法、及び、ハニカム焼成体用原料組成物
JP5178715B2 (ja) コージェライトチタン酸アルミニウムマグネシウム組成物及びこの組成物を含むセラミック製品
JP4495152B2 (ja) ハニカム構造体及びその製造方法
WO2009122535A1 (ja) ハニカム構造体の製造方法
JP5584417B2 (ja) セラミックス坏土、及び、その利用
JP4774445B2 (ja) アルミニウムチタネートセラミックスの製造方法
WO2010079806A1 (ja) 多孔質セラミックス成形体及びその製造方法
EP3468940B1 (en) Aluminum titanate compositions and methods of making aluminum titanate articles
JPWO2014163036A1 (ja) セラミックハニカム構造体及びその製造方法
JP2000226253A (ja) コージェライト質セラミックハニカム構造体の製造方法
JP5199618B2 (ja) ハニカム構造体の製造方法
US6838026B2 (en) Method for producing a silicon nitride filter
WO2019163532A1 (ja) ハニカム構造体の製造方法
JP5785471B2 (ja) 封口材及びセラミックスハニカム焼成体の製造方法
WO2019163533A1 (ja) ハニカム構造体の製造方法
JPWO2005068396A1 (ja) ハニカム構造体及びその製造方法
JP6756530B2 (ja) ハニカム構造体及びハニカム構造体の製造方法
JP2018154529A (ja) ハニカム構造体の製造方法
WO2009122536A1 (ja) ハニカム構造体の製造方法
WO2009122537A1 (ja) ハニカム構造体の製造方法
JP2018052759A (ja) ハニカム構造体の製造方法
JP4511103B2 (ja) 複合材料の製造方法
JP2010235333A (ja) チタン酸アルミニウム系セラミックス焼結体の製造方法およびチタン酸アルミニウム系セラミックス焼結体
JP2018162180A (ja) ハニカム構造体の製造方法
JP2008303133A (ja) 炭化ケイ素焼成用原料の製造方法、及び、ハニカム構造体の製造方法

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 19757037

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 19757037

Country of ref document: EP

Kind code of ref document: A1