WO2019153938A1 - 显示基板和显示装置 - Google Patents

显示基板和显示装置 Download PDF

Info

Publication number
WO2019153938A1
WO2019153938A1 PCT/CN2018/124386 CN2018124386W WO2019153938A1 WO 2019153938 A1 WO2019153938 A1 WO 2019153938A1 CN 2018124386 W CN2018124386 W CN 2018124386W WO 2019153938 A1 WO2019153938 A1 WO 2019153938A1
Authority
WO
WIPO (PCT)
Prior art keywords
sub
pixel
pixels
diagonal
line
Prior art date
Application number
PCT/CN2018/124386
Other languages
English (en)
French (fr)
Inventor
刘利宾
杨倩
王红丽
皇甫鲁江
Original Assignee
京东方科技集团股份有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 京东方科技集团股份有限公司 filed Critical 京东方科技集团股份有限公司
Priority to EP18905693.0A priority Critical patent/EP3751613A4/en
Priority to US16/630,496 priority patent/US11081539B2/en
Priority to JP2020535989A priority patent/JP7299223B2/ja
Publication of WO2019153938A1 publication Critical patent/WO2019153938A1/zh

Links

Images

Classifications

    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K59/00Integrated devices, or assemblies of multiple devices, comprising at least one organic light-emitting element covered by group H10K50/00
    • H10K59/10OLED displays
    • H10K59/12Active-matrix OLED [AMOLED] displays
    • H10K59/131Interconnections, e.g. wiring lines or terminals
    • GPHYSICS
    • G09EDUCATION; CRYPTOGRAPHY; DISPLAY; ADVERTISING; SEALS
    • G09GARRANGEMENTS OR CIRCUITS FOR CONTROL OF INDICATING DEVICES USING STATIC MEANS TO PRESENT VARIABLE INFORMATION
    • G09G3/00Control arrangements or circuits, of interest only in connection with visual indicators other than cathode-ray tubes
    • G09G3/20Control arrangements or circuits, of interest only in connection with visual indicators other than cathode-ray tubes for presentation of an assembly of a number of characters, e.g. a page, by composing the assembly by combination of individual elements arranged in a matrix no fixed position being assigned to or needed to be assigned to the individual characters or partial characters
    • G09G3/2003Display of colours
    • GPHYSICS
    • G09EDUCATION; CRYPTOGRAPHY; DISPLAY; ADVERTISING; SEALS
    • G09GARRANGEMENTS OR CIRCUITS FOR CONTROL OF INDICATING DEVICES USING STATIC MEANS TO PRESENT VARIABLE INFORMATION
    • G09G3/00Control arrangements or circuits, of interest only in connection with visual indicators other than cathode-ray tubes
    • G09G3/20Control arrangements or circuits, of interest only in connection with visual indicators other than cathode-ray tubes for presentation of an assembly of a number of characters, e.g. a page, by composing the assembly by combination of individual elements arranged in a matrix no fixed position being assigned to or needed to be assigned to the individual characters or partial characters
    • G09G3/22Control arrangements or circuits, of interest only in connection with visual indicators other than cathode-ray tubes for presentation of an assembly of a number of characters, e.g. a page, by composing the assembly by combination of individual elements arranged in a matrix no fixed position being assigned to or needed to be assigned to the individual characters or partial characters using controlled light sources
    • G09G3/28Control arrangements or circuits, of interest only in connection with visual indicators other than cathode-ray tubes for presentation of an assembly of a number of characters, e.g. a page, by composing the assembly by combination of individual elements arranged in a matrix no fixed position being assigned to or needed to be assigned to the individual characters or partial characters using controlled light sources using luminous gas-discharge panels, e.g. plasma panels
    • G09G3/288Control arrangements or circuits, of interest only in connection with visual indicators other than cathode-ray tubes for presentation of an assembly of a number of characters, e.g. a page, by composing the assembly by combination of individual elements arranged in a matrix no fixed position being assigned to or needed to be assigned to the individual characters or partial characters using controlled light sources using luminous gas-discharge panels, e.g. plasma panels using AC panels
    • G09G3/298Control arrangements or circuits, of interest only in connection with visual indicators other than cathode-ray tubes for presentation of an assembly of a number of characters, e.g. a page, by composing the assembly by combination of individual elements arranged in a matrix no fixed position being assigned to or needed to be assigned to the individual characters or partial characters using controlled light sources using luminous gas-discharge panels, e.g. plasma panels using AC panels using surface discharge panels
    • G09G3/2983Control arrangements or circuits, of interest only in connection with visual indicators other than cathode-ray tubes for presentation of an assembly of a number of characters, e.g. a page, by composing the assembly by combination of individual elements arranged in a matrix no fixed position being assigned to or needed to be assigned to the individual characters or partial characters using controlled light sources using luminous gas-discharge panels, e.g. plasma panels using AC panels using surface discharge panels using non-standard pixel electrode arrangements
    • G09G3/2986Control arrangements or circuits, of interest only in connection with visual indicators other than cathode-ray tubes for presentation of an assembly of a number of characters, e.g. a page, by composing the assembly by combination of individual elements arranged in a matrix no fixed position being assigned to or needed to be assigned to the individual characters or partial characters using controlled light sources using luminous gas-discharge panels, e.g. plasma panels using AC panels using surface discharge panels using non-standard pixel electrode arrangements with more than 3 electrodes involved in the operation
    • GPHYSICS
    • G09EDUCATION; CRYPTOGRAPHY; DISPLAY; ADVERTISING; SEALS
    • G09GARRANGEMENTS OR CIRCUITS FOR CONTROL OF INDICATING DEVICES USING STATIC MEANS TO PRESENT VARIABLE INFORMATION
    • G09G3/00Control arrangements or circuits, of interest only in connection with visual indicators other than cathode-ray tubes
    • G09G3/20Control arrangements or circuits, of interest only in connection with visual indicators other than cathode-ray tubes for presentation of an assembly of a number of characters, e.g. a page, by composing the assembly by combination of individual elements arranged in a matrix no fixed position being assigned to or needed to be assigned to the individual characters or partial characters
    • G09G3/22Control arrangements or circuits, of interest only in connection with visual indicators other than cathode-ray tubes for presentation of an assembly of a number of characters, e.g. a page, by composing the assembly by combination of individual elements arranged in a matrix no fixed position being assigned to or needed to be assigned to the individual characters or partial characters using controlled light sources
    • G09G3/30Control arrangements or circuits, of interest only in connection with visual indicators other than cathode-ray tubes for presentation of an assembly of a number of characters, e.g. a page, by composing the assembly by combination of individual elements arranged in a matrix no fixed position being assigned to or needed to be assigned to the individual characters or partial characters using controlled light sources using electroluminescent panels
    • G09G3/32Control arrangements or circuits, of interest only in connection with visual indicators other than cathode-ray tubes for presentation of an assembly of a number of characters, e.g. a page, by composing the assembly by combination of individual elements arranged in a matrix no fixed position being assigned to or needed to be assigned to the individual characters or partial characters using controlled light sources using electroluminescent panels semiconductive, e.g. using light-emitting diodes [LED]
    • G09G3/3208Control arrangements or circuits, of interest only in connection with visual indicators other than cathode-ray tubes for presentation of an assembly of a number of characters, e.g. a page, by composing the assembly by combination of individual elements arranged in a matrix no fixed position being assigned to or needed to be assigned to the individual characters or partial characters using controlled light sources using electroluminescent panels semiconductive, e.g. using light-emitting diodes [LED] organic, e.g. using organic light-emitting diodes [OLED]
    • GPHYSICS
    • G09EDUCATION; CRYPTOGRAPHY; DISPLAY; ADVERTISING; SEALS
    • G09GARRANGEMENTS OR CIRCUITS FOR CONTROL OF INDICATING DEVICES USING STATIC MEANS TO PRESENT VARIABLE INFORMATION
    • G09G3/00Control arrangements or circuits, of interest only in connection with visual indicators other than cathode-ray tubes
    • G09G3/20Control arrangements or circuits, of interest only in connection with visual indicators other than cathode-ray tubes for presentation of an assembly of a number of characters, e.g. a page, by composing the assembly by combination of individual elements arranged in a matrix no fixed position being assigned to or needed to be assigned to the individual characters or partial characters
    • G09G3/22Control arrangements or circuits, of interest only in connection with visual indicators other than cathode-ray tubes for presentation of an assembly of a number of characters, e.g. a page, by composing the assembly by combination of individual elements arranged in a matrix no fixed position being assigned to or needed to be assigned to the individual characters or partial characters using controlled light sources
    • G09G3/30Control arrangements or circuits, of interest only in connection with visual indicators other than cathode-ray tubes for presentation of an assembly of a number of characters, e.g. a page, by composing the assembly by combination of individual elements arranged in a matrix no fixed position being assigned to or needed to be assigned to the individual characters or partial characters using controlled light sources using electroluminescent panels
    • G09G3/32Control arrangements or circuits, of interest only in connection with visual indicators other than cathode-ray tubes for presentation of an assembly of a number of characters, e.g. a page, by composing the assembly by combination of individual elements arranged in a matrix no fixed position being assigned to or needed to be assigned to the individual characters or partial characters using controlled light sources using electroluminescent panels semiconductive, e.g. using light-emitting diodes [LED]
    • G09G3/3208Control arrangements or circuits, of interest only in connection with visual indicators other than cathode-ray tubes for presentation of an assembly of a number of characters, e.g. a page, by composing the assembly by combination of individual elements arranged in a matrix no fixed position being assigned to or needed to be assigned to the individual characters or partial characters using controlled light sources using electroluminescent panels semiconductive, e.g. using light-emitting diodes [LED] organic, e.g. using organic light-emitting diodes [OLED]
    • G09G3/3225Control arrangements or circuits, of interest only in connection with visual indicators other than cathode-ray tubes for presentation of an assembly of a number of characters, e.g. a page, by composing the assembly by combination of individual elements arranged in a matrix no fixed position being assigned to or needed to be assigned to the individual characters or partial characters using controlled light sources using electroluminescent panels semiconductive, e.g. using light-emitting diodes [LED] organic, e.g. using organic light-emitting diodes [OLED] using an active matrix
    • G09G3/3233Control arrangements or circuits, of interest only in connection with visual indicators other than cathode-ray tubes for presentation of an assembly of a number of characters, e.g. a page, by composing the assembly by combination of individual elements arranged in a matrix no fixed position being assigned to or needed to be assigned to the individual characters or partial characters using controlled light sources using electroluminescent panels semiconductive, e.g. using light-emitting diodes [LED] organic, e.g. using organic light-emitting diodes [OLED] using an active matrix with pixel circuitry controlling the current through the light-emitting element
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K59/00Integrated devices, or assemblies of multiple devices, comprising at least one organic light-emitting element covered by group H10K50/00
    • H10K59/10OLED displays
    • H10K59/12Active-matrix OLED [AMOLED] displays
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K59/00Integrated devices, or assemblies of multiple devices, comprising at least one organic light-emitting element covered by group H10K50/00
    • H10K59/10OLED displays
    • H10K59/17Passive-matrix OLED displays
    • H10K59/179Interconnections, e.g. wiring lines or terminals
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K59/00Integrated devices, or assemblies of multiple devices, comprising at least one organic light-emitting element covered by group H10K50/00
    • H10K59/30Devices specially adapted for multicolour light emission
    • H10K59/35Devices specially adapted for multicolour light emission comprising red-green-blue [RGB] subpixels
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K59/00Integrated devices, or assemblies of multiple devices, comprising at least one organic light-emitting element covered by group H10K50/00
    • H10K59/30Devices specially adapted for multicolour light emission
    • H10K59/35Devices specially adapted for multicolour light emission comprising red-green-blue [RGB] subpixels
    • H10K59/352Devices specially adapted for multicolour light emission comprising red-green-blue [RGB] subpixels the areas of the RGB subpixels being different
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K59/00Integrated devices, or assemblies of multiple devices, comprising at least one organic light-emitting element covered by group H10K50/00
    • H10K59/30Devices specially adapted for multicolour light emission
    • H10K59/35Devices specially adapted for multicolour light emission comprising red-green-blue [RGB] subpixels
    • H10K59/353Devices specially adapted for multicolour light emission comprising red-green-blue [RGB] subpixels characterised by the geometrical arrangement of the RGB subpixels
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K59/00Integrated devices, or assemblies of multiple devices, comprising at least one organic light-emitting element covered by group H10K50/00
    • H10K59/10OLED displays

Definitions

  • Embodiments of the present disclosure relate to a display substrate and a display device.
  • OLED display panel has the characteristics of self-luminous, high contrast, low energy consumption, wide viewing angle, fast response, flexible panel, wide temperature range, simple manufacturing, etc. Development prospects. OLED display panels can be used in electronic products such as mobile phones, computers, full-color TVs, digital video cameras, and personal digital assistants. Each component on the OLED display panel needs to be electrically connected to the driving chip through a wire. Due to the resistance on the wire, the signal transmitted to each component via the wire is inaccurate, resulting in deterioration of display quality.
  • At least one embodiment of the present disclosure provides a display substrate including: a plurality of repeating units, a plurality of main signal lines, and auxiliary signal lines, each repeating unit including a first sub-pixel, a second sub-pixel, and two third a sub-pixel; in each of the repeating units, the one first sub-pixel and the one second sub-pixel are arranged in a first direction, and the two third sub-pixels are arranged in a second direction, the One direction and the second direction are different directions; the two third sub-pixels are located between two adjacent main signal lines, and at least one of the auxiliary signals is disposed between the two adjacent main signal lines a line, the auxiliary signal line is electrically connected to the adjacent two main signal lines, and passes through an interval between the two third sub-pixels.
  • the plurality of main signal lines extend in the same direction, and the auxiliary signal lines are different from the extending direction of the plurality of main signal lines.
  • an extending direction of each of the main signal lines is the second direction, and each of the main signal lines has a wave shape, and the main signal line is On the same side, if the wave-shaped crest portion is adjacent to the first sub-pixel, the wavy trough portion is adjacent to the second sub-pixel.
  • the plurality of repeating units are repeatedly arranged along a direction of the first diagonal to form a plurality of repeating unit rows, wherein the plurality of repeating unit rows are along the Aligning directions of the second diagonal line
  • the auxiliary signal line includes a first line segment, a second line segment, and a third line segment, the third line segment extending along the first direction, the first line segment being located in the Between a first sub-pixel and a second sub-pixel adjacent to the first sub-pixel in an adjacent repeating cell row, the third line segment is located between two third sub-pixels in the same repeating unit,
  • the second line segment is configured to connect the first line segment and the third line segment, the projection of the third line segment of the auxiliary signal line located in the odd repeating unit row in the second direction and the projection in the even repeating unit row
  • the projection of the third line segment of the auxiliary signal line in the second direction does not overlap; or
  • the plurality of repeating units are repeatedly arranged along a direction of the first diagonal to form a plurality of repeating unit columns, the plurality of repeating unit columns are arranged along a direction of the second diagonal, the auxiliary signal line
  • the first line segment, the second line segment and the third line segment are extended, the third line segment extends along the first direction, and the first line segment is located in the first sub-pixel and the adjacent repeating unit column
  • the third line segment is located between two third sub-pixels in the same repeating unit
  • the second line segment is configured to connect the first line segment And the third line segment, the projection of the third line segment of the auxiliary signal line located in the odd repeating unit column in the second direction and the third line segment of the auxiliary signal line located in the even repeating unit column in the second direction
  • the projections do not overlap.
  • the first sub-pixel and the second sub-pixel are respectively located in the two Both sides of the third sub-pixel.
  • the first direction and the second direction are respectively two directions perpendicular to each other in the same plane.
  • one of the adjacent two main signal lines is located on a side of the first sub-pixel away from the two third sub-pixels, the adjacent The other of the two main signal lines is located on a side of the second sub-pixel adjacent to the two third sub-pixels; or one of the adjacent two main signal lines is located in the first sub-pixel Adjacent to one side of the two third sub-pixels, the other of the two adjacent main signal lines is located on a side of the second sub-pixel adjacent to the two third sub-pixels.
  • two vertices of a first diagonal of a parallelogram are respectively located in the first sub-pixel and the second sub-pixel, and the parallelogram Two vertices of the two diagonals are respectively located in the two third sub-pixels.
  • a center of the first sub-pixel, a center of the second sub-pixel, and a center of the two third sub-pixels Connecting the lines to form one of the parallelograms, a center of the first sub-pixel and a center of the second sub-pixel respectively coincide with two vertices of the first diagonal of the parallelogram, the two The centers of the third sub-pixels respectively coincide with the two vertices of the second diagonal of the parallelogram.
  • the first diagonal line is longer than the second diagonal line.
  • a length of the second diagonal is longer than a length of the first sub-pixel or the second sub-pixel along the second diagonal Half of it.
  • the plurality of repeating units are repeatedly arranged along a direction of the first diagonal to form a plurality of repeating unit rows, wherein the plurality of repeating unit rows are along the Arranging in the direction of the second diagonal, the center line of the third sub-pixel in the two repeating units of the adjacent column of the odd-numbered repeating unit row or the even-numbered repeating unit row is in the direction of the second diagonal a minimum length that is greater than 1.5 times a length of the first sub-pixel or the second sub-pixel in a direction of the second diagonal; or
  • the plurality of repeating units are repeatedly arranged along the direction of the first diagonal to form a plurality of repeating unit columns, the plurality of repeating unit columns are arranged along the direction of the second diagonal, adjacent odd repeating units a minimum length of a center line of the third sub-pixel of the two repeating units of the column or adjacent even-numbered repeating unit columns in the same row is greater than the first sub-pixel or The second sub-pixel is 1.5 times the length in the direction of the second diagonal.
  • a minimum distance of a boundary of the two third sub-pixels in a direction of the second diagonal is greater than or equal to a boundary of an adjacent one of the adjacent two sub-pixels in a direction of the first diagonal and a boundary of the second sub-pixel in a direction of the first diagonal The minimum distance.
  • the parallelogram is a diamond shape.
  • a direction of the first diagonal line is parallel to the first direction
  • a direction of the second diagonal line is parallel to the second direction
  • the plurality of repeating units are repeatedly arranged along a direction of the first diagonal to form a repeating unit row, and the plurality of repeating unit rows are along the second diagonal Arranging the directions of the lines, the center of the interval of the adjacent two repeating units of the odd repeating unit rows in the direction of the first diagonal line is located at the center of the two third sub-pixels of the even-numbered repeating unit row Extension line; or,
  • the plurality of repeating units are repeatedly arranged along the direction of the first diagonal to form a repeating unit column, the plurality of repeating unit columns are arranged along the direction of the second diagonal, and the adjacent two of the odd repeating unit columns
  • the center of the interval of the repeating unit in the direction of the first diagonal is located on an extension line of the line connecting the centers of the two third sub-pixels of the even-numbered repeating unit column.
  • a length of the first sub-pixel in a direction of the second diagonal is greater than a direction of the first sub-pixel in the first diagonal
  • the length of the second sub-pixel in the direction of the second diagonal is greater than the length of the second sub-pixel in the direction of the first diagonal.
  • a range of a minimum distance of a boundary of the two third sub-pixels in a direction of the second diagonal line is 8-14 microns.
  • the first sub-pixel, the second sub-pixel, and the third sub-pixel each include an anode, the plurality of main signal lines and the auxiliary signal The line is in the same layer as the anode.
  • the first sub-pixel is a blue sub-pixel
  • the second sub-pixel is a red sub-pixel
  • the third sub-pixel is a green sub-pixel.
  • At least one embodiment of the present disclosure further provides a display substrate including: a plurality of pixel groups, a plurality of main signal lines, and auxiliary signal lines, each of the pixel groups including two first sub-pixels, two second sub-pixels, and two a third sub-pixel, in each pixel group, a line connecting a center of the two first sub-pixels and a center of the two second sub-pixels forms a rectangle, the rectangle including a first axis of symmetry and a second axis of symmetry perpendicular to the first axis of symmetry, the two third sub-pixels are arranged along a direction of the second axis of symmetry, and are respectively located on opposite sides of the first axis of symmetry, and a plurality of pixels
  • the group forms a pixel group column along a direction of the second symmetry axis, and in the direction of the second symmetry axis, two adjacent pixel groups share one first sub-pixel and one second sub-pixel, in each pixel group
  • a distance between a center of two adjacent pixel groups of adjacent pixel group columns in a direction of the second symmetry axis is a symmetry of the rectangle along the second symmetry Half the length in the direction of the axis.
  • the two third sub-pixels are symmetrically disposed about the first axis of symmetry.
  • the centers of the two third sub-pixels are located on the second symmetry axis.
  • the plurality of main signal lines are configured to provide a reference voltage or a common voltage to the plurality of pixel groups.
  • the shapes of the first sub-pixel and the second sub-pixel are both hexagonal, and the shapes of the two third sub-pixels are all pentagons. .
  • At least one embodiment of the present disclosure also provides a display device comprising the display substrate according to any of the above.
  • FIG. 1 is a partial schematic view of a display substrate according to an embodiment of the present disclosure
  • FIG. 2A is a schematic diagram of an array of display substrates according to an embodiment of the present disclosure.
  • 2B is a partial array diagram of a display substrate according to an embodiment of the present disclosure.
  • 2C is a partial array diagram of another display substrate according to an embodiment of the present disclosure.
  • FIG. 3 is a schematic structural view of a repeating unit in the display substrate shown in FIG. 1;
  • FIG. 4 is another partial schematic view of a display substrate according to an embodiment of the present disclosure.
  • Figure 5 is a cross-sectional view of the display substrate taken along line P-P' of Figure 4;
  • 6A is a schematic structural diagram of a pixel circuit
  • 6B is a schematic partial cross-sectional structural view of a display substrate according to an embodiment of the present disclosure.
  • FIG. 7A is a schematic diagram showing a grouping of virtual pixels in a repeating unit of the display substrate shown in FIG. 1;
  • FIG. 7B is another schematic diagram of grouping of virtual pixels in a repeating unit of the display substrate shown in FIG. 1;
  • FIG. 8 is a schematic diagram of a display substrate according to another embodiment of the present disclosure.
  • FIG. 9 is a schematic diagram of a pixel group in the display substrate shown in FIG. 8;
  • FIG. 10 is a schematic diagram of a column of pixel groups in the display substrate shown in FIG. 8;
  • FIG. 11 is a schematic diagram of two columns of pixel groups in the display substrate shown in FIG. 8;
  • FIG. 12 is a schematic diagram of a display substrate according to still another embodiment of the present disclosure.
  • FIG. 13 is a schematic diagram of a pixel group in the display substrate shown in FIG. 12; FIG.
  • FIG. 14 is a schematic diagram of a column of pixel groups in the display substrate shown in FIG. 12;
  • FIG. 15 is a schematic diagram of two columns of pixel groups in the display substrate shown in FIG. 12;
  • FIG. 16 is a schematic block diagram of a display device according to an embodiment of the present disclosure.
  • At least one embodiment of the present disclosure provides a display substrate and a display device, which realizes signal line gridding by passing a signal line between two adjacent third sub-pixels, thereby improving stability of a reference voltage signal and improving display.
  • the display effect of the panel is provided.
  • FIG. 1 is a partial schematic view of a display substrate according to an embodiment of the present disclosure.
  • FIG. 2A is a schematic diagram of an array of display substrates according to an embodiment of the present disclosure
  • FIG. 2B is a display substrate according to an embodiment of the present disclosure.
  • FIG. 2C is a partial schematic diagram of another display substrate according to an embodiment of the present disclosure
  • FIG. 3 is a schematic structural view of a repeating unit in the display substrate shown in FIG. 1.
  • the display substrate 10 provided by the embodiment of the present disclosure includes a plurality of repeating units 100 , a plurality of main signal lines 21 , and auxiliary signal lines 22 .
  • Each of the repeating units 100 includes a first sub-pixel R1, a second sub-pixel B1, and two third sub-pixels G1 and G2 that are spaced apart.
  • one first sub-pixel R1 and one second sub-pixel B1 are arranged along the first direction X
  • the two third sub-pixels G1 and G2 are arranged along the second direction Y, the first direction X and the The two directions Y are in different directions.
  • Two third sub-pixels G1 and G2 are located between two adjacent main signal lines 21, and at least one auxiliary signal line 22 is disposed between adjacent two main signal lines 21, and the auxiliary signal line 22 and two adjacent main signals are disposed.
  • the line 21 is connected and passes through the interval between the two third sub-pixels G1 and G2.
  • each repeating unit 100 For example, four sub-pixels in each repeating unit 100 form two pixels, and the first sub-pixel and the second sub-pixel in the repeating unit 100 are shared by the two pixels, respectively.
  • the pixels in the plurality of repeating units 100 form a pixel array.
  • the sub-pixel density In the first direction of the pixel array, the sub-pixel density is 1.5 times the virtual pixel density, and in the second direction of the pixel array, the sub-pixel density is 1.5 of the virtual pixel density. Times.
  • the boundary of each pixel is also very blurred, and thus, the embodiment of the present disclosure does not for each pixel.
  • the shape is limited.
  • the pixel in the embodiment of the present disclosure is not a pixel in a strict sense, that is, one pixel is defined by a complete one of the red sub-pixel, one green sub-pixel, and one blue sub-pixel. Therefore, the pixel in the present disclosure may be referred to as a pixel. Virtual pixel.
  • the pixels and the first sub-pixel, the second sub-pixel, and the third sub-pixel in each pixel should be distributed as uniformly as possible.
  • the first direction and the second direction identified in the drawings of the embodiments of the present disclosure are all identified from a macroscopic angle, that is, since the sub-pixel density is to be 1.5 times the pixel density, and the pixel is guaranteed as much as possible, And each sub-pixel in the pixel is uniformly distributed as a whole, so the first direction at the microscopic angle may not be completely a straight line but a wavy line, and the same is true in the second direction.
  • the first sub-pixel R1, the two third sub-pixels G1 and G2, and the second sub-pixel B1 are sequentially arranged in the first direction X. That is, in the first direction X, the two third sub-pixels G1 and G2 are located between the first sub-pixel R1 and the second sub-pixel B1.
  • first direction X and the second direction Y are respectively two directions perpendicular to each other in the same plane, that is, the first direction X and the second direction Y may be perpendicular to each other.
  • an interval between the two third sub-pixels G1 and G2 is provided with an auxiliary signal line 22 from which the auxiliary signal line 22 is spaced from between the two third sub-pixels G1 and G2 .
  • two vertices of a first diagonal of one parallelogram are respectively located in the first sub-pixel R1 and the second sub-pixel B1, and the second diagonal of the parallelogram
  • the two vertices are located in the two third sub-pixels G1 and G2, respectively.
  • a line connecting the center of the first sub-pixel R1, the center of the second sub-pixel B1, and the centers of the two third sub-pixels G1 and G2 is formed.
  • a parallelogram 30 is formed in each repeating unit 100.
  • the center of the first sub-pixel R1 and the center of the second sub-pixel B1 coincide with the two vertices of the first diagonal 301 of the parallelogram 30, respectively, and the centers of the two third sub-pixels G1 and G2 are respectively parallel to the parallelogram 30.
  • the two vertices of the second diagonal 302 coincide.
  • the “center” (eg, the theoretical center) of the sub-pixel may refer to a sub-pixel (eg, a first sub-pixel, a second sub-pixel, or a third sub-pixel) unless otherwise specified.
  • the geometric center of the ideal shape When designing a pixel arrangement, the sub-pixels are typically designed in a regular shape, such as a hexagon, a pentagon, a trapezoid, or other shape.
  • the center of the sub-pixel may be the geometric center of the regular shape described above.
  • the shape of the formed sub-pixels generally deviates from the regular shape of the above design.
  • the corners of the shape of the above rule may become rounded, and therefore, the shape of the sub-pixel may be a rounded figure.
  • the shape of the actually fabricated sub-pixel may also have other variations from the shape of the design.
  • the shape of a sub-pixel designed as a hexagon may become an approximately elliptical shape in actual fabrication. Therefore, the center of the sub-pixel may not be the strict geometric center of the irregular shape of the sub-pixel formed.
  • the center of the sub-pixel may have a certain offset from the geometric center of the shape of the sub-pixel.
  • the center of the sub-pixel refers to any point in the area enclosed by a specific point on the radiant line of each point of the sub-pixel from the geometric center of the sub-pixel, the specific point on the radiant line is at a distance from the geometric center 1 /3 The length of the radiation segment.
  • the definition of the center of the sub-pixel applies to the center of the sub-pixel shape of the regular shape, and also to the center of the sub-pixel of the irregular shape.
  • the relationship between the position involving the center of the sub-pixel and the position of the sub-pixel center and other objects in the present disclosure may also be a certain error.
  • a line connecting the centers of sub-pixels or a line passing through the center of a sub-pixel if the lines satisfy corresponding other definitions (for example, an extending direction), the lines may pass through the area enclosed by the specific point of the above-mentioned radiant line segment.
  • the center of the sub-pixel is located on a certain line, which means that the line passes through a region enclosed by a specific point of the above-mentioned radiation segment.
  • the coincidence described in the present disclosure it is meant that at least 70% of the area of the corresponding sub-pixel or other component can be overlapped; for the mirror symmetry described in the present disclosure, the corresponding sub-image after mirroring operation The pixels can be overlapped by at least 70% of the area.
  • the first diagonal 301 is longer than the second diagonal 302.
  • the first diagonal 301 and the second diagonal 302 are perpendicular to each other, and the direction of the first diagonal 301 is parallel to the first direction X, and the direction of the second diagonal 302 is The two directions are parallel.
  • the first direction X is the row direction
  • the second direction Y is the column direction.
  • the plurality of repeating units 100 are repeatedly arranged in the direction of the first diagonal 301 (ie, the first direction X) to form a plurality of repeating unit rows, and the plurality of repeating unit rows are along the direction of the second diagonal 302 (ie, the second direction) Y) Arrange. That is, the plurality of repeating units 100 are arranged in an array along the direction of the first diagonal 301 (ie, the first direction X) and the direction of the second diagonal 302 (ie, the second direction Y).
  • the center line of the third sub-pixel among the two repeating units of the adjacent column of the odd-numbered repeating unit row or the even-numbered repeating unit row is in the direction of the second diagonal line 302 (ie, the first The minimum length h3 in the two directions Y) is greater than 1.5 times the length of the first sub-pixel R1 or the second sub-pixel B1 in the direction of the second diagonal 302.
  • the first sub-pixel R1 or the second sub-pixel B1 in the direction of the second diagonal 302.
  • two third sub-pixels G1 and G2 are sequentially arranged in the second direction Y, the repeating unit 100 and the repeating unit 100'' are located in the same column, and the repeating unit 100 is located in the second In the row, the repeating unit 100'" is located in the fourth row, such that the repeating unit 100 and the repeating unit 100"" are two repeating units located in the adjacent even repeating unit row and in the same column, and the minimum length h3 represents the number in the repeating unit 100.
  • the length of the center line of the third sub-pixel G2 and the third sub-pixel G1 of the repeating unit 100" ".
  • the first sub-pixel R1, the two third sub-pixels G1 and G2, and the second sub-pixel B1 of each repeating unit 100 are sequentially arranged in the first direction X.
  • the first sub-pixel R1, the two third sub-pixels G1 and G2, and the second sub-pixel B1 of each repeating unit 100 may still be sequentially arranged along the first direction X, where The first direction X is a column direction, and the second direction Y is a row direction. That is, the repeating unit 100 shown in FIG. 2B is rotated by 90 degrees as a whole to obtain the repeating unit shown in FIG. 2C.
  • the plurality of repeating units 100 are repeatedly arranged along the direction of the first diagonal (ie, the first direction X) to form a plurality of repeating unit columns, and the plurality of repeating unit columns are in the direction of the second diagonal (ie, the second direction Y) arrangement.
  • the center line of the third sub-pixel of the two repeating units of the adjacent odd-numbered repeating unit column or the even-numbered repeating unit column in the same row is in the direction of the second diagonal (ie,
  • the minimum length h3' in the two directions Y) is greater than 1.5 times the length of the first sub-pixel R1 or the second sub-pixel B1 in the direction of the second diagonal (ie, the second direction Y).
  • two third sub-pixels G1 and G2 are sequentially arranged in the second direction Y, the repeating unit 101 and the repeating unit 101' are located in the same row, and the repeating unit 101 is located in the first column.
  • the repeating unit 101' is located in the third column, such that the repeating unit 101 and the repeating unit 101' are two repeating units located in adjacent odd columns and in the same row, and the minimum length h3' represents the third sub-pixel G1 in the repeating unit 101.
  • the length of the line connecting the center of the third sub-pixel G2 in the repeating unit 101' is the third column.
  • the length of the second diagonal 302 is greater than half the length of the first sub-pixel R1 or the second sub-pixel B1 in the direction of the second diagonal 302.
  • the minimum distance of the boundary of the two third sub-pixels G1 and G2 in the direction of the second diagonal 302 (ie, the second direction Y) H1 is greater than or equal to the boundary of the adjacent first sub-pixel R1 and the boundary of the second sub-pixel B1 of the adjacent two repeating units in the direction of the first diagonal 301 (ie, the first direction X)
  • the minimum distance h2 in the direction of the first diagonal 301 is greater than or equal to the boundary of the adjacent first sub-pixel R1 and the boundary of the second sub-pixel B1 of the adjacent two repeating units in the direction of the first diagonal 301.
  • the length of each sub-pixel in the direction of the first diagonal or the direction of the second diagonal indicates the direction of the first sub-pixel or the second diagonal of each sub-pixel.
  • the maximum distance in the direction Taking the first sub-pixel R1 as an example, when the shape of the first sub-pixel R1 is a rectangle, the maximum distance of the first sub-pixel R1 along the first diagonal is the side length of the rectangle in the first direction X.
  • the maximum distance in the direction of the second diagonal line of the first sub-pixel R1 is the side length of the rectangle in the second direction Y.
  • the maximum distance of the first sub-pixel R1 along the direction of the second diagonal is the mid-perpendicular of the line connecting the two focal points The distance between two intersections with the circumference of a long ellipse.
  • the parallelogram 30 may be a diamond shape such that the first sub-pixel R1 and the second sub-pixel B1 are symmetrically disposed with respect to the second diagonal 302, and the centers of the two third sub-pixels G1 are symmetrically disposed with respect to the first diagonal 301.
  • a plurality of repeating units 100 are repeatedly arranged along the direction of the first diagonal 301 (ie, the first direction X) to form a repeating unit row, and a plurality of repeating unit rows are along
  • the directions of the two diagonal lines 302 i.e., the second direction Y
  • the centers of the intervals of the adjacent two repeating units 100 of the odd-numbered rows in the direction of the first diagonal line 301 are located in the repeating unit 100 of the even-numbered rows.
  • An extension of the line connecting the centers of the third sub-pixels G1 and G2 ie, the second diagonal line 302).
  • the center of the interval of the adjacent two repeating units 100 of the even rows is located on the extension line of the line connecting the centers of the two third sub-pixels G1 and G2 in the odd-numbered repeating unit 100 (ie, the second diagonal 302) .
  • a plurality of repeating units 100 are repeatedly arranged in the direction of the first diagonal 301 (ie, the first direction X) to form a repeating unit column, and a plurality of repeating unit columns are along
  • the directions of the two diagonal lines 302 ie, the second direction Y
  • the centers of the intervals of the adjacent two repeating units in the odd-numbered columns in the direction of the first diagonal line 301 are located in the two third sub-pixels G1 of the even-numbered columns.
  • the plurality of main signal lines 21 extend in the same direction, and the auxiliary signal lines 22 are different from the extending direction of the plurality of main signal lines 21.
  • a plurality of main signal lines 21 and a plurality of auxiliary signal lines 22 are arranged in a grid shape, and a plurality of main signal lines 21 and a plurality of auxiliary signal lines 22 are electrically connected.
  • the auxiliary signal line 22 extends in the first direction X, and the plurality of main signal lines 21 extend in the second direction Y.
  • extended means that the plurality of main signal lines 21 and the auxiliary signal lines 22 are substantially aligned, however, as shown in FIG. 2A, the plurality of main signal lines 21 are not linear at the microscopic level, but The wave line extends in the second direction Y; the auxiliary signal line 22 is not linear in the microscopic direction, but extends in a curved shape along the first direction X.
  • each main signal line 21 extends in a second direction Y, and each main signal line 21 has a wave shape on the same side of the main signal line 21 (for example, right in FIG. 2A). Side), if the wave-shaped crest portion is adjacent to the first sub-pixel R1, the wavy trough portion is adjacent to the second sub-pixel B1, for example, on the other side of the main signal line 21 (for example, in FIG.
  • the wave-shaped peak portion On the left side, if the wave-shaped peak portion is adjacent to the second sub-pixel B1, the wave-shaped trough portion is adjacent to the two third sub-pixels G1 and G2, that is, the wave-shaped peak portion is located in the same repeat Between adjacent first sub-pixels R1 and second sub-pixels B1 in the cell row, the wavy trough portions are located between two adjacent third sub-pixels and second sub-pixels in the same repeating cell row. It should be noted that, as shown in FIG. 2A, in some embodiments of the present disclosure, a portion of the wavy main signal line 21 that protrudes to the right represents a trough, and a wavy main signal line 21 protrudes to the left. Partially indicates the peak.
  • a portion of the wavy main signal line 21 that protrudes to the right side may also represent a peak.
  • a portion of the wavy main signal line 21 that protrudes to the left represents a trough, thereby being on the main signal line.
  • the undulating peak portion is adjacent to the second sub-pixel B1
  • the wavy trough portion is adjacent to the first sub-pixel R1.
  • the first sub-pixel B1 is located on the left side of the two third sub-pixels G1 and G2, and the second sub-pixel B1 is located on the right of the two third sub-pixels G1 and G2. side.
  • a main signal line 21 corresponds to a peak in an even-numbered repeating unit, a portion of the main signal line 21 corresponding to an odd-numbered repeating unit is a trough; or a main signal line 21 corresponds to an odd-numbered repeating unit in which a portion is a peak.
  • the main signal line 21 corresponds to a portion of the even-numbered repeating unit as a trough.
  • the plurality of main signal lines 21 are sequentially arranged in the first direction X, the peaks and troughs of the adjacent two main signal lines 21 correspond.
  • the plurality of main signal lines 21 include a first main signal line 210, a second main signal line 211, a third main signal line 212, and a fourth main signal line 213, and the first main signal line 210 is located.
  • the portion in the first row repeating unit is a trough, the portion of the second main signal line 211 located in the first row repeating unit is a peak, and the portion of the third main signal line 212 in the first row repeating unit is a trough, and the fourth The portion of the main signal line 213 located in the first row repeating unit is a peak; correspondingly, the portion of the first main signal line 210 located in the second row repeating unit is a peak, and the second main signal line 211 is located at the second row repeating unit.
  • the portion in the middle is a trough, the portion of the third main signal line 212 in the second row repeating unit is a peak, and the portion of the fourth main signal line 213 in the second row repeating unit is a trough.
  • the two third sub-pixels G1 and G2 are arranged along the extending direction of the main signal line 21, that is, the extending direction of the main signal line 21 is the second direction Y, and is in the same direction as the main signal line 21.
  • the first sub-pixel R1 and the second sub-pixel B1 are located on both sides of the two third sub-pixels G1 and G2, respectively. As shown in FIG.
  • the first sub-pixel R1 is located on the left side of the two third sub-pixels G1 and G2, and the second sub-pixel B1 is located in the two third sub-pixels.
  • the arrangement direction of the first sub-pixel R1, the second sub-pixel B1, and the two third sub-pixels G1 and G2 is perpendicular to the extending direction of the plurality of main signal lines 21.
  • the arrangement direction of the first sub-pixel R1, the second sub-pixel B1, and the two third sub-pixels G1 and G2 is the first direction X
  • the extending direction of the plurality of main signal lines 21 is the second direction Y.
  • the first direction X and the second direction Y are perpendicular to each other.
  • one of the adjacent two main signal lines 21 is located on a side of the first sub-pixel R1 away from the two third sub-pixels G1 and G2, and two adjacent main signals The other one of the lines 21 is located on the side of the second sub-pixel B1 close to the two sub-pixels G1 and G2. As shown in FIGS.
  • the first main signal line 210 and the second main signal line 211 are adjacent two main signal lines 21, and in one example, in the repeating unit 100 located in the second row, the first The main signal line 210 is located on a side of the first sub-pixel R1 away from the two third sub-pixels G1 and G2, and the second main signal line 211 is located on a side of the second sub-pixel B1 close to the two sub-pixels G1 and G2. That is, in the first direction X, the first main signal line 210 is located between the adjacent two repeating units 100, the second main signal line 211 is located in the second sub-pixel B1 and the two third in the repeating unit 100. Between the sub-pixels G1 and G2.
  • the first main signal line 210 is located on a side of the first sub-pixel R1 close to the two third sub-pixels G1 and G2, and the second main signal line 211 is located
  • the second sub-pixel B1 is away from one side of the two third sub-pixels G1 and G2. That is, in the first direction X, the first main signal line 210 is located between the first sub-pixel R1 and the two third sub-pixels G1 and G2 in the repeating unit, and the second main signal line 211 is located adjacent to the two Between repeating units 100.
  • one of the adjacent two main signal lines 21 is located on a side of the first sub-pixel R1 close to the two third sub-pixels G1 and G2,
  • the other of the adjacent two main signal lines 21 is located on the side of the second sub-pixel B1 close to the two third sub-pixels G1 and G2. That is, in the first direction X, the first main signal line 210 is located between the first sub-pixel R1 and the two third sub-pixels G1 and G2 in the repeating unit, and the second main signal line 211 is located in the repeating unit 100. Between the second sub-pixel B1 and the two third sub-pixels G1 and G2.
  • the positional relationship of the first main signal line 210 and the second main signal line 211 is opposite to that described in the above example. That is, as shown in FIG. 2A, in the first row, the adjacent repeating unit 100' and the repeating unit 100" are included, and in the first row, the first main signal line 210 is located in the second sub-unit of the repeating unit 100'.
  • the pixel B1 is adjacent to one side of the two sub-pixels G1 and G2, and the second main signal line 211 is located at a side of the first sub-pixel R1 in the complex unit 100" away from the two third sub-pixels G1 and G2.
  • the first main signal line 210 is located between the second sub-pixel B1 and the two third sub-pixels G1 and G2 in the repeating unit 100', and the second main signal line 211 is located in the phase Between the adjacent repeating unit 100' and the repeating unit 100".
  • FIG. 4 is another partial schematic view of a display substrate according to an embodiment of the present disclosure
  • FIG. 5 is a cross-sectional view of the display substrate along the line P-P' of FIG.
  • the main signal line 21 in the second direction Y, includes a first portion 2101 and a second portion 2102.
  • the first portion 2101 is located between the second sub-pixel B1 and the two third sub-pixels G1 and G2 in the repeating unit 100
  • the second portion 2102 is located between the adjacent repeating units 100. That is, the portion of the first main signal line 210 in the first row is the first portion 2101, and the portion of the first main signal line 210 in the second row is the second portion 2102.
  • the first portion 2101 may be a straight line, and an extension line of the first portion 2101 in the second direction Y passes through the center of the first sub-pixel R1, and the second portion 2102 may be away from the two third sub-pixels G1 and G2 along the first sub-pixel R1
  • the outline of the side edges is routed and is similar in shape to the side of the first sub-pixel R1 away from the two third sub-pixels G1 and G2.
  • the main signal line 21 may extend in the second direction Y with the first portion 2101 and the second portion 2102 as one repeating unit.
  • the first sub-pixel R1 may be symmetrical about the axis of symmetry 11, and the axis of symmetry 11 is parallel to the second direction Y, and the extension line of the first portion 2101 in the second direction Y may coincide with the axis of symmetry 11.
  • the shape of the first sub-pixel R1 is a hexagon and the axis of symmetry 11 passes through the two vertices of the hexagon
  • the shape of the second portion 2102 may be the two sides and the upper side of the isosceles trapezoid.
  • the shape of the composition If the shape of the first sub-pixel R1 is a long ellipse and the axis of symmetry 11 passes through the two focal points of the oblong shape, the shape of the second portion 2102 may be semi-elliptical.
  • the portion of the second main signal line 211 located in the first row is the same as the portion of the first main signal line 210 located in the second row, and the portion of the second main signal line 211 located in the second row is located at the first main signal line 210
  • the parts of a line are the same.
  • the first row can be an odd row
  • the second row can be an even row
  • the first line may also be an even line
  • the second line may be an odd line
  • the auxiliary signal line 22 can be branched from the main signal line 21.
  • the auxiliary signal line 22 may be branched from one of the adjacent two main signal lines 21 (for example, the first main signal line 210 shown in FIG. 1); then, the auxiliary signal line 22 is along The extension direction of the main signal line 21 extends in a different direction and passes through the interval between the two third sub-pixels G1 and G2; finally, the auxiliary signal line 22 extends to the other of the adjacent two main signal lines 21 ( For example, at the second main signal line 211) shown in FIG.
  • the auxiliary signal line 22 may be branched from the intersection of the first portion 2101 and the second portion 2102 of the first main signal line 210, and approached two along the first sub-pixel R1.
  • the outlines of the sides of the third sub-pixels G1 and G2 are routed. That is, the routing direction of the auxiliary signal line 22 is different from the wiring direction of the second portion 2102 of the first main signal line 210.
  • the auxiliary signal line 22 extends to the interval between the two third sub-pixels G1 and G2
  • the auxiliary signal line 22 extends to the interval between the two third sub-pixels G1 and G2.
  • the auxiliary signal line 22 extends to the second main signal line 211 adjacent to the first main signal line 210.
  • each of the auxiliary signal lines 22 may include a first line segment 221, a second line segment 222, and a third line segment 223, and the third line segment 223 of each of the auxiliary signal lines 22 extends along the first direction X.
  • the second line segment 222 of each of the auxiliary signal lines 22 may extend along the second direction Y.
  • the extending direction of the first line segment 221 is different from the first direction X and the second direction Y, for example, multiple auxiliary signal lines.
  • the first line segment 221 of the 22 has the same extending direction, that is, the first line segment 221 of the plurality of auxiliary signal lines 22 is parallel;
  • the second line segment 222 of the plurality of auxiliary signal lines 22 has the same extending direction, that is, the plurality of auxiliary signal lines 22
  • the second line segments 222 are parallel;
  • the third line segments 223 of the plurality of auxiliary signal lines 22 extend in the same direction, that is, the third line segments 223 of the plurality of auxiliary signal lines 22 are also parallel.
  • the plurality of repeating unit rows are along the direction of the second diagonal (ie, the second direction)
  • the first line segment 221 is located between the first sub-pixel R1 and the second sub-pixel B1 adjacent to the first sub-pixel R1 in the adjacent repeating unit row.
  • the third line segment 223 is located between the two third sub-pixels G1 and G2 in the same repeating unit, and the second line segment 222 is configured to connect the first line segment 221 and the third line segment 223.
  • the second line segment 222 is located between the first sub-pixel R1 and the third sub-pixel G1 in the same repeating unit.
  • the projection of the third line segment 222 of the auxiliary signal line 22 in the odd repeating unit row in the second direction Y and the projection of the third line segment 222 of the auxiliary signal line 22 in the even repeating unit row in the second direction Y are not overlapping.
  • the third line segments 222 of all the auxiliary signal lines 22 located in the same odd repeating unit row are on the same straight line, and the third line segments 222 of all the auxiliary signal lines 22 in the same even repeating unit row are on the same straight line.
  • the plurality of repeating unit columns are in a direction of the second diagonal (ie, the second The direction Y) is arranged, that is, in the example shown in FIG. 2C, the first line segment 221 is located between the first sub-pixel R1 and the second sub-pixel B1 of the adjacent repeating unit column directly adjacent to the first sub-pixel R1.
  • the third line segment 223 is located between the two third sub-pixels G1 and G2 in the same repeating unit, and the second line segment 222 is configured to connect the first line segment 221 and the second line segment 223.
  • the second line segment 222 is located between the first sub-pixel R1 and the third sub-pixel G1 in the same repeating unit.
  • the projection of the third line segment of the auxiliary signal line 22 located in the odd repeating unit column in the second direction Y and the projection of the third line segment of the auxiliary signal line 22 located in the even repeating unit column in the second direction Y do not overlap.
  • the third line segments 222 of all the auxiliary signal lines 22 located in the same odd repeating unit column are on the same straight line, and the third line segments 222 of all the auxiliary signal lines 22 in the same even repeating unit column are on the same straight line.
  • a secondary signal line branched from an odd-numbered main signal line (for example, the first main signal line 210 and the third main signal line 212) is located in an even-numbered repeating unit line, from an even-numbered main signal line (for example, The auxiliary signal lines obtained by bifurcation of the two main signal lines 211 and the fourth main signal lines 213 are located in odd repeating unit rows.
  • the auxiliary signal lines 22 located between the first main signal line 210 and the second main signal line 211 are located in even-numbered repeating unit rows.
  • the auxiliary signal lines 22 located between the third main signal line 212 and the fourth main signal line 213 are located in the even repeating unit row and are located in the second main signal.
  • the auxiliary signal lines 22 between the line 211 and the third main signal line 212 are located in the odd repeating unit rows.
  • the third line segment 223 of the auxiliary signal line 22 located between the first main signal line 210 and the second main signal line 211 passes between the two third sub-pixels corresponding thereto in the even-numbered repeating unit row
  • the third line segment 223 of the auxiliary signal line 22 located between the second main signal line 211 and the third main signal line 212 passes between the two third sub-pixels corresponding thereto in the odd-numbered repeating unit row.
  • the first sub-pixel R1, the second sub-pixel B1, and the third sub-pixels G1 and G2 each include an anode.
  • the first sub-pixel R1 includes a first light-emitting element including a first anode, a first cathode, and a first light-emitting layer, the first light-emitting layer being disposed between the first anode and the first cathode.
  • the second sub-pixel B1 includes a second light-emitting element including a second anode, a second cathode, and a second light-emitting layer, and the second light-emitting layer is disposed between the second anode and the second cathode.
  • the two third sub-pixels G1 and G2 each include a third light-emitting element including a third anode, a third cathode, and a third light-emitting layer, and the third light-emitting layer is disposed between the third anode and the third cathode.
  • the main signal line 21 and the auxiliary signal line 22 may be disposed in the same layer as the anode of the light emitting element.
  • the first light emitting element includes a first anode 401
  • the second light emitting element includes a second anode 402
  • the third light emitting element includes a third anode 403.
  • the main signal line 21, the auxiliary signal line 22, the first anode 401, the second anode 402, and the third anode 403 are located in the same layer.
  • the "same layer" setting of different components means that they are located on the surface of the same layer structure or they are formed by patterning the same material layer.
  • at least a portion of the plurality of main signal lines and auxiliary signal lines are made of the same material as the anode, and the plurality of main signal lines and the auxiliary signal lines are prepared from different materials from the anode.
  • the line width of the main signal line 21 and the auxiliary signal line 22 may be 3 micrometers ( ⁇ m).
  • the minimum length between the boundary of the first main signal line 210 adjacent to the first sub-pixel R1 and the boundary of the first anode 401 may be 3 ⁇ m.
  • the minimum length between the boundary of the auxiliary signal line 22 and the boundary of the adjacent first anode 401 and second anode 40 2 may be 3 ⁇ m.
  • the minimum length between the boundary of the second main signal line 211 and the boundary between the adjacent second anode 402 and the third anode 403 may also be 3 ⁇ m.
  • the main signal line 21 and the auxiliary signal line 22 may be formed of the same conductive material as the anode of the light emitting element (for example, the first anode 401, the second anode 402, and the third anode 403).
  • the conductive material may be indium tin oxide (ITO), silver (Ag), or the like.
  • a convex portion is included in each sub-pixel.
  • the convex portions of the respective sub-pixels (for example, the first sub-pixel R1, the second sub-pixel B1, and the third sub-pixel G1) are used to connect the signal lines of the anode and the anode of the light-emitting element, and the material of the convex portion of each sub-pixel Same as the anode, namely indium tin oxide (ITO), silver (Ag), and the like.
  • ITO indium tin oxide
  • Ag silver
  • the anode may be connected to the anode signal line through the via penetrating through the dielectric layer at the protruding portion, but embodiments according to the present disclosure are not limited thereto.
  • the protruding portion of each sub-pixel is located in the same layer as the main signal line 21 and the auxiliary signal line 22, and does not overlap each other, that is, in the arrangement of the above-mentioned main line number line and auxiliary signal line, the main signal line 21 and the auxiliary signal
  • the line 22 needs to circumscribe the convex portions of the respective sub-pixels to prevent the above-mentioned signal lines from being short-circuited with the anode.
  • the first sub-pixel R1 includes a first anode, and the shape of the first anode is a hexagon, and the hexagon is symmetric about the axis of symmetry 11 and the protrusion of the first sub-pixel R1
  • the portion indicates a portion other than the first anode in the first sub-pixel R1, that is, a portion which protrudes outward from one side of the hexagon in the first sub-pixel R1 in FIG.
  • the second sub-pixel B1 includes a second anode, and the shape of the second anode is also hexagonal, and the convex portion of the second sub-pixel B1 represents a portion of the second sub-pixel B1 other than the second anode.
  • the third sub-pixel G1 includes a third anode, and the shape of the third anode may be a right-angled bottom angle symmetric pentagon, and the convex portion of the third sub-pixel G1 represents a third sub-pixel G1 other than the symmetric pentagon region. section.
  • the main signal line 21 and the auxiliary signal line 22 may be signal lines of a common voltage, and thus, the main signal line 21 and the auxiliary signal line 22 are configured to provide a common to the plurality of repeating units 100.
  • Voltage If the display substrate 10 is an organic light emitting diode display substrate, the main signal line 21 and the auxiliary signal line 22 may be signal lines of a reference voltage, and thus, the main signal line 21 and the auxiliary signal line 22 are configured to be provided to the plurality of repeating units 100. Reference voltage.
  • FIG. 6A is a schematic structural diagram of a pixel circuit.
  • the pixel circuit can be realized by an 8T1C mode.
  • the pixel circuit includes a driving transistor T3, a data input transistor T4, a storage capacitor C, a reset transistor T1, a first threshold compensation transistor T2, a second threshold compensation transistor T8, a first voltage drop compensation transistor T5, a second voltage drop compensation transistor T7, and The light control transistor T6.
  • the driving transistor T3 is for driving the light emitting element EL to emit light
  • the data input transistor T4 is configured to write the data voltage V data to the gate of the driving transistor T3 under the control of the scanning signal Ga
  • the storage capacitor C is configured to store the data signal V data And it is held at the gate of the driving transistor T3.
  • the first threshold compensation transistor T2 and the second threshold compensation transistor T8 are configured to write a threshold compensation signal to the gate of the driving transistor T3 to compensate for the threshold voltage drift of the driving transistor T3.
  • the first voltage drop compensating transistor T5 and the second voltage drop compensating transistor T7 are configured to write a reference voltage signal V ref to the gate of the driving transistor T3.
  • the reset transistor T1 is configured to write a reset voltage Vint to the gate of the driving transistor T3 under the control of the reset signal Re.
  • the light emission controlling transistor T6 is configured to control the light emitting element EL and the driving transistor T3 to be turned on or off under the control of the light emitting signal EM.
  • the illuminating current I OLED flowing through the driving transistor T3 can be expressed as:
  • I OLED 0.5 ⁇ n C ox (W/L)(V data -V ref ) 2
  • V data represents the data voltage
  • V ref represents the reference voltage
  • ⁇ n is the electron mobility of the driving transistor T3
  • C ox is the gate unit capacitance of the driving transistor T3
  • W is the channel width of the driving transistor T3
  • L is The channel of the driving transistor T3 is long.
  • the illuminating current I OLED is related to the reference voltage V ref and the data voltage V data .
  • the main signal line 21 and the auxiliary signal line 22 are used to supply the reference voltage V ref to the pixel circuit.
  • the resistance of the signal line is small, the resistance interconnection is good, and the voltage drop of the reference voltage signal V ref is lower, the control capability is better, and thus the improvement can be improved.
  • the stability of the reference voltage signal V ref improves the display effect of the display panel.
  • the above-described driving circuit structure is merely exemplary, and the display device according to an embodiment of the present disclosure is not limited thereto, and any suitable driving circuit structure may be employed.
  • the plurality of main signal lines 21 are configured to provide a reference voltage or a common voltage to a plurality of repeating units.
  • the first sub-pixel, the second sub-pixel, and the third sub-pixel each include an anode, and the plurality of main signal lines and the auxiliary signal lines are in the same layer as the anode.
  • FIG. 6B is a cross-sectional view taken along line M-M' of Figure 10.
  • a cross-sectional structure located around a green sub-pixel (third sub-pixel) is, for example, as shown in FIG. 6B.
  • the structure includes a base substrate 001 and a buffer layer 002 sequentially disposed on the base substrate, a first gate insulating layer 003, a second gate insulating layer 004, an interlayer dielectric layer 005, a planarization layer 006, and a pixel defining layer 007.
  • the thin film transistor structure including a gate 302, an active layer 301, and a drain electrode 303.
  • the thin film transistor is one of the above-mentioned pixel driving electrodes, and its connection relationship with other components can be set according to a specific pixel circuit arrangement, which will not be shown in detail herein.
  • a signal line 304 may also be included at a position in the same layer as the drain electrode 303, and the signal line 304 may also be used as a signal line of a specific function according to different pixel circuit arrangements, for example, the signal line may be a data line or a gate. Line and so on.
  • the pixel defining layer 007 can include an opening defining a sub-pixel.
  • the anode 403 of the third sub-pixel and the light-emitting layer 503 of the third sub-pixel are located in the opening of the pixel defining layer 007.
  • the anode 403 of the third sub-pixel and the light-emitting layer 503 of the third sub-pixel are in contact with each other, so that the portion in contact with each other can drive the light-emitting layer to emit light, and therefore, the anode 403 of the third sub-pixel and The portion where the light-emitting layers 503 of the third sub-pixels are in contact with each other is an effective portion where the sub-pixels can emit light.
  • the anode 403 of the third sub-pixel serves as a pixel electrode, so that different data voltages can be applied to different sub-pixels.
  • the electrode serving as the pixel electrode of the sub-pixel is not limited to the anode, and the cathode of the light emitting diode may be used as the pixel electrode. Therefore, in the embodiment of the present disclosure, the shape of the sub-pixel may refer to a shape of a portion where the pixel electrode and the light-emitting layer are in contact with each other.
  • the area of the pixel electrode may be slightly larger than the area of the light-emitting layer, or the area of the light-emitting layer may be slightly larger than the area of the pixel electrode, which is not particularly limited in the embodiment of the present disclosure.
  • the light-emitting layer herein may include the electroluminescent layer itself and other functional layers on both sides of the electroluminescent layer, for example, a hole injection layer, a hole transport layer, an electron injection layer, an electron transport layer, and the like.
  • the shape of the pixel can also be defined by a pixel defining layer.
  • a lower electrode (for example, an anode) of the light emitting diode may be disposed under the pixel defining layer, the pixel defining layer including an opening for defining a pixel, the opening exposing a portion of the lower electrode, and the light emitting layer is formed on the pixel defining layer In the middle opening, the light-emitting layer is in contact with the lower electrode, so that the light-emitting layer can be driven to emit light in this portion. Therefore, in this case, the opening of the pixel defining layer defines the shape of the sub-pixel.
  • the shapes of the various sub-pixels described in the embodiments of the present disclosure are all substantially shaped, and when the light-emitting layer or various electrode layers are formed, the edges of the sub-pixels are not guaranteed to be strictly straight and the angle is strict. Horny.
  • the corners of the respective sub-pixels are rounded. That is, although each sub-pixel shape in the drawing includes a strict angle formed by two line segments, in some embodiments, the shape of each sub-pixel may be a rounded pattern.
  • the portion of the light-emitting layer located at the corner may naturally form a rounded shape.
  • the metal etch has a draft angle, and therefore, when the luminescent layer of the sub-pixel is formed by an evaporation process, a corner of the luminescent layer may be removed.
  • the signal line formed by the main signal line 21 and the auxiliary signal line 22 can be used as a reference voltage line, and as shown in FIG. 6A, it is connected to the pixel drive circuit of each sub-pixel.
  • the signal line may be connected to the underlying pixel circuit through a via of a insulating layer thereunder.
  • the signal line may pass through layers below the main signal line 21.
  • Vias in the insulating layer are connected to the pixel circuit, via
  • the specific location can be selected according to design requirements, and the via structure is not shown in the cross section shown in FIG. 6B.
  • the mesh structure formed by the above signal lines it may be connected to a reference voltage source as a whole in a peripheral region of the display substrate.
  • a ring-shaped reference voltage signal line is included at the periphery of the display substrate, and the grid-like signal line is connected to the ring signal line, thereby inputting a reference voltage into the pixel electrode structure of each sub-pixel.
  • the pixel circuit includes at least one transistor (the first voltage drop compensation transistor T5 and/or the second voltage drop compensation transistor T7 in FIG. 6A), each of which includes a gate, an active layer, and a source and drain.
  • the signal lines are electrically connected to the source or drain of the respective transistor by vias through the insulating layer underneath.
  • the active layer of the transistor is formed of a polysilicon layer, and on both sides of the channel region of the active layer, the polysilicon layer is conductorized to form a source drain.
  • the signal line is electrically connected to the polysilicon source or drain formed by being formed by a via.
  • the transistor is a top gate transistor, and a via for electrically connecting the signal line to a source or a drain of the corresponding transistor passes through the gate metal layer and the data metal layer, and the gate metal layer and A portion of the metal pattern of the data metal layer may serve as a relay connection for via electrical connection, but embodiments in accordance with the present disclosure are not limited thereto.
  • the length of the first sub-pixel R1 in the direction of the second diagonal 302 is greater than the length of the first sub-pixel R1 in the direction of the first diagonal 301
  • the second sub-pixel B1 is The length in the direction of the second diagonal 302 is greater than the length of the second sub-pixel B1 in the direction of the first diagonal 301. That is, for example, if the shape of the first sub-pixel R1 is a rectangle, the length of the side of the first sub-pixel R1 along the first diagonal 301 is smaller than the length of the side along the second diagonal 302. If the shape of the first sub-pixel R1 is a long ellipse, the line connecting the two focal points of the oblong shape is substantially parallel to the second diagonal line 302.
  • the shape and area of the first sub-pixel R1 and the second sub-pixel B1 may be the same.
  • the first sub-pixel R1 may be symmetrical about a line in which the first diagonal 301 is located.
  • the second sub-pixel B1 may also be symmetrical about a line in which the first diagonal 301 is located.
  • the shapes of the first sub-pixel R1 and the second sub-pixel B1 may include a rectangle, a hexagon, a long ellipse, or the like.
  • the hexagon can be an equilateral hexagon or the like.
  • the shapes and areas of the two third sub-pixels G1 and G2 are the same.
  • the areas of the first sub-pixel R1 and the second sub-pixel B1 are each larger than each of the two third sub-pixels G1 and G2.
  • the shapes of the two third sub-pixels G1 and G2 each include a rectangle (for example, a square), a pentagon, a diamond, or the like.
  • the pentagon includes a right-angled bottom pentagon, a right-angled trapezoid, and the like.
  • the shapes of the two third sub-pixels G1 and G2 may be symmetrical about the first diagonal 301.
  • each sub-pixel may be specifically set according to the luminous efficiency of the luminescent material. For example, if the illuminating efficiency of the luminescent material is high, the area of the sub-pixel may be small; and the illuminating efficiency of the luminescent material is low, and the sub-pixel is The area can be larger.
  • the two third sub-pixels G1 and G2 can be formed by one opening, thereby effectively reducing the process difficulty of a high-precision metal mask (FMM).
  • the two third sub-pixels G1 and G2 may be formed by an opening to indicate an opening region in which one FMM may be shared when the light-emitting layers of the adjacent two third sub-pixels G1 and G2 are vapor-deposited. In the opening region, only the third sub-pixels G1 and G2 are formed on the portion where the luminescent material is evaporated onto the pixel electrode, so that the luminescent material which is evaporated onto the insulating paste cannot emit light.
  • the third sub-pixels G1 and G2 are sensitive color sub-pixels. Since the sensitivity of the human eye to color is different, adjacent sensitive color sub-pixels are more likely to be adjacent when the adjacent sensitive color sub-pixels are closer to each other, and the adjacent two sensitive color sub-pixels are difficult to distinguish. A situation in which the human eye is visually combined into one. Thereby, the pixel arrangement structure can improve the distribution uniformity of the sensitive color sub-pixels, thereby improving the visual resolution. It should be noted that when the pixel arrangement structure adopts the red, green and blue (RGB) mode, the above sensitive color is green.
  • RGB red, green and blue
  • the third sub-pixels G1 and G2 are green sub-pixels.
  • the first sub-pixel R1 is a red sub-pixel
  • the second sub-pixel B1 is a blue sub-pixel.
  • the first sub-pixel R1 may also be a blue sub-pixel
  • the second sub-pixel B1 is a red sub-pixel.
  • the range of the minimum distance h1 of the boundary of the two third sub-pixels G1 and G2 in the direction of the second diagonal is 8-14 micrometers ( ⁇ m) to avoid that the adjacent two third sub-pixels G1 and G2 are difficult to distinguish due to the proximity of the adjacent two third sub-pixels G1 and G2, and are visually combined by the human eye.
  • the case of two is one, so that the resulting graininess can be avoided.
  • the pixel arrangement structure can improve the distribution uniformity of the third sub-pixel, thereby improving the visual resolution.
  • the minimum distance h1 can be 10 microns.
  • FIG. 7A is a schematic diagram showing a grouping of virtual pixels in a repeating unit of the display substrate shown in FIG. 1, and FIG. 7B is another grouping diagram of virtual pixels in a repeating unit of the display substrate shown in FIG. 1.
  • the display substrate when used for a display panel, it may be driven by a Sub-Pixel Rendering (SPR) algorithm to implement virtual display.
  • SPR Sub-Pixel Rendering
  • one of the first sub-pixel R1 and the two third sub-pixels G1 and G2 forms a first dummy pixel
  • a second sub-pixel B1 and two third sub-pixels The other of the pixels G1 and G2 forms a second dummy pixel.
  • the first sub-pixel R1 and the third sub-pixel G1 form a first dummy pixel 110
  • the second sub-pixel B1 and the third sub-pixel G2 form a second dummy pixel 120.
  • the first sub-pixel R1 and the second sub-pixel B1 are both shared by the first dummy pixel and the second dummy pixel.
  • the first sub-pixel R1 and/or the second sub-pixel B1 may be divided into two sub-pixel blocks by a straight line in which the first diagonal 301 is located.
  • the first sub-pixel R1 may be divided into a first sub-pixel block R11 and a second sub-pixel block R12
  • the second sub-pixel B1 may be divided into a third sub-pixel block B11 and a fourth sub-pixel block. B12, whereby the repeating unit 100 can implement a real pixel display.
  • FIG. 7B the first sub-pixel R1 and/or the second sub-pixel B1 may be divided into two sub-pixel blocks by a straight line in which the first diagonal 301 is located.
  • the first sub-pixel R1 may be divided into a first sub-pixel block R11 and a second sub-pixel block R12
  • the second sub-pixel B1 may be divided into a third sub-pixel block B11 and a fourth sub-pixel block. B12, whereby the repeating unit 100 can implement a real pixel display.
  • the first sub-pixel block R11, the third sub-pixel G1, and the third sub-pixel block B11 form a first real pixel 110', a second sub-pixel block R12, a third sub-pixel G2, and a fourth sub-pixel.
  • Block B12 forms a second real pixel 120' such that one repeating unit 100 includes two real pixels.
  • the first sub-pixel block R11 and the second sub-pixel block R12 are symmetric about the mid-perpendicular line of the line connecting the centers of the two third sub-pixels G1 and G2 (ie, the second diagonal line 302 in FIG. 3).
  • the three sub-pixel block B11 and the fourth sub-pixel block B12 are also symmetrical about the mid-perpendicular line of the line connecting the centers of the two third sub-pixels G1 and G2.
  • first sub-pixel block R11 and the second sub-pixel block R12 may be formed by one opening, and the third sub-pixel block B11 and the fourth sub-pixel block B12 may also be formed by one opening, thereby effectively reducing the process difficulty of the FMM. .
  • FIG. 8 is a schematic diagram of a display substrate according to another embodiment of the present disclosure
  • FIG. 9 is a schematic diagram of a pixel group in the display substrate shown in FIG. 8
  • FIG. 10 is a column of pixel groups in the display substrate shown in FIG. Schematic diagram.
  • the display substrate 10 includes a plurality of pixel groups 200, a plurality of main signal lines 21, and auxiliary signal lines 22.
  • Each pixel group 200 includes two first sub-pixels R2 and R2', two second sub-pixels B2 and B2', and two third sub-pixels G1' and G2'.
  • the shapes of the two first sub-pixels R2 and R2' and the two second sub-pixels B2 and B2' are rectangular, hexagonal, oblong, or the like.
  • the shapes of the two third sub-pixels G1' and G2' are both a pentagon, a rectangle, and the like.
  • a rectangle 25 includes a first axis of symmetry 251 and a second axis of symmetry 252 perpendicular to the first axis of symmetry 251.
  • the two third sub-pixels G1' and G2' are arranged along the direction of the second axis of symmetry 252 and are respectively located in the first symmetry Both sides of the shaft 251.
  • rectangle 25 described above is for better description of the positions of the first sub-pixel, the second sub-pixel, and the third sub-pixel, and is not an actual structure.
  • the first sub-pixel R2 and the first sub-pixel R2' are symmetrically disposed with respect to a line in which the first symmetry axis 251 is located, and the second sub-pixel B2 and the second sub-pixel B2' are also related to the first symmetry axis.
  • the line where 251 is located is symmetrically set. That is, the first sub-pixel R2 and the first sub-pixel R2' are located on the first side (the right side in FIG. 9) of the straight line where the second symmetry axis 252 is located, and the second sub-pixel B2 and the second sub-pixel B2' Located on the second side of the line where the second axis of symmetry 252 is located (left side in Figure 9).
  • the shapes of the first sub-pixel R2 and the first sub-pixel R2' are symmetric with respect to a line in which the first symmetry axis 251 is located, and the shapes of the second sub-pixel B2 and the second sub-pixel B2' are also related to the first symmetry axis 251.
  • Straight line symmetrical.
  • the shapes of the first sub-pixel R2, the first sub-pixel R2', the second sub-pixel B2, and the second sub-pixel B2' may all be the same (for example, a hexagon or the like).
  • the two third sub-pixels G1' and G2' are symmetrically disposed with respect to the first symmetry axis 251.
  • the centers of the two third sub-pixels G1' and G2' are located on the second symmetry axis 252, that is, the center of the interval between the two third sub-pixels G1' and G2' coincides with the center of the rectangle 25. .
  • the shapes of the two third sub-pixels G1' and G2' may both be right-angled bottom-angle symmetrical pentagons, the base of the right-angled bottom-angle symmetrical pentagon is parallel to the first symmetry axis 251, and the second symmetry axis
  • the apex of the pentagon is symmetric with respect to the right angle base angle in the direction of 252 closer to the first axis of symmetry 251.
  • the vertical distance of the center of the third sub-pixel G1' from the first symmetry axis 251 is smaller than the vertical distance of the center of the third sub-pixel G1' and the line connecting the centers of the first sub-pixel R2 and the second sub-pixel B2.
  • the shape of the third sub-pixel G1' is symmetrical about the second symmetry axis 252, and the shape of the third sub-pixel G2' is also symmetrical about the second symmetry axis 252.
  • the plurality of pixel groups 200 form a column group of pixels along the direction of the second axis of symmetry 252, that is, the column direction of the pixel group is parallel to the second axis of symmetry 252.
  • two adjacent pixel groups share one first sub-pixel and one second sub-pixel. As shown in FIG.
  • the pixel group 200, the pixel group 200', and the pixel group 200" are located in the same column, and the pixel group 200 is adjacent to the pixel group 200', and the pixel group 200' is The pixel group 200" is adjacent, and the pixel group 200 and the pixel group 200' share the first sub-pixel R2' and the second sub-pixel B2', that is, the first sub-pixel R2' located at the overlapping portion of the pixel group 200 and the pixel group 200' and The second sub-pixel B2'.
  • the pixel group 200' and the pixel group 200" share the first sub-pixel R2 and the second sub-pixel B2, that is, the first sub-pixel R2 and the second sub-pixel B2 located in the overlapping portion of the pixel group 200 and the pixel group 200'.
  • two third sub-pixels G1' and G2' in the pixel group 200 are located between two adjacent main signal lines 21, and at least one auxiliary is disposed between two adjacent main signal lines 21.
  • the signal line 22, the auxiliary signal line 22 is connected to the adjacent two main signal lines 21, and passes through the interval between the two third sub-pixels G1' and G2'.
  • the plurality of main signal lines 21 and the auxiliary signal lines 22 are configured to provide a reference voltage or a common voltage to the plurality of pixel groups 200.
  • the plurality of pixel groups 200 form a pixel group row in the direction of the first symmetry axis 251, that is, the row direction of the pixel group is parallel to the first symmetry axis 251.
  • one row of the pixel group 200 may include a first sub-row, a second sub-row, and a third sub-row.
  • the first sub-pixel R2 and the second sub-pixel B2 are located in the first sub-row, and the two third sub-pixels G1' and G2' are located in the second sub-line, the first sub-pixel R2' and the second sub-pixel
  • the pixel B2' is located in the third sub-row.
  • the second main signal line 211 may sequentially follow the interval between the first sub-pixel R2 and the second sub-pixel B2 of the first sub-row, the first sub-pixel R2 located in the first sub-row, and The interval between the third sub-pixels G1' located in the second sub-row, the first side of the two third sub-pixels G1' and G2' located in the second sub-row in the direction of the first symmetry axis 251 (Fig. 8 And the right side of FIG.
  • the interval between the third sub-pixel G2' located in the second sub-row and the first sub-pixel R2' located in the third sub-row, and the first sub-position located in the third sub-row The spacing between the pixel R2' and the second sub-pixel B2' is routed.
  • the second main signal line 211 may also be sequentially located along the interval between the first sub-pixel R2 and the second sub-pixel B2 of the first sub-row, the second sub-pixel B2 located in the first sub-row, and the second sub- The interval between the third sub-pixels G1' of the row, the second side of the second sub-pixels G1' and G2' of the second sub-row in the direction of the first axis of symmetry 251 (Figs.
  • FIG. 11 is a schematic diagram of two columns of pixel groups in the display substrate shown in FIG.
  • the distance between the centers of the adjacent two pixel groups of the adjacent pixel group columns in the direction of the second symmetry axis 252 is half the length of the rectangle 25 in the direction of the second symmetry axis 252.
  • the pixel group 200 and the pixel group 200'" are located in adjacent pixel group columns, and the distance Q1 between the center of the pixel group 200 and the center of the pixel group 200"" is a rectangle 25 along the second axis of symmetry 252. Half of the length on the direction.
  • the center of the pixel group 200 is located on the extension line of the line connecting the centers of the first sub-pixel R2 and the second sub-pixel B2 of the pixel group 200"", and the center of the pixel group 200"" is located at the pixel group 200.
  • FIG. 12 is a schematic diagram of a display substrate according to another embodiment of the present disclosure
  • FIG. 13 is a schematic diagram of a pixel group in the display substrate shown in FIG. 12
  • FIG. 14 is a column of pixel groups in the display substrate shown in FIG. Schematic diagram.
  • the display substrate 10 includes a plurality of pixel groups 300, a plurality of main signal lines 21, and auxiliary signal lines 22.
  • Each pixel group 300 includes a first sub-unit 301 and a second sub-unit 302, the first sub-unit 301 includes a first sub-pixel R3, a second sub-pixel B3, and a third sub-pixel G1", and the second sub-unit 302 includes One sub-pixel R3, second sub-pixel B3, and third sub-pixel G2".
  • the first sub-unit 301 includes a virtual rectangle including a first side 3011 and a second side 3012 which are parallel to each other, and the center of the first sub-pixel R3 and the center of the second sub-pixel B3
  • the line is the first side 3011 of the virtual rectangle of the first sub-unit 301, and the first sub-pixel R3 and the second sub-pixel B3 are symmetrically distributed with respect to the mid-perpendicular line 3013 of the first side 3012, the first sub-unit 301 and the second sub-unit 302 is mirror symmetrical about the second side 3012.
  • the centers of the third sub-pixel G1" and the third sub-pixel G2" are located on the center line of the first side 3011.
  • the vertical distance of the center of the third sub-pixel G1" from the first side 3011 is greater than the vertical distance of the center of the third sub-pixel G1" and the second side 3012.
  • the plurality of pixel groups 300 form a pixel group column along the direction of the vertical line 3013 of the first side 3011, that is, the column direction of the pixel group is parallel to the vertical line 3013 of the first side 3011.
  • the adjacent two pixel groups share the first sub-pixel R3 and the second sub-pixel B3.
  • the pixel group 300 and the pixel group 300' are located in the same column, and the pixel group 300 and the pixel group 300' are adjacent to each other.
  • the pixel group 300 includes a first sub-unit 301 and a second sub-unit 302, and the pixel group 300' includes a first sub-unit 301' and a second sub-unit 302'.
  • the pixel group 300 shares the first sub-pixel R3 and the second sub-pixel B3 with the pixel group 300', that is, the first sub-pixel R3 and the second sub-pixel B3 located at the overlapping portion of the pixel group 300 and the pixel group 300'. That is, the first sub-pixel R3 and the second sub-pixel B3 that are shared are the sub-pixels in the second sub-unit 302 in the pixel group 300 and the sub-units 301' in the pixel group 300', respectively. Pixel.
  • the third sub-pixel G1" of the first sub-unit 301 and the third sub-pixel G2" of the second sub-unit 302 are located between two adjacent main signal lines 21, and adjacent two mains At least one auxiliary signal line 22 is disposed between the signal lines 21, and the auxiliary signal line 22 is connected to the adjacent two main signal lines 21, and the third sub-pixel G1" and the second sub-unit 302 of the first sub-unit 301 are connected.
  • the interval between the three sub-pixels G2" passes through.
  • the plurality of main signal lines 21 and the auxiliary signal lines 22 are configured to provide a reference voltage or a common voltage to the plurality of pixel groups 200.
  • the second main signal line 211 may sequentially follow the interval between the first sub-pixel R3 and the second sub-pixel B3,
  • the interval between one sub-pixel R3 and the third sub-pixel G1" and the third sub-pixel G1" are routed on the first side (the right side shown in FIG. 12) in the linear direction of the first side 3011.
  • an extension line of the portion of the second main signal line 211 located on the first side of the third sub-pixel G1" in the direction of the perpendicular line 3013 of the first side 3011 passes through the center of the first sub-pixel R3.
  • the two main signal lines 211 may also be sequentially along the interval between the first sub-pixel R3 and the second sub-pixel B3, the interval between the second sub-pixel B3 and the third sub-pixel G1", and the third sub-pixel G1"
  • the second side (the left side shown in FIG. 12) of the first side 3011 is in the straight line direction.
  • the portion of the second main signal line 211 located on the second side of the third sub-pixel G1" is on the first side 3011.
  • An extension line in the direction of the vertical line 3013 passes through the center of the second sub-pixel B3.
  • a portion of the second main signal line 211 in the first sub-unit 301 and a portion of the second main signal line 211 in the second sub-unit 302 are mirrored with respect to the second side 3012 of the virtual rectangle in the first sub-unit 301. symmetry.
  • FIG. 15 is a schematic diagram of two columns of pixel groups in the display substrate shown in FIG.
  • the distance between the centers of adjacent two pixel groups of adjacent pixel group columns in the direction of the vertical line 3013 of the first side is the direction of the virtual rectangle in the first sub-unit along the mid-perpendicular line 3013 of the first side.
  • the center of the pixel group 300 is located on an extension line of the line connecting the centers of the first sub-pixel R3 and the second sub-pixel B3 in the first sub-unit of the pixel group 300", the center of the pixel group 300" An extension line of a line connecting the centers of the first sub-pixel R3 and the second sub-pixel B3 in the second sub-unit of the pixel group 300.
  • the display substrate 10 of any of the above may be applied to a liquid crystal display panel, and may also be applied to an organic light emitting diode display panel.
  • the display substrate 10 can be an array substrate.
  • the first sub-pixel R1 includes a first color pixel electrode and a first color light-emitting layer disposed on the first color pixel electrode
  • the second sub-pixel B1 A second color pixel electrode and a second color light emitting layer disposed on the second color pixel electrode
  • the third color pixel G1/G2 including a third color pixel electrode and a third color light emitting layer disposed on the third color pixel electrode.
  • the shape of the first color pixel electrode is the same as the shape of the first sub-pixel R1, and is configured to drive the first color light-emitting layer to emit light;
  • the shape of the second color pixel electrode is the same as the shape of the second sub-pixel B1, and is The light emitting layer is configured to drive the second color light emitting layer;
  • the shape of the third color pixel electrode is the same as the shape of the third sub-pixel G1/G2, and is configured to drive the third color light emitting layer to emit light.
  • the embodiment of the present disclosure is not limited thereto, and the shape of each color pixel electrode may be different from the shape of each sub-pixel, and the shape of each sub-pixel may be defined by the pixel defining layer.
  • each of the sub-pixels described above is the shape of the light-emitting region of each sub-pixel.
  • the specific shape of each color luminescent layer may be set according to a preparation process, and the embodiment of the present disclosure is not limited herein.
  • the shape of each color luminescent layer can be determined by the shape of the opening of the mask in the preparation process.
  • the first color luminescent layer is configured to emit red light
  • the second color luminescent layer is configured to emit blue light
  • the third color luminescent layer is configured to emit green light
  • the display substrate 10 when the display substrate 10 is applied to a liquid crystal display panel, the display substrate 10 may also be a color filter substrate.
  • the first sub-pixel R1 includes a first color filter
  • the second sub-pixel B1 includes a second color filter
  • the third sub-pixel G1 includes a third color filter. It should be noted that when the display substrate 10 is a color filter substrate, it can be used not only for a liquid crystal display panel but also for a display panel using a white light OLED combined with a color film mode.
  • the first color filter may be a red color filter
  • the second color filter may be a blue color filter
  • the third color filter may be a green color filter
  • FIG. 16 is a schematic block diagram of a display device according to an embodiment of the present disclosure.
  • the display device 50 provided by the embodiment of the present disclosure includes a display panel 51 including the display substrate 52 of any of the above.
  • the display panel 51 may be a liquid crystal display panel or an organic light emitting diode (OLED) display panel or the like.
  • the display substrate 52 may be an array substrate or a color filter substrate.
  • the display panel 51 is an organic light emitting diode display panel
  • the display substrate 52 may be an array substrate.
  • display device 50 can be any product or component having a display function, such as a cell phone, tablet, television, display, notebook, digital photo frame, navigator, and the like.
  • the display device 50 for example, a control device, an image data encoding/decoding device, a line scan driver, a column scan driver, a clock circuit, etc.
  • a control device for example, a control device, an image data encoding/decoding device, a line scan driver, a column scan driver, a clock circuit, etc.

Landscapes

  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Computer Hardware Design (AREA)
  • General Physics & Mathematics (AREA)
  • Theoretical Computer Science (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Power Engineering (AREA)
  • Plasma & Fusion (AREA)
  • Devices For Indicating Variable Information By Combining Individual Elements (AREA)
  • Electroluminescent Light Sources (AREA)

Abstract

一种显示基板的显示装置。该显示基板(10)包括:多个重复单元(100)、多条主信号线(21)和辅信号线(22),每个重复单元(100)包括一个第一子像素(R1)、一个第二子像素(B1)和两个第三子像素(G1、G2);所述两个第三子像素(G1、G2)位于相邻两条主信号线(21)之间,在每个重复单元(100)中,一个第一子像素(R1)和一个第二子像素(B1)沿第一方向(X)排列,两个第三子像素(G1、G2)沿第二方向(Y)排列,第一方向(X)和第二方向(Y)为不同的方向,所述相邻两条主信号线(21)之间至少设置一条所述辅信号线(22),所述辅信号线(22)与所述相邻两条主信号线(21)电连接,且从所述两个第三子像素(G1、G2)之间的间隔穿过。

Description

显示基板和显示装置
本申请要求于2018年02月09日递交的中国专利申请第201810137014.6号的优先权,在此全文引用上述中国专利申请公开的内容以作为本申请的一部分。
技术领域
本公开的实施例涉及一种显示基板和显示装置。
背景技术
有机发光二极管(Organic Light Emitting Diode,OLED)显示面板具有自发光、对比度高、能耗低、视角广、响应速度快、可用于挠曲性面板、使用温度范围广、制造简单等特点,具有广阔的发展前景。OLED显示面板可以应用在手机、电脑、全彩电视、数码摄像机、个人数字助理等电子产品上。OLED显示面板上各个元件均需要通过导线与驱动芯片电连接,由于导线上的电阻,经由导线传输到各个元件上信号不准确,从而导致显示质量下降。
发明内容
本公开至少一实施例提供一种显示基板,包括:多个重复单元、多条主信号线和辅信号线,每个重复单元包括一个第一子像素、一个第二子像素和两个第三子像素;在每个所述重复单元中,所述一个第一子像素和所述一个第二子像素沿第一方向排列,所述两个第三子像素沿第二方向排列,所述第一方向和所述第二方向为不同的方向;所述两个第三子像素位于相邻两条主信号线之间,所述相邻两条主信号线之间至少设置一条所述辅信号线,所述辅信号线与所述相邻两条主信号线电连接,且从所述两个第三子像素之间的间隔穿过。
例如,在本公开一实施例提供的显示基板中,所述多条主信号线沿同一方向延伸,所述辅信号线与所述多条主信号线的延伸方向不同。
例如,在本公开一实施例提供的显示基板中,每条所述主信号线的延伸方向为所述第二方向,每条所述主信号线的形状为波浪形,在所述主信号线的同一侧,若所述波浪形的波峰部分与所述第一子像素相邻,则所述波浪形的波谷部分与所述第二子像素相邻。
例如,在本公开一实施例提供的显示基板中,所述多个重复单元沿所述第一对角线的方向重复排列以形成多个重复单元行,所述多个重复单元行沿所述第二对角线的方向排列,所述辅信号线包括第一线段、第二线段和第三线段,所述第三线段沿所述第一方向延伸,所述第一线段位于所述第一子像素和相邻重复单元行中与所述第一子像素直接相邻的第二子像素之间,所述第三线段位于同一重复单元中的两个第三子像素之间,所述第二线段被配置为连接所述第一线段和所述第三线段,位于奇数重复单元行的辅信号线的第三线段在所述第二方向上的投影和位于偶数重复单元行的辅信号线的第三线段在所述第二方向上的投影不重叠;或者,
所述多个重复单元沿所述第一对角线的方向重复排列以形成多个重复单元列,所述多个重复单元列沿所述第二对角线的方向排列,所述辅信号线包括第一线段、第二线段和第三线段,所述第三线段沿所述第一方向延伸,所述第一线段位于所述第一子像素和相邻重复单元列中与所述第一子像素直接相邻的第二子像素之间,所述第三线段位于同一重复单元中的两个第三子像素之间,所述第二线段被配置为连接所述第一线段和所述第三线段,位于奇数重复单元列的辅信号线的第三线段在所述第二方向上的投影和位于偶数重复单元列的辅信号线的第三线段在所述第二方向上的投影不重叠。
例如,在本公开一实施例提供的显示基板中,在所述每个重复单元中,在所述第一方向上,所述第一子像素和所述第二子像素分别位于所述两个第三子像素两侧。
例如,在本公开一实施例提供的显示基板中,所述第一方向和所述第二方向分别为在同一平面内相互垂直的两个方向。
例如,在本公开一实施例提供的显示基板中,所述相邻两条主信号线中的一条位于所述第一子像素远离所述两个第三子像素的一侧,所述相邻两条主信号线中的另一条位于所述第二子像素靠近所述两个第三子像素的一侧;或者,所述相邻两条主信号线中的一条位于所述第一子像素靠近所述两个第三子像素的一侧,所述相邻两条主信号线中的另一条位于所述第二子像素靠近所述两个第三子像素的一侧。
例如,在本公开一实施例提供的显示基板中,一个平行四边形的第一对角线的两个顶点分别位于所述第一子像素和所述第二子像素内,所述平行四边形的第二对角线的两个顶点分别位于所述两个第三子像素内。
例如,在本公开一实施例提供的显示基板中,在每个重复单元中,所述第一子像素的中心、所述第二子像素的中心和所述两个第三子像素的中心的连线形成一个所述平行四边形,所述第一子像素的中心和所述第二子像素的中心分别与所述平行四边形的所述第一对角线的两个顶点重合,所述两个第三子像素的中心分别与所述平行四边形的所述第二对角线的两个顶点重合。
例如,在本公开一实施例提供的显示基板中,所述第一对角线长于所述第二对角线。
例如,在本公开一实施例提供的显示基板中,所述第二对角线的长度大于所述第一子像素或所述第二子像素沿所述第二对角线的方向上的长度的一半。
例如,在本公开一实施例提供的显示基板中,所述多个重复单元沿所述第一对角线的方向重复排列以形成多个重复单元行,所述多个重复单元行沿所述第二对角线的方向排列,相邻奇数重复单元行或偶数重复单元行的位于同一列的两个重复单元中的第三子像素的中心连线在所述第二对角线的方向上的最小长度大于所述第一子像素或所述第二子像素在所述第二对角线的方向上的长度的1.5倍;或者,
所述多个重复单元沿所述第一对角线的方向重复排列以形成多个重复单元列,所述多个重复单元列沿所述第二对角线的方向排列,相邻奇数重复单元列或相邻偶数重复单元列的位于同一行的两个重复单元中的第三子像素的中心连线在所述第二对角线的方向上的最小长度大于所述第一子像素或所述第二子像素在所述第二对角线的方向上的长度的1.5倍。
例如,在本公开一实施例提供的显示基板中,在每个重复单元内,所述两个第三子像素的边界在所述第二对角线的方向上的最小距离大于或等于在所述第一对角线的方向上的相邻的两个重复单元中的相邻的所述第一子像素的边界和所述第二子像素的边界在所述第一对角线的方向上的最小距离。
例如,在本公开一实施例提供的显示基板中,所述平行四边形为菱形。
例如,在本公开一实施例提供的显示基板中,所述第一对角线的方向与所述第一方向平行,所述第二对角线的方向与所述第二方向平行。
例如,在本公开一实施例提供的显示基板中,所述多个重复单元沿所述第一对角线的方向重复排列以形成重复单元行,多个重复单元行沿所述第二对角线的方向排列,奇数重复单元行的相邻两个重复单元在所述第一对角线的方向上的间隔的中心位于偶数重复单元行的所述两个第三子像素的中心的连线的 延长线上;或者,
所述多个重复单元沿所述第一对角线的方向重复排列以形成重复单元列,多个重复单元列沿所述第二对角线的方向排列,奇数重复单元列的相邻两个重复单元在所述第一对角线的方向上的间隔的中心位于偶数重复单元列的所述两个第三子像素的中心的连线的延长线上。
例如,在本公开一实施例提供的显示基板中,所述第一子像素在所述第二对角线的方向上的长度大于所述第一子像素在所述第一对角线的方向上的长度,所述第二子像素在所述第二对角线的方向上的长度大于所述第二子像素在所述第一对角线的方向上的长度。
例如,在本公开一实施例提供的显示基板中,在每个所述重复单元中,所述两个第三子像素的边界在所述第二对角线的方向上的最小距离的范围是8-14微米。
例如,在本公开一实施例提供的显示基板中,所述第一子像素、所述第二子像素和所述第三子像素均包括阳极,所述多条主信号线和所述辅助信号线与所述阳极同层。
例如,在本公开一实施例提供的显示基板中,所述第一子像素为蓝色子像素,所述第二子像素为红色子像素,所述第三子像素为绿色子像素。
本公开至少一实施例还提供一种显示基板,包括:多个像素组、多条主信号线和辅信号线,每个像素组包括两个第一子像素、两个第二子像素和两个第三子像素,在每个像素组中,所述两个第一子像素的中心和所述两个第二子像素的中心的连线形成一个矩形,所述矩形包括第一对称轴和与所述第一对称轴相互垂直的第二对称轴,所述两个第三子像素沿所述第二对称轴的方向排列,且分别位于所述第一对称轴的两侧,多个像素组沿所述第二对称轴的方向形成像素组列,在所述第二对称轴的方向上,相邻两个像素组共用一个第一子像素和一个第二子像素,在每个像素组中,所述两个第三子像素位于相邻两条主信号线之间,所述相邻两条主信号线之间至少设置一条所述辅信号线,所述辅信号线与所述相邻两条主信号线电连接,且从所述两个第三子像素之间的间隔穿过。
例如,在本公开一实施例提供的显示基板中,相邻像素组列的相邻两个像素组的中心在所述第二对称轴的方向上的距离为所述矩形沿所述第二对称轴的方向上的长度的一半。
例如,在本公开一实施例提供的显示基板中,所述两个第三子像素关于所述第一对称轴对称设置。
例如,在本公开一实施例提供的显示基板中,所述两个第三子像素的中心位于所述第二对称轴上。
例如,在本公开一实施例提供的显示基板中,所述多条主信号线被配置为给所述多个像素组提供参考电压或公共电压。
例如,在本公开一实施例提供的显示基板中,所述第一子像素和所述第二子像素的形状均为六边形,所述两个第三子像素的形状均为五边形。
本公开至少一实施例还提供一种显示装置,包括根据上述任一项所述的显示基板。
附图说明
为了更清楚地说明本公开实施例的技术方案,下面将对实施例的附图作简单地介绍,显而易见地,下面描述中的附图仅仅涉及本公开的一些实施例,而非对本公开的限制。
图1为本公开一实施例提供的一种显示基板的局部示意图;
图2A为本公开一实施例提供的一种显示基板的阵列示意图;
图2B为本公开一实施例提供的一种显示基板的局部阵列示意图;
图2C为本公开一实施例提供的另一种显示基板的局部阵列示意图;
图3为图1所示的显示基板中的重复单元的结构示意图;
图4为本公开一实施例提供的一种显示基板的另一种局部示意图;
图5为沿图4中线P-P′方向的显示基板的截面图;
图6A为一种像素电路的结构示意图;
图6B为本公开实施例提供的一种显示基板的局部截面结构示意图;
图7A为图1所示的显示基板的重复单元中的虚拟像素的一种分组示意图;
图7B为图1所示的显示基板的重复单元中的虚拟像素的另一种分组示意图;
图8为本公开另一实施例提供的一种显示基板的示意图;
图9为图8所示的显示基板中的像素组的示意图;
图10为图8所示的显示基板中的一列像素组的示意图;
图11为图8所示的显示基板中的两列像素组的示意图;
图12为本公开再一实施例提供的一种显示基板的示意图;
图13为图12所示的显示基板中的像素组的示意图;
图14为图12所示的显示基板中的一列像素组的示意图;
图15为图12所示的显示基板中的两列像素组的示意图;
图16为本公开一实施例提供的一种显示装置的示意性框图。
具体实施方式
为了使得本公开实施例的目的、技术方案和优点更加清楚,下面将结合本公开实施例的附图,对本公开实施例的技术方案进行清楚、完整地描述。显然,所描述的实施例是本公开的一部分实施例,而不是全部的实施例。基于所描述的本公开的实施例,本领域普通技术人员在无需创造性劳动的前提下所获得的所有其他实施例,都属于本公开保护的范围。
除非另外定义,本公开使用的技术术语或者科学术语应当为本公开所属领域内具有一般技能的人士所理解的通常意义。本公开中使用的“第一”、“第二”以及类似的词语并不表示任何顺序、数量或者重要性,而只是用来区分不同的组成部分。“包括”或者“包含”等类似的词语意指出现该词前面的元件或者物件涵盖出现在该词后面列举的元件或者物件及其等同,而不排除其他元件或者物件。“连接”或者“相连”等类似的词语并非限定于物理的或者机械的连接,而是可以包括电性的连接,不管是直接的还是间接的。“上”、“下”、“左”、“右”等仅用于表示相对位置关系,当被描述对象的绝对位置改变后,则该相对位置关系也可能相应地改变。
本公开至少一实施例提供一种显示基板和显示装置,通过将信号线穿过相邻两个第三子像素之间,从而实现信号线网格化布线,提高参考电压信号稳定性,改善显示面板的显示效果。
下面结合附图对本公开的实施例进行详细说明,但是本公开并不限于这些具体的实施例。
图1为本公开一实施例提供的一种显示基板的局部示意图,图2A为本公开一实施例提供的一种显示基板的阵列示意图,图2B为本公开一实施例提供的一种显示基板的局部阵列示意图,图2C为本公开一实施例提供的另一种显示基板的局部阵列示意图,图3为图1所示的显示基板中的重复单元的结构示意图。
例如,如图1所示,本公开实施例提供的显示基板10包括多个重复单元100、多条主信号线21和辅信号线22。每个重复单元100包括间隔设置的第一子像素R1、一个第二子像素B1和两个第三子像素G1和G2。在每个重复单元100中,一个第一子像素R1和一个第二子像素B1沿第一方向X排列,两个第三子像素G1和G2沿第二方向Y排列,第一方向X和第二方向Y为不同的方向。两个第三子像素G1和G2位于相邻两条主信号线21之间,相邻两条主信号线21之间至少设置一条辅信号线22,辅信号线22与相邻两条主信号线21连接,且从两个第三子像素G1和G2之间的间隔穿过。
例如,每个重复单元100中的四个子像素形成两个像素,重复单元100中的第一子像素和第二子像素分别被所述两个像素共用。多个重复单元100中的像素形成像素阵列,在像素阵列的第一方向上,子像素密度是虚拟像素密度的1.5倍,在像素阵列的第二方向上,子像素密度是虚拟像素密度的1.5倍。
需要说明的是,第一,由于第一子像素和第二子像素是被相邻的两个像素共享,因而每个像素的边界也是非常模糊的,因而,本公开实施例并不对每个像素的形状进行限定。本公开实施例中的像素并不是严格意义上的像素,即由完整的一个红色子像素、一个绿色子像素、一个蓝色子像素定义一个像素,因此,可将本公开中的像素称之为虚拟像素。
第二,本领域技术人员应该知道,基于本公开的像素排列结构,像素以及每个像素中的第一子像素、第二子像素和第三子像素应尽可能的均匀分布。
第三,本公开实施例的附图中标识的第一方向和第二方向均是从宏观角度进行标识的,即:由于要实现子像素密度是像素密度的1.5倍,同时尽可能保证像素,以及像素中的各子像素整体上均匀分布,因而微观角度上第一方向可以并不完全是一条直线而是波浪线,同理第二方向也是如此。
例如,第一子像素R1、两个第三子像素G1和G2和第二子像素B1沿第一方向X依次排列。也就是说,在第一方向X上,两个第三子像素G1和G2位于第一子像素R1和第二子像素B1之间。
例如,第一方向X和第二方向Y分别为在同一平面内相互垂直的两个方向,即第一方向X和第二方向Y可以相互垂直。
例如,在每个重复单元100中,两个第三子像素G1和G2之间的间隔设置有一条辅信号线22,辅信号线22从该两个第三子像素G1和G2之间的间隔。
例如,对于一个重复单元100中的四个子像素,一个平行四边形的第一对 角线的两个顶点分别位于第一子像素R1和第二子像素B1内,平行四边形的第二对角线的两个顶点分别位于两个第三子像素G1和G2内。在一些示例中,如图3所示,在每个重复单元100中,第一子像素R1的中心、第二子像素B1的中心和两个第三子像素G1和G2的中心的连线形成一个平行四边形30。第一子像素R1的中心和第二子像素B1的中心分别与平行四边形30的第一对角线301的两个顶点重合,两个第三子像素G1和G2的中心分别与平行四边形30的第二对角线302的两个顶点重合。
另外,在本公开的实施例中,如果没有特别说明,子像素的“中心”(例如,理论中心)可以指子像素(例如:第一子像素、第二子像素或第三子像素)的理想形状的几何中心。在对像素排列结构进行设计时,子像素一般会设计为规则的形状,比如,六边形、五边形、梯形或其他形状。在进行设计时,子像素的中心可以是上述规则形状的几何中心。然而,在实际制造工艺中,所形成的子像素的形状一般会与上述设计的规则形状有一定的偏差。例如,上述规则的形状的各个角可能会变成圆角,因此,子像素的形状可以为圆角图形。实际制造的子像素的形状还可能会与设计的形状有其他的变化。例如,设计为六边形的子像素的形状在实际制造中可能变成近似椭圆形。因此,子像素的中心也可能并非制作形成的子像素的不规则形状的严格的几何中心。在本公开的实施例中,子像素的中心可以与子像素的形状的几何中心有一定的偏移量。子像素的中心是指从子像素的几何中心出发到子像素的边缘各点的辐射线段上的特定点所围成的区域内的任一点,该辐射线段上的特定点在距离该几何中心1/3该辐射线段的长度处。该子像素中心的定义适用于规则形状的子像素形状的中心,也适用于不规则形状的子像素的中心。
如上所述,由于各种制造误差,实际制造的子像素形状可能与设计的子像素形状有偏差。因此,在本公开中对于涉及子像素中心的位置以及子像素中心与其他对象的位置之间的关系也可以是有一定的误差的。例如,子像素中心之间的连线或经过子像素中心的线,如果这些线满足对应的其他限定(例如,延伸方向),这些线只要经过上述的辐射线段的特定点围成的区域即可。再例如,子像素的中心位于某条线上,是指这条线穿过上述的辐射线段的特定点围成的区域即可。此外,对于本公开中所描述的重合,是指相应的子像素或其他部件的至少70%的面积能够重合即可;对于本公开所描述的镜像对称,是指经过镜像操作之后,相应的子像素能够至少70%的面积能够重合即可。
例如,如图3所示,第一对角线301长于第二对角线302。
例如,如图3所示,第一对角线301和第二对角线302相互垂直,且第一对角线301的方向与第一方向X平行,第二对角线302的方向与第二方向Y平行。
例如,如图2A和图3所示,第一方向X为行方向,第二方向Y为列方向。多个重复单元100沿第一对角线301的方向(即第一方向X)重复排列以形成多个重复单元行,多个重复单元行沿第二对角线302的方向(即第二方向Y)排列。也就是说,多个重复单元100沿第一对角线301的方向(即第一方向X)和第二对角线302的方向(即第二方向Y)呈阵列排布。
例如,如图2B所示,相邻奇数重复单元行或偶数重复单元行的位于同一列的两个重复单元中的第三子像素的中心连线在第二对角线302的方向(即第二方向Y)上的最小长度h3大于第一子像素R1或第二子像素B1在第二对角线302的方向上的长度的1.5倍。例如,如图2B所示,在一些示例中,两个第三子像素G1和G2沿第二方向Y依次排列,重复单元100和重复单元100″′位于同一列,且重复单元100位于第二行,重复单元100″′位于第四行,从而重复单元100和重复单元100″′为位于相邻偶数重复单元行且位于同一列的两个重复单元,最小长度h3表示重复单元100中的第三子像素G2和重复单元100″′中的第三子像素G1的中心连线的长度。
例如,在图2B所示的示例中,每个重复单元100的第一子像素R1、两个第三子像素G1和G2和第二子像素B1沿第一方向X依次排列。但不限于此,如图2C所示,每个重复单元100的第一子像素R1、两个第三子像素G1和G2和第二子像素B1仍可以沿第一方向X依次排列,此处第一方向X为列方向,第二方向Y为行方向。也就是说,图2B所示的重复单元100整体旋转90度即可得到图2C所示的重复单元。多个重复单元100沿第一对角线的方向(即第一方向X)重复排列以形成多个重复单元列,多个重复单元列沿第二对角线的方向(即第二方向Y)排列。在图2C所示的示例中,相邻奇数重复单元列或偶数重复单元列的位于同一行的两个重复单元中的第三子像素的中心连线在第二对角线的方向(即第二方向Y)上的最小长度h3′大于第一子像素R1或第二子像素B1在第二对角线的方向(即第二方向Y)上的长度的1.5倍。
例如,如图2C所示,在一些示例中,两个第三子像素G1和G2沿第二方向Y依次排列,重复单元101和重复单元101′位于同一行,且重复单元101位 于第一列,重复单元101′位于第三列,从而重复单元101和重复单元101′为位于相邻奇数列且位于同一行的两个重复单元,最小长度h3′表示重复单元101中的第三子像素G1和重复单元101′中的第三子像素G2的中心连线的长度。
需要说明的是,为了清楚,图2B和图2C所示的显示基板中没有示出主信号线和辅信号线。
例如,如图3所示,第二对角线302的长度大于第一子像素R1或第二子像素B1沿第二对角线302的方向上的长度的一半。
例如,如图1和图3所示,在每个重复单元100内,两个第三子像素G1和G2的边界在第二对角线302的方向(即第二方向Y)上的最小距离h1大于或等于在第一对角线301的方向(即第一方向X)上的相邻的两个重复单元中的相邻的第一子像素R1的边界和第二子像素B1的边界在第一对角线301的方向上的最小距离h2。
需要说明的是,在本公开中,各子像素在第一对角线的方向或第二对角线的方向上的长度表示各子像素在第一对角线的方向或第二对角线的方向上的最大距离。若以第一子像素R1为例,当第一子像素R1的形状为矩形时,第一子像素R1沿第一对角线的方向上的最大距离为矩形在第一方向X上的边长,第一子像素R1沿第二对角线的方向上的最大距离为矩形在第二方向Y上的边长。当第一子像素R1的形状为长椭圆形,且长椭圆形的两个焦点的连线与第二方向Y大致平行,则第一子像素R1沿第二对角线的方向上的最大距离为两个焦点的连线与长椭圆的圆周的两个交点之间的距离,则第一子像素R1沿第一对角线的方向上的最大距离为两个焦点的连线的中垂线与长椭圆的圆周的两个交点之间的距离。
例如,平行四边形30可以为菱形,从而第一子像素R1和第二子像素B1关于第二对角线302对称设置,两个第三子像素G1的中心关于第一对角线301对称设置。
需要说明的是,上述的平行四边形是为了更好地描述第一子像素、第二子像素和第三子像素的位置,并非实际的结构。
例如,如图1、图2B和图3所示,多个重复单元100沿第一对角线301的方向(即第一方向X)重复排列以形成重复单元行,多个重复单元行沿第二对角线302的方向(即第二方向Y)排列,奇数行的相邻两个重复单元100在第一对角线301的方向上的间隔的中心位于偶数行的重复单元100中的两个第 三子像素G1和G2的中心的连线(即第二对角线302)的延长线上。偶数行的相邻两个重复单元100的间隔的中心位于奇数行的重复单元100中的两个第三子像素G1和G2的中心的连线(即第二对角线302)的延长线上。
例如,如图1、图2C和图3所示,多个重复单元100沿第一对角线301(即第一方向X)的方向重复排列以形成重复单元列,多个重复单元列沿第二对角线302的方向(即第二方向Y)排列,奇数列的相邻两个重复单元在第一对角线301的方向上的间隔的中心位于偶数列的两个第三子像素G1和G2的中心的连线的延长线上。
例如,多条主信号线21沿同一方向延伸,辅信号线22与多条主信号线21的延伸方向不同。如图2A所示,在整个显示基板上,多条主信号线21和多条辅信号线22呈网格状排列,且多条主信号线21和多条辅信号线22均电连接。例如,如图1和图2A所示,辅信号线22沿第一方向X延伸,多条主信号线21沿第二方向Y延伸。在本公开中,“延伸”表示多条主信号线21和辅信号线22大体上的走线方向,然而,如图2A所示,多条主信号线21在微观上并不是直线,而是呈波浪状沿第二方向Y延伸;辅信号线22在微观上也不是直线,而是呈弯曲状沿第一方向X延伸。
例如,如图2A所示,每条主信号线21的延伸方向为第二方向Y,每条主信号线21的形状为波浪形,在主信号线21的同一侧(例如图2A中的右侧),若波浪形的波峰部分与第一子像素R1相邻,则波浪形的波谷部分与第二子像素B1相邻,例如,在主信号线21的另一侧(例如图2A中的左侧),若波浪形的波峰部分与第二子像素B1相邻,则波浪形的波谷部分与两个第三子像素G1和G2相邻,也就是说,波浪形的波峰部分位于同一重复单元行中相邻的第一子像素R1和第二子像素B1之间,波浪形的波谷部分则位于同一重复单元行中相邻的两个第三子像素和第二子像素之间。需要说明的是,如图2A所示,在本公开的一些实施例中,波浪形的主信号线21中向右边凸出的部分表示波谷,波浪形的主信号线21中向左边凸出的部分表示波峰。本公开不限于此,波浪形的主信号线21中向右边凸出的部分也可以表示波峰,此时,波浪形的主信号线21中向左边凸出的部分表示波谷,从而在主信号线21的同一侧(例如图2A中的右侧),波浪形的波峰部分与第二子像素B1相邻,则波浪形的波谷部分与第一子像素R1相邻。需要说明的是,在同一个重复单元中,第一子像素B1位于两个第三子像素G1和G2的左侧,而第二子像素B1则位于两个 第三子像素G1和G2的右侧。
例如,一条主信号线21对应偶数行重复单元中的部分为波峰,主信号线21对应奇数行重复单元中的部分为波谷;或者,一条主信号线21对应奇数行重复单元中的部分为波峰,主信号线21对应偶数行重复单元中的部分为波谷。
例如,若在第一方向X上,多个主信号线21依次排列,相邻两条主信号线21的波峰和波谷相对应。例如,如图2A所示,多个主信号线21包括第一主信号线210、第二主信号线211、第三主信号线212和第四主信号线213,第一主信号线210位于第一行重复单元中的部分为波谷,第二主信号线211位于第一行重复单元中的部分则为波峰,第三主信号线212位于第一行重复单元中的部分为波谷,第四主信号线213位于第一行重复单元中的部分则为波峰;相应地,第一主信号线210位于第二行重复单元中的部分为波峰,第二主信号线211位于第二行重复单元中的部分则为波谷,第三主信号线212位于第二行重复单元中的部分为波峰,第四主信号线213位于第二行重复单元中的部分则为波谷。
例如,在每个重复单元100中,两个第三子像素G1和G2沿主信号线21的延伸方向排列,即主信号线21的延伸方向为第二方向Y,且在与主信号线21的延伸方向垂直的方向(即在第一方向X)上,第一子像素R1和第二子像素B1分别位于两个第三子像素G1和G2两侧。如图1所示,在第一方向X上,在重复单元100中,第一子像素R1位于两个第三子像素G1和G2的左侧,第二子像素B1位于两个第三子像素G1和G2的右侧。
例如,第一子像素R1、第二子像素B1和两个第三子像素G1和G2的排列方向与多条主信号线21的延伸方向相互垂直。如图1所示,第一子像素R1、第二子像素B1和两个第三子像素G1和G2的排列方向为第一方向X,多条主信号线21的延伸方向为第二方向Y,且第一方向X与第二方向Y相互垂直。
例如,在位于第二行的重复单元100中,相邻两条主信号线21中的一条位于第一子像素R1远离两个第三子像素G1和G2的一侧,相邻两条主信号线21中的另一条位于第二子像素B1靠近两个子像素G1和G2的一侧。如图1和图2A所示,第一主信号线210和第二主信号线211为相邻两条主信号线21,在一个示例中,在位于第二行的重复单元100中,第一主信号线210位于第一子像素R1远离两个第三子像素G1和G2的一侧,第二主信号线211位于第二子像素B1靠近两个子像素G1和G2的一侧。也就是说,在第一方向X上, 第一主信号线210位于相邻两个重复单元100之间,第二主信号线211位于重复单元100中的第二子像素B1和两个第三子像素G1和G2之间。
在另一个示例中,在位于第二行的重复单元100中,第一主信号线210位于第一子像素R1靠近两个第三子像素G1和G2的一侧,第二主信号线211位于第二子像素B1远离两个第三子像素G1和G2的一侧。也就是说,在第一方向X上,第一主信号线210位于重复单元中的第一子像素R1和两个第三子像素G1和G2之间,第二主信号线211位于相邻两个重复单元100之间。
例如,在又一个示例中,在位于第二行的重复单元100中,相邻两条主信号线21中的一条位于第一子像素R1靠近两个第三子像素G1和G2的一侧,相邻两条主信号线21中的另一条位于第二子像素B1靠近两个第三子像素G1和G2的一侧。也就是说,在第一方向X上,第一主信号线210位于重复单元中的第一子像素R1和两个第三子像素G1和G2之间,第二主信号线211位于重复单元100中的第二子像素B1和两个第三子像素G1和G2之间。
需要说明的是,在第一行中,第一主信号线210和第二主信号线211的位置关系与上面示例所述的相反。也就是说,如图2A所示,在第一行包括相邻的重复单元100′和重复单元100″,在第一行中,第一主信号线210位于重复单元100′中的第二子像素B1靠近两个子像素G1和G2的一侧,第二主信号线211位于复单元100″中的第一子像素R1远离两个第三子像素G1和G2的一侧。也就是说,在第一方向X上,第一主信号线210位于重复单元100′中的第二子像素B1和两个第三子像素G1和G2之间,第二主信号线211位于相邻的重复单元100′和重复单元100″之间。
图4为本公开一实施例提供的一种显示基板的另一种局部示意图;图5为沿图4中线P-P′方向的显示基板的截面图。
例如,如图1和图4所示,在第二方向Y上,主信号线21包括第一部分2101和第二部分2102。第一部分2101位于重复单元100中的第二子像素B1和两个第三子像素G1和G2之间,第二部分2102位于相邻重复单元100之间。也就是说,第一主信号线210位于第一行的部分为第一部分2101,第一主信号线210位于第二行的部分为第二部分2102。第一部分2101可以为直线,且第一部分2101沿第二方向Y的延伸线穿过第一子像素R1的中心,第二部分2102可以沿第一子像素R1远离两个第三子像素G1和G2的侧边的轮廓走线,且与第一子像素R1远离两个第三子像素G1和G2的侧边的形状相似。例如,主信 号线21可以以第一部分2101和第二部分2102作为一个重复单元沿第二方向Y延伸。
例如,如图4所示,第一子像素R1可以关于对称轴11对称,对称轴11与第二方向Y平行,则第一部分2101沿第二方向Y的延伸线可以与对称轴11重合。例如,若第一子像素R1的形状为六边形,且对称轴11穿过六边形的两个顶点,则第二部分2102的形状可以为等腰梯形的两个侧边和上底边组成的形状。若第一子像素R1的形状为长椭圆形,且对称轴11穿过长椭圆形的两个焦点,则第二部分2102的形状可以为半椭圆形。
例如,第二主信号线211位于第一行的部分与第一主信号线210位于第二行的部分相同,第二主信号线211位于第二行的部分与第一主信号线210位于第一行的部分相同。
例如,第一行可以为奇数行,相应地,第二行为偶数行。但不限于此,第一行也可以为偶数行,而第二行为奇数行。
例如,辅信号线22可以从主信号线21分叉得到。如图1所示,辅信号线22可以从相邻两条主信号线21中的一条(例如,图1所示的第一主信号线210)分叉形成;然后,辅信号线22沿与主信号线21的延伸方向不同的方向延伸并从两个第三子像素G1和G2之间的间隔穿过;最终,辅信号线22延伸到相邻两条主信号线21中的另一条(例如,图1所示的第二主信号线211)处。
例如,如图4所示,在第二行中,辅信号线22可以从第一主信号线210的第一部分2101和第二部分2102的交点处分叉,并沿第一子像素R1靠近两个第三子像素G1和G2的侧边的轮廓走线。也就是说,辅信号线22的走线方向和第一主信号线210的第二部分2102的走线方向不同。然后,当辅信号线22延伸到两个第三子像素G1和G2的间隔处时,辅信号线22延伸到两个第三子像素G1和G2之间的间隔。最后,辅信号线22延伸到与第一主信号线210相邻的第二主信号线211处。
例如,如图4所示,每条辅信号线22可以包括第一线段221、第二线段222和第三线段223,每条辅信号线22中的第三线段223沿第一方向X延伸,每条辅信号线22中的第二线段222可以沿第二方向Y延伸,第一线段221的延伸方向与第一方向X、第二方向Y均不相同,例如,多条辅信号线22的第一线段221的延伸方向相同,即多条辅信号线22的第一线段221平行;多条辅信号线22的第二线段222的延伸方向相同,即多条辅信号线22的第二线段 222平行;多条辅信号线22的第三线段223的延伸方向相同,即多条辅信号线22的第三线段223也平行。
例如,当多个重复单元沿第一对角线的方向(即第一方向X)重复排列以形成多个重复单元行,多个重复单元行沿第二对角线的方向(即第二方向Y)排列时,即在图2B所示的示例中,第一线段221位于第一子像素R1和相邻重复单元行中与第一子像素R1直接相邻的第二子像素B1之间,第三线段223位于同一重复单元中的两个第三子像素G1和G2之间,第二线段222被配置为连接第一线段221和第三线段223。例如,第二线段222位于同一重复单元中的第一子像素R1和第三子像素G1之间。
例如,位于奇数重复单元行的辅信号线22的第三线段222在第二方向Y上的投影和位于偶数重复单元行的辅信号线22的第三线段222在第二方向Y上的投影不重叠。位于同一奇数重复单元行的所有辅信号线22的第三线段222位于同一直线上,位于同一偶数重复单元行的所有辅信号线22的第三线段222位于同一直线上。
又例如,当多个重复单元沿第一对角线的方向(即第一方向X)重复排列以形成多个重复单元列,多个重复单元列沿第二对角线的方向(即第二方向Y)排列,即在图2C所示的示例中,第一线段221位于第一子像素R1和相邻重复单元列中与第一子像素R1直接相邻的第二子像素B1之间,第三线段223位于同一重复单元中的两个第三子像素G1和G2之间,第二线段222被配置为连接第一线段221和第二线段223。例如,第二线段222位于同一重复单元中的第一子像素R1和第三子像素G1之间。
例如,位于奇数重复单元列的辅信号线22的第三线段在第二方向Y上的投影和位于偶数重复单元列的辅信号线22的第三线段在第二方向Y上的投影不重叠。位于同一奇数重复单元列的所有辅信号线22的第三线段222位于同一直线上,位于同一偶数重复单元列的所有辅信号线22的第三线段222位于同一直线上。
例如,从奇数条的主信号线(例如,第一主信号线210和第三主信号线212)分叉得到的辅信号线位于偶数重复单元行,从偶数条的主信号线(例如,第二主信号线211和第四主信号线213)分叉得到的辅信号线位于奇数重复单元行。如图2A所示,位于第一主信号线210和第二主信号线211之间的辅信号线22(这些辅信号线22从第一主信号线210分叉得到)位于偶数重复单元行,位 于第三主信号线212和第四主信号线213之间的辅信号线22(这些辅信号线22从第三主信号线212分叉得到)位于偶数重复单元行,而位于第二主信号线211和第三主信号线212之间的辅信号线22(这些辅信号线22从第二主信号线211分叉得到)则位于奇数重复单元行。也就是说,位于第一主信号线210和第二主信号线211之间的辅信号线22的第三线段223从偶数重复单元行中的与其对应的两个第三子像素之间穿过,位于第二主信号线211和第三主信号线212之间的辅信号线22的第三线段223则从奇数重复单元行中的与其对应的两个第三子像素之间穿过。
例如,第一子像素R1、第二子像素B1和第三子像素G1和G2均包括阳极。例如,第一子像素R1包括第一发光元件,第一发光元件包括第一阳极、第一阴极和第一发光层,第一发光层设置在第一阳极和第一阴极之间。第二子像素B1包括第二发光元件,第二发光元件包括第二阳极、第二阴极和第二发光层,第二发光层设置在第二阳极和第二阴极之间。两个第三子像素G1和G2均包括第三发光元件,第三发光元件包括第三阳极、第三阴极和第三发光层,第三发光层设置在第三阳极和第三阴极之间。
例如,主信号线21和辅信号线22可以与发光元件的阳极同层设置。如图5所示,第一发光元件包括第一阳极401,第二发光元件包括第二阳极402,第三发光元件包括第三阳极403。主信号线21、辅信号线22、第一阳极401、第二阳极402和第三阳极403位于同一层。这里不同的部件“同层”设置是指其位于同一层结构的表面上或者其通过图案化同一材料层而形成。例如,多条主信号线和辅助信号线中的至少部分与阳极采用相同的材料制备,多条主信号线和辅助信号线与阳极采用不同的材料制备。
例如,主信号线21和辅信号线22的线宽可以为3微米(μm)。与第一子像素R1相邻的第一主信号线210的边界与第一阳极401的边界之间的最小长度可以为3μm。辅信号线22的边界与相邻的第一阳极401和第二阳极40 2的边界之间的最小长度可以均为3μm。第二主信号线211的边界与相邻的第二阳极402和第三阳极403的边界之间的最小长度也可以均为3μm。
例如,主信号线21和辅信号线22可以与发光元件的阳极(例如,第一阳极401、第二阳极402和第三阳极403)采用同样的导电材料形成。导电材料可以为氧化铟锡(ITO)、银(Ag)等。
例如,如图1所示,在每个子像素中包括一个凸出部分。例如,从六边形 的第一子像素R1和第二子像素B1凸出的凸出部分以及从五边形的第三子像素凸出的凸出部分。各子像素(例如,第一子像素R1、第二子像素B1和第三子像素G1)的凸出部分用于连接发光元件的阳极和阳极的信号线,各子像素的凸出部分的材料与阳极相同,即氧化铟锡(ITO)、银(Ag)等。例如,阳极可以在该凸出部分通过贯穿介电层的过孔与阳极信号线连接,但根据本公开的实施例不限于此。各子像素的凸出部分与主信号线21、辅信号线22位于同一层,且彼此不重叠,也就是说,上述主线号线和辅助信号线的布置过程中,主信号线21和辅信号线22需要绕开各子像素的凸出部分,以避免上述信号线与阳极短路。
需要说明的是,如图1所示,第一子像素R1包括第一阳极,且第一阳极的形状为六边形,该六边形关于对称轴11对称,第一子像素R1的凸出部分表示第一子像素R1中除了第一阳极以外的部分,即图1中从第一子像素R1中的六边形的一条侧边向外凸出的部分。第二子像素B1包括第二阳极,且第二阳极的形状也为六边形,第二子像素B1的凸出部分表示第二子像素B1中除了第二阳极以外的部分。第三子像素G1包括第三阳极,且第三阳极的形状可以为直角底角对称五边形,第三子像素G1的凸出部分表示第三子像素G1中除了对称五边形区域以外的部分。
需要说明的是,在描述子像素的整体形状时,并没有将该凸出部分计算在内,因此,除了图1,本公开其他的附图均没有示出各子像素的凸出部分。
例如,若显示基板10为液晶显示基板,主信号线21和辅信号线22可以为公共电压的信号线,从而,主信号线21和辅信号线22被配置为给多个重复单元100提供公共电压。若显示基板10为有机发光二极管显示基板,则主信号线21和辅信号线22可以为参考电压的信号线,从而,主信号线21和辅信号线22被配置为给多个重复单元100提供参考电压。
图6A为一种像素电路的结构示意图。例如,如图6A所示,对于有机发光二极管显示基板,像素电路可以通过8T1C模式实现。像素电路包括驱动晶体管T3、数据输入晶体管T4、存储电容C、复位晶体管T1、第一阈值补偿晶体管T2、第二阈值补偿晶体管T8、第一压降补偿晶体管T5、第二压降补偿晶体管T7和发光控制晶体管T6。驱动晶体管T3用于驱动发光元件EL发光,数据输入晶体管T4被配置为在扫描信号Ga的控制下向驱动晶体管T3的栅极写入数据电压V data;存储电容C被配置为存储数据信号V data并将其保持在驱动 晶体管T3的栅极。第一阈值补偿晶体管T2和第二阈值补偿晶体管T8被配置为向驱动晶体管T3的栅极写入阈值补偿信号,以补偿驱动晶体管T3的阈值电压漂移。第一压降补偿晶体管T5和第二压降补偿晶体管T7被配置向驱动晶体管T3的栅极写入参考电压信号V ref。复位晶体管T1被配置为在复位信号Re的控制下向驱动晶体管T3的栅极写入复位电压Vint。发光控制晶体管T6被配置为在发光信号EM的控制下控制将发光元件EL和驱动晶体管T3导通或断开。
例如,在该8T1C像素电路中,基于驱动晶体管T3的饱和电流公式,流经驱动晶体管T3的发光电流I OLED可以表示为:
I OLED=0.5μ nC ox(W/L)(V data-V ref) 2
其中,V data表示数据电压,V ref表示参考电压,μ n为驱动晶体管T3的电子迁移率,C ox为驱动晶体管T3的栅极单位电容量,W为驱动晶体管T3的沟道宽,L为驱动晶体管T3的沟道长。由上式中可以看到,发光电流I OLED与参考电压V ref和数据电压V data有关。发光电流I OLED与参考电压V ref的稳定性相关,参考电压V ref的波动会导致发光电流I OLED发生变化,从而导致显示面板的显示亮度发生变化。而在本公开中,主信号线21和辅信号线22用于向像素电路提供参考电压V ref。由于主信号线21和辅信号线22可以网格化布线,从而信号线的电阻较小,电阻互连性较好,参考电压信号V ref的压降越低,控制能力较好,进而可以提高参考电压信号V ref的稳定性,改善显示面板的显示效果。
上述驱动电路结构仅仅是示例性的,根据本公开实施例的显示装置并不限制于此,其可以采用任意合适的驱动电路结构。
例如,多条主信号线21被配置为给多个重复单元提供参考电压或公共电压。例如,第一子像素、第二子像素和第三子像素均包括阳极,多条主信号线和辅助信号线与阳极同层。
图6B是图10中沿M-M′线剖取的截面图。位于一个绿色子像素(第三子像素)周边的截面结构例如如图6B所示。该结构包括衬底基板001以及依次位于衬底基板上的缓冲层002、第一栅极绝缘层003、第二栅极绝缘层004、层间介电层005、平坦化层006以及像素限定层007。从图6B中可以看到,在第三子像素的下方有一个薄膜晶体管结构,该薄膜晶体管结构包括栅极302、有源层301以及漏电极303。该薄膜晶体管为以上所述像素驱动电极中的一个薄膜晶体管,其与其他部件的连接关系可以根据具体的像素电路布置而设置,这 里不再详细示出。此外,在与漏电极303同层的位置处还可以包括信号线304,该信号线304也可以根据不同的像素电路布置而用作特定功能的信号线,例如,信号线可以为数据线或栅线等。从图6B可以看到,像素限定层007可以包括限定子像素的开口。第三子像素的阳极403和第三子像素的发光层503位于像素限定层007的开口中。
例如,如图6B所示,第三子像素的阳极403与第三子像素的发光层503彼此接触,从而在彼此接触的部分能够驱动发光层进行发光,因此,第三子像素的阳极403和第三子像素的发光层503彼此接触的部分为子像素能够发光的有效部分。在这里第三子像素的阳极403用作像素电极,从而能够给不同的子像素施加不同的数据电压。但根据本公开的实施例中,用作子像素的像素电极的电极不限于阳极,也可以将发光二极管的阴极用作像素电极。因此,在本公开的实施例中,子像素的形状可以是指像素电极与发光层彼此接触的部分的形状。例如,对于每个子像素,像素电极的面积可以稍大于发光层的面积,或者也可以是发光层的面积稍大于像素电极的面积,本公开的实施例对此没有特别限定。例如,这里的发光层可以包括电致发光层本身以及位于电致发光层两侧的其他功能层,例如,空穴注入层、空穴传输层、电子注入层以及电子传输层等等。在有些实施例中,像素的形状也可以由像素限定层来定义。例如,对于发光二极管的下电极(例如,阳极)可以设置在像素限定层的下方,像素限定层包括用于限定像素的开口,该开口露出下电极的一部分,当发光层形成在上述像素限定层中的开口中时,发光层与下电极接触,从而在这部分能够驱动发光层进行发光。因此,在这种情况下,像素限定层的开口定义了子像素的形状。
例如,对于本公开实施例中所描述的各种子像素的形状,均为大致的形状,在形成发光层或各种电极层时,并不能保证子像素的边沿为严格的直线且角为严格的角状。例如,在上述各种图形形状的基础上,各个子像素的角被倒圆。也就是说,虽然在附图中的各子像素形状包括严格的由两条线段形成的角,但在一些实施例中,各个子像素的形状可以均为圆角图形。例如,对于发光层通过掩模进行蒸镀的情况下,发光层位于角落处的部分则可能会自然形成圆角形状。在一些情况下,如前面所提及的,金属刻蚀会有拔模角,因此,在利用蒸镀工艺形成子像素的发光层时,其发光层的一个角可能被去掉。
如上所述,由主信号线21和辅信号线22形成的信号线可以作为参考电压线,且如图6A所示,其连接到每个子像素的像素驱动电路中。例如,在每个 子像素的周围,该信号线可以通过贯穿其下方的绝缘层的过孔与下方的像素电路连接,例如,如图6B所示,信号线可以通过主信号线21下方的各层绝缘层(例如,第一栅极绝缘层003、第二栅极绝缘层004、层间介电层005、平坦化层006以及像素限定层007)中的过孔连接到像素电路中,过孔的具体位置可以根据设计需要选择,在图6B中所示的截面中,并没有示出该过孔结构。此外,对于上述信号线形成的网格状结构,其整体上可以在显示基板的周边区域连接到参考电压源。例如,在显示基板的周边包括一环形的参考电压信号线,该网格状的信号线连接到该环形信号线,从而将参考电压输入到每个子像素的像素电极结构中。
例如,像素电路中包括至少一个晶体管(图6A中的第一压降补偿晶体管T5和/或第二压降补偿晶体管T7),每个所述晶体管包括栅极、有源层以及源漏极。在一个示例中,信号线通过贯穿其下方的绝缘层的过孔与相应的晶体管的源极或漏极电连接。在一个示例中,晶体管的有源层由多晶硅层形成,在有源层的沟道区的两侧,多晶硅层被导体化以形成源漏极。例如,所述信号线通过一过孔与被导体化而形成的多晶硅源极或漏极电连接。例如,晶体管为顶栅极晶体管,用于将所述信号线电连接到相应晶体管的源极或漏极的过孔穿过栅极金属层和数据金属层,且与所述栅极金属层和数据金属层的一部分金属图案可以用作过孔电连接的中继连接件,但根据本公开的实施例不限于此。
例如,如图3所示,第一子像素R1在第二对角线302的方向上的长度大于第一子像素R1在第一对角线301的方向上的长度,第二子像素B1在第二对角线302的方向上的长度大于第二子像素B1在第一对角线301的方向上的长度。也就是说,例如,若第一子像素R1的形状为矩形时,第一子像素R1沿第一对角线301的边长小于其沿第二对角线302的边长。若第一子像素R1的形状为长椭圆形,则该长椭圆形的两个焦点的连线与第二对角线302大致平行。
例如,第一子像素R1和第二子像素B1的形状和面积可以相同。
例如,如图3所示,第一子像素R1可以关于第一对角线301所在的直线对称。第二子像素B1也可以关于第一对角线301所在的直线对称。
例如,第一子像素R1和第二子像素B1的形状可以包括矩形、六边形或长椭圆形等。六边形可以为等边六边形等。
例如,两个第三子像素G1和G2的形状和面积均相同。
例如,第一子像素R1和第二子像素B1的面积均大于两个第三子像素G1和G2中的每一个。
例如,两个第三子像素G1和G2的形状均包括矩形(例如,正方形)、五边形或菱形等。五边形包括直角底角五边形、直角梯形等。
例如,如图3所示,两个第三子像素G1和G2的形状可以关于第一对角线301对称。
需要说明的是,各子像素的面积可以根据发光材料的发光效率具体设置,例如发光材料的发光效率较高,则子像素的面积可以较小;而发光材料的发光效率较低,则子像素的面积可以较大。
例如,两个第三子像素G1和G2可以由一个开孔形成,从而有效降低高精度金属掩模板(Fine Metal Mask,FMM)的工艺难度。两个第三子像素G1和G2可以采用通过一个开孔形成可以表示在蒸镀相邻两个第三子像素G1和G2的发光层时,可以共用一个FMM的开孔区。在该开孔区内,只有发光材料蒸镀到像素电极上的部分上形成第三子像素G1和G2,从而可以发光,其余蒸镀到绝缘胶上的发光材料则不能发光。
例如,在一些示例中,第三子像素G1和G2为敏感颜色子像素。由于人眼对颜色的敏感程度不同,相邻的敏感颜色子像素距离较近时更容易发生因相邻的敏感颜色子像素距离较近而导致的相邻的两个敏感颜色子像素难以分辨,被人眼视觉上合二为一的情况。由此,该像素排列结构可改善敏感颜色子像素的分布均匀性,从而可提高视觉上的分辨率。需要说明的是,当像素排列结构采用红绿蓝(RGB)模式时,上述的敏感颜色为绿色。
例如,在一些示例中,第三子像素G1和G2为绿色子像素。第一子像素R1为红色子像素,第二子像素B1为蓝色子像素。但不限于此,第一子像素R1也可以为蓝色子像素,相应地,第二子像素B1为红色子像素。
例如,如图1所示,在每个重复单元100中,两个第三子像素G1和G2的边界在第二对角线的方向(即第二方向Y)上的最小距离h1的范围是8-14微米(μm),以避免因相邻的两个第三子像素G1和G2距离较近而导致的相邻的两个第三子像素G1和G2难以分辨,被人眼视觉上合二为一的情况,从而可避免因此产生的颗粒感。由此,该像素排列结构可改善第三子像素的分布均匀性,从而可提高视觉上的分辨率。例如,在一些示例中,最小距离h1可以为10微米。
图7A为图1所示的显示基板的重复单元中的虚拟像素的一种分组示意图,图7B为图1所示的显示基板的重复单元中的虚拟像素的另一种分组示意图。
例如,当该显示基板用于显示面板时,可以采用子像素渲染(Sub-Pixel Rendering,SPR)算法进行驱动,从而实现虚拟显示。例如,在一些示例中,在每个重复单元100中,第一子像素R1和两个第三子像素G1和G2中的一个形成第一虚拟像素,第二子像素B1和两个第三子像素G1和G2中的另一个形成第二虚拟像素。如图7A所示,第一子像素R1和第三子像素G1形成第一虚拟像素110,第二子像素B1和第三子像素G2形成第二虚拟像素120。第一子像素R1和第二子像素B1均被第一虚拟像素和第二虚拟像素共用。
例如,如图3所示,在每个重复单元100中,第一子像素R1和/或第二子像素B1可以按第一对角线301所在的直线划分为两个子像素块。如图7B所示,第一子像素R1可以被划分为第一子像素块R11和第二子像素块R12,第二子像素B1可以被划分为第三子像素块B11和第四子像素块B12,从而该重复单元100可以实现真实(real)像素显示。如图7B所示,第一子像素块R11、第三子像素G1和第三子像素块B11形成第一真实像素110′,第二子像素块R12、第三子像素G2和第四子像素块B12形成第二真实像素120′,从而一个重复单元100包括两个真实像素。
例如,第一子像素块R11和第二子像素块R12关于两个第三子像素G1和G2的中心的连线(即图3中的第二对角线302)的中垂线对称,第三子像素块B11和第四子像素块B12也关于两个第三子像素G1和G2的中心的连线的中垂线对称。
例如,第一子像素块R11和第二子像素块R12可以由一个开孔形成,第三子像素块B11和第四子像素块B12也可以由一个开孔形成,从而有效降低FMM的工艺难度。
图8为本公开另一实施例提供的一种显示基板的示意图;图9为图8所示的显示基板中的像素组的示意图;图10为图8所示的显示基板中的一列像素组的示意图。
例如,如图8所示,显示基板10包括多个像素组200、多条主信号线21和辅信号线22。每个像素组200包括两个第一子像素R2和R2′、两个第二子像素B2和B2′和两个第三子像素G1′和G2′。
例如,两个第一子像素R2和R2′和两个第二子像素B2和B2′形状均为矩 形、六边形、长椭圆形等。两个第三子像素G1′和G2′的形状均为五边形、矩形等。
例如,如图9所示,在每个像素组200中,两个第一子像素R2和R2′的中心和两个第二子像素B2和B2′的中心的连线形成一个矩形25,矩形25包括第一对称轴251和与第一对称轴251相互垂直的第二对称轴252,两个第三子像素G1′和G2′沿第二对称轴252的方向排列,且分别位于第一对称轴251的两侧。
需要说明的是,上述的矩形25是为了更好地描述第一子像素、第二子像素和第三子像素的位置,并非实际的结构。
例如,如图9所示,第一子像素R2和第一子像素R2′关于第一对称轴251所在的直线对称设置,第二子像素B2和第二子像素B2′关于也第一对称轴251所在的直线对称设置。也就是说,第一子像素R2和第一子像素R2′位于第二对称轴252所在的直线的第一侧(图9中为右侧),第二子像素B2和第二子像素B2′位于第二对称轴252所在的直线的第二侧(图9中为左侧)。
例如,第一子像素R2和第一子像素R2′的形状关于第一对称轴251所在的直线对称,第二子像素B2和第二子像素B2′的形状也关于第一对称轴251所在的直线对称。
例如,第一子像素R2、第一子像素R2′、第二子像素B2和第二子像素B2′的形状可以均相同(例如,六边形等)。
例如,如图9所示,两个第三子像素G1′和G2′关于第一对称轴251对称设置。例如,两个第三子像素G1′和G2′的中心位于第二对称轴252上,也就是说,两个第三子像素G1′和G2′之间的间隔的中心与矩形25的中心重合。
例如,两个第三子像素G1′和G2′的形状可以均为直角底角对称五边形,直角底角对称五边形的底边平行于第一对称轴251,且在第二对称轴252的方向上相对于直角底角对称五边形的顶点更靠近第一对称轴251。第三子像素G1′的中心与第一对称轴251的垂直距离小于第三子像素G1′的中心与第一子像素R2和第二子像素B2的中心的连线的垂直距离。
例如,第三子像素G1′的形状关于第二对称轴252对称,第三子像素G2′的形状也关于第二对称轴252对称。
例如,多个像素组200沿第二对称轴252的方向形成像素组列,即像素组的列方向与第二对称轴252平行。在第二对称轴252的方向上,相邻两个像素组共用一个第一子像素和一个第二子像素。如图10所示,在第二对称轴252 的方向上,像素组200、像素组200′和像素组200″位于同一列,且像素组200与像素组200′相邻,像素组200′与像素组200″相邻,像素组200与像素组200′共用第一子像素R2′和第二子像素B2′,即位于像素组200和像素组200′重叠部分的第一子像素R2′和第二子像素B2′。而像素组200′与像素组200″则共用第一子像素R2和第二子像素B2,即位于像素组200和像素组200′重叠部分的第一子像素R2和第二子像素B2。
例如,如图8所示,像素组200中的两个第三子像素G1′和G2′位于相邻两条主信号线21之间,相邻两条主信号线21之间至少设置一条辅信号线22,辅信号线22与相邻两条主信号线21连接,且从两个第三子像素G1′和G2′之间的间隔穿过。
例如,多条主信号线21和辅信号线22被配置为给多个像素组200提供参考电压或公共电压。
例如,如图8和图9所示,多个像素组200沿第一对称轴251的方向形成像素组行,即像素组的行方向与第一对称轴251平行。如图8所示,像素组200的一行可以包括第一子行、第二子行和第三子行。在像素组200中,第一子像素R2和第二子像素B2位于第一子行,两个第三子像素G1′和G2′位于第二子行,第一子像素R2′和第二子像素B2′位于第三子行。在各像素组200中,第二主信号线211可以依次沿位于第一子行的第一子像素R2和第二子像素B2之间的间隔、位于第一子行的第一子像素R2和位于第二子行的第三子像素G1′之间的间隔、位于第二子行的两个第三子像素G1′和G2′在第一对称轴251的方向上的第一侧(图8和图9所示的右侧)、位于第二子行的第三子像素G2′和位于第三子行的第一子像素R2′之间的间隔、以及位于第三子行的第一子像素R2′和第二子像素B2′之间的间隔走线。或者,第二主信号线211也可以依次沿位于第一子行的第一子像素R2和第二子像素B2之间的间隔、位于第一子行的第二子像素B2和位于第二子行的第三子像素G1′之间的间隔、位于第二子行的两个第三子像素G1′和G2′在第一对称轴251的方向上的第二侧(图8和图9所示的左侧)、位于第二子行的第三子像素G2′和位于第三子行的第二子像素B2′之间的间隔、以及位于第三子行的第一子像素R2′和第二子像素B2′之间的间隔走线。
图11为图8所示的显示基板中的两列像素组的示意图。
例如,相邻像素组列的相邻两个像素组的中心在第二对称轴252的方向上 的距离为矩形25沿第二对称轴252的方向上的长度的一半。如图11所示,像素组200和像素组200″′位于相邻的像素组列,像素组200的中心和像素组200″′的中心之间的距离Q1为矩形25沿第二对称轴252的方向上的长度的一半。也就是说,像素组200的中心位于像素组200″′的第一子像素R2和第二子像素B2的中心的连线的延长线上,像素组200″′的中心位于像素组200的第一子像素R2′和第二子像素B2′的中心的连线的延长线上。
图12为本公开再一实施例提供的一种显示基板的示意图;图13为图12所示的显示基板中的像素组的示意图;图14为图12所示的显示基板中的一列像素组的示意图。
例如,如图12所示,显示基板10包括多个像素组300、多条主信号线21和辅信号线22。每个像素组300包括第一子单元301和第二子单元302,第一子单元301包括第一子像素R3、第二子像素B3和第三子像素G1″,第二子单元302包括第一子像素R3、第二子像素B3和第三子像素G2″。
例如,如图13所示,第一子单元301包括虚拟矩形,虚拟矩形包括彼此平行的第一边3011和第二边3012,第一子像素R3的中心和第二子像素B3的中心的连线为第一子单元301的虚拟矩形的第一边3011,第一子像素R3和第二子像素B3关于第一边3012的中垂线3013对称分布,第一子单元301和第二子单元302关于第二边3012呈镜像对称。
需要说明的是,上述的虚拟矩形是为了更好地描述第一子像素、第二子像素和第三子像素的位置,并非实际的结构。
例如,第三子像素G1″和第三子像素G2″的中心位于第一边3011的中垂线上。
例如,第三子像素G1″的中心与第一边3011的垂直距离大于第三子像素G1″的中心与第二边3012的垂直距离。
例如,多个像素组300沿第一边3011的中垂线3013的方向形成像素组列,即像素组的列方向与第一边3011的中垂线3013平行。在第一边3011的中垂线3013的方向上,相邻两个像素组共用第一子像素R3和第二子像素B3。例如,如图14所示,在第一边3011的中垂线3013的方向上,像素组300和像素组300′位于同一列,且像素组300与像素组300′彼此相邻。像素组300包括第一子单元301和第二子单元302,像素组300′包括第一子单元301′和第二子单元302′。像素组300与像素组300′共用第一子像素R3和第二子像素B3,即 位于像素组300和像素组300′重叠部分的第一子像素R3和第二子像素B3。也就是说,被共用的第一子像素R3和第二子像素B3分别为像素组300中的第二子单元302中的子像素和像素组300′中的第一子单元301′中的子像素。
例如,如图12所示,第一子单元301的第三子像素G1″和第二子单元302的第三子像素G2″位于相邻两条主信号线21之间,相邻两条主信号线21之间至少设置一条辅信号线22,辅信号线22与相邻两条主信号线21连接,且从第一子单元301的第三子像素G1″和第二子单元302的第三子像素G2″之间的间隔穿过。
例如,多条主信号线21和辅信号线22被配置为给多个像素组200提供参考电压或公共电压。
例如,如图12和图13所示,在各像素组300的第一子单元301中,第二主信号线211可以依次沿第一子像素R3和第二子像素B3之间的间隔、第一子像素R3和第三子像素G1″之间的间隔、以及第三子像素G1″在第一边3011所在直线方向上的第一侧(图12所示的右侧)走线。例如,第二主信号线211位于第三子像素G1″的第一侧的部分在第一边3011的中垂线3013的方向上的延伸线穿过第一子像素R3的中心。或者,第二主信号线211也可以依次沿第一子像素R3和第二子像素B3之间的间隔、第二子像素B3和第三子像素G1″之间的间隔、以及第三子像素G1″在第一边3011所在直线方向上的第二侧(图12所示的左侧)走线。例如,第二主信号线211位于第三子像素G1″的第二侧的部分在第一边3011的中垂线3013的方向上的延伸线穿过第二子像素B3的中心。
例如,第二主信号线211在第一子单元301中的部分和第二主信号线211在第二子单元302中的部分关于第一子单元301中的虚拟矩形的第二边3012呈镜像对称。
图15为图12所示的显示基板中的两列像素组的示意图。
例如,相邻像素组列的相邻两个像素组的中心在第一边的中垂线3013的方向上的距离为第一子单元中的虚拟矩形沿第一边的中垂线3013的方向上的长度。如图15所示,像素组300和像素组300″位于相邻的两个像素组列,像素组300的中心和像素组300″的中心之间的距离Q2为像素组300的第一子单元中的虚拟矩形沿第一边的中垂线3013的方向上的长度。也就是说,若像素组300的中心位于像素组300″的第一子单元中的第一子像素R3和第二子像素 B3的中心的连线的延长线上,则像素组300″的中心位于像素组300的第二子单元中的第一子像素R3和第二子像素B3的中心的连线的延长线上。
例如,上述任一所述的显示基板10可以应用于液晶显示面板,也可以应用于有机发光二极管显示面板。
例如,显示基板10可以为阵列基板。以图1所示的显示基板10为例,在重复单元100中,第一子像素R1包括第一颜色像素电极以及设置在第一颜色像素电极上的第一颜色发光层,第二子像素B1包括第二颜色像素电极以及设置在第二颜色像素电极上的第二颜色发光层,第三子像素G1/G2包括第三颜色像素电极以及设置在第三颜色像素电极上的第三颜色发光层。
例如,第一颜色像素电极的形状与第一子像素R1的形状相同,并被配置为驱动第一颜色发光层发光;第二颜色像素电极的形状与第二子像素B1的形状相同,并被配置为驱动第二颜色发光层发光;第三颜色像素电极的形状与第三子像素G1/G2的形状均相同,并被配置为驱动第三颜色发光层发光。当然,本公开实施例不限于此,各颜色像素电极的形状可与各子像素的形状不同,各子像素的形状可通过像素限定层限定。
需要说明的是,上述的各子像素的形状为各子像素的发光区域的形状。另外,各颜色发光层的具体形状可根据制备工艺进行设置,本公开实施例在此不作限制。例如,各颜色发光层的形状可由制备工艺中的掩膜板开孔的形状决定。
例如,在一些示例中,第一颜色发光层被配置为发出红光,第二颜色发光层被配置为发出蓝光,第三颜色发光层被配置为发出绿光。
例如,当显示基板10应用于液晶显示面板时,显示基板10也可以为彩膜基板。在重复单元100中,第一子像素R1包括第一颜色滤光片,第二子像素B1包括第二颜色滤光片,第三子像素G1包括第三颜色滤光片。需要说明的是,当该显示基板10为彩膜基板时,不仅可用于液晶显示面板,还可用于采用白光OLED结合彩膜模式的显示面板。
例如,第一颜色滤光片可以为红色滤光片,第二颜色滤光片可以为蓝色滤光片,而第三颜色滤光片可以为绿色滤光片。
图16为本公开一实施例提供的一种显示装置的示意性框图。
例如,如图16所示,本公开实施例提供的显示装置50包括显示面板51,显示面板51包括上述任一所述的显示基板52。
例如,显示面板51可以为液晶显示面板或有机发光二极管(OLED)显示 面板等。当显示面板51为液晶显示面板时,显示基板52可以为阵列基板,也可以为彩膜基板。当显示面板51为有机发光二极管显示面板时,显示基板52可以为阵列基板。
例如,在一些示例中,显示装置50可以为手机、平板电脑、电视机、显示器、笔记本电脑、数码相框、导航仪等任何具有显示功能的产品或部件。
需要说明的是,对于该显示装置50的其它组成部分(例如控制装置、图像数据编码/解码装置、行扫描驱动器、列扫描驱动器、时钟电路等)均为本领域的普通技术人员应该理解具有的,在此不做赘述,也不应作为对本发明的限制。
对于本公开,还有以下几点需要说明:
(1)本公开实施例附图只涉及到与本公开实施例涉及到的结构,其他结构可参考通常设计。
(2)在不冲突的情况下,本公开的实施例及实施例中的特征可以相互组合以得到新的实施例。
以上所述仅为本公开的具体实施方式,但本公开的保护范围并不局限于此,本公开的保护范围应以所述权利要求的保护范围为准。

Claims (27)

  1. 一种显示基板,包括:多个重复单元、多条主信号线和辅信号线,
    其中,每个重复单元包括一个第一子像素、一个第二子像素和两个第三子像素;
    在每个所述重复单元中,所述一个第一子像素和所述一个第二子像素沿第一方向排列,所述两个第三子像素沿第二方向排列,所述第一方向和所述第二方向为不同的方向;
    所述两个第三子像素位于相邻两条主信号线之间,所述相邻两条主信号线之间至少设置一条所述辅信号线,所述辅信号线与所述相邻两条主信号线连接,且从所述两个第三子像素之间的间隔穿过。
  2. 根据权利要求1所述的显示基板,其中,所述多条主信号线沿同一方向延伸,所述辅信号线与所述多条主信号线的延伸方向不同。
  3. 根据权利要求1或2所述的显示基板,其中,每条所述主信号线的延伸方向为所述第二方向,每条所述主信号线的形状为波浪形,在所述主信号线的同一侧,若所述波浪形的波峰部分与所述第一子像素相邻,则所述波浪形的波谷部分与所述第二子像素相邻。
  4. 根据权利要求1-3任一项所述的显示基板,其中,所述多个重复单元沿所述第一对角线的方向重复排列以形成多个重复单元行,所述多个重复单元行沿所述第二对角线的方向排列,
    所述辅信号线包括第一线段、第二线段和第三线段,所述第三线段沿所述第一方向延伸,所述第一线段位于所述第一子像素和相邻重复单元行中与所述第一子像素直接相邻的第二子像素之间,所述第三线段位于同一重复单元中的两个第三子像素之间,所述第二线段被配置为连接所述第一线段和所述第三线段,
    位于奇数重复单元行的辅信号线的第三线段在所述第二方向上的投影和位于偶数重复单元行的辅信号线的第三线段在所述第二方向上的投影不重叠;或者,
    所述多个重复单元沿所述第一对角线的方向重复排列以形成多个重复单元列,所述多个重复单元列沿所述第二对角线的方向排列,
    所述辅信号线包括第一线段、第二线段和第三线段,所述第三线段沿所述 第一方向延伸,所述第一线段位于所述第一子像素和相邻重复单元列中与所述第一子像素直接相邻的第二子像素之间,所述第三线段位于同一重复单元中的两个第三子像素之间,所述第二线段被配置为连接所述第一线段和所述第三线段,
    位于奇数重复单元列的辅信号线的第三线段在所述第二方向上的投影和位于偶数重复单元列的辅信号线的第三线段在所述第二方向上的投影不重叠。
  5. 根据权利要求1-4任一项所述的显示基板,其中,在所述每个重复单元中,在所述第一方向上,所述第一子像素和所述第二子像素分别位于所述两个第三子像素两侧。
  6. 根据权利要求1-5任一项所述的显示基板,其中,所述第一方向和所述第二方向分别为在同一平面内相互垂直的两个方向。
  7. 根据权利要求1-6任一项所述的显示基板,其中,所述相邻两条主信号线中的一条位于所述第一子像素远离所述两个第三子像素的一侧,所述相邻两条主信号线中的另一条位于所述第二子像素靠近所述两个第三子像素的一侧;或者,所述相邻两条主信号线中的一条位于所述第一子像素靠近所述两个第三子像素的一侧,所述相邻两条主信号线中的另一条位于所述第二子像素靠近所述两个第三子像素的一侧。
  8. 根据权利要求1或2所述的显示基板,其中,一个平行四边形的第一对角线的两个顶点分别位于所述第一子像素和所述第二子像素内,所述平行四边形的第二对角线的两个顶点分别位于所述两个第三子像素内。
  9. 根据权利要求8所述的显示基板,其中,在每个重复单元中,所述第一子像素的中心、所述第二子像素的中心和所述两个第三子像素的中心的连线形成所述平行四边形,
    所述第一子像素的中心和所述第二子像素的中心分别与所述平行四边形的所述第一对角线的两个顶点重合,所述两个第三子像素的中心分别与所述平行四边形的所述第二对角线的两个顶点重合。
  10. 根据权利要求9所述的显示基板,其中,所述第一对角线长于所述第二对角线。
  11. 根据权利要求9或10所述的显示基板,其中,所述第二对角线的长度大于所述第一子像素或所述第二子像素沿所述第二对角线的方向上的长度的一半。
  12. 根据权利要求8-11任一项所述的显示基板,所述多个重复单元沿所述第一对角线的方向重复排列以形成多个重复单元行,所述多个重复单元行沿所述第二对角线的方向排列,相邻奇数重复单元行或相邻偶数重复单元行的位于同一列的两个重复单元中的第三子像素的中心连线在所述第二对角线的方向上的最小长度大于所述第一子像素或所述第二子像素在所述第二对角线的方向上的长度的1.5倍;或者,
    所述多个重复单元沿所述第一对角线的方向重复排列以形成多个重复单元列,所述多个重复单元列沿所述第二对角线的方向排列,相邻奇数重复单元列或相邻偶数重复单元列的位于同一行的两个重复单元中的第三子像素的中心连线在所述第二对角线的方向上的最小长度大于所述第一子像素或所述第二子像素在所述第二对角线的方向上的长度的1.5倍。
  13. 根据权利要求8-12任一项所述的显示基板,其中,在所述每个重复单元内,所述两个第三子像素的边界在所述第二对角线的方向上的最小距离大于或等于在所述第一对角线的方向上的相邻的两个重复单元中的相邻的所述第一子像素的边界和所述第二子像素的边界在所述第一对角线的方向上的最小距离。
  14. 根据权利要求8-13任一项所述的显示基板,其中,所述平行四边形为菱形。
  15. 根据权利要求8-14任一项所述的显示基板,其中,所述第一对角线的方向与所述第一方向平行,所述第二对角线的方向与所述第二方向平行。
  16. 根据权利要求8-11任一项所述的显示基板,其中,所述多个重复单元沿所述第一对角线的方向重复排列以形成重复单元行,多个重复单元行沿所述第二对角线的方向排列,奇数重复单元行的相邻两个重复单元在所述第一对角线的方向上的间隔的中心位于偶数重复单元行的所述两个第三子像素的中心的连线的延长线上;或者,
    所述多个重复单元沿所述第一对角线的方向重复排列以形成重复单元列,多个重复单元列沿所述第二对角线的方向排列,奇数重复单元列的相邻两个重复单元在所述第一对角线的方向上的间隔的中心位于偶数重复单元列的所述两个第三子像素的中心的连线的延长线上。
  17. 根据权利要求8-16任一项所述的显示基板,其中,所述第一子像素在所述第二对角线的方向上的长度大于所述第一子像素在所述第一对角线的 方向上的长度,所述第二子像素在所述第二对角线的方向上的长度大于所述第二子像素在所述第一对角线的方向上的长度。
  18. 根据权利要求8-17任一项所述的显示基板,其中,在所述每个重复单元中,所述两个第三子像素的边界在所述第二对角线的方向上的最小距离的范围是8-14微米。
  19. 根据权利要求1-18任一项所述的显示基板,所述第一子像素、所述第二子像素和所述第三子像素均包括阳极,所述多条主信号线和所述辅助信号线与所述阳极同层。
  20. 根据权利要求1-19任一项所述的显示基板,其中,所述第一子像素为蓝色子像素,所述第二子像素为红色子像素,所述第三子像素为绿色子像素。
  21. 一种显示基板,包括:多个像素组、多条主信号线和辅信号线,
    其中,每个像素组包括两个第一子像素、两个第二子像素和两个第三子像素,在每个像素组中,所述两个第一子像素的中心和所述两个第二子像素的中心的连线形成一个矩形,所述矩形包括第一对称轴和与所述第一对称轴相互垂直的第二对称轴,所述两个第三子像素沿所述第二对称轴的方向排列,且分别位于所述第一对称轴的两侧,
    所述多个像素组沿所述第二对称轴的方向形成像素组列,在所述第二对称轴的方向上,相邻两个像素组共用一个第一子像素和一个第二子像素,
    在每个像素组中,所述两个第三子像素位于相邻两条主信号线之间,所述相邻两条主信号线之间至少设置一条所述辅信号线,所述辅信号线与所述相邻两条主信号线电连接,且从所述两个第三子像素之间的间隔穿过。
  22. 根据权利要求21所述的显示基板,其中,相邻像素组列的相邻两个像素组的中心在所述第二对称轴的方向上的距离为所述矩形沿所述第二对称轴的方向上的长度的一半。
  23. 根据权利要求21或22所述的显示基板,其中,所述两个第三子像素关于所述第一对称轴对称设置。
  24. 根据权利要求23所述的显示基板,其中,所述两个第三子像素的中心位于所述第二对称轴上。
  25. 根据权利要求21-24任一项所述的显示基板,其中,所述多条主信号线被配置为给所述多个像素组提供参考电压或公共电压。
  26. 根据权利要求21-25任一项所述的显示基板,其中,所述第一子像素 和所述第二子像素的形状均为六边形,所述两个第三子像素的形状均为五边形。
  27. 一种显示装置,包括根据权利要求1-10任一项所述的显示基板或根据权利要求21-26任一项所述的显示基板。
PCT/CN2018/124386 2018-02-09 2018-12-27 显示基板和显示装置 WO2019153938A1 (zh)

Priority Applications (3)

Application Number Priority Date Filing Date Title
EP18905693.0A EP3751613A4 (en) 2018-02-09 2018-12-27 DISPLAY SUBSTRATE AND DISPLAY DEVICE
US16/630,496 US11081539B2 (en) 2018-02-09 2018-12-27 Display substrate and display device
JP2020535989A JP7299223B2 (ja) 2018-02-09 2018-12-27 表示基板および表示装置

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201810137014.6 2018-02-09
CN201810137014.6A CN110137214A (zh) 2018-02-09 2018-02-09 显示基板和显示装置

Publications (1)

Publication Number Publication Date
WO2019153938A1 true WO2019153938A1 (zh) 2019-08-15

Family

ID=67549242

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2018/124386 WO2019153938A1 (zh) 2018-02-09 2018-12-27 显示基板和显示装置

Country Status (5)

Country Link
US (1) US11081539B2 (zh)
EP (1) EP3751613A4 (zh)
JP (1) JP7299223B2 (zh)
CN (1) CN110137214A (zh)
WO (1) WO2019153938A1 (zh)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US11482590B2 (en) 2019-09-30 2022-10-25 Lg Display Co., Ltd. Display device with alternately arranged circuit areas and sub-pixels
EP4068382A4 (en) * 2019-12-03 2023-02-08 Guangdong Oppo Mobile Telecommunications Corp., Ltd. DISPLAY SCREEN ASSEMBLY AND ELECTRONIC DEVICE
US20230139616A1 (en) * 2021-05-20 2023-05-04 Shenzhen China Star Optoelectronics Semiconductor Display Technology Co., Ltd. Manufacturing method of display panel and display panel
EP4145526A4 (en) * 2020-04-26 2023-08-23 BOE Technology Group Co., Ltd. DISPLAY SUBSTRATE AND DISPLAY DEVICE

Families Citing this family (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN112018147B (zh) * 2019-05-13 2022-06-10 京东方科技集团股份有限公司 阵列基板、显示装置和掩模板
CN110619851A (zh) * 2019-09-24 2019-12-27 京东方科技集团股份有限公司 像素电路、驱动方法及显示装置
EP4068258A4 (en) * 2019-11-29 2022-11-23 BOE Technology Group Co., Ltd. NETWORK SUBSTRATE, BILLBOARD, TILE BILLBOARD, AND BILLBOARD ETCHING METHOD
CN111128078B (zh) * 2020-02-14 2021-05-11 京东方科技集团股份有限公司 电子设备、显示面板及其驱动装置、驱动方法
WO2021189305A1 (zh) * 2020-03-25 2021-09-30 京东方科技集团股份有限公司 显示基板和显示装置
WO2021189304A1 (zh) * 2020-03-25 2021-09-30 京东方科技集团股份有限公司 显示基板和显示装置
US20220052147A1 (en) * 2020-04-26 2022-02-17 Chengdu Boe Optoelectronics Technology Co., Ltd. Display substrate and display apparatus
CN112038375B (zh) * 2020-09-02 2022-11-15 昆山国显光电有限公司 显示面板和显示装置
KR20220078528A (ko) * 2020-09-10 2022-06-10 보에 테크놀로지 그룹 컴퍼니 리미티드 픽셀 어레이 및 디스플레이 디바이스
CN112162719A (zh) * 2020-10-28 2021-01-01 Oppo(重庆)智能科技有限公司 显示内容渲染方法及装置、计算机可读介质和电子设备
CN113296640B (zh) * 2021-05-20 2022-11-08 武汉华星光电半导体显示技术有限公司 触控显示面板

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008197491A (ja) * 2007-02-14 2008-08-28 Brother Ind Ltd 表示パネルの制御装置
CN105938266A (zh) * 2015-03-05 2016-09-14 株式会社日本显示器 显示装置
CN207781608U (zh) * 2018-02-09 2018-08-28 京东方科技集团股份有限公司 显示基板和显示装置

Family Cites Families (15)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008108530A (ja) * 2006-10-25 2008-05-08 Hitachi Displays Ltd 有機el表示装置
KR100937850B1 (ko) * 2008-04-04 2010-01-21 엘지디스플레이 주식회사 액정 표시 장치
TWI478128B (zh) * 2013-05-23 2015-03-21 Au Optronics Corp 發光二極體顯示面板
JP6349406B2 (ja) * 2013-11-04 2018-06-27 シェンジェン ユンイング テクノロジー カンパニー リミテッド ディスプレイのサブピクセル配置及びそれをレンダリングする方法
KR102139972B1 (ko) * 2013-12-31 2020-07-31 엘지디스플레이 주식회사 유기전계 발광표시소자 및 이의 제조방법
KR102145850B1 (ko) * 2014-05-30 2020-08-20 엘지디스플레이 주식회사 유기발광 디스플레이 장치와 픽셀의 리페어 방법
JP6521610B2 (ja) * 2014-11-10 2019-05-29 株式会社ジャパンディスプレイ 画像表示装置
CN104536632B (zh) * 2015-01-26 2017-07-21 京东方科技集团股份有限公司 一种内嵌式触摸屏及显示装置
TWI555195B (zh) * 2015-03-27 2016-10-21 友達光電股份有限公司 顯示器的畫素排列結構
US9984624B2 (en) * 2015-12-28 2018-05-29 Semiconductor Energy Laboratory Co., Ltd. Semiconductor device, driver IC, and electronic device
CN205355055U (zh) * 2016-02-18 2016-06-29 京东方科技集团股份有限公司 一种像素排列结构、显示面板及显示装置
KR20180038112A (ko) * 2016-10-05 2018-04-16 삼성디스플레이 주식회사 헤드 마운티드 디스플레이 장치
CN106940978B (zh) * 2017-05-15 2019-10-25 上海天马有机发光显示技术有限公司 有机发光显示面板及其驱动方法、有机发光显示装置
KR102448031B1 (ko) * 2017-07-28 2022-09-28 삼성디스플레이 주식회사 센서 일체형 표시장치
CN107481671B (zh) 2017-09-29 2019-11-01 京东方科技集团股份有限公司 像素电路及其驱动方法、阵列基板、显示装置

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008197491A (ja) * 2007-02-14 2008-08-28 Brother Ind Ltd 表示パネルの制御装置
CN105938266A (zh) * 2015-03-05 2016-09-14 株式会社日本显示器 显示装置
CN207781608U (zh) * 2018-02-09 2018-08-28 京东方科技集团股份有限公司 显示基板和显示装置

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP3751613A4 *

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US11482590B2 (en) 2019-09-30 2022-10-25 Lg Display Co., Ltd. Display device with alternately arranged circuit areas and sub-pixels
EP4068382A4 (en) * 2019-12-03 2023-02-08 Guangdong Oppo Mobile Telecommunications Corp., Ltd. DISPLAY SCREEN ASSEMBLY AND ELECTRONIC DEVICE
EP4145526A4 (en) * 2020-04-26 2023-08-23 BOE Technology Group Co., Ltd. DISPLAY SUBSTRATE AND DISPLAY DEVICE
US11903274B2 (en) 2020-04-26 2024-02-13 Chengdu Boe Optoelectronics Technology Co., Ltd. Display substrate and display device
US20230139616A1 (en) * 2021-05-20 2023-05-04 Shenzhen China Star Optoelectronics Semiconductor Display Technology Co., Ltd. Manufacturing method of display panel and display panel

Also Published As

Publication number Publication date
EP3751613A4 (en) 2021-11-03
JP2021513093A (ja) 2021-05-20
JP7299223B2 (ja) 2023-06-27
EP3751613A1 (en) 2020-12-16
CN110137214A (zh) 2019-08-16
US11081539B2 (en) 2021-08-03
US20200168692A1 (en) 2020-05-28

Similar Documents

Publication Publication Date Title
WO2019153938A1 (zh) 显示基板和显示装置
US11908410B2 (en) Display substrate and preparation method thereof, display panel, and display device
US11282909B2 (en) Display panel and manufacturing method thereof, display device
JP7359701B2 (ja) 表示パネルおよび表示装置
CN207781608U (zh) 显示基板和显示装置
US11552131B2 (en) Electroluminescent display panel and display device
JP7332484B2 (ja) 表示基板及び表示装置
US11563060B2 (en) Pixel arrangement structure, display substrate, and display device
US20200357862A1 (en) Pixel arrangement, manufacturing method thereof, display panel, display device and mask
WO2019153949A1 (zh) 像素排列结构、显示基板和显示装置
US10446614B2 (en) Organic light-emitting display device
CN112309332B (zh) 像素电路及其驱动方法、显示基板和显示面板
US20200357861A1 (en) Pixel arrangement, manufacturing method thereof, display panel, display device and mask
WO2022068152A1 (zh) 显示面板和显示装置
WO2019153939A1 (zh) 像素排列结构、显示基板、显示装置和掩摸板
WO2021217593A1 (zh) 显示面板和显示装置
WO2019024565A1 (zh) 布线结构及其制备方法、oled阵列基板以及显示装置
WO2021258318A9 (zh) 显示基板及其制作方法、显示装置
US20220140035A1 (en) Flexible display
CN218158982U (zh) 触控结构、触控显示面板以及显示装置
WO2023024901A1 (zh) 显示基板和显示装置
WO2023060520A1 (zh) 显示面板及显示装置
WO2023230908A1 (zh) 显示基板以及显示装置
US20240215310A1 (en) Display panel and display apparatus
CN116134507A (zh) 显示面板和显示装置

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 18905693

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2020535989

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

ENP Entry into the national phase

Ref document number: 2018905693

Country of ref document: EP

Effective date: 20200909