WO2019154159A1 - 一种金属铱配合物和包含该金属铱配合物的有机电致发光器件 - Google Patents

一种金属铱配合物和包含该金属铱配合物的有机电致发光器件 Download PDF

Info

Publication number
WO2019154159A1
WO2019154159A1 PCT/CN2019/073489 CN2019073489W WO2019154159A1 WO 2019154159 A1 WO2019154159 A1 WO 2019154159A1 CN 2019073489 W CN2019073489 W CN 2019073489W WO 2019154159 A1 WO2019154159 A1 WO 2019154159A1
Authority
WO
WIPO (PCT)
Prior art keywords
compound
layer
substituted
organic electroluminescent
group
Prior art date
Application number
PCT/CN2019/073489
Other languages
English (en)
French (fr)
Inventor
曹建华
隋岩
董梁
张建川
王士波
唐永顺
华瑞茂
Original Assignee
石家庄诚志永华显示材料有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 石家庄诚志永华显示材料有限公司 filed Critical 石家庄诚志永华显示材料有限公司
Publication of WO2019154159A1 publication Critical patent/WO2019154159A1/zh

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07FACYCLIC, CARBOCYCLIC OR HETEROCYCLIC COMPOUNDS CONTAINING ELEMENTS OTHER THAN CARBON, HYDROGEN, HALOGEN, OXYGEN, NITROGEN, SULFUR, SELENIUM OR TELLURIUM
    • C07F15/00Compounds containing elements of Groups 8, 9, 10 or 18 of the Periodic Table
    • C07F15/0006Compounds containing elements of Groups 8, 9, 10 or 18 of the Periodic Table compounds of the platinum group
    • C07F15/0033Iridium compounds
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09KMATERIALS FOR MISCELLANEOUS APPLICATIONS, NOT PROVIDED FOR ELSEWHERE
    • C09K11/00Luminescent, e.g. electroluminescent, chemiluminescent materials
    • C09K11/06Luminescent, e.g. electroluminescent, chemiluminescent materials containing organic luminescent materials
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K85/00Organic materials used in the body or electrodes of devices covered by this subclass
    • H10K85/30Coordination compounds
    • H10K85/341Transition metal complexes, e.g. Ru(II)polypyridine complexes
    • H10K85/342Transition metal complexes, e.g. Ru(II)polypyridine complexes comprising iridium
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09KMATERIALS FOR MISCELLANEOUS APPLICATIONS, NOT PROVIDED FOR ELSEWHERE
    • C09K2211/00Chemical nature of organic luminescent or tenebrescent compounds
    • C09K2211/10Non-macromolecular compounds
    • C09K2211/1018Heterocyclic compounds
    • C09K2211/1025Heterocyclic compounds characterised by ligands
    • C09K2211/1029Heterocyclic compounds characterised by ligands containing one nitrogen atom as the heteroatom
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09KMATERIALS FOR MISCELLANEOUS APPLICATIONS, NOT PROVIDED FOR ELSEWHERE
    • C09K2211/00Chemical nature of organic luminescent or tenebrescent compounds
    • C09K2211/10Non-macromolecular compounds
    • C09K2211/1018Heterocyclic compounds
    • C09K2211/1025Heterocyclic compounds characterised by ligands
    • C09K2211/1044Heterocyclic compounds characterised by ligands containing two nitrogen atoms as heteroatoms
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09KMATERIALS FOR MISCELLANEOUS APPLICATIONS, NOT PROVIDED FOR ELSEWHERE
    • C09K2211/00Chemical nature of organic luminescent or tenebrescent compounds
    • C09K2211/10Non-macromolecular compounds
    • C09K2211/1018Heterocyclic compounds
    • C09K2211/1025Heterocyclic compounds characterised by ligands
    • C09K2211/1088Heterocyclic compounds characterised by ligands containing oxygen as the only heteroatom
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09KMATERIALS FOR MISCELLANEOUS APPLICATIONS, NOT PROVIDED FOR ELSEWHERE
    • C09K2211/00Chemical nature of organic luminescent or tenebrescent compounds
    • C09K2211/18Metal complexes
    • C09K2211/185Metal complexes of the platinum group, i.e. Os, Ir, Pt, Ru, Rh or Pd
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K2101/00Properties of the organic materials covered by group H10K85/00
    • H10K2101/10Triplet emission
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K50/00Organic light-emitting devices
    • H10K50/10OLEDs or polymer light-emitting diodes [PLED]
    • H10K50/11OLEDs or polymer light-emitting diodes [PLED] characterised by the electroluminescent [EL] layers

Definitions

  • the invention relates to the field of organic electroluminescent diode technology. More specifically, it relates to a metal ruthenium complex and an organic electroluminescent device comprising the metal ruthenium complex.
  • OLED Organic electroluminescence
  • Kodak Company of the United States made an amorphous film type device by vaporizing organic small molecules, and the driving voltage was reduced to 20V.
  • These devices are ultra-thin, fully cured, self-illuminating, high brightness, wide viewing angle, fast response, low driving voltage, low power consumption, bright colors, high contrast, simple process, good temperature characteristics, and soft display. And so on, can be widely used in flat panel displays and surface light sources, so it has been widely researched, developed and used.
  • Organic electroluminescent materials are divided into two categories: organic electroluminescent materials and organic electroluminescent materials, in which organic electroluminescence is the result of singlet exciton radiation inactivation, unlike photoluminescence, in organic electroluminescence During the luminescence process, triplet excitons and singlet excitons are generated simultaneously. Generally, the ratio of singlet excitons and triplet excitons is 1:3. According to the forbidden effect of quantum statistics, triplet excitons mainly have non-radiative decay, which contributes little to luminescence, and only singlet excited. The sub-radiation emits light, and therefore, the fundamental reason why the luminous efficiency is difficult to increase for the organic/polymer electroluminescent device is that the light-emitting process is the emission of singlet excitons.
  • phosphorescent materials have strong triplet annihilation in solids
  • the ruthenium complex is used as the doping guest material, and the material with a wider band gap is used as the doping host material, and the high luminescence efficiency is obtained by energy transfer or directly immersing the excitons on the guest.
  • Organic electroluminescent green phosphorescent materials are the earliest research and the most mature class of materials.
  • Hino et al. fabricated a phosphorescent device by spin coating.
  • the external quantum efficiency was up to 29 cd/A.
  • the high efficiency achieved by this simple device structure can be attributed to the good film formation of the material and the energy transfer from the host to the guest material.
  • Adachi et al. (ppy)2Ir(acac) was doped into TAZ, and HMTPD was used as a hole transport layer, and a green optical device with a maximum external quantum efficiency of 20% and an energy efficiency of 65 lm/W was obtained.
  • the quantum efficiency is almost 100%, and triplet excitons and singlet excitons are simultaneously utilized.
  • the present invention provides a metal ruthenium complex having a green to red luminescence and a high luminescence efficiency, and an organic electroluminescence device comprising the metal ruthenium complex.
  • the invention specifically provides a metal ruthenium complex of the formula I:
  • R 1 and R 2 each independently represent a C1-C10 alkyl group, a C4-C10 cycloalkyl group, a fluorene-substituted C1-C10 alkyl group, a fluorene-substituted C4-C10 cycloalkyl group, and a C1-C8 alkyl group.
  • R 3 , R 4 and R 5 each independently represent hydrogen, deuterium hydrogen, fluorine, C1-C8 alkyl, deuterium-substituted C1-C8 alkyl, C1-C8 alkoxy, deuterium-substituted C1-C8. Alkoxy, C1-C8 silane, substituted or unsubstituted C 6 -C 20 aryl, substituted or unsubstituted C 6 -C 20 aryloxy, substituted or unsubstituted C 6 - C 20 arylthio, fluorine or cyano;
  • the substituents described in the substituted C 6 -C 20 aryl group, the substituted C 6 -C 20 aryloxy group and the substituted C 6 -C 20 arylthio group are each independently selected from the group consisting of hydrogen, hydrogen, and halogen. Atom, hydroxy, cyano, C 1 -C 20 alkyl, C 2 -C 20 alkenyl, C 2 -C 20 alkynyl, C 1 -C 20 alkoxy, C 3 -C 20 cycloalkane or C one or more 3 -C 20 cycloalkenyl of;
  • A represents C or N
  • X represents O, S or Se
  • n each independently represents 1, 2 or 3.
  • the structural formula of the compound of formula I is specifically as shown in II and III, but is not limited to the structures listed below:
  • R 1 , R 2 , R 3 , R 4 , R 5 , X and n are the same as R 1 , R 2 , R 3 , R 4 , R 5 , X and n in the formula I, respectively.
  • the structural formula of the compound of the formula II is specifically as shown in the following formulas II-01 to II-54, but is not limited to the structures listed below:
  • the structural formula of the compound of the formula III is specifically as shown in the following formulas III-01 to III-51, but is not limited to the structures listed below:
  • the present invention also provides an organic electroluminescent device comprising a substrate, an anode layer disposed on the substrate, a hole transport layer disposed on the anode layer, and an organic layer disposed on the hole transport layer An illuminating layer, an electron transporting layer disposed on the organic luminescent layer, and a cathode layer disposed on the electron transporting layer; wherein the material of the organic luminescent layer comprises one or more of the above metal complexes.
  • a hole injection layer is further provided between the anode layer and the hole transport layer in the organic electroluminescent device.
  • the substrate may be a glass or a flexible substrate, and the flexible substrate is made of one of a polyester type and a polyimide type compound;
  • the anode layer may be made of an inorganic material or an organic conductive polymer
  • the inorganic material is a metal oxide such as indium tin oxide (ITO), zinc oxide or zinc tin oxide or a metal having a higher functional function such as gold, silver or copper.
  • ITO indium tin oxide
  • the organic conductive polymer is preferably a material of polythiophene/sodium polyvinylbenzenesulfonate (PEDOT:PSS) or polyaniline;
  • the cathode layer generally adopts a metal having a lower functional function such as lithium, magnesium, silver, calcium, strontium, aluminum, or indium, or an alloy thereof with an alloy of copper, gold, or silver, or an alternating electrode of a metal and a metal fluoride.
  • the invention is preferably a magnesium/silver alloy layer;
  • both the hole transport layer and the hole injection layer may be a triarylamine-based material, preferably NPB or DNTPD, and the structural formula is as follows:
  • the electron transport layer is generally a metal organic complex, preferably Alq3, Liq, BPhen, etc., and the structural formula is as follows:
  • the organic light-emitting layer can generally be a small molecular material, which can be doped with a fluorescent material or a phosphorescent dye.
  • the material of the organic light-emitting layer of the present invention includes the metal complex proposed by the present invention, and the metal complex can be used as a phosphorous doping.
  • the material, which emits light in the corresponding host material, preferably the host material is selected from one or more of the following compounds:
  • the method for preparing the organic electroluminescent device comprises the following steps:
  • a metal cathode is further prepared by evaporation or sputtering or spin coating.
  • the hole injection layer has a thickness of 30 to 50 nm, and further preferably the hole injection layer has a thickness of 40 nm.
  • the hole transport layer has a thickness of 5 to 15 nm, and it is further preferred that the hole transport layer has a thickness of 10 nm.
  • the organic light-emitting layer has a thickness of 10 to 100 nm, and further preferably the organic light-emitting layer has a thickness of 50 nm.
  • the electron transport layer has a thickness of 10 to 30 nm, and further preferably the electron transport layer has a thickness of 20 nm.
  • the thickness of the cathode layer is from 90 to 110 nm, and further preferably the thickness of the cathode layer is 100 nm.
  • the present invention also provides an organic electroluminescent material, the raw material of the organic electroluminescent material comprising one or more of the above metal complexes.
  • the present invention also provides the use of the above metal complex in the preparation of an organic electroluminescent device.
  • the invention also provides the use of the above metal complex in the preparation of an organic electroluminescent material.
  • the metal complex of the present invention as a luminescent material alone or as a host material or a dopant material in the luminescent layer is also within the scope of protection.
  • any range recited in the present invention includes any value between the end value and the end value, and any value between the end value or the end value. Any subrange of.
  • the metal ruthenium complex proposed by the invention is a series of pyridine metal complex electrophosphorescent luminescent materials having a benzoheterocyclic structure, which is a modified benzofuran or benzothiophene as a raw material, and a substituted 2-pyridine
  • FIG. 1 is a schematic structural view of an OLED device according to Embodiment 10 of the present invention.
  • FIG. 1 is a schematic structural view of an OLED device according to Embodiment 10 of the present invention. Among them, a 1-substrate, a 2-anode layer, a 3-hole injection layer, a 4-hole transport layer, a 5 organic light-emitting layer, a 6-electron transport layer, and a 7-cathode layer.
  • the preparation methods are all conventional methods unless otherwise specified.
  • the raw materials used can be obtained from publicly available commercial routes unless otherwise specified, and the percentages are percentages by mass unless otherwise specified.
  • the invention provides a series of novel metal complexes, all of which are carried out under well-known suitable conditions, and some involve simple organic preparation.
  • the preparation of phenylboronic acid derivatives can be synthesized by skilled operation skills. It is not described in detail in the invention.
  • the preparation method of the above compound II-05 comprises the following steps:
  • the third step preparation of the compound 7-bromo-2-aminobenzofuran
  • the intermediate Int.-4 is prepared by referring to the preparation methods of the first to sixth steps in the first embodiment.
  • the preparation method of the other compounds includes the following steps:
  • the intermediate Int.-6 is prepared by referring to the preparation methods of the first to sixth steps in the first embodiment.
  • the preparation method of the other compounds includes the following steps:
  • the preparation method of the above compound II-51 includes the following steps:
  • the third step preparation of compound Int.-10
  • the intermediate Int.-10 is prepared by referring to the preparation methods of the first to third steps in Example 4.
  • the preparation method of the other compounds includes the following steps:
  • the preparation method of the above compound III-01 comprises the following steps:
  • the preparation method of the above compound III-12 comprises the following steps:
  • the third step preparation of compound Int.-20
  • the intermediate Int.-22 is prepared by referring to the preparation methods of the first to third steps in Example 6.
  • the preparation method of the other compounds includes the following steps:
  • An OLED device as shown in FIG. 1, includes a substrate 1, an anode layer 2 disposed on the substrate 1, a hole injection layer 3 disposed on the anode layer 2, and a hole transport layer provided on the hole injection layer 3.
  • the layer 4 the organic light-emitting layer 5 provided on the hole transport layer 4, the electron transport layer 6 provided on the organic light-emitting layer 5, and the cathode layer 7 provided on the electron transport layer 6.
  • the method for preparing the above OLED device comprises the following steps:
  • the glass substrate coated with the ITO conductive layer was sonicated in a cleaning agent for 30 minutes, rinsed in deionized water, sonicated in an acetone/ethanol mixed solvent for 30 minutes, and baked in a clean environment until completely dried. Irradiation with an ultraviolet cleaner for 10 minutes and bombardment of the surface with a low energy cation beam.
  • the magnesium/silver is sequentially evaporated on the electron transport layer.
  • the alloy layer serves as a cathode layer of the device, wherein the magnesium/silver alloy layer has an evaporation rate of 2.0 to 3.0 nm/s and an evaporation film thickness of 100 nm;
  • the metal ruthenium complex of the invention has green light, good color purity, and the chromaticity coordinates are in the green light region, and its performance exceeds the known green light material, and the test device is not Under the conditions of the package, the luminescence lifetime of the device is also ideal.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Organic Chemistry (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Inorganic Chemistry (AREA)
  • Physics & Mathematics (AREA)
  • Optics & Photonics (AREA)
  • Electroluminescent Light Sources (AREA)

Abstract

一种金属铱配合物和包含该金属铱配合物的有机电致发光器件,金属铱配合物的结构通式如式I所示。金属铱配合物的电致发光为绿色至红色,发光效率高,同时材料的热稳定性好,而且材料易制备、易提纯。

Description

一种金属铱配合物和包含该金属铱配合物的有机电致发光器件 技术领域
本发明涉及有机电致发光二极管技术领域。更具体地,涉及一种金属铱配合物和包含该金属铱配合物的有机电致发光器件。
背景技术
有机电致发光(简称OLED)及相关的研究早在1963年pope等人首先发现了有机化合物单晶蒽的电致发光现象。1987年美国的柯达公司用蒸镀有机小分子的方法制成了一种非晶膜型器件,将驱动电压降到了20V以内。这类器件由于具有超轻薄、全固化、自发光、亮度高、视角宽、响应速度快,驱动电压低、功耗小、色彩鲜艳、对比度高、工艺过程简单、温度特性好、可实现柔软显示等优点,可广泛应用于平板显示器和面光源,因此得到了广泛地研究、开发和使用。
有机电致发光材料分为两大类:有机电致荧光材料和有机电致磷光材料,其中有机电致荧光是单重态激子辐射失活的结果,与光致发光不同,在有机电致发光过程中,三线态激子和单线态激子是同时生成的。通常单线态激子和三线态激子的生成比例是1:3,而根据量子统计的禁计的禁阻效应,三线态激子主要发生非辐射衰减,对发光贡献极小,只有单线态激子辐射发光,因此,对有机/聚合物电荧光器件来说,发光效率难以提高的根本原因在于发光过程为单线态激子的发光。
在有机发光器件研究的早期,人们即提出了三线态发光的设想,Forrest小组用八乙基卟啉铂掺杂在小分子主体材料八羟基喹啉铝中制成了红色电致磷光发光器件,外量子效率达到4%,至此,电致磷光的研究开始得到学术界极大的关注,并在随后的几年里有机电致磷光研究得到了迅速发展。其中铱配合物因其三线态寿命较短,具有较好的发光性能,是开发得最多也是应用前景最好的一种磷光材料,由于磷光材料在固体中有较强的三线态猝灭,一般都是用铱配合物作为掺杂客体材料,用较宽带隙的材料作掺杂主体材料,通过能量转移或直接将激子陷在客体上发光获得高发光效率。
有机电致绿色磷光材料是研究的最早,也是发展最成熟的一类材料。2004 年Hino等用旋涂的方式制作了磷光器件,外量子效率最大为29cd/A,这种简单器件结构实现的高效率可归因于材料良好的成膜性和主体到客体材料的能量转移。Adachi等将(ppy)2Ir(acac)掺杂到TAZ中,以HMTPD作为空穴传输层,获得了最大外量子效率为20%,能量效率为65lm/W的绿光器件,经计算,其内量子效率几乎接近100%,三线态激子和单线态激子同时得到利用。
从发光颜色来看,相较于其他颜色的磷光材料,蓝光电致磷光材料的发展不仅起步最晚,也最不理想,至今仍是一个极富挑战性的课题。机理研究表明,随着三线态能级升高,不仅辐射跃迁的速率变大,还伴随着非辐射跃迁速率的增大,而且往往后者的增大幅度更明显,总的作用效果反而使发光效率下降,这就导致蓝光材料研究中发光波长的蓝移和高效率很难同时实现,时常顾此薄彼。因此至今尚未有综合性能优越的蓝色磷光材料被报道。
发明内容
为了解决以上技术问题,本发明提供了一种发光为绿色至红色且发光效率高的金属铱配合物及包含该金属铱配合物的有机电致发光器件。
本发明具体提供了一种式I所示的金属铱配合物:
Figure PCTCN2019073489-appb-000001
其中:
R 1和R 2各自独立地表示C1-C10的烷基、C4-C10的环烷基、氘取代的C1-C10的烷基、氘取代的C4-C10的环烷基、C1-C8的烷氧基、氘取代的C1-C8的烷氧基、C1-C8的烷硫基、氘取代的C1-C8的烷硫基、氟或氰基;
R 3、R 4、R 5各自独立地表示氢、氘氢、氟、C1-C8的烷基、氘取代的C1-C8的烷基、C1-C8的烷氧基、氘取代的C1-C8的烷氧基、C1-C8的硅烷基、取代的或未取代的C 6-C 20芳基、取代的或未取代的C 6-C 20芳氧基、取代的或未取代 的C 6-C 20芳硫基、氟或氰基;
所述取代的C 6-C 20芳基、取代的C 6-C 20芳氧基和取代的C 6-C 20芳硫基中所述的取代基各自独立地选自氢、氘氢、卤原子、羟基、氰基、C 1-C 20烷基、C 2-C 20烯基、C 2-C 20炔基、C 1-C 20烷氧基、C 3-C 20环烷烃基或C 3-C 20环烯烃基中的一种或多种;
A表示C或N;
X表示O、S或Se;
n各自独立地表示1、2或3。
优选地,所述结构式为式I的化合物的结构式具体如II和III所示,但不仅限于以下所列结构:
Figure PCTCN2019073489-appb-000002
其中,
R 1、R 2、R 3、R 4、R 5、X和n分别与式I中R 1、R 2、R 3、R 4、R 5、X和n相同。
进一步优选地,所述结构式为式II的化合物的结构式具体如下式II-01~II-54所示结构,但不仅限于以下所列结构:
Figure PCTCN2019073489-appb-000003
Figure PCTCN2019073489-appb-000004
Figure PCTCN2019073489-appb-000005
进一步优选地,所述结构式为式III的化合物的结构式具体如下式 III-01~III-51所示结构,但不仅限于以下所列结构:
Figure PCTCN2019073489-appb-000006
Figure PCTCN2019073489-appb-000007
Figure PCTCN2019073489-appb-000008
本发明还提供一种有机电致发光器件,所述有机电致发光器件包括基板、设于基板上的阳极层、设于阳极层上的空穴传输层、设于空穴传输层上的有机发光层、设于有机发光层上的电子传输层、设于电子传输层上的阴极层;其中,所述有机发光层的材料包括上述金属配合物中的一种或多种。
优选地,所述有机电致发光器件中阳极层和空穴传输层之间还设有空穴注入层。
其中,基板可以是玻璃或柔性基片,柔性基片采用聚酯类、聚酰亚胺类化 合物中的一种材料;
优选地,阳极层可以用无机材料或有机导电聚合物,无机材料为氧化铟锡(简称ITO)、氧化锌、氧化锡锌等金属氧化物或金、银、铜等功能函数较高的金属,最优化的选择为ITO,有机导电聚合物优选为聚噻吩/聚乙烯基苯磺酸钠(PEDOT:PSS)、聚苯胺中的一种材料;
优选地,阴极层一般采用锂、镁、银、钙、锶、铝、铟等功能函数较低的金属或它们与铜、金、银的合金,或金属与金属氟化物交替形成的电极层,本发明优选为镁/银合金层;
优选地,空穴传输层和空穴注入层均可采用三芳胺类材料,优选为NPB或DNTPD,结构式如下所示:
Figure PCTCN2019073489-appb-000009
优选地,电子传输层一般为金属有机配合物,优选Alq3、Liq、BPhen等,结构式如下所示:
Figure PCTCN2019073489-appb-000010
优选地,有机发光层一般可采用小分子材料,可以掺杂荧光材料或磷光染料,本发明的有机发光层的材料中包括了本发明提出的金属配合物,该金属配合物可以作为磷光掺杂材料,在相应的主体材料中发光,优选的主体材料选自如下化合物中的一种或多种:
Figure PCTCN2019073489-appb-000011
优选地,所述有机电致发光器件的制备方法包括如下步骤:
1)使用清洗剂、去离子水和有机溶剂分几步清洗带有ITO的玻璃基片;
2)通过真空蒸发的方法蒸镀包含本发明材料的空穴注入层;
3)通过真空蒸发的方法蒸镀器件的空穴传输层;
4)再继续蒸镀包含本发明材料的发光层;
5)继续蒸镀包含本发明材料的电子传输层;
6)再通过蒸镀或溅射或旋涂的方法制备金属阴极。
优选地,所述空穴注入层的厚度为30-50nm,进一步优选空穴注入层厚度为40nm,
优选地,所述空穴传输层的厚度为5-15nm,进一步优选空穴传输层厚度为10nm。
优选地,所述有机发光层的厚度为10-100nm,进一步优选有机发光层厚度为50nm。
优选地,所述电子传输层的厚度为10-30nm,进一步优选电子传输层厚度为20nm。
优选地,所述阴极层的厚度为90-110nm,进一步优选阴极层厚度为100nm。
本发明还提供一种有机电致发光材料,所述有机电致发光材料的原料包括上述金属配合物中的一种或多种。
本发明还提供上述金属配合物在制备有机电致发光器件中的应用。
本发明还提供上述金属配合物在制备有机电致发光材料中的应用。
本发明的金属配合物单独作为发光材料或者作为发光层中的主体材料或掺杂材料的应用也在保护范围内。
如无特殊说明,本发明中所用原料均可通过市售商购获得,本发明所记载的任何范围包括端值以及端值之间的任何数值以及端值或者端值之间的任意数值所构成的任意子范围。
本发明的有益效果如下:
本发明提出的金属铱配合物为一系列具有苯并杂环结构的吡啶金属配合物电致磷光发光材料,是以经过修饰的苯并呋喃或苯并噻吩为原料,经过与取代的2-吡啶基的修饰制备得到的一系列磷光材料;本发明涉及的金属配合物电致发光为绿色至红色,发光效率高,同时材料的热稳定性好,而且材料易制备、易升华提纯,具有非常广阔的市场前景。
附图说明
图1为本发明实施例10中的OLED器件结构示意图。
具体实施方式
为了更清楚地说明本发明,下面结合优选实施例和附图对本发明做进一步的说明。本领域技术人员应当理解,下面所具体描述的内容是说明性的而非限制性的,不应以此限制本发明的保护范围。
下面结合附图对本发明的具体实施方式作进一步详细的说明。
图1为本发明实施例10中的OLED器件结构示意图。其中,1-基板、2-阳极层、3-空穴注入层、4-空穴传输层、5有机发光层、6-电子传输层、7-阴极层。
本发明中,制备方法如无特殊说明则均为常规方法。所用的原料如无特别说明均可从公开的商业途径获得,所述百分比如无特殊说明均为质量百分比。本发明提供的一系列新型金属配合物,所有的反应都是在众所周知的适合条件下进行,有些涉及到简单的有机制备,例如苯硼酸衍生物的制备均能通过熟练的操作技能合成,在本发明中没有详细描述。
本发明结构式I的所示化合物式II化合物的合成路线如下所示,本领域技 术人员应当理解是,类似的路线也可以用于其它化合物的合成。
Figure PCTCN2019073489-appb-000012
本发明结构式I的所示化合物式III化合物的合成路线如下所示,本领域技术人员应当理解是,类似的路线也可以用于其它化合物的合成。
Figure PCTCN2019073489-appb-000013
上述反应路线举例给出了化合物结构通式I的合成路线、制备了关键中间体Int-1、Int-2、Int-3化合物。其中R 1、R 2、R 3、R 4、R 5、X和n与前述定义相同;
在本发明实施例中使用了以下缩写:
表1缩写与全称
缩写 全称
THF 四氢呋喃
n-BuLi 正基锂
DCM 二氯甲烷
(PinB) 2 联硼酸频那醇酯
Pd(PPh 3) 4 四(三苯基膦)钯
DAST 二乙胺基三氟化硫
实施例1
化合物II-05的制备,结构式如下:
Figure PCTCN2019073489-appb-000014
上述化合物II-05的制备方法,包括如下步骤:
第一步:化合物3-溴-2-羟基苯甲醛的制备
Figure PCTCN2019073489-appb-000015
14.5g的无水氯化镁分散在250ml无水四氢呋喃中,加入7.5g的多聚甲醛和21ml的三乙胺,搅拌反应30分钟后,加入17.5g的邻溴苯酚,加完后,搅拌升温回流反应16小时,冷却到室温,加入500ml稀盐酸,用乙酸乙酯萃取,有机相用无水硫酸钠干燥,过滤,减压浓缩干,用硅胶柱分离纯化,得30g的黄色油状物。
第二步:化合物7-溴-2-硝基苯并呋喃的制备
Figure PCTCN2019073489-appb-000016
取第一步得到的油状物20g用250ml的丙酮溶解,氮气保护下,加入28g无水碳酸钾,用冰水浴降温至10℃,加入28g溴代硝基甲烷,保温搅拌反应2 小时,过滤,滤液减压浓缩干,加入10ml的浓盐酸和200ml的甲醇,升温回流反应30分钟,冷却到室温,过滤,滤饼用甲醇洗,得18.5g的黄色固体。
第三步:化合物7-溴-2-氨基苯并呋喃的制备
Figure PCTCN2019073489-appb-000017
取18g的第二步的产物7-溴-2-硝基苯并呋喃用100ml的乙醇和100ml的四氢呋喃溶解,加入10ml的水和36g的氯化铵,室温搅拌下加入20g的铁粉,搅拌反应16小时,过滤,滤液减压浓缩干,残余物可用酸碱法纯化,得11g的黄色固体。
第四步:化合物Int.-1的制备
Figure PCTCN2019073489-appb-000018
向反应瓶内加入600ml的冰醋酸和20ml的水,升温至回流,搅拌下缓慢滴加入10g的7-溴-2-氨基苯并呋喃和18.2g的三氟乙酰丙酮溶解于100ml干燥的DMF溶液、滴完后,回流反应3小时、冷却到室温,减压浓缩干,用硅胶柱分离纯化、得到13g的Int-1,白色固体。
第五步:化合物Int-2的制备
Figure PCTCN2019073489-appb-000019
将第四步得到的10.0g化合物Int-1和8.5g的硼酸三异丙酯、200ml干燥的四氢呋喃混合,在氮气保护下,用液氮降温至-78℃,缓慢滴加入14.5ml的2.5M正丁基锂-己烷溶液,保温反应1小时,升到室温搅拌反应30分钟,滴加入100ml的稀盐酸搅拌反应30分钟,分出有机相,水相用乙酸乙酯萃取,有机相干燥,过滤,滤液减压浓缩干,残余物用石油醚分散,过滤,得7.3g的Int-2,白色固体。
第六步:化合物Int-3的制备
Figure PCTCN2019073489-appb-000020
将第五步得到的5.5g中间体Int-2和4.4g的2-溴吡啶、8.0g的无水碳酸钠、50ml甲苯和20ml的乙醇以及20ml的水混合,再加入40mg的催化剂Pd(PPh3)4,在氮气保护下,升温回流反应12小时,冷却到室温,分出有机相,水相用乙酸乙酯萃取,有机相干燥,过滤,滤液减压浓缩干,残余物用硅胶柱分离纯化,得5.0g的Int-3,黄色固体。
第七步:化合物II-05的制备
Figure PCTCN2019073489-appb-000021
5.0g的第六步化合物Int-3和3.6g的铱螯合物SM-10分散在120ml的乙二醇乙醚和120ml干燥DMF中,在氮气保护下,升温至135℃搅拌反应24小时,冷却到室温,减压浓缩除去溶剂,硅胶柱分离纯化,得2.7g的化合物II-05,黄色固体,TOF-MS:m/z(%)=829.1676[M ++1],确认化合物II-05正确。
实施例2
化合物II-23的制备,结构式如下:
Figure PCTCN2019073489-appb-000022
上述化合物II-23的制备,参照实施例1中第一步至第六步的制备方法制 备中间体Int.-4,其它化合物的制备方法包括如下步骤:
第一步:化合物Int.-5的制备
Figure PCTCN2019073489-appb-000023
6.0g的中间体Int.-4分散于150ml的氘代乙醇中,加入2.5g的乙醇钠固体,搅拌升温回流反应3天,冷却到室温,减压浓缩干,加入150ml的冰水和150ml的乙酸乙酯,分出有机相,水相用乙酸乙酯萃取,干燥,过滤,滤液减压浓缩干,硅胶柱分离纯化,得5.0g的白色固体。
第二步:化合物II-23的制备
Figure PCTCN2019073489-appb-000024
5.0g的第一步化合物Int.-5和3.4g的铱螯合物SM-10分散在120ml的乙二醇乙醚和120ml干燥DMF中,在氮气保护下,升温至135℃搅拌反应24小时,冷却到室温,减压浓缩除去溶剂,硅胶柱分离纯化,得2.0g的化合物II-23,黄色固体,TOF-MS:m/z(%)=841.3182[M ++1],确认化合物II-23正确。
实施例3
化合物II-26的制备,结构式如下:
Figure PCTCN2019073489-appb-000025
上述化合物II-26的制备,参照实施例1中第一步至第六步的制备方法制备中间体Int.-6,其它化合物的制备方法包括如下步骤:
第一步:化合物Int.-7的制备
10.0g的中间体Int.-6分散于150ml的氘代乙醇中,加入3.5g的乙醇钠固体,搅拌升温回流反应5天,冷却到室温,减压浓缩干,加入150ml的冰水和150ml的乙酸乙酯,分出有机相,水相用乙酸乙酯萃取,干燥,过滤,滤液减压浓缩干,硅胶柱分离纯化,得7.5g的白色固体。
第二步:化合物II-26的制备
Figure PCTCN2019073489-appb-000027
5.0g的第一步化合物Int.-7和2.7g的铱螯合物SM-10分散在120ml的乙二醇乙醚和120ml干燥DMF中,在氮气保护下,升温至135℃搅拌反应24小时,冷却到室温,减压浓缩除去溶剂,硅胶柱分离纯化,得2.4g的化合物II-26,黄色固体,TOF-MS:m/z(%)=933.4588[M ++1],确认化合物II-26正确。
实施例4
化合物II-51的制备,结构式如下:
Figure PCTCN2019073489-appb-000028
上述化合物II-51的制备方法,包括如下步骤:
第一步:化合物Int.-8的制备
Figure PCTCN2019073489-appb-000029
向反应瓶内加入300ml的冰醋酸和10ml的水,升温至回流,搅拌下缓慢滴加入5.0g的7-溴-2-氨基苯并呋喃和11.0g的2-四氢呋喃甲酰丙酮溶解于50ml干燥的DMF溶液、滴完后,回流反应3小时、冷却到室温,减压浓缩干,用硅胶柱分离纯化、得到7.5g的Int.-8,白色固体。
第二步:化合物Int.-9的制备
Figure PCTCN2019073489-appb-000030
将第一步得到的7.0g化合物Int.-8溶解于120ml干燥的四氢呋喃中,在氮气保护下,用液氮降温至-78℃,缓慢滴加入10ml的2.5M正丁基锂-己烷溶液,保温反应30分钟,滴加入6.0g的硼酸三异丙酯、升到室温搅拌反应1小时,滴加入100ml的稀盐酸搅拌反应30分钟,分出有机相,水相用乙酸乙酯萃取,有机相干燥,过滤,滤液减压浓缩干,残余物用石油醚分散,过滤,得4.5g的Int.-9,白色固体。
第三步:化合物Int.-10的制备
Figure PCTCN2019073489-appb-000031
化合物Int.-10的制备方法请参照实施例1的第六步,将实施例1第六步的中间体Int.-2替换为本实施例中第二步的产物Int.-9,制备得到化合物式Int.-10,白色固体。
第四步:化合物II-51的制备
Figure PCTCN2019073489-appb-000032
5.0g的第三步化合物Int.-10和3.6g的铱螯合物SM-10分散在120ml的乙二醇乙醚和120ml干燥DMF中,在氮气保护下,升温至135℃搅拌反应24小时,冷却到室温,减压浓缩除去溶剂,硅胶柱分离纯化,得3.5g的化合物II-51,黄色固体,TOF-MS:m/z(%)=831.2217[M ++1],确认化合物II-51正确。
实施例5
化合物II-52的制备,结构式如下:
Figure PCTCN2019073489-appb-000033
上述化合物II-52的制备,参照实施例4中第一步至第三步的制备方法制备中间体Int.-10,其它化合物的制备方法包括如下步骤:
第一步:化合物Int.-11的制备
Figure PCTCN2019073489-appb-000034
10.0g的中间体Int.-10分散于150ml的氘代乙醇和10ml的氘代四氢呋喃中,加入4.5g的乙醇钠固体,搅拌升温回流反应5天,冷却到室温,减压浓缩干,加入150ml的冰水和150ml的乙酸乙酯,分出有机相,水相用乙酸乙酯萃取,干燥,过滤,滤液减压浓缩干,硅胶柱分离纯化,得9.5g的白色固体。
第二步:化合物II-52的制备
Figure PCTCN2019073489-appb-000035
5.0g的第一步化合物Int.-11和3.5g的铱螯合物SM-10分散在120ml的乙二醇乙醚和120ml干燥DMF中,在氮气保护下,升温至135℃搅拌反应24小时,冷却到室温,减压浓缩除去溶剂,硅胶柱分离纯化,得3.0g的化合物II-52,黄色固体,TOF-MS:m/z(%)=840.2845[M +],确认化合物II-52正确。
实施例6
化合物III-01的制备,结构式如下:
Figure PCTCN2019073489-appb-000036
上述化合物III-01的制备方法,包括如下步骤:
第一步:化合物Int.-12的制备
Figure PCTCN2019073489-appb-000037
10.0g的化合物SM-20(参照文献Chemistry-A European Journal,2016,22(30),P10415的方法制备)分散于250ml的乙醇中,加入4.5g的盐酸乙脒和10.0g的氢氧化钾,搅拌升温回流反应2小时,冷却到室温,减压浓缩干,加入150ml的冰水,过滤,滤饼用水洗,干燥,用硅胶柱分离纯化,得7.3g的黄色固体。
第二步:化合物Int.-13的制备
Figure PCTCN2019073489-appb-000038
化合物Int.-13的制备方法请参照实施例4的第二步,将实施例4第二步的中间体Int.-8替换为本实施例中第一步的产物Int.-12,制备得到化合物式Int.-13,白色固体。
第三步:化合物Int.-14的制备
Figure PCTCN2019073489-appb-000039
化合物Int.-14的制备方法请参照实施例4的第三步,将实施例4第三步的中间体Int.-9替换为本实施例中第二步的产物Int.-13,制备得到化合物式Int.-14,黄色固体。
第四步:化合物III-01的制备
Figure PCTCN2019073489-appb-000040
5.0g的第三步化合物Int.-14和4.3g的铱螯合物SM-10分散在120ml的乙二醇乙醚和120ml干燥DMF中,在氮气保护下,升温至135℃搅拌反应24小时,冷却到室温,减压浓缩除去溶剂,硅胶柱分离纯化,得3.7g的化合物III-01,黄色固体,TOF-MS:m/z(%)=776.1918[M ++1],确认化合物III-01正确。
实施例7
化合物III-18的制备,结构式如下:
Figure PCTCN2019073489-appb-000041
第一步:化合物Int.-15的制备
Figure PCTCN2019073489-appb-000042
10.0g的化合物SM-30(参照文献Chemistry-A European Journal,2016,22(30),P10415的方法制备)分散于250ml的乙醇中,加入4.9g的盐酸异丙基甲脒和8.8g的氢氧化钾,搅拌升温回流反应2小时,冷却到室温,减压浓缩干,加入150ml的冰水,过滤,滤饼用水洗,干燥,用硅胶柱分离纯化,得8.2g的黄色固体。
第二步:化合物Int.-16的制备
Figure PCTCN2019073489-appb-000043
化合物Int.-16的制备方法请参照实施例4的第二步,将实施例4第二步的中间体Int.-8替换为本实施例中第一步的产物Int.-15,制备得到化合物式Int.-16,黄色固体。
第三步:化合物Int.-17的制备
Figure PCTCN2019073489-appb-000044
化合物Int.-17的制备方法请参照实施例4的第三步,将实施例4第三步的中间体Int.-9替换为本实施例中第二步的产物Int.-16,制备得到化合物式Int.-17,黄色固体。
第四步:化合物III-18的制备
Figure PCTCN2019073489-appb-000045
5.0g的第三步化合物Int.-16和3.3g的铱螯合物SM-10分散在120ml的乙二醇乙醚和120ml干燥DMF中,在氮气保护下,升温至135℃搅拌反应24小时,冷却到室温,减压浓缩除去溶剂,硅胶柱分离纯化,得2.5g的化合物III-18,黄色固体,TOF-MS:m/z(%)=858.2692[M ++1],确认化合物III-18正确。
实施例8
化合物III-12的制备,结构式如下:
Figure PCTCN2019073489-appb-000046
上述化合物III-12的制备方法,包括如下步骤:
第一步:化合物Int-18的制备
Figure PCTCN2019073489-appb-000047
10.0g的化合物SM-20和100g的脲素混合,搅拌升温至回流搅拌反应2小时,冷却到100℃,滴加入10%的氢氧化钠水溶液,搅拌至室温,再滴加入稀盐酸中和,过滤,水洗,干燥,用乙醇重结晶,得8.2g的化合物Int-18,白色固体。
第二步:化合物Int-19的制备
Figure PCTCN2019073489-appb-000048
8.0g的化合物Int-18和48ml的DAST混合,在氮气保护下,升温至40℃搅拌反应24小时,冷却到室温,减压浓缩干,加入100ml的冰水,过滤,滤饼用水洗,真空干燥,用硅胶柱分离纯化,得7.6g的化合物Int-19,黄色固体。
第三步:化合物Int.-20的制备
Figure PCTCN2019073489-appb-000049
化合物Int.-20的制备方法请参照实施例1的第五步,将实施例1第五步的中间体Int.-1替换为本实施例中第二步的产物Int.-19,制备得到化合物式Int.-20,黄色固体。
第四步:化合物Int.-21的制备
Figure PCTCN2019073489-appb-000050
化合物Int.-21的制备方法请参照实施例4的第三步,将实施例4第三步的中间体Int.-9替换为本实施例中第三步的产物Int.-20,制备得到化合物式Int.-21,黄色固体。
第五步:化合物III-12的制备
Figure PCTCN2019073489-appb-000051
5.0g的第四步化合物Int.-21和4.2g的铱螯合物SM-10分散在120ml的乙二醇乙醚和120ml干燥DMF中,在氮气保护下,升温至135℃搅拌反应24小时,冷却到室温,减压浓缩除去溶剂,硅胶柱分离纯化,得3.3g的化合物III-12,黄色固体,TOF-MS:m/z(%)=780.1665[M ++1],确认化合物III-12正确。
实施例9
化合物III-39的制备,结构式如下:
Figure PCTCN2019073489-appb-000052
上述化合物III-39的制备,参照实施例6中第一步至第三步的制备方法制备中间体Int.-22,其它化合物的制备方法包括如下步骤:
第一步:化合物Int.-23的制备
Figure PCTCN2019073489-appb-000053
10.0g的中间体Int.-22分散于150ml的氘代乙醇中,加入4.0g的乙醇钠固体,搅拌升温回流反应5天,冷却到室温,减压浓缩干,加入150ml的冰水和150ml的乙酸乙酯,分出有机相,水相用乙酸乙酯萃取,干燥,过滤,滤液减压浓缩干,硅胶柱分离纯化,得10.0g的黄色固体。
第二步:化合物III-39的制备
Figure PCTCN2019073489-appb-000054
5.0g的第一步化合物Int.-23和3.3g的铱螯合物SM-10分散在120ml的乙二醇乙醚和120ml干燥DMF中,在氮气保护下,升温至135℃搅拌反应24小时,冷却到室温,减压浓缩除去溶剂,硅胶柱分离纯化,得2.1g的化合物III-39,黄色固体,TOF-MS:m/z(%)=858.3406[M ++1],确认化合物III-39正确。
实施例10
一种OLED器件,如图1所示,包括基板1、设于基板1上的阳极层2、设于阳极层2上的空穴注入层3、设于空穴注入层3上的空穴传输层4、设于空穴传输层4上的有机发光层5、设于有机发光层5上的电子传输层6、设于 电子传输层6上的阴极层7。
上述OLED器件的制备方法包括如下步骤:
1)将涂布了ITO导电层的玻璃基片在清洗剂中超声处理30分钟,在去离子水中冲洗,在丙酮/乙醇混合溶剂中超声30分钟,在洁净的环境下烘烤至完全干燥,用紫外光清洗机照射10分钟,并用低能阳离子束轰击表面。
2)把上述处理好的ITO玻璃基片置于真空腔内,抽真空至1×10 -5~9×10 -3Pa,在上述阳极层膜上继续分别蒸镀化合物DNTPD作为空穴注入层,蒸镀速率为0.1nm/s,蒸镀膜厚为40nm;在上述空穴注入层膜上继续蒸镀NPB为空穴传输层,蒸镀速率为0.1nm/s,蒸镀膜厚为10nm;
3)在空穴传输层上继续蒸镀一层本发明的化合物式I和mCBP作为器件的发光层,其中,mCP为主体材料和本发明的化合物式I为掺杂材料,化合物式I与mCBP的蒸镀速率比为1:100,化合物式I在mCBP中的掺杂浓度为1%,其蒸镀总速率为0.1nm/s,蒸镀膜厚为50nm;
4)在上述空穴再继续蒸镀一层Liq材料作为器件的电子传输层,镀速率为0.1nm/s,蒸镀膜厚为20nm;最后,在上述电子传输层之上依次蒸镀镁/银合金层作为器件的阴极层,其中镁/银合金层的蒸镀速率为2.0~3.0nm/s,蒸镀膜厚为100nm;
按照与上相同的步骤,仅将步骤3)所用化合物式I替换为化合物II-05,得到本发明提供的OLED-1;
按照与上相同的步骤,仅将步骤3)所用化合物式I替换为化合物II-23,得到本发明提供的OLED-2;
按照与上相同的步骤,仅将步骤3)所用化合物式I替换为化合物II-26,得到本发明提供的OLED-3;
按照与上相同的步骤,仅将步骤3)所用化合物式I替换为化合物II-51,得到本发明提供的OLED-4;
按照与上相同的步骤,仅将步骤3)所用化合物式I替换为化合物II-52,得到本发明提供的OLED-5;
按照与上相同的步骤,仅将步骤3)所用化合物式I替换为化合物III-01,得到本发明提供的OLED-6;
按照与上相同的步骤,仅将步骤3)所用化合物式I替换为化合物III-12, 得到本发明提供的OLED-7;
按照与上相同的步骤,仅将步骤3)所用化合物式I替换为化合物III-18,得到本发明提供的OLED-8;
按照与上相同的步骤,仅将步骤3)所用化合物式I替换为化合物III-39,得到本发明提供的OLED-9;
所得器件OLED-1至OLED-9的性能检测结果如表2所示:
表2性能检测结果
Figure PCTCN2019073489-appb-000055
结论:从性能测试结果分析,本发明的金属铱配合物发绿光,色纯度较好,色度坐标在绿光区域,其性能均超过了现己知的绿光材料,而且在测试器件未封装的条件下,器件的发光寿命也较为理想。
显然,本发明的上述实施例仅仅是为清楚地说明本发明所作的举例,而并非是对本发明的实施方式的限定,对于所属领域的普通技术人员来说,在上述说明的基础上还可以做出其它不同形式的变化或变动,这里无法对所有的实施方式予以穷举,凡是属于本发明的技术方案所引伸出的显而易见的变化或变动仍处于本发明的保护范围之列。

Claims (10)

  1. 一种金属铱配合物,其特征在于,所述金属铱配合物为式I所示化合物
    Figure PCTCN2019073489-appb-100001
    其中:
    R 1和R 2各自独立地表示C1-C10的烷基、C4-C10的环烷基、氘取代的C1-C10的烷基、氘取代的C4-C10的环烷基、C1-C8的烷氧基、氘取代的C1-C8的烷氧基、C1-C8的烷硫基、氘取代的C1-C8的烷硫基、氟或氰基;
    R 3、R 4、R 5各自独立地表示氢、氘氢、氟、C1-C8的烷基、氘取代的C1-C8的烷基、C1-C8的烷氧基、氘取代的C1-C8的烷氧基、C1-C8的硅烷基、取代的或未取代的C 6-C 20芳基、取代的或未取代的C 6-C 20芳氧基、取代的或未取代的C 6-C 20芳硫基、氟或氰基;
    所述取代的C 6-C 20芳基、取代的C 6-C 20芳氧基和取代的C 6-C 20芳硫基中所述的取代基各自独立地选自氢、氘氢、卤原子、羟基、氰基、C 1-C 20烷基、C 2-C 20烯基、C 2-C 20炔基、C 1-C 20烷氧基、C 3-C 20环烷烃基或C 3-C 20环烯烃基中的一种或多种;
    A表示C或N;
    X表示O、S或Se;
    n各自独立地表示1、2或3。
  2. 根据权利要求1所述的金属铱配合物,其特征在于,所述式I所述化合物为以下式II-01~II-45、式III-01~III-51所示化合物
    Figure PCTCN2019073489-appb-100002
    Figure PCTCN2019073489-appb-100003
    Figure PCTCN2019073489-appb-100004
    Figure PCTCN2019073489-appb-100005
    Figure PCTCN2019073489-appb-100006
    Figure PCTCN2019073489-appb-100007
  3. 一种有机电致发光器件,依次包括基板、阳极层、空穴传输层、有机发光层、电子传输层和阴极层,其特征在于,所述有机发光层的材料包含一种或多种权利要求1或2所述的金属铱配合物。
  4. 根据权利要求3所述的有机电致发光器件,其特征在于,所述阳极层与所述空穴传输层之间还设有空穴注入层。
  5. 根据权利要求4所述的有机电致发光器件,其特征在于,所述空穴注入层的厚度为30-50nm。
  6. 根据权利要求4所述的有机电致发光器件,其特征在于,所述空穴注入层的厚度为40nm。
  7. 根据权利要求3所述的有机电致发光器件,其特征在于,所述空穴传输层的厚度为5-15nm;所述有机发光层的厚度为10-100nm;所述电子传输层的厚度为10-30nm;所述阴极层的厚度为90-110nm。
  8. 根据权利要求3所述的有机电致发光器件,其特征在于,所述空穴传输层的厚度为10nm;所述有机发光层的厚度为50nm;所述电子传输层的厚度为20nm;所述阴极层的厚度为100nm。
  9. 一种有机电致发光材料,其特征在于,所述有机电致发光材料的原料包含权利要求1或2所述的金属铱配合物中的一种或多种。
  10. 权利要求1或2所述金属铱配合物在制备有机电致发光器件或有机电致发光材料中的应用。
PCT/CN2019/073489 2018-02-09 2019-01-28 一种金属铱配合物和包含该金属铱配合物的有机电致发光器件 WO2019154159A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201810134626.X 2018-02-09
CN201810134626.XA CN108164564A (zh) 2018-02-09 2018-02-09 一种金属铱配合物和包含该金属铱配合物的有机电致发光器件

Publications (1)

Publication Number Publication Date
WO2019154159A1 true WO2019154159A1 (zh) 2019-08-15

Family

ID=62513514

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2019/073489 WO2019154159A1 (zh) 2018-02-09 2019-01-28 一种金属铱配合物和包含该金属铱配合物的有机电致发光器件

Country Status (2)

Country Link
CN (1) CN108164564A (zh)
WO (1) WO2019154159A1 (zh)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP3974494A1 (en) * 2020-09-29 2022-03-30 Samsung Electronics Co., Ltd. Organometallic compound, organic light-emitting device including the same, and electronic apparatus including the organic light-emitting device

Families Citing this family (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN108164564A (zh) * 2018-02-09 2018-06-15 石家庄诚志永华显示材料有限公司 一种金属铱配合物和包含该金属铱配合物的有机电致发光器件
CN117447526A (zh) * 2018-09-15 2024-01-26 北京夏禾科技有限公司 含有氟取代的金属配合物
KR20200068447A (ko) 2018-12-05 2020-06-15 삼성전자주식회사 유기금속 화합물, 이를 포함한 유기 발광 소자 및 이를 포함한 진단용 조성물
CN117402190A (zh) 2019-02-01 2024-01-16 北京夏禾科技有限公司 一种含有氰基取代配体的有机发光材料
US20200251664A1 (en) * 2019-02-01 2020-08-06 Universal Display Corporation Organic electroluminescent materials and devices
US11758803B2 (en) 2019-03-07 2023-09-12 Samsung Electronics Co., Ltd. Organometallic compound, organic light-emitting device including the same, and electronic apparatus including the organic light-emitting device
CN111484839A (zh) * 2019-11-01 2020-08-04 吉林奥来德光电材料股份有限公司 一种有机发光化合物及其制备方法和有机电致发光器件
CN113121603B (zh) * 2019-12-30 2023-02-24 江苏三月科技股份有限公司 一种作为oled掺杂材料的磷光铱配合物及其应用
CN113735911A (zh) * 2020-05-29 2021-12-03 北京夏禾科技有限公司 一种金属配合物、电致发光器件及其应用
CN113809243B (zh) * 2020-06-13 2023-10-03 北京夏禾科技有限公司 有机电致发光器件
CN113816997B (zh) 2020-06-20 2024-05-28 北京夏禾科技有限公司 一种磷光有机金属配合物及其应用
CN112724178A (zh) * 2020-12-01 2021-04-30 浙江华显光电科技有限公司 一种具有氘氟协同效应的铱金属化合物及包含其的光电元件

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN105367606A (zh) * 2014-08-07 2016-03-02 环球展览公司 有机电致发光材料和装置
US20160093815A1 (en) * 2014-09-29 2016-03-31 Universal Display Corporation Organic electroluminescent materials and devices
CN105801628A (zh) * 2015-01-15 2016-07-27 环球展览公司 有机发光材料
US20170069848A1 (en) * 2015-09-09 2017-03-09 Universal Display Corporation Organic electroluminescent materials and devices
CN108164564A (zh) * 2018-02-09 2018-06-15 石家庄诚志永华显示材料有限公司 一种金属铱配合物和包含该金属铱配合物的有机电致发光器件
US20180254417A1 (en) * 2014-08-07 2018-09-06 Universal Display Corporation Organic electroluminescent materials and devices

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN105367606A (zh) * 2014-08-07 2016-03-02 环球展览公司 有机电致发光材料和装置
US20180254417A1 (en) * 2014-08-07 2018-09-06 Universal Display Corporation Organic electroluminescent materials and devices
US20160093815A1 (en) * 2014-09-29 2016-03-31 Universal Display Corporation Organic electroluminescent materials and devices
CN105801628A (zh) * 2015-01-15 2016-07-27 环球展览公司 有机发光材料
US20170069848A1 (en) * 2015-09-09 2017-03-09 Universal Display Corporation Organic electroluminescent materials and devices
CN108164564A (zh) * 2018-02-09 2018-06-15 石家庄诚志永华显示材料有限公司 一种金属铱配合物和包含该金属铱配合物的有机电致发光器件

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP3974494A1 (en) * 2020-09-29 2022-03-30 Samsung Electronics Co., Ltd. Organometallic compound, organic light-emitting device including the same, and electronic apparatus including the organic light-emitting device

Also Published As

Publication number Publication date
CN108164564A (zh) 2018-06-15

Similar Documents

Publication Publication Date Title
WO2019154159A1 (zh) 一种金属铱配合物和包含该金属铱配合物的有机电致发光器件
TWI510597B (zh) Organic electronic materials and organic electroluminescent devices
WO2019056932A1 (zh) 咪唑衍生物、包含该咪唑衍生物的材料和有机电致发光器件
JP7458483B2 (ja) 金属錯体及びその用途
CN107722062B (zh) 一种金属铱或铂配合物和包含该金属铱或铂配合物的有机电致发光器件
WO2020020178A1 (zh) 一种有机电致发光材料及其应用
WO2020124771A1 (zh) 热活化延迟荧光化合物及其制备方法与有机电致发光二极管器件
WO2020211125A1 (zh) 热活化延迟荧光材料及其制备方法与有机电致发光二极管器件
CN110218212B (zh) 氮杂环化合物、显示面板以及显示装置
CN111454251A (zh) 一种吡嗪衍生物及其在oled器件中的应用
TWI745109B (zh) 一種鉑金屬配合物及其在有機電致發光器件中的應用
CN102653677B (zh) 双极性蓝光主体材料及其制备方法与有机电致发光器件
WO2019196950A1 (zh) 一种以氧杂蒽酮为核心的化合物、其制备方法及其在oled上的应用
CN110386926B (zh) 一种含有苯并杂环结构的有机光电材料及其制备方法和应用
KR101799033B1 (ko) 적색 인광 호스트 물질 및 이를 이용한 유기전계발광소자
WO2020211121A1 (zh) 热活化延迟荧光材料及其制备方法与有机电致发光二极管器件
WO2020211123A1 (zh) 热活化延迟荧光材料及其制备方法与有机电致发光二极管器件
WO2020211128A1 (zh) 热活化延迟荧光材料及其制备方法与有机电致发光二极管器件
CN111620887A (zh) 一种以稠合喹唑啉为受体的化合物及其应用
CN109776490A (zh) 一种非芳香胺类小分子光电材料及制备与应用
CN112645791B (zh) 一种新型的oled材料及其制备方法与应用
WO2020211127A1 (zh) 热活化延迟荧光材料及其制备方法与有机电致发光二极管器件
WO2020211124A1 (zh) 热活化延迟荧光材料及其制备方法与有机电致发光二极管器件
WO2018120973A1 (zh) 应用于有机发光二极管的主体材料
WO2018120972A1 (zh) 有机发光二极管器件

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 19751034

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

32PN Ep: public notification in the ep bulletin as address of the adressee cannot be established

Free format text: NOTING OF LOSS OF RIGHTS PURSUANT TO RULE 112(1) EPC (EPO FORM 1205A DATED 01/12/2020)

122 Ep: pct application non-entry in european phase

Ref document number: 19751034

Country of ref document: EP

Kind code of ref document: A1