WO2019153909A1 - 正极活性材料和锂离子电池 - Google Patents

正极活性材料和锂离子电池 Download PDF

Info

Publication number
WO2019153909A1
WO2019153909A1 PCT/CN2018/122758 CN2018122758W WO2019153909A1 WO 2019153909 A1 WO2019153909 A1 WO 2019153909A1 CN 2018122758 W CN2018122758 W CN 2018122758W WO 2019153909 A1 WO2019153909 A1 WO 2019153909A1
Authority
WO
WIPO (PCT)
Prior art keywords
active material
positive electrode
particle
content
electrode active
Prior art date
Application number
PCT/CN2018/122758
Other languages
English (en)
French (fr)
Inventor
曾巧
王可飞
Original Assignee
宁德新能源科技有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority claimed from CN201810123144.4A external-priority patent/CN110120497B/zh
Priority claimed from CN201810779137.XA external-priority patent/CN110729477B/zh
Application filed by 宁德新能源科技有限公司 filed Critical 宁德新能源科技有限公司
Priority to EP23176946.4A priority Critical patent/EP4235848A3/en
Priority to CA3090720A priority patent/CA3090720A1/en
Priority to CN202311502489.8A priority patent/CN117457872A/zh
Priority to CN201880088909.3A priority patent/CN111699576A/zh
Priority to JP2020542410A priority patent/JP7059381B2/ja
Priority to EP18905006.5A priority patent/EP3731314B1/en
Priority to US16/249,888 priority patent/US20190245199A1/en
Publication of WO2019153909A1 publication Critical patent/WO2019153909A1/zh
Priority to US17/847,801 priority patent/US20220336793A1/en

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/36Selection of substances as active materials, active masses, active liquids
    • H01M4/362Composites
    • H01M4/364Composites as mixtures
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/05Accumulators with non-aqueous electrolyte
    • H01M10/052Li-accumulators
    • H01M10/0525Rocking-chair batteries, i.e. batteries with lithium insertion or intercalation in both electrodes; Lithium-ion batteries
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/13Electrodes for accumulators with non-aqueous electrolyte, e.g. for lithium-accumulators; Processes of manufacture thereof
    • H01M4/131Electrodes based on mixed oxides or hydroxides, or on mixtures of oxides or hydroxides, e.g. LiCoOx
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/36Selection of substances as active materials, active masses, active liquids
    • H01M4/48Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides
    • H01M4/485Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides of mixed oxides or hydroxides for inserting or intercalating light metals, e.g. LiTi2O4 or LiTi2OxFy
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/36Selection of substances as active materials, active masses, active liquids
    • H01M4/48Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides
    • H01M4/50Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides of manganese
    • H01M4/505Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides of manganese of mixed oxides or hydroxides containing manganese for inserting or intercalating light metals, e.g. LiMn2O4 or LiMn2OxFy
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/36Selection of substances as active materials, active masses, active liquids
    • H01M4/48Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides
    • H01M4/52Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides of nickel, cobalt or iron
    • H01M4/525Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides of nickel, cobalt or iron of mixed oxides or hydroxides containing iron, cobalt or nickel for inserting or intercalating light metals, e.g. LiNiO2, LiCoO2 or LiCoOxFy
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/62Selection of inactive substances as ingredients for active masses, e.g. binders, fillers
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/62Selection of inactive substances as ingredients for active masses, e.g. binders, fillers
    • H01M4/628Inhibitors, e.g. gassing inhibitors, corrosion inhibitors
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M2004/021Physical characteristics, e.g. porosity, surface area
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M2004/026Electrodes composed of, or comprising, active material characterised by the polarity
    • H01M2004/028Positive electrodes
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Definitions

  • Embodiments of the present application relate to the field of batteries, and more particularly, to a positive active material and a lithium ion battery.
  • lithium-ion batteries Due to its long service life and high energy density, lithium-ion batteries are widely used in portable electronic products such as mobile phones, notebook computers, and digital cameras. They also have good application prospects in electric vehicles and other fields. With the expansion of its application range, the performance of lithium-ion batteries has also been put forward higher requirements, especially with the popularization of smart phones, which puts higher requirements on the energy density of lithium-ion batteries.
  • embodiments of the present application provide a positive electrode active material, which is stabilized by adjusting the kind and content of doping elements in the first particles and the second particles in the positive electrode active material, whereby, the lithium secondary battery 500 cycle discharge capacity retention rate (500 cycle discharge capacity retention ratio: ratio of 500 cycle discharge capacity to first discharge capacity) is improved.
  • a positive active material comprising a first particle and a second particle, wherein the chemical formula of the first particle is: Li e Co g M 1-g O 2-i , The chemical formula of the second particle is: Li f Co h N 1-h O 2-j , wherein the M element is at least two selected from the group consisting of Ni, Mn, Al, Mg, Ti, La, Y, and Zr, N The element is at least one selected from the group consisting of Ni, Mn, Al, Mg, Ti, La, Y, and Zr, and 0.8 ⁇ e ⁇ 1.2, 0 ⁇ g ⁇ 1, -0.1 ⁇ i ⁇ 0.2, and 0.8 ⁇ f ⁇ 1.2, 0 ⁇ h ⁇ 1, -0.1 ⁇ j ⁇ 0.2, the number of kinds of M elements in the first particles is larger than the number of kinds of N elements in the second particles.
  • the chemical formula of the first particle is: Li n Co x M 1-x O 2-y
  • the chemical formula of the second particle is: Li n Co x N 1-x O 2-y Wherein, 0.8 ⁇ n ⁇ 1.2, 0 ⁇ x ⁇ 1, -0.1 ⁇ y ⁇ 0.2.
  • the particle diameter of the first particles is smaller than the particle diameter of the second particles.
  • the particle diameter of the first particle is smaller than Dv50 of the positive electrode active material, and the particle diameter of the second particle is larger than Dv50 of the positive electrode active material.
  • the content of each element of the M element in the first particles is more than 200 ppm, and the content of each element of the N element in the second particles is more than 200 ppm.
  • the positive electrode active material satisfies the following formula (1):
  • a represents the total mass of the M element in the first particle
  • b represents the mass of the Co element in the first particle
  • c represents the total mass of the N element in the second particle
  • d represents the mass of the Co element in the second particle.
  • the positive electrode active material satisfies the following formula (2):
  • A represents the total molar amount of M elements in the first particles
  • B represents the molar amount of Co element in the first particle
  • C represents the total molar amount of the N element in the second particle
  • D represents the molar amount of the Co element in the second particles.
  • the positive electrode active material has a value of (a/b)/(c/d) of 1.3 to 10.
  • the volume-based particle size distribution curve of the positive electrode active material includes a first peak and a second peak.
  • the peak height of the second peak is larger than the peak height of the first peak.
  • the particle diameter of the positive electrode active material satisfies the following formula (3):
  • a positive electrode tab comprising the positive active material according to the first aspect of the present application.
  • the compact density after cold pressing of the positive electrode tab is ⁇ 3.9 g/cm 3 .
  • a lithium ion battery comprising the positive electrode tab according to the second aspect of the present application.
  • Example 1 shows a scanning electron microscope comparison chart of positive electrode active materials according to Example 1 and Comparative Example 6 of the present application.
  • Example 2 shows graphs of particle size distributions of positive electrode active materials according to Example 1 and Comparative Example 6 of the present application.
  • a positive active material comprising a first particle and a second particle, wherein the chemical formula of the first particle is: Li e Co g M 1-g O 2-i , a chemical formula of the second particle Is: Li f Co h N 1-h O 2-j , wherein the M element is selected from at least two of Ni, Mn, Al, Mg, Ti, La, Y, and Zr, and the N element is selected from the group consisting of Ni, Mn, At least one of Al, Mg, Ti, La, Y, and Zr, and 0.8 ⁇ e ⁇ 1.2, 0 ⁇ g ⁇ 1, -0.1 ⁇ i ⁇ 0.2, 0.8 ⁇ f ⁇ 1.2, 0 ⁇ h ⁇ 1, - 0.1 ⁇ j ⁇ 0.2, the number of kinds of M elements in the first particles is larger than the number of kinds of N elements in the second particles.
  • the chemical formula of the first particle is: Li n Co x M 1-x O 2-y
  • the chemical formula of the second particle is: Li n Co x N 1-x O 2-y , wherein , 0.8 ⁇ n ⁇ 1.2, 0 ⁇ x ⁇ 1, -0.1 ⁇ y ⁇ 0.2.
  • the particle size of the first particles in the positive electrode active material is smaller than that of the second particles, and the mixing of the particles of different sizes can increase the compaction density of the positive electrode tab, thereby improving the energy density of the lithium ion battery.
  • the particle size of the first particle is small, the specific surface area is large, the activity is strong, and the side reaction easily occurs with the electrolyte, resulting in a decrease in the stability of the entire positive electrode active material, and a shortened service life of the lithium ion battery.
  • the number of species of M elements in the first particles is greater than the number of species of N elements in the second particles, and the first particles having a smaller particle size can be effectively stabilized, and the first particles and the electrolysis are inhibited.
  • the side reaction of the liquid improves the service life of the lithium ion battery.
  • each of the elements of the M element in the first particle is greater than 200 ppm in the first particle, and each element of the N element in the second particle is in the first
  • the content of the two particles is more than 200 ppm, and the content of the M element and the N element can be detected by ICP (Inductively Coupled Plasma Spectrometer). If the content of each element in the M element is less than 200 ppm, the M element cannot be stabilized. The action of a particle, if the content of each element in the N element is less than 200 ppm, the N element cannot function to stabilize the second particle.
  • the positive active material satisfies the following formula (1):
  • the positive active material satisfies the following formula (2):
  • A represents the total molar amount of the M element in the first particle
  • B represents the molar amount of the Co element in the first particle
  • C represents the total molar amount of the N element in the second particle
  • D represents the molar amount of the Co element in the second particle. the amount.
  • the first particle and the second particle satisfy the relationship of the formula (1) or the formula (2), and the M element can sufficiently exert the effect of the action, and the content of the M element corresponding to the first particle unit Co element having a smaller particle diameter is larger than The content of the N element corresponding to the Co element of the second particle unit having a larger particle diameter, the smaller the particle diameter of the particle, the larger the specific surface area, the stronger the activity, and the purpose of stabilizing the first particle having a smaller particle size, first
  • the particles need more doping or coating of M element, so as to reduce the side reaction of the first particle and the electrolyte, so that the first particle is more stable, thereby improving the capacity retention rate of the lithium ion battery, and the particle size is larger.
  • the second particle requires only a relatively small amount of N elements to achieve a stabilizing effect.
  • the positive active material has a (a/b)/(c/d) value of from 1.3 to 10.
  • the content of the M element and the N element in the positive electrode active material particles cannot be too low or too high, and the content of the M element in the first particle is the same as that of the first particle.
  • the content of the N-particles of the two particles satisfies (a/b)/(c/d) of 1.3 to 10, a balance can be obtained, and at this time, the comprehensive performance of the lithium ion battery is good.
  • the volume-based particle size distribution curve of the positive active material includes a first peak and a second peak; a peak height of the second peak is greater than a peak height of the first peak.
  • the positive electrode active material having such a particle size distribution curve indicates that the particles are concentrated near the particle diameter corresponding to the first peak and the second peak, that is, the particles in the vicinity of the first peak and the second peak correspond to the particle diameter,
  • the particle size corresponding to one peak and the particle diameter corresponding to the second peak are one large and one small. After the two particles are mixed, the particles of smaller particle size occupy the gap between the larger particles, thereby increasing the compaction density of the positive electrode tab. , thereby increasing the energy density of the lithium ion battery.
  • the particle diameter of the positive electrode active material satisfies the following formula (3):
  • Dv90 refers to a particle size distribution of 90% by volume from the small particle size side in the volume-based particle size distribution
  • Dv50 means a particle volume of 50% from the small particle size side in the volume-based particle size distribution
  • the diameter, Dv10 refers to a particle size of 10% by volume from the small particle size side in the volume-based particle size distribution.
  • the positive electrode active material satisfying the formula (3) can increase the compaction density of the positive electrode tab, thereby increasing the energy density of the lithium ion battery.
  • the present application also provides a positive electrode tab using the positive active material, and a compact density of the positive electrode tab after cold pressing is ⁇ 3.9 g/cm 3 .
  • the present application also provides a lithium ion battery including the above positive electrode tab, the lithium ion battery further comprising a negative electrode tab including a negative active material layer, an electrolyte, and a separator between the positive electrode tab and the negative electrode tab.
  • the positive electrode tab includes a positive electrode active material layer and a positive electrode current collector, the positive electrode current collector may be an aluminum foil or a nickel foil, the negative electrode tab includes a negative electrode active material layer and a negative electrode current collector, and the negative electrode current collector may be a copper foil or a nickel foil.
  • the anode active material layer includes a cathode material capable of absorbing and releasing lithium (Li) (hereinafter, sometimes referred to as "a cathode material capable of absorbing/releasing lithium Li").
  • a cathode material capable of absorbing/releasing lithium (Li) may include a carbon material, a metal compound, an oxide, a sulfide, a nitride of lithium such as LiN 3 , a lithium metal, a metal and an alloy material which form an alloy together with lithium.
  • Examples of carbon materials may include low graphitized carbon, easily graphitizable carbon, artificial graphite, natural graphite, mesocarbon microbeads, soft carbon, hard carbon, pyrolytic carbon, coke, vitreous carbon, organic polymer compound sintering Body, carbon fiber and activated carbon.
  • coke may include pitch coke, needle coke, and petroleum coke.
  • the organic polymer compound sintered body refers to a material obtained by calcining a polymer material such as phenol plastic or furan resin at a suitable temperature to carbonize it, and some of these materials are classified into low graphitized carbon or easily graphitizable carbon.
  • Examples of the polymer material may include polyacetylene and polypyrrole.
  • the anode material may be selected from carbon materials because their crystal structures are only slightly changed upon charging and discharging, and therefore, good cycle characteristics and large charge and discharge capacities can be obtained.
  • graphite can be chosen because it gives a large electrochemical equivalent and a high energy density.
  • the anode material capable of absorbing/releasing lithium (Li) may include elemental lithium metal, metal elements and semimetal elements capable of forming an alloy together with lithium (Li), alloys and compounds including such elements, and the like. In particular, they are used together with carbon materials because in this case, good cycle characteristics as well as high energy density can be obtained.
  • the alloys used herein also include alloys comprising one or more metal elements and one or more semi-metal elements.
  • the alloy may be in a solid solution, a eutectic crystal (eutectic mixture), an intermetallic compound, and a mixture thereof in the following state.
  • Examples of the metal element and the semimetal element may include tin (Sn), lead (Pb), aluminum (Al), indium (In), silicon (Si), zinc (Zn), antimony (Sb), bismuth (Bi), Cadmium (Cd), magnesium (Mg), boron (B), gallium (Ga), germanium (Ge), arsenic (As), silver (Ag), zirconium (Zr), yttrium (Y), and hafnium (Hf).
  • Examples of the above alloys and compounds may include a material having the chemical formula: Ma s Mb t Li u and a material having the chemical formula: Ma p Mc q Md r .
  • Ma represents at least one of a metal element and a semimetal element capable of forming an alloy together with lithium
  • Mb represents at least one of a metal element and a semimetal element other than lithium and Ma
  • Mc Representing at least one of the non-metallic elements
  • Md represents at least one of a metal element and a semi-metal element other than Ma
  • s, t, u, p, q, and r satisfy s>0, t ⁇ 0, u ⁇ 0, p>0, q>0 and r ⁇ 0.
  • an inorganic compound not including lithium (Li) such as MnO 2 , V 2 O 5 , V 6 O 13 , NiS, and MoS may be used in the anode.
  • the above lithium ion battery further includes an electrolyte, and the electrolyte may be one or more of a gel electrolyte, a solid electrolyte, and an electrolyte, and the electrolyte includes a lithium salt and a nonaqueous solvent.
  • the lithium salt is selected from the group consisting of LiPF 6 , LiBF 4 , LiAsF 6 , LiClO 4 , LiB(C 6 H 5 ) 4 , LiCH 3 SO 3 , LiCF 3 SO 3 , LiN(SO 2 CF 3 ) 2 , LiC(SO 2 CF 3 3 ) A group consisting of LiSiF 6 , LiBOB, lithium difluoroborate and combinations thereof.
  • lithium salt is selected from LiPF 6 because it can give high ionic conductivity and improve cycle characteristics.
  • the nonaqueous solvent may be a carbonate compound, a carboxylate compound, an ether compound, other organic solvents, or a combination thereof.
  • the carbonate compound may be a chain carbonate compound, a cyclic carbonate compound, a fluorocarbonate compound, or a combination thereof.
  • chain carbonate compound examples include diethyl carbonate (DEC), dimethyl carbonate (DMC), dipropyl carbonate (DPC), methylpropyl carbonate (MPC), ethylene propyl carbonate (EPC), and carbonic acid. Ethyl ester (MEC) and combinations thereof.
  • cyclic carbonate compounds are ethylene carbonate (EC), propylene carbonate (PC), butylene carbonate (BC), vinyl ethylene carbonate (VEC), and combinations thereof.
  • fluorocarbonate compound examples include fluoroethylene carbonate (FEC), 1,2-difluoroethylene carbonate, 1,1-difluoroethylene carbonate, 1,1,2-trifluorocarbonate. Ethyl ester, 1,1,2,2-tetrafluoroethylene carbonate, 1-fluoro-2-methylethylene carbonate, 1-fluoro-1-methylethylene carbonate, 1,2-carbonic acid Fluor-1-methylethylene glycol, 1,1,2-trifluoro-2-methylethylene carbonate, trifluoromethylethylene carbonate, and combinations thereof.
  • FEC fluoroethylene carbonate
  • Ethyl ester 1,1,2,2-tetrafluoroethylene carbonate
  • 1-fluoro-2-methylethylene carbonate 1-fluoro-1-methylethylene carbonate
  • 1,2-carbonic acid Fluor-1-methylethylene glycol
  • 1,1,2-trifluoro-2-methylethylene carbonate 1,1,2-trifluoro-2-methylethylene carbonate, trifluoromethylethylene carbonate, and combinations thereof.
  • carboxylate compound examples include methyl acetate, ethyl acetate, n-propyl acetate, t-butyl acetate, methyl propionate, ethyl propionate, propyl propionate, ⁇ -butyrolactone, azlactone, Valerolactone, caprolactone, methyl formate, and combinations thereof.
  • ether compounds are dibutyl ether, tetraglyme, diglyme, 1,2-dimethoxyethane, 1,2-diethoxyethane, ethoxymethoxy Ethylethane, 2-methyltetrahydrofuran, tetrahydrofuran, and combinations thereof.
  • organic solvents examples include dimethyl sulfoxide, 1,2-dioxolane, sulfolane, methyl sulfolane, 1,3-dimethyl-2-imidazolidinone, N-methyl-2-pyrrolidone, Amide, dimethylformamide, acetonitrile, trimethyl phosphate, triethyl phosphate, trioctyl phosphate, phosphate, and combinations thereof.
  • separator examples include polyethylene, polypropylene, polyethylene terephthalate, polyimide, aramid, and combinations thereof, wherein the polyethylene is selected from the group consisting of high density polyethylene, low density polyethylene, and ultra high molecular weight.
  • polyethylene and polypropylene which have a good effect on preventing short circuits, can improve the stability of the battery by the shutdown effect.
  • the separator surface may further include a porous layer disposed on a surface of the separator, the porous layer including inorganic particles and a binder, and the inorganic particles are selected from the group consisting of alumina (Al 2 O 3 ), silicon oxide (SiO 2 ), and magnesium oxide.
  • MgO titanium oxide
  • TiO 2 hafnium oxide
  • HfO 2 hafnium oxide
  • SnO 2 tin oxide
  • CeO 2 nickel oxide
  • ZnO zinc oxide
  • CaO calcium oxide
  • ZrO 2 zirconia
  • Y 2 O 3 yttrium oxide
  • SiC silicon carbide
  • boehmite aluminum hydroxide, magnesium hydroxide, calcium hydroxide, barium sulfate, and combinations thereof.
  • the binder is selected from the group consisting of polyvinylidene fluoride, a copolymer of vinylidene fluoride-hexafluoropropylene, polyamide, polyacrylonitrile, polyacrylate, polyacrylic acid, polyacrylate, carboxymethylcellulose, and polyethylene.
  • the porous layer on the surface of the separator can improve the heat resistance, oxidation resistance and electrolyte wetting property of the separator, and enhance the adhesion between the separator and the pole piece.
  • Such an electrochemical device includes any device that generates an electrochemical reaction, and specific examples thereof include all kinds of primary batteries, secondary batteries, or capacitors.
  • the electrochemical device is a lithium secondary battery including a lithium metal battery, a lithium ion battery, and a lithium polymer battery.
  • a lithium ion battery will be taken as an example and a specific example of the preparation of the lithium ion battery will be described.
  • preparation methods described in the present application are merely examples, and any other suitable preparation methods are in the present application. Within the scope.
  • a solution containing a precipitant (sodium carbonate), a solution of a Co salt (cobalt sulfate), a solution of a metal M salt (magnesium nitrate, aluminum nitrate) is simultaneously added to the reaction vessel and thoroughly mixed to carry out a coprecipitation reaction to obtain a precipitate, and the precipitate is filtered.
  • the precursor is calcined at 780-1200 ° C, and then the precursor and lithium carbonate are mixed in a certain ratio, and calcined at 920-1200 ° C, wherein the M element is Mg, Al, the content is 211 ppm, and then executed.
  • the grinding process is performed to remove particles having a particle diameter of more than 12 ⁇ m to obtain a first positive electrode active material having a particle diameter of 12 ⁇ m or less.
  • a solution containing a precipitant (sodium carbonate), a solution of a Co salt (cobalt sulfate), and a metal N salt (aluminum nitrate) are simultaneously added to the reaction vessel and thoroughly mixed to carry out a coprecipitation reaction to obtain a precipitate, and the precipitate is filtered and dried.
  • the precursor is calcined at 780 to 1200 ° C, and then the precursor and lithium carbonate are mixed in a certain ratio, and calcined at 920 to 1200 ° C, wherein the element N is Al and the content is 231 ppm, and then the grinding process is performed to remove
  • the particles having a particle diameter of less than 10 ⁇ m give a second positive electrode active material having a particle diameter of 10 ⁇ m or more.
  • the two positive electrode active materials (the first positive electrode active material and the second positive electrode active material) prepared by the above method were uniformly mixed in a ratio of 3:7 to obtain a desired positive electrode active material.
  • the obtained positive electrode active material, the conductive agent acetylene black, and the binder polyvinylidene fluoride (PVDF) are sufficiently stirred and mixed in a N-methylpyrrolidone solvent system at a mass ratio of 94:3:3, and then coated on the positive electrode.
  • the current collector Al foil is dried, cold pressed, and cut into pieces to obtain a positive electrode piece.
  • Copper foil was used as the anode current collector, and a layer of graphite slurry was uniformly coated on the surface of the copper foil.
  • the slurry composition was 97.7 wt% artificial graphite, 1.3 wt% sodium carboxymethyl cellulose (CMC), and 1.0 wt% butylbenzene.
  • the rubber (SBR) was dried at 85 ° C, and then cold pressed, cut into pieces, and dried under vacuum at 85 ° C for 4 hours to prepare a negative electrode tab.
  • LiPF 6 was dissolved in a manner of 1.2 M to make ethylene carbonate (EC), ethyl methyl carbonate (EMC), and diethyl carbonate (DEC) to be 30 wt%, 40 wt%, respectively.
  • EC ethylene carbonate
  • EMC ethyl methyl carbonate
  • DEC diethyl carbonate
  • a non-aqueous solvent obtained by mixing 30 wt%, 1 wt% of vinylene carbonate and 5 wt% of fluoroethylene carbonate were added to obtain an electrolytic solution.
  • the positive electrode tab and the negative electrode tab were wound, and the positive electrode tab and the negative electrode tab were separated by a PE separator to prepare a wound electrode assembly.
  • the electrode assembly can be obtained by a top side sealing, a code drying, a vacuum drying, an electrolyte injection, and a high temperature standing, and then a finished lithium ion battery can be obtained.
  • Lithium-ion battery is discharged to 2.5-3.0V after repeated cycles, then the lithium-ion battery is disassembled, the positive electrode piece is taken out, soaked in dimethyl carbonate for 2h or rinsed with dimethyl carbonate, and then Dry in a dry room, dry in a muffle furnace at 600 ° C for 2 h, then pour the positive electrode piece into a powder and sieve it with a 200-mesh sieve to obtain the required positive active material sample (mentioned below) ICP, SEM, and EDS are all tested by the method prepared by the method).
  • the Dv10 obtained by the laser particle size tester was 5.70 ⁇ m, the Dv50 was 17.60 ⁇ m, and the Dv90 was 32.90 ⁇ m.
  • the (Dv90-Dv50)-(Dv50-Dv10) value calculated according to the formula (3) is 3.4, and the content of Co element, the total content of M element, and the second content in the first particle are respectively detected by ICP (Inductively Coupled Plasma Spectrometer).
  • the content of Co element and the total content of N element in the pellet were calculated from the formula (1) and the value of (a/b)/(c/d) was 0.8. If only qualitative analysis is performed, an energy spectrometer (EDS, Zeiss SIGMA+X-max EDS (ND)) test can be used to initially determine the amount of M element in the first particle and the amount of N element in the second particle.
  • EDS energy spectrometer
  • the difference between the M element in the first positive electrode active material in Example 2 is Ti and Al, and the N element in the second positive electrode active material is Mg.
  • the M element in the first positive electrode active material in the third embodiment is Ti, Al, and Mg
  • the N element in the second positive electrode active material is Mg or Al.
  • Example 4 It is the same as the preparation method of Example 1, except that the M element in the first positive electrode active material in Example 4 is Ti, Al, Mg, Mn, and the N element in the second positive electrode active material is Mg, Al. .
  • Example 5 It is the same as the preparation method of Example 1, except that the M element in the first positive electrode active material in Example 5 is Ni, Al, Mg, Mn, Zr, and the N element in the second positive electrode active material is Mg. , Al, Mn.
  • Example 6 It is the same as the preparation method of Example 1, except that the M element in the first positive electrode active material in Example 6 is Ti, Al, Mg, Mn, Ni, and the N element in the second positive electrode active material is Mg. , Ti.
  • Example 7 It is the same as the preparation method of Example 1, except that the M element in the first positive electrode active material in Example 7 is Ti, Al, Mg, Mn, Ni, and the N element in the second positive electrode active material is Mg. , Al, Mn.
  • the M element in the first positive electrode active material in Example 8 is Ti, Al, Mg, Mn, Ni, Zr, and the N element in the second positive electrode active material. It is Mg, Al, Mn, and Ni.
  • the difference is that the M element in the first positive electrode active material in Example 9 is Ti, Al, Mg, Mn, Ni, Zr, La, in the second positive electrode active material.
  • the N element is Mg, Al, and Mn.
  • the difference is that the M element in the first positive electrode active material in Example 10 is Ti, Al, Mg, Mn, Ni, Zr, La, in the second positive electrode active material.
  • the N element is Mg, Al, Ni, Mn.
  • the M elements in the first positive electrode active material in the embodiment 11 are Ti, Al, Mg, Mn, and Ni, and the content is 293 ppm, and the grinding process is performed to remove the particles.
  • the particles having a diameter larger than 11 ⁇ m give the first positive electrode active material having a particle diameter of 11 ⁇ m or less.
  • the N element in the second positive electrode active material is Mg, Al, and Mn, and the content is 287 ppm.
  • the grinding process is performed to remove particles having a particle diameter of less than 9.3 ⁇ m to obtain a second positive electrode active material having a particle diameter of 9.3 ⁇ m or more. .
  • the Dv10 obtained by the laser particle size tester was 5.20 ⁇ m, the Dv50 was 15.30 ⁇ m, and the Dv90 was 28.40 ⁇ m.
  • the (Dv90-Dv50)-(Dv50-Dv10) value calculated according to the formula (3) is 3, and the content of the Co element, the total content of the M element, and the second content in the first particle are respectively detected by ICP (Inductively Coupled Plasma Spectrometer).
  • the content of Co element and the total content of N element in the pellet were calculated from the formula (1), and the value of (a/b)/(c/d) was 1.2.
  • the M elements in the first positive electrode active material in the embodiment 12 are Ti, Al, Mg, Mn, and Ni, and the content is 376 ppm, and the grinding process is performed to remove the particles.
  • the particles having a diameter larger than 11 ⁇ m give the first positive electrode active material having a particle diameter of 11 ⁇ m or less.
  • the N element in the second positive electrode active material is Mg, Al, and Mn, and the content is 311 ppm.
  • the grinding process is performed to remove particles having a particle diameter of less than 9.3 ⁇ m to obtain a second positive electrode active material having a particle diameter of 9.3 ⁇ m or more. .
  • the Dv10 obtained by the laser particle size tester was 5.20 ⁇ m, the Dv50 was 15.30 ⁇ m, and the Dv90 was 28.40 ⁇ m.
  • the (Dv90-Dv50)-(Dv50-Dv10) value calculated according to the formula (3) is 3, and the content of the Co element, the total content of the M element, and the second content in the first particle are respectively detected by ICP (Inductively Coupled Plasma Spectrometer).
  • the content of Co element and the total content of N element in the pellet were calculated from the formula (1), and the value of (a/b)/(c/d) was 3.7.
  • the difference is that the M element in the first positive electrode active material in the embodiment 13 is Ti, Al, Mg, Mn, and Ni, and the content is 528 ppm, and the grinding process is performed to remove the particles.
  • the particles having a diameter larger than 11 ⁇ m give the first positive electrode active material having a particle diameter of 11 ⁇ m or less.
  • the N element in the second positive electrode active material is Mg, Al, and Mn, and the content is 449 ppm.
  • the grinding process is performed to remove particles having a particle diameter of less than 9.3 ⁇ m to obtain a second positive electrode active material having a particle diameter of 9.3 ⁇ m or more. .
  • the Dv10 obtained by the laser particle size tester was 5.20 ⁇ m, the Dv50 was 15.30 ⁇ m, and the Dv90 was 28.40 ⁇ m.
  • the (Dv90-Dv50)-(Dv50-Dv10) value calculated according to the formula (3) is 3, and the content of the Co element, the total content of the M element, and the second content in the first particle are respectively detected by ICP (Inductively Coupled Plasma Spectrometer).
  • the content of Co element and the total content of N element in the pellet were calculated by the formula (1) to have a value of (a/b)/(c/d) of 6.9.
  • the M elements in the first positive electrode active material in the embodiment 14 are Ti, Al, Mg, Mn, and Ni, and the content is 689 ppm, and the grinding process is performed to remove the particles.
  • the particles having a diameter larger than 11 ⁇ m give the first positive electrode active material having a particle diameter of 11 ⁇ m or less.
  • the N element in the second positive electrode active material is Mg, Al, and Mn, and the content is 574 ppm.
  • the grinding process is performed to remove particles having a particle diameter of less than 9.3 ⁇ m to obtain a second positive electrode active material having a particle diameter of 9.3 ⁇ m or more. .
  • the Dv10 obtained by the laser particle size tester was 5.20 ⁇ m, the Dv50 was 15.30 ⁇ m, and the Dv90 was 28.40 ⁇ m.
  • the (Dv90-Dv50)-(Dv50-Dv10) value calculated according to the formula (3) is 3, and the content of the Co element, the total content of the M element, and the second content in the first particle are respectively detected by ICP (Inductively Coupled Plasma Spectrometer).
  • the content of Co element and the total content of N element in the pellet were calculated from the formula (1), and the value of (a/b)/(c/d) was 9.5.
  • the M elements in the first positive electrode active material in the embodiment 15 are Ti, Al, Mg, Mn, and Ni, and the content is 823 ppm, and the grinding process is performed to remove the particles.
  • the particles having a diameter larger than 11 ⁇ m give the first positive electrode active material having a particle diameter of 11 ⁇ m or less.
  • the N element in the second positive electrode active material is Mg, Al, and Mn, and the content is 679 ppm.
  • the grinding process is performed to remove particles having a particle diameter of less than 9.3 ⁇ m to obtain a second positive electrode active material having a particle diameter of 9.3 ⁇ m or more. .
  • the Dv10 obtained by the laser particle size tester was 5.20 ⁇ m, the Dv50 was 15.30 ⁇ m, and the Dv90 was 28.40 ⁇ m.
  • the (Dv90-Dv50)-(Dv50-Dv10) value calculated according to the formula (3) is 3, and the content of the Co element, the total content of the M element, and the second content in the first particle are respectively detected by ICP (Inductively Coupled Plasma Spectrometer).
  • the content of Co element and the total content of N element in the pellet were calculated from the formula (1), and the value of (a/b)/(c/d) was 16.9.
  • the M elements in the first positive electrode active material in the embodiment 16 are Ti, Al, Mg, Mn, and Ni, and the content is 1321 ppm, and the grinding process is performed to remove the particles.
  • the particles having a diameter larger than 11 ⁇ m give the first positive electrode active material having a particle diameter of 11 ⁇ m or less.
  • the N element in the second positive electrode active material is Mg, Al, and Mn, and the content is 972 ppm.
  • the grinding process is performed to remove particles having a particle diameter of less than 9.3 ⁇ m to obtain a second positive electrode active material having a particle diameter of 9.3 ⁇ m or more. .
  • the Dv10 obtained by the laser particle size tester was 5.20 ⁇ m, the Dv50 was 15.30 ⁇ m, and the Dv90 was 28.40 ⁇ m.
  • the (Dv90-Dv50)-(Dv50-Dv10) value calculated according to the formula (3) is 3, and the content of the Co element, the total content of the M element, and the second content in the first particle are respectively detected by ICP (Inductively Coupled Plasma Spectrometer).
  • the content of Co element and the total content of N element in the pellet were calculated from the formula (1), and the value of (a/b)/(c/d) was 23.6.
  • the difference is that the content of the M element in the first positive electrode active material in the first embodiment is 303 ppm, and the grinding process is performed to remove particles having a particle diameter of more than 11 ⁇ m to obtain a particle diameter of less than or equal to 11 ⁇ m of the first positive active material.
  • the content of the N element in the second positive electrode active material was 292 ppm, and a grinding process was performed to remove particles having a particle diameter of less than 9.3 ⁇ m to obtain a second positive electrode active material having a particle diameter of 9.3 ⁇ m or more.
  • the Dv10 obtained by the laser particle size tester was 2.50 ⁇ m, the Dv50 was 14.70 ⁇ m, and the Dv90 was 28.50 ⁇ m.
  • the (Dv90-Dv50)-(Dv50-Dv10) value calculated according to the formula (3) is 1.6, and the content of Co element, the total content of M element, and the second content in the first particle are respectively detected by ICP (Inductively Coupled Plasma Spectrometer).
  • the content of Co element and the total content of N element in the pellet were calculated from the formula (1) and the value of (a/b)/(c/d) was 2.6.
  • the difference is that the content of the M element in the first positive electrode active material in Example 18 is 303 ppm, and the grinding process is performed to remove particles having a particle diameter larger than 11 ⁇ m to obtain a particle diameter of less than or equal to 11 ⁇ m of the first positive active material.
  • the content of the N element in the second positive electrode active material was 292 ppm, and a grinding process was performed to remove particles having a particle diameter of less than 7 ⁇ m to obtain a second positive electrode active material having a particle diameter of 7 ⁇ m or more.
  • the Dv10 obtained by the laser particle size tester was 1.90 ⁇ m, the Dv50 was 11.50 ⁇ m, and the Dv90 was 23.50 ⁇ m.
  • the (Dv90-Dv50)-(Dv50-Dv10) value calculated according to the formula (3) is 2.4, and the content of Co element, the total content of M element, and the second content in the first particle are respectively detected by ICP (Inductively Coupled Plasma Spectrometer).
  • the content of Co element and the total content of N element in the pellet were calculated from the formula (1), and the value of (a/b)/(c/d) was 2.6.
  • the difference is that the content of the M element in the first positive electrode active material in Example 19 is 303 ppm, and the grinding process is performed to remove the particles having a particle diameter of more than 13 ⁇ m to obtain a particle diameter of less than or equal to 13 ⁇ m of the first positive active material.
  • the content of the N element in the second positive electrode active material was 292 ppm, and a grinding process was performed to remove particles having a particle diameter of less than 11 ⁇ m to obtain a second positive electrode active material having a particle diameter of 11 ⁇ m or more.
  • the Dv10 obtained by the laser particle size tester was 2.70 ⁇ m, the Dv50 was 17.20 ⁇ m, and the Dv90 was 26.40 ⁇ m.
  • the (Dv90-Dv50)-(Dv50-Dv10) value calculated according to the formula (3) is -5.3, and the content of the Co element, the total content of the M element, and the first content of the first particle are respectively detected by ICP (Inductively Coupled Plasma Spectrometer).
  • the content of Co element and the total content of N element in the two particles were calculated from the formula (1), and the value of (a/b)/(c/d) was 2.6.
  • the difference is that the content of the M element in the first positive electrode active material in the embodiment 20 is 303 ppm, and the grinding process is performed to remove particles having a particle diameter larger than 11 ⁇ m to obtain a particle diameter of less than or equal to 11 ⁇ m of the first positive active material.
  • the content of the N element in the second positive electrode active material was 292 ppm, and a grinding process was performed to remove particles having a particle diameter of less than 9.3 ⁇ m to obtain a second positive electrode active material having a particle diameter of 9.3 ⁇ m or more.
  • the Dv10 obtained by the laser particle size tester was 2.5 ⁇ m, the Dv50 was 14.70 ⁇ m, and the Dv90 was 28.50 ⁇ m.
  • the (Dv90-Dv50)-(Dv50-Dv10) value calculated according to the formula (3) is 1.6, and the content of Co element, the total content of M element, and the second content in the first particle are respectively detected by ICP (Inductively Coupled Plasma Spectrometer).
  • the content of Co element and the total content of N element in the pellet were calculated from the formula (1), and the value of (a/b)/(c/d) was 2.6.
  • the difference is that the content of the M element in the first positive electrode active material in the first embodiment is 303 ppm, and the grinding process is performed to remove particles having a particle diameter of more than 13 ⁇ m to obtain a particle diameter of less than or equal to 13 ⁇ m of the first positive active material.
  • the content of the N element in the second positive electrode active material was 292 ppm, and a grinding process was performed to remove particles having a particle diameter of less than 11 ⁇ m to obtain a second positive electrode active material having a particle diameter of 11 ⁇ m or more.
  • the Dv10 obtained by the laser particle size tester was 3.70 ⁇ m, the Dv50 was 17.20 ⁇ m, and the Dv90 was 32.0 ⁇ m.
  • the (Dv90-Dv50)-(Dv50-Dv10) value calculated according to the formula (3) is 1.3, and the content of Co element, the total content of M element, and the second content in the first particle are respectively detected by ICP (Inductively Coupled Plasma Spectrometer).
  • the content of Co element and the total content of N element in the pellet were calculated from the formula (1), and the value of (a/b)/(c/d) was 2.6.
  • the difference is that the content of the M element in the first positive electrode active material in the embodiment 22 is 303 ppm, and the grinding process is performed to remove particles having a particle diameter of more than 15 ⁇ m to obtain a particle diameter of less than or equal to 15 ⁇ m of the first positive active material.
  • the content of the N element in the second positive electrode active material was 292 ppm, and a grinding process was performed to remove particles having a particle diameter of less than 12 ⁇ m to obtain a second positive electrode active material having a particle diameter of 12 ⁇ m or more.
  • the Dv10 obtained by the laser particle size tester was 4.10 ⁇ m
  • the Dv50 was 18.50 ⁇ m
  • the Dv90 was 32.90 ⁇ m.
  • the (Dv90-Dv50)-(Dv50-Dv10) value calculated according to the formula (3) is 0, and the content of Co element, the total content of M element, and the second content in the first particle are respectively detected by ICP (Inductively Coupled Plasma Spectrometer).
  • the content of Co element and the total content of N element in the pellet were calculated from the formula (1), and the value of (a/b)/(c/d) was 2.6.
  • the difference is that the content of the M element in the first positive electrode active material in the embodiment 23 is 303 ppm, and the grinding process is performed to remove particles having a particle diameter of more than 6 ⁇ m to obtain a particle diameter of less than or equal to 6 ⁇ m of the first positive active material.
  • the content of the N element in the second positive electrode active material was 292 ppm, and a grinding process was performed to remove particles having a particle diameter of less than 5 ⁇ m to obtain a second positive electrode active material having a particle diameter of 5 ⁇ m or more.
  • the Dv10 obtained by the laser particle size tester was 1.50 ⁇ m, the Dv50 was 9.70 ⁇ m, and the Dv90 was 20.20 ⁇ m.
  • the (Dv90-Dv50)-(Dv50-Dv10) value calculated according to the formula (3) is 2.3, and the content of Co element, the total content of M element, and the second content in the first particle are respectively detected by ICP (Inductively Coupled Plasma Spectrometer).
  • the content of Co element and the total content of N element in the pellet were calculated from the formula (1), and the value of (a/b)/(c/d) was 2.6.
  • the difference is that the content of the M element in the first positive electrode active material in the embodiment 24 is 303 ppm, and the grinding process is performed to remove particles having a particle diameter of more than 13 ⁇ m to obtain a particle diameter of less than or equal to 13 ⁇ m of the first positive active material.
  • the content of the N element in the second positive electrode active material was 292 ppm, and a grinding process was performed to remove particles having a particle diameter of less than 11 ⁇ m to obtain a second positive electrode active material having a particle diameter of 11 ⁇ m or more.
  • the Dv10 obtained by the laser particle size tester was 3.20 ⁇ m, the Dv50 was 17 ⁇ m, and the Dv90 was 33.30 ⁇ m.
  • the (Dv90-Dv50)-(Dv50-Dv10) value calculated according to the formula (3) is 2.5, and the content of Co element, the total content of M element, and the second content in the first particle are respectively detected by ICP (Inductively Coupled Plasma Spectrometer).
  • the content of Co element and the total content of N element in the pellet were calculated from the formula (1), and the value of (a/b)/(c/d) was 2.6.
  • the difference is that the content of the M element in the first positive electrode active material in the embodiment 25 is 303 ppm, and the grinding process is performed to remove particles having a particle diameter of more than 11 ⁇ m to obtain a particle diameter of less than or equal to 11 ⁇ m of the first positive active material.
  • the content of the N element in the second positive electrode active material was 292 ppm, and a grinding process was performed to remove particles having a particle diameter of less than 9.3 ⁇ m to obtain a second positive electrode active material having a particle diameter of 9.3 ⁇ m or more.
  • the Dv10 obtained by the laser particle size tester was 2.50 ⁇ m, the Dv50 was 14.70 ⁇ m, and the Dv90 was 28.50 ⁇ m.
  • the (Dv90-Dv50)-(Dv50-Dv10) value calculated according to the formula (3) is 1.6, and the content of Co element, the total content of M element, and the second content in the first particle are respectively detected by ICP (Inductively Coupled Plasma Spectrometer).
  • the content of Co element and the total content of N element in the pellet were calculated from the formula (1), and the value of (a/b)/(c/d) was 2.6.
  • the difference is that the content of the M element in the first positive electrode active material in the embodiment 26 is 303 ppm, and the grinding process is performed to remove particles having a particle diameter larger than 11 ⁇ m, and the particle size is less than or equal to 11 ⁇ m of the first positive active material.
  • the content of the N element in the second positive electrode active material was 292 ppm, and a grinding process was performed to remove particles having a particle diameter of less than 9.3 ⁇ m to obtain a second positive electrode active material having a particle diameter of 9.3 ⁇ m or more.
  • the Dv10 obtained by the laser particle size tester was 2.50 ⁇ m, the Dv50 was 14.70 ⁇ m, and the Dv90 was 28.50 ⁇ m.
  • the (Dv90-Dv50)-(Dv50-Dv10) value calculated according to the formula (3) is 1.6, and the content of Co element, the total content of M element, and the second content in the first particle are respectively detected by ICP (Inductively Coupled Plasma Spectrometer).
  • the content of Co element and the total content of N element in the pellet were calculated from the formula (1), and the value of (a/b)/(c/d) was 2.6.
  • the M element in the first positive electrode active material in Comparative Example 1 is Mg, Al, and Mn, and a grinding process is performed to remove particles having a particle diameter larger than 15 ⁇ m, and the particle diameter is smaller than that.
  • a first positive active material equal to 15 ⁇ m.
  • the N element is Mg, Al, Mn, and Ni, and a grinding process is performed to remove particles having a particle diameter of less than 11 ⁇ m to obtain a second positive electrode active material having a particle diameter of 11 ⁇ m or more.
  • the Dv10 obtained by the laser particle size tester was 5.70 ⁇ m, the Dv50 was 17.60 ⁇ m, and the Dv90 was 32.90 ⁇ m.
  • the (Dv90-Dv50)-(Dv50-Dv10) value calculated according to the formula (3) is 3.4, and the content of Co element, the total content of M element, and the second content in the first particle are respectively detected by ICP (Inductively Coupled Plasma Spectrometer).
  • the content of Co element and the total content of N element in the pellet were calculated from the formula (1) and the value of (a/b)/(c/d) was 0.8.
  • the difference is that the M element in the first positive electrode active material in Comparative Example 2 is Mg, Al, Mn, and a grinding process is performed to remove particles having a particle diameter larger than 11 ⁇ m, and the particle size is smaller than that.
  • a first positive active material equal to 11 ⁇ m.
  • the N element is Mg, Al, Mn, and Ni, and a grinding process is performed to remove particles having a particle diameter of less than 10 ⁇ m to obtain a second positive electrode active material having a particle diameter of 10 ⁇ m or more.
  • the Dv10 obtained by the laser particle size tester was 4.30 ⁇ m, the Dv50 was 15.70 ⁇ m, and the Dv90 was 29.70 ⁇ m.
  • the (Dv90-Dv50)-(Dv50-Dv10) value calculated according to the formula (3) is 2.6, and the content of Co element, the total content of M element, and the second content in the first particle are respectively detected by ICP (Inductively Coupled Plasma Spectrometer).
  • the content of Co element and the total content of N element in the pellet were calculated from the formula (1) and the value of (a/b)/(c/d) was 0.8.
  • the difference is that the M element in the first positive electrode active material in Comparative Example 3 is Mg, Al, and Mn, and a grinding process is performed to remove particles having a particle diameter larger than 12 ⁇ m, and the particle diameter is smaller than that.
  • the first positive active material equal to 12 ⁇ m.
  • the N element is Mg, Al, Mn, and Ni, and a grinding process is performed to remove particles having a particle diameter of less than 11 ⁇ m to obtain a second positive electrode active material having a particle diameter of 11 ⁇ m or more.
  • the Dv10 obtained by the laser particle size tester was 7.10 ⁇ m, the Dv50 was 16.60 ⁇ m, and the Dv90 was 30.40 ⁇ m.
  • the (Dv90-Dv50)-(Dv50-Dv10) value calculated according to the formula (3) is 4.3, and the content of Co element, the total content of M element, and the second content in the first particle are respectively detected by ICP (Inductively Coupled Plasma Spectrometer).
  • the content of Co element and the total content of N element in the pellet were calculated from the formula (1) and the value of (a/b)/(c/d) was 0.8.
  • the difference is that the M element in the first positive electrode active material in Comparative Example 4 is Mg, Al, and Mn, and a grinding process is performed to remove particles having a particle diameter larger than 14 ⁇ m, and the particle diameter is smaller than that.
  • a first positive active material equal to 14 ⁇ m.
  • the N element is Mg, Al, Mn, and Ni, and a grinding process is performed to remove particles having a particle diameter of less than 12 ⁇ m to obtain a second positive electrode active material having a particle diameter of 12 ⁇ m or more.
  • the Dv10 obtained by the laser particle size tester was 6.60 ⁇ m, the Dv50 was 18.00 ⁇ m, and the Dv90 was 33.20 ⁇ m.
  • the (Dv90-Dv50)-(Dv50-Dv10) value calculated according to the formula (3) is 3.8, and the content of Co element, the total content of M element, and the second content in the first particle are respectively detected by ICP (Inductively Coupled Plasma Spectrometer).
  • the content of Co element and the total content of N element in the pellet were calculated from the formula (1) and the value of (a/b)/(c/d) was 0.8.
  • the difference is that the M element in the first positive electrode active material in Comparative Example 5 is Mg, Al, and Mn, and a grinding process is performed to remove particles having a particle diameter larger than 18 ⁇ m, and the particle diameter is smaller than that.
  • a first positive active material equal to 18 ⁇ m.
  • the N element is Mg, Al, Mn, and Ni, and a grinding process is performed to remove particles having a particle diameter of less than 16 ⁇ m to obtain a second positive electrode active material having a particle diameter of 16 ⁇ m or more.
  • the Dv10 obtained by the laser particle size tester was 4.60 ⁇ m, the Dv50 was 18.20 ⁇ m, and the Dv90 was 34.50 ⁇ m.
  • the (Dv90-Dv50)-(Dv50-Dv10) value calculated according to the formula (3) is 2.7, and the content of Co element, the total content of M element, and the second content in the first particle are respectively detected by ICP (Inductively Coupled Plasma Spectrometer).
  • the content of Co element and the total content of N element in the pellet were calculated from the formula (1) and the value of (a/b)/(c/d) was 0.8.
  • a solution containing a precipitant (sodium carbonate), a solution of a Co salt (cobalt sulfate), a solution of a metal M salt (magnesium nitrate, aluminum nitrate, manganese nitrate, nickel nitrate) is simultaneously added to the reaction vessel for thorough mixing to obtain a coprecipitation reaction.
  • the precipitate is precipitated, dried, and calcined at 780-1200 ° C to form a precursor.
  • the precursor and lithium carbonate are mixed in a certain ratio and calcined at 920-1200 ° C, wherein the M element is Mg, Al, Mn.
  • the content is 209 ppm, and a grinding process is performed to remove particles having a particle diameter of more than 9.5 ⁇ m to obtain a first positive electrode active material having a particle diameter of 9.5 ⁇ m or less.
  • a solution containing a precipitant (sodium carbonate), a solution of a Co salt (cobalt sulfate), a solution of a metal N salt (magnesium nitrate, aluminum nitrate, manganese nitrate, nickel nitrate) is simultaneously added to the reaction vessel for thorough mixing to obtain a coprecipitation reaction.
  • the precipitate is precipitated, dried, and calcined at 780-1200 ° C to form a precursor.
  • the precursor and lithium carbonate are mixed in a certain ratio, and calcined at 920-1200 ° C, wherein the N element is Mg, Al, Mn.
  • the content is 263 ppm, and a grinding process is performed to remove particles having a particle diameter of less than 8.6 ⁇ m to obtain a second positive electrode active material having a particle diameter of 8.6 ⁇ m or more.
  • the above first and second kinds of positive electrode active materials were prepared into a lithium ion battery according to the method in Example 1, and then the lithium ion battery was disassembled to obtain a positive electrode active material sample for testing.
  • the Dv10 obtained by the laser particle size tester was 5.20 ⁇ m, the Dv50 was 15.30 ⁇ m, and the Dv90 was 28.40 ⁇ m.
  • the (Dv90-Dv50)-(Dv50-Dv10) value calculated according to the formula (3) is 3, and the content of the Co element, the total content of the M element, and the second content in the first particle are respectively detected by ICP (Inductively Coupled Plasma Spectrometer).
  • the content of Co element and the total content of N element in the pellet were calculated from the formula (1) and the value of (a/b)/(c/d) was 0.8.
  • a solution containing a precipitant (sodium carbonate), a solution of a Co salt (cobalt sulfate), a solution of a metal M salt (magnesium nitrate, aluminum nitrate, manganese nitrate, nickel nitrate) is simultaneously added to the reaction vessel for thorough mixing to obtain a coprecipitation reaction.
  • the precipitate is precipitated, dried, and calcined at 780-1200 ° C to form a precursor.
  • the precursor and lithium carbonate are mixed in a certain ratio and calcined at 920-1200 ° C, wherein the M element is Mg, Al, Mn. And Ni, the content is 223 ppm, and a grinding process is performed to remove particles having a particle diameter of more than 12.3 ⁇ m to obtain a first positive electrode active material having a particle diameter of 12.3 ⁇ m or less.
  • a solution containing a precipitant (sodium carbonate), a solution of a Co salt (cobalt sulfate), a solution of a metal N salt (magnesium nitrate, aluminum nitrate, manganese nitrate, nickel nitrate) is simultaneously added to the reaction vessel for thorough mixing to obtain a coprecipitation reaction.
  • the precipitate is precipitated, dried, and calcined at 780-1200 ° C to form a precursor.
  • the precursor and lithium carbonate are mixed in a certain ratio, and calcined at 920-1200 ° C, wherein the N element is Mg, Al, Mn.
  • Ni the content is 249 ppm, and a grinding process is performed to remove particles having a particle diameter larger than 10.3 ⁇ m to obtain a second positive electrode active material having a particle diameter of 10.3 ⁇ m or more.
  • the above first and second kinds of positive electrode active materials were prepared into a lithium ion battery according to the method in Example 1, and then the lithium ion battery was disassembled to obtain a positive electrode active material sample for testing.
  • the Dv10 obtained by the laser particle size tester was 8.37 ⁇ m, the Dv50 was 17.98 ⁇ m, and the Dv90 was 32.40 ⁇ m.
  • the (Dv90-Dv50)-(Dv50-Dv10) value calculated according to the formula (3) is 4.81, and the content of Co element, the total content of M element, and the second content in the first particle are respectively detected by ICP (Inductively Coupled Plasma Spectrometer).
  • the content of Co element and the total content of N element in the pellet were calculated from the formula (1) and the value of (a/b)/(c/d) was 0.8.
  • a solution containing a precipitant (sodium carbonate), a solution of a Co salt (cobalt sulfate), a solution of a metal M salt (magnesium nitrate, aluminum nitrate, manganese nitrate, nickel nitrate) is simultaneously added to the reaction vessel for thorough mixing to obtain a coprecipitation reaction.
  • the precipitate is precipitated, dried, and calcined at 780-1200 ° C to form a precursor.
  • the precursor and lithium carbonate are mixed in a certain ratio and calcined at 920-1200 ° C, wherein the M element is Mg, Al, Mn. And Ni, the content is 221 ppm, and a grinding process is performed to remove particles having a particle diameter of more than 11.8 ⁇ m to obtain a first positive electrode active material having a particle diameter of 11.8 ⁇ m or less.
  • a solution containing a precipitant (sodium carbonate), a solution of a Co salt (cobalt sulfate), a solution of a metal N salt (magnesium nitrate, aluminum nitrate, manganese nitrate, nickel nitrate) is simultaneously added to the reaction vessel for thorough mixing to obtain a coprecipitation reaction.
  • the precipitate is precipitated, dried, and calcined at 780-1200 ° C to form a precursor.
  • the precursor and lithium carbonate are mixed in a certain ratio, and calcined at 920-1200 ° C, wherein the N element is Mg, Al, Mn.
  • Ni the content is 239 ppm, and a grinding process is performed to remove particles having a particle diameter of more than 9.7 ⁇ m to obtain a second positive electrode active material having a particle diameter of 9.7 ⁇ m or more.
  • the above first and second positive electrode active materials were prepared into a lithium ion battery according to the method of Example 1, and then the lithium ion battery was disassembled to obtain a positive electrode active material sample for testing.
  • the Dv10 obtained by the laser particle size tester was 6.40 ⁇ m, the Dv50 was 16.50 ⁇ m, and the Dv90 was 30.60 ⁇ m.
  • the (Dv90-Dv50)-(Dv50-Dv10) value calculated according to the formula (3) is 4, and the content of Co element, the total content of M element, and the second content in the first particle are respectively detected by ICP (Inductively Coupled Plasma Spectrometer).
  • the content of Co element and the total content of N element in the pellet were calculated from the formula (1) and the value of (a/b)/(c/d) was 0.8.
  • the positive electrode pole piece and the positive electrode current collector were used, and the total weight of the six positive electrode pieces was calculated by using an analytical balance (Shanghai Jingke Tianmei Electronic Balance FA2004B), and the total weight of the six positive electrode current collectors was Ma g.
  • the lithium ion battery After the lithium ion battery is formed, it is charged at a constant current of 0.5 C to a voltage of 4.4 V at a normal temperature, and then charged at a constant voltage of 4.4 V until the current is 0.05 C.
  • the amount of electricity discharged at a discharge of 0.2 C is measured, and the standard capacity is 2990 mAh. .
  • the lithium ion battery After the lithium ion battery is formed, it is charged at a constant current of 0.5 C to a voltage of 4.4 V at a normal temperature, then charged at a constant voltage of 4.4 V until the current is 0.05 C, and discharged at 0.2 C, and after 500 cycles, the 500th time is calculated.
  • the ratio of the amount of electricity discharged by the discharge to the initial discharge capacity, 1 C 2990 mAh.
  • the lithium ion battery After the lithium ion battery is formed, it is charged at a constant current of 0.5 C to a voltage of 4.4 V at a normal temperature, and then charged at a constant voltage of 4.4 V until the current is 0.05 C. Then, the lithium ion battery is disassembled in a dry room, and the battery is fully charged.
  • the positive electrode tab was used as a test sample. The samples were subjected to DSC testing using a Netzsch STA449 DSC/TGA (Germany STA449F3) with a test temperature of 50-450 °C.
  • the compaction density, the initial discharge capacity, the 500-cycle discharge capacity, and the main peak of the initial thermal peak of the DSC test were tested for each of the samples of Examples 1-26 and Comparative Examples 1-8, respectively, and the test methods were respectively compacted as described above.
  • the density measurement method, the initial discharge capacity test method, the 500-cycle discharge capacity test method, and the DSC test initial heat loss peak main peak position test method were measured.
  • FIG. 1 a scanning electron microscope comparison chart of the positive electrode active materials according to Example 1 and Comparative Example 6 of the present application is shown in FIG. It can be seen from FIG. 1 that compared with Comparative Example 6, the active material of the present application is a mixture of smaller first particles and larger second particles, which is a significant size particle accumulation, which is favorable for pole piece compaction. Increase in density.
  • FIG. 1 A particle size distribution graph of the positive electrode active materials according to Example 1 and Comparative Example 6 of the present application is shown in FIG. As can be seen from Figure 1, the active material of the present application has a distinct double peak compared to the single peak of Comparative Example 6.
  • FIG. 3 The results of the pole piece thermal stability test according to Example 1 and Comparative Example 6 of the present application are shown in FIG. It can be seen from FIG. 3 that the temperature of the main peak of the initial decarburization peak of Example 1 (254.5 ° C) is significantly higher than that of Comparative Example 6 (223.1 ° C), indicating that the thermal stability of the pole piece of Example 1 is higher than that of Comparative Example 6.
  • the pole piece is thermally stable.

Abstract

一种正极活性材料、正极极片和锂离子电池。正极活性材料包括第一颗粒和第二颗粒,其中,第一颗粒的化学式为:Li eCo gM 1-gO 2-i,第二颗粒的化学式为:Li fCo hN 1-hO 2-j,其中,M元素选自Ni、Mn、Al、Mg、Ti、La、Y和Zr中的至少两种,N元素选自Ni、Mn、Al、Mg、Ti、La、Y和Zr中的至少一种,且0.8≤e≤1.2、0<g<1、-0.1≤i≤0.2、0.8≤f≤1.2、0<h<1、-0.1≤j≤0.2,第一颗粒中的M元素的种类数大于第二颗粒中的N元素的种类数。通过调整第一颗粒和第二颗粒中掺杂元素的种类和含量,使得第一颗粒和第二颗粒稳定,提升锂离子电池的容量保持率。

Description

正极活性材料和锂离子电池 技术领域
本申请的实施例涉及电池领域,更具体地,涉及正极活性材料和锂离子电池。
背景技术
由于锂离子电池使用寿命长、能量密度大等特点,被广泛应用于手机、笔记本电脑、数码相机等便携式电子产品,同时在电动汽车等领域也有很好的应用前景。随着其应用范围的扩大,对锂离子电池的性能也提出了更高的要求,尤其是随着智能手机的普及,对锂离子电池的能量密度提出了更高的要求。
然而,在提高锂离子电池能量密度的时候,锂离子电池的使用寿命却下降了,为此,急需一种在提高锂离子电池能量密度的同时不降低其使用寿命的技术方案。
发明内容
为了解决现有技术中的缺陷,本申请的实施例提供了一种正极活性材料,通过调整正极活性材料中第一颗粒和第二颗粒中掺杂元素的种类和含量,使得第一颗粒稳定,从而提高锂离子电池500次循环放电容量保持率(500次循环放电容量保持率:500次循环放电容量与首次放电容量的比)。
根据本申请的第一方面,提供了一种正极活性材料,其包括第一颗粒和第二颗粒,其中,所述第一颗粒的化学式为:Li eCo gM 1-gO 2-i,所述第二颗粒的化学式为:Li fCo hN 1-hO 2-j,其中,M元素选自Ni、Mn、Al、Mg、Ti、La、Y和Zr中的至少两种,N元素选自Ni、Mn、Al、Mg、Ti、La、Y和Zr中的至少一种,且0.8≤e≤1.2、0<g<1、-0.1≤i≤0.2、0.8≤f≤1.2、0<h<1、-0.1≤j≤0.2,所述第一颗粒中的M元素的种类数大于所述第二颗粒中的N元素的种类数。
在上述正极活性材料中,所述第一颗粒的化学式为:Li nCo xM 1-xO 2-y,所述第二颗粒的化学式为:Li nCo xN 1-xO 2-y,其中,0.8≤n≤1.2、0<x<1、-0.1≤y≤0.2。
在上述正极活性材料中,所述第一颗粒的粒径小于所述第二颗粒的粒径。
在上述正极活性材料中,所述第一颗粒的粒径小于所述正极活性材料的Dv50,所述第二颗粒的粒径大于所述正极活性材料的Dv50。
在上述正极活性材料中,所述第一颗粒中的M元素的每一种元素的含量均大于200ppm,所述第二颗粒中的N元素的每一种元素的含量均大于200ppm。
在上述正极活性材料中,所述正极活性材料满足下述的式(1):
(a/b)/(c/d)>1     式(1)
a表示第一颗粒中M元素的总质量;
b表示第一颗粒中Co元素的质量;
c表示第二颗粒中N元素的总质量;
d表示第二颗粒中Co元素的质量。
在上述正极活性材料中,所述正极活性材料满足下述的式(2):
(A/B)/(C/D)>1     式(2)
A表示第一颗粒中M元素的总摩尔量;
B表示第一颗粒中Co元素的摩尔量;
C表示第二颗粒中N元素的总摩尔量;
D表示第二颗粒中Co元素的摩尔量。
在上述正极活性材料中,所述正极活性材料的(a/b)/(c/d)的值为1.3~10。
在上述正极活性材料中,所述正极活性材料的体积基准的粒度分布曲线包括第一峰和第二峰。
在上述正极活性材料中,所述第二峰的峰高大于所述第一峰的峰高。
在上述正极活性材料中,所述正极活性材料的粒径满足下述的式(3):
(Dv90-Dv50)-(Dv50-Dv10)≤2.5    式(3)
根据本申请的第二方面,还提供了一种正极极片,其中,包含根据本 申请的第一方面所述的正极活性材料。
在上述正极极片中,所述正极极片的冷压后的压实密度≥3.9g/cm 3
根据本申请的第三方面,还提供了一种锂离子电池,其中,包括根据本申请的第二方面所述的正极极片。
附图说明
图1示出了根据本申请的实施例1和对比例6的正极活性材料的扫描电子显微镜对比图。
图2示出了根据本申请的实施例1和对比例6的正极活性材料的粒径分布曲线图。
图3示出了根据本申请的实施例1和对比例6的极片热稳定性测试结果。
具体实施方式
下面详细充分地说明示例性实施例,不过,这些示例性实施例可以用不同的方式来实施,并且,不应被解释为局限于本申请所阐述的这些实施例。相反,提供这些实施例的目的在于使本申请公开彻底和完整,以及将本申请的范围充分地传达给本领域所属技术人员。
在本申请中,提供了一种正极活性材料,其包括第一颗粒和第二颗粒,其中,第一颗粒的化学式为:Li eCo gM 1-gO 2-i,第二颗粒的化学式为:Li fCo hN 1-hO 2-j,其中,M元素选自Ni、Mn、Al、Mg、Ti、La、Y和Zr中的至少两种,N元素选自Ni、Mn、Al、Mg、Ti、La、Y和Zr中的至少一种,且0.8≤e≤1.2、0<g<1、-0.1≤i≤0.2、0.8≤f≤1.2、0<h<1、-0.1≤j≤0.2,第一颗粒中的M元素的种类数大于第二颗粒中的N元素的种类数。
在本申请的一些实施例中,第一颗粒的化学式为:Li nCo xM 1-xO 2-y,第二颗粒的化学式为:Li nCo xN 1-xO 2-y,其中,0.8≤n≤1.2、0<x<1、-0.1≤y≤0.2。
正极活性材料中的第一颗粒的粒径小于第二颗粒,不同大小的颗粒的混合可以提高正极极片的压实密度,从而能够提升锂离子电池的能量密度。然而,第一颗粒的粒径小,比表面积大,活性较强,容易与电解液发生副 反应,导致整个正极活性材料的稳定性降低,锂离子电池的使用寿命缩短。在本申请的一些实施例中,第一颗粒中的M元素的种类数大于第二颗粒中的N元素的种类数,可以有效的稳定粒径较小的第一颗粒,抑制第一颗粒与电解液的副反应,从而提高锂离子电池的使用寿命。
在本申请的一些实施例中,第一颗粒中的M元素的每一种元素在所述第一颗粒中的含量均大于200ppm,第二颗粒中的N元素的每一种元素在所述第二颗粒中的含量均大于200ppm,M元素和N元素的含量可以通过ICP(电感耦合等离子体光谱仪)检测,如果M元素中的每一种元素的含量小于200ppm,则M元素无法起到稳定第一颗粒的作用,如果N元素中的每一种元素的含量小于200ppm,则N元素无法起到稳定第二颗粒的作用。
在本申请的一些实施例中,正极活性材料满足下述的式(1):
(a/b)/(c/d)>1     式(1)
其中,a表示第一颗粒中M元素的总质量;b表示第一颗粒中Co元素的质量;c表示第二颗粒中N元素的总质量;d表示第二颗粒中Co元素的质量。
在本申请的一些实施例中,正极活性材料满足下述的式(2):
(A/B)/(C/D)>1    式(2)
其中,A表示第一颗粒中M元素的总摩尔量;B表示第一颗粒中Co元素的摩尔量;C表示第二颗粒中N元素的总摩尔量;D表示第二颗粒中Co元素的摩尔量。
第一颗粒和第二颗粒满足式(1)或式(2)的关系,可以使M元素充分地发挥出其作用效果,粒径较小的第一颗粒单位Co元素对应的M元素的含量大于粒径较大的第二颗粒单位Co元素对应的N元素的含量,颗粒的粒径越小,比表面积越大,活性越强,要达到稳定粒径较小的第一颗粒的目的,第一颗粒需要更多的M元素的掺杂或包覆,这样才能减少第一颗粒与电解液的副反应,使得第一颗粒更加稳定,从而提升锂离子电池的容量保持率,而粒径较大的第二颗粒只需相对较少的N元素就可达到稳定效果。
在本申请的一些实施例中,所述正极活性材料的(a/b)/(c/d)值为1.3~10。为了使第一颗粒能够更加稳定,同时又不降低正极活性材料主体材料的含量,正极活性材料颗粒中M元素和N元素的含量不能太低也不能太高,第一颗粒中M元素含量与第二颗粒N元素含量满足(a/b)/(c/d)为1.3~10时能够取得平衡,此时锂离子电池的综合性能较好。
在本申请的一些实施例中,所述正极活性材料的体积基准的粒度分布曲线包括第一峰和第二峰;所述第二峰的峰高大于所述第一峰的峰高。具备这种粒度分布曲线的正极活性材料,说明其颗粒在第一峰和第二峰对应的粒径附近集中,也就是说在第一峰和第二峰对应粒径附近的颗粒较多,第一峰对应的粒径和第二峰对应的粒径一个大一个小,两种颗粒混合后,较小粒径的颗粒占据粒径较大颗粒间的空隙,从而提高正极极片的压实密度,进而提高锂离子电池的能量密度。
在本申请的一些实施例中,正极活性材料的粒径满足下述的式(3):
(Dv90-Dv50)-(Dv50-Dv10)≤2.5    式(3)
Dv90是指在体积基准的粒度分布中,从小粒径侧起、达到体积累积90%的粒径,Dv50是指在体积基准的粒度分布中,从小粒径侧起、达到体积累积50%的粒径,Dv10是指在体积基准的粒度分布中,从小粒径侧起、达到体积累积10%的粒径。
满足式(3)的正极活性材料,能够提高正极极片的压实密度,从而提高锂离子电池的能量密度。
本申请还提供了使用该正极活性材料的正极极片,正极极片冷压后的压实密度≥3.9g/cm 3
本申请还提供了一种包括上述正极极片的锂离子电池,锂离子电池还包括含有负极活性材料层的负极极片、电解质以及位于正极极片和负极极片之间的隔离膜。正极极片包括正极活性材料层和正极集流体,正极集流体可以为铝箔或镍箔,负极极片包括负极活性材料层和负极集流体,负极集流体可为铜箔或镍箔。
负极活性材料层包括能够吸收和释放锂(Li)的负极材料(下文中,有时称为“能够吸收/释放锂Li的负极材料”)。能够吸收/释放锂(Li)的负极材料 的例子可以包括碳材料、金属化合物、氧化物、硫化物、锂的氮化物例如LiN 3、锂金属、与锂一起形成合金的金属和聚合物材料。
碳材料的例子可以包括低石墨化的碳、易石墨化的碳、人造石墨、天然石墨、中间相碳微球、软碳、硬碳、热解碳、焦炭、玻璃碳、有机聚合物化合物烧结体、碳纤维和活性碳。其中,焦炭可以包括沥青焦炭、针状焦炭和石油焦炭。有机聚合物化合物烧结体指的是通过在适当的温度下煅烧聚合物材料例如苯酚塑料或者呋喃树脂以使之碳化获得的材料,将这些材料中的一些分成低石墨化碳或者易石墨化的碳。聚合物材料的例子可以包括聚乙炔和聚吡咯。
在能够吸收/释放锂(Li)的这些负极材料中,选择充电和放电电压接近于锂金属的充电和放电电压的材料。这是因为负极材料的充电和放电电压越低,锂离子电池越容易具有更高的能量密度。其中,负极材料可以选择碳材料,因为在充电和放电时它们的晶体结构只有小的变化,因此,可以获得良好的循环特性以及大的充电和放电容量。尤其可以选择石墨,因为它可以给出大的电化学当量和高的能量密度。
此外,能够吸收/释放锂(Li)的负极材料可以包括单质锂金属、能够和锂(Li)一起形成合金的金属元素和半金属元素,包括这样的元素的合金和化合物等等。特别地,将它们和碳材料一起使用,因为在这种情况中,可以获得良好的循环特性以及高能量密度。除了包括两种或者多种金属元素的合金之外,这里使用的合金还包括包含一种或者多种金属元素和一种或者多种半金属元素的合金。该合金可以处于以下状态固溶体、共晶晶体(共晶混合物)、金属间化合物及其混合物。
金属元素和半金属元素的例子可以包括锡(Sn)、铅(Pb)、铝(Al)、铟(In)、硅(Si)、锌(Zn)、锑(Sb)、铋(Bi)、镉(Cd)、镁(Mg)、硼(B)、镓(Ga)、锗(Ge)、砷(As)、银(Ag)、锆(Zr)、钇(Y)和铪(Hf)。上述合金和化合物的例子可以包括具有化学式:Ma sMb tLi u的材料和具有化学式:Ma pMc qMd r的材料。在这些化学式中,Ma表示能够与锂一起形成合金的金属元素和半金属元素中的至少一种元素;Mb表示除锂和Ma之外的金属元素和半金属元素中的至少一种元素;Mc表示非金属元素中的至少一种元素;Md表示除Ma之外的金属元素和半金属元素中的至少一种元素;并且s、t、u、p、 q和r满足s>0、t≥0、u≥0、p>0、q>0和r≥0。
此外,可以在负极中使用不包括锂(Li)的无机化合物,例如MnO 2、V 2O 5、V 6O 13、NiS和MoS。
上述锂离子电池还包括电解质,电解质可以是凝胶电解质、固态电解质和电解液中的一种或多种,电解液包括锂盐和非水溶剂。
锂盐选自由LiPF 6、LiBF 4、LiAsF 6、LiClO 4、LiB(C 6H 5) 4、LiCH 3SO 3、LiCF 3SO 3、LiN(SO 2CF 3) 2、LiC(SO 2CF 3) 3、LiSiF 6、LiBOB、二氟硼酸锂及其组合组成的群组。例如,锂盐选用LiPF 6,因为它可以给出高的离子导电率并改善循环特性。
非水溶剂可为碳酸酯化合物、羧酸酯化合物、醚化合物、其它有机溶剂或它们的组合。
碳酸酯化合物可为链状碳酸酯化合物、环状碳酸酯化合物、氟代碳酸酯化合物或其组合。
链状碳酸酯化合物的实例为碳酸二乙酯(DEC)、碳酸二甲酯(DMC)、碳酸二丙酯(DPC)、碳酸甲丙酯(MPC)、碳酸乙丙酯(EPC)、碳酸甲乙酯(MEC)及其组合。
环状碳酸酯化合物的实例为碳酸亚乙酯(EC)、碳酸亚丙酯(PC)、碳酸亚丁酯(BC)、碳酸乙烯基亚乙酯(VEC)及其组合。
氟代碳酸酯化合物的实例为碳酸氟代亚乙酯(FEC)、碳酸1,2-二氟亚乙酯、碳酸1,1-二氟亚乙酯、碳酸1,1,2-三氟亚乙酯、碳酸1,1,2,2-四氟亚乙酯、碳酸1-氟-2-甲基亚乙酯、碳酸1-氟-1-甲基亚乙酯、碳酸1,2-二氟-1-甲基亚乙酯、碳酸1,1,2-三氟-2-甲基亚乙酯、碳酸三氟甲基亚乙酯及其组合。
羧酸酯化合物的实例为乙酸甲酯、乙酸乙酯、乙酸正丙酯、乙酸叔丁酯、丙酸甲酯、丙酸乙酯、丙酸丙酯、γ-丁内酯、癸内酯、戊内酯、己内酯、甲酸甲酯及其组合。
醚化合物的实例为二丁醚、四甘醇二甲醚、二甘醇二甲醚、1,2-二甲氧基乙烷、1,2-二乙氧基乙烷、乙氧基甲氧基乙烷、2-甲基四氢呋喃、四氢呋喃及其组合。
其它有机溶剂的实例为二甲亚砜、1,2-二氧戊环、环丁砜、甲基环丁砜、1,3-二甲基-2-咪唑烷酮、N-甲基-2-吡咯烷酮、甲酰胺、二甲基甲酰胺、乙腈、 磷酸三甲酯、磷酸三乙酯、磷酸三辛酯、磷酸酯及其组合。
隔离膜的实例为聚乙烯、聚丙烯、聚对苯二甲酸乙二醇酯、聚酰亚胺、芳纶及其组合,其中聚乙烯选自由高密度聚乙烯、低密度聚乙烯、超高分子量聚乙烯及其组合组成的群组。尤其是聚乙烯和聚丙烯,它们对防止短路具有良好的作用,并可以通过关断效应改善电池的稳定性。
隔离膜表面还可包括多孔层,多孔层设置在隔离膜的表面,多孔层包括无机颗粒和粘结剂,无机颗粒选自由氧化铝(Al 2O 3)、氧化硅(SiO 2)、氧化镁(MgO)、氧化钛(TiO 2)、二氧化铪(HfO 2)、氧化锡(SnO 2)、二氧化铈(CeO 2)、氧化镍(NiO)、氧化锌(ZnO)、氧化钙(CaO)、氧化锆(ZrO 2)、氧化钇(Y 2O 3)、碳化硅(SiC)、勃姆石、氢氧化铝、氢氧化镁、氢氧化钙、硫酸钡及其组合组成的群组。粘结剂选自由聚偏二氟乙烯、偏氟乙烯-六氟丙烯的共聚物、聚酰胺、聚丙烯腈、聚丙烯酸酯、聚丙烯酸、聚丙烯酸盐、羧甲基纤维素纳、聚乙烯呲咯烷酮、聚乙烯醚、聚甲基丙烯酸甲酯、聚四氟乙烯、聚六氟丙烯及其组合组成的群组。
隔离膜表面的多孔层可以提升隔离膜的耐热性能、抗氧化性能和电解质浸润性能,增强隔离膜与极片之间的粘接性。
虽然上面以锂离子电池进行了举例说明,但是本领域技术人员在阅读本申请之后,能够想到本申请的正极活性材料可以用于其他合适的电化学装置。这样的电化学装置包括发生电化学反应的任何装置,它的具体实例包括所有种类的一次电池、二次电池或电容。特别地,该电化学装置是锂二次电池,包括锂金属电池、锂离子电池、锂聚合物电池。
下面以锂离子电池为例并且结合具体的实施例说明锂离子电池的制备,本领域的技术人员将理解,本申请中描述的制备方法仅是实例,其他任何合适的制备方法均在本申请的范围内。
下面列举了一些具体实施例和对比例以更好地对本申请进行说明。
实施例1
将含有沉淀剂(碳酸钠)的溶液、Co盐(硫酸钴)溶液、金属M盐 (硝酸镁、硝酸铝)溶液并流加入反应釜中充分地混合进行共沉淀反应得到沉淀物,沉淀物过滤后干燥,在780~1200℃下焙烧形成前驱体,随后将前驱体和碳酸锂按一定的比例混合,在920~1200℃下焙烧,其中M元素为Mg、Al,含量均为211ppm,然后执行粉磨工艺以去除粒径大于12μm的颗粒,得到粒径小于等于12μm的第一种正极活性材料。
将含有沉淀剂(碳酸钠)的溶液、Co盐(硫酸钴)溶液、金属N盐(硝酸铝)的溶液并流加入反应釜中充分地混合进行共沉淀反应得到沉淀物,沉淀物过滤后干燥,在780~1200℃下焙烧形成前驱体,随后将前驱体和碳酸锂按一定的比例混合,在920~1200℃下焙烧,其中N元素为Al,含量为231ppm,然后执行粉磨工艺以去除粒径小于10μm的颗粒,得到粒径大于等于10μm的第二种正极活性材料。
将上述方法制备的两种正极活性材料(第一种正极活性材料和第二种正极活性材料)按照3:7的比例混合均匀,得到所需的正极活性材料。
将得到的上述正极活性材料、导电剂乙炔黑、粘结剂聚偏氟乙烯(PVDF)按质量比94:3:3在N-甲基吡咯烷酮溶剂体系中充分搅拌混合均匀后,涂覆于正极集流体Al箔上烘干、冷压、裁片,得到正极极片。
采用铜箔作为负极集流体,在铜箔表面均匀的涂布一层石墨浆料,浆料组成为97.7wt%人造石墨、1.3wt%羧甲基纤维素钠(CMC)以及1.0wt%丁苯橡胶(SBR),85℃下烘干,并随后进行冷压、裁片,在85℃的真空条件下干燥4h,制备得到负极极片。
在干燥氩环境下,使LiPF 6以成为1.2M的方式溶解于将碳酸亚乙酯(EC)、碳酸甲乙酯(EMC)和碳酸二乙酯(DEC)以分别成为30wt%、40wt%、30wt%的方式混合而成的非水溶剂中,添加碳酸亚乙烯酯1wt%和氟代碳酸亚乙酯5wt%,即得电解液。
将正极极片和负极极片进行卷绕,正极极片和负极极片之间以PE隔离膜进行分隔,从而制备得到卷绕型电极组件。电极组件经顶侧封、喷码、真空干燥、注入电解液、高温静置后进行化成及容量,即可得到成品锂离子电池。
锂离子电池在经过多次循环后将其放电至2.5~3.0V,然后将锂离子电 池拆解,取出正极极片,在碳酸二甲酯中浸泡2h或者用碳酸二甲酯淋洗,然后在干燥房中自然晾干,置于马弗炉中600℃焙烧2h,接着将正极极片揉成粉末,并用200目的筛子过筛,即得测试所需的正极活性材料样品(下文所提及的ICP、SEM、EDS均采用该方法制备的样品进行测试)。
通过激光粒径测试仪(Thermal ICP6300)测试得到的Dv10为5.70μm,Dv50为17.60μm,Dv90为32.90μm。根据式(3)计算的(Dv90-Dv50)-(Dv50-Dv10)值为3.4,通过ICP(电感耦合等离子体光谱仪)分别检测第一颗粒中Co元素的含量、M元素的总含量和第二颗粒中Co元素的含量、N元素的总含量,由式(1)计算(a/b)/(c/d)的值为0.8。如果仅是做定性分析,可以使用能谱仪(EDS,Zeiss SIGMA+X-max EDS(ND))测试,初步判断第一颗粒中M元素含量的多少和第二颗粒中N元素含量的多少。
实施例2
与实施例1的制备方法一致,不同的地方是实施例2中第一种正极活性材料中的M元素为Ti、Al,第二种正极活性材料中的N元素为Mg。
实施例3
与实施例1的制备方法一致,不同的地方是实施例3中第一种正极活性材料中的M元素为Ti、Al、Mg,第二种正极活性材料中的N元素为Mg、Al。
实施例4
与实施例1的制备方法一致,不同的地方是实施例4中第一种正极活性材料中的M元素为Ti、Al、Mg、Mn,第二种正极活性材料中的N元素为Mg、Al。
实施例5
与实施例1的制备方法一致,不同的地方是实施例5中第一种正极活 性材料中的M元素为Ni、Al、Mg、Mn、Zr,第二种正极活性材料中的N元素为Mg、Al、Mn。
实施例6
与实施例1的制备方法一致,不同的地方是实施例6中第一种正极活性材料中的M元素为Ti、Al、Mg、Mn、Ni,第二种正极活性材料中的N元素为Mg、Ti。
实施例7
与实施例1的制备方法一致,不同的地方是实施例7中第一种正极活性材料中的M元素为Ti、Al、Mg、Mn、Ni,第二种正极活性材料中的N元素为Mg、Al、Mn。
实施例8
与实施例1的制备方法一致,不同的地方是实施例8中第一种正极活性材料中的M元素为Ti、Al、Mg、Mn、Ni、Zr,第二种正极活性材料中的N元素为Mg、Al、Mn、Ni。
实施例9
与实施例1的制备方法一致,不同的地方是实施例9中第一种正极活性材料中的M元素为Ti、Al、Mg、Mn、Ni、Zr、La,第二种正极活性材料中的N元素为Mg、Al、Mn。
实施例10
与实施例1的制备方法一致,不同的地方是实施例10中第一种正极活性材料中的M元素为Ti、Al、Mg、Mn、Ni、Zr、La,第二种正极活性材料中的N元素为Mg、Al、Ni、Mn。
实施例11
与实施例1的制备方法一致,不同的地方是实施例11中第一种正极活性材料中的M元素为Ti、Al、Mg、Mn、Ni,含量均为293ppm,执行粉磨工艺以去除粒径大于11μm的颗粒,得到粒径小于等于11μm的第一种正极活性材料。第二种正极活性材料中的N元素为Mg、Al、Mn,含量均为287ppm,执行粉磨工艺以去除粒径小于9.3μm的颗粒,得到粒径大于等于9.3μm的第二种正极活性材料。
通过激光粒径测试仪测试得到的Dv10为5.20μm,Dv50为15.30μm,Dv90为28.40μm。根据式(3)计算的(Dv90-Dv50)-(Dv50-Dv10)值为3,通过ICP(电感耦合等离子体光谱仪)分别检测第一颗粒中Co元素的含量、M元素的总含量和第二颗粒中Co元素的含量、N元素的总含量,由式(1)计算(a/b)/(c/d)的值为1.2。
实施例12
与实施例1的制备方法一致,不同的地方是实施例12中第一种正极活性材料中的M元素为Ti、Al、Mg、Mn、Ni,含量均为376ppm,执行粉磨工艺以去除粒径大于11μm的颗粒,得到粒径小于等于11μm的第一种正极活性材料。第二种正极活性材料中的N元素为Mg、Al、Mn,含量均为311ppm,执行粉磨工艺以去除粒径小于9.3μm的颗粒,得到粒径大于等于9.3μm的第二种正极活性材料。
通过激光粒径测试仪测试得到的Dv10为5.20μm,Dv50为15.30μm,Dv90为28.40μm。根据式(3)计算的(Dv90-Dv50)-(Dv50-Dv10)值为3,通过ICP(电感耦合等离子体光谱仪)分别检测第一颗粒中Co元素的含量、M元素的总含量和第二颗粒中Co元素的含量、N元素的总含量,由式(1)计算(a/b)/(c/d)的值为3.7。
实施例13
与实施例1的制备方法一致,不同的地方是实施例13中第一种正极活性材料中的M元素为Ti、Al、Mg、Mn、Ni,含量均为528ppm,执行粉磨工艺以去除粒径大于11μm的颗粒,得到粒径小于等于11μm的第一种 正极活性材料。第二种正极活性材料中的N元素为Mg、Al、Mn,含量均为449ppm,执行粉磨工艺以去除粒径小于9.3μm的颗粒,得到粒径大于等于9.3μm的第二种正极活性材料。
通过激光粒径测试仪测试得到的Dv10为5.20μm,Dv50为15.30μm,Dv90为28.40μm。根据式(3)计算的(Dv90-Dv50)-(Dv50-Dv10)值为3,通过ICP(电感耦合等离子体光谱仪)分别检测第一颗粒中Co元素的含量、M元素的总含量和第二颗粒中Co元素的含量、N元素的总含量,由式(1)计算(a/b)/(c/d)的值为6.9。
实施例14
与实施例1的制备方法一致,不同的地方是实施例14中第一种正极活性材料中的M元素为Ti、Al、Mg、Mn、Ni,含量均为689ppm,执行粉磨工艺以去除粒径大于11μm的颗粒,得到粒径小于等于11μm的第一种正极活性材料。第二种正极活性材料中的N元素为Mg、Al、Mn,含量均为574ppm,执行粉磨工艺以去除粒径小于9.3μm的颗粒,得到粒径大于等于9.3μm的第二种正极活性材料。
通过激光粒径测试仪测试得到的Dv10为5.20μm,Dv50为15.30μm,Dv90为28.40μm。根据式(3)计算的(Dv90-Dv50)-(Dv50-Dv10)值为3,通过ICP(电感耦合等离子体光谱仪)分别检测第一颗粒中Co元素的含量、M元素的总含量和第二颗粒中Co元素的含量、N元素的总含量,由式(1)计算(a/b)/(c/d)的值为9.5。
实施例15
与实施例1的制备方法一致,不同的地方是实施例15中第一种正极活性材料中的M元素为Ti、Al、Mg、Mn、Ni,含量均为823ppm,执行粉磨工艺以去除粒径大于11μm的颗粒,得到粒径小于等于11μm的第一种正极活性材料。第二种正极活性材料中的N元素为Mg、Al、Mn,含量均为679ppm,执行粉磨工艺以去除粒径小于9.3μm的颗粒,得到粒径大于等于9.3μm的第二种正极活性材料。
通过激光粒径测试仪测试得到的Dv10为5.20μm,Dv50为15.30μm,Dv90为28.40μm。根据式(3)计算的(Dv90-Dv50)-(Dv50-Dv10)值为3,通过ICP(电感耦合等离子体光谱仪)分别检测第一颗粒中Co元素的含量、M元素的总含量和第二颗粒中Co元素的含量、N元素的总含量,由式(1)计算(a/b)/(c/d)的值为16.9。
实施例16
与实施例1的制备方法一致,不同的地方是实施例16中第一种正极活性材料中的M元素为Ti、Al、Mg、Mn、Ni,含量均为1321ppm,执行粉磨工艺以去除粒径大于11μm的颗粒,得到粒径小于等于11μm的第一种正极活性材料。第二种正极活性材料中的N元素为Mg、Al、Mn,含量均为972ppm,执行粉磨工艺以去除粒径小于9.3μm的颗粒,得到粒径大于等于9.3μm的第二种正极活性材料。
通过激光粒径测试仪测试得到的Dv10为5.20μm,Dv50为15.30μm,Dv90为28.40μm。根据式(3)计算的(Dv90-Dv50)-(Dv50-Dv10)值为3,通过ICP(电感耦合等离子体光谱仪)分别检测第一颗粒中Co元素的含量、M元素的总含量和第二颗粒中Co元素的含量、N元素的总含量,由式(1)计算(a/b)/(c/d)的值为23.6。
实施例17
与实施例1的制备方法一致,不同的地方是实施例17中第一种正极活性材料中M元素的含量均为303ppm,执行粉磨工艺以去除粒径大于11μm的颗粒,得到粒径小于等于11μm的第一种正极活性材料。第二种正极活性材料中N元素的含量为292ppm,执行粉磨工艺以去除粒径小于9.3μm的颗粒,得到粒径大于等于9.3μm的第二种正极活性材料。
通过激光粒径测试仪测试得到的Dv10为2.50μm,Dv50为14.70μm,Dv90为28.50μm。根据式(3)计算的(Dv90-Dv50)-(Dv50-Dv10)值为1.6,通过ICP(电感耦合等离子体光谱仪)分别检测第一颗粒中Co元素的含量、M元素的总含量和第二颗粒中Co元素的含量、N元素的总含量,由式(1) 计算(a/b)/(c/d)的值为2.6。
实施例18
与实施例2的制备方法一致,不同的地方是实施例18中第一种正极活性材料中M元素的含量均为303ppm,执行粉磨工艺以去除粒径大于11μm的颗粒,得到粒径小于等于11μm的第一种正极活性材料。第二种正极活性材料中N元素的含量为292ppm,执行粉磨工艺以去除粒径小于7μm的颗粒,得到粒径大于等于7μm的第二种正极活性材料。
通过激光粒径测试仪测试得到的Dv10为1.90μm,Dv50为11.50μm,Dv90为23.50μm。根据式(3)计算的(Dv90-Dv50)-(Dv50-Dv10)值为2.4,通过ICP(电感耦合等离子体光谱仪)分别检测第一颗粒中Co元素的含量、M元素的总含量和第二颗粒中Co元素的含量、N元素的总含量,由式(1)计算(a/b)/(c/d)的值为2.6。
实施例19
与实施例3的制备方法一致,不同的地方是实施例19中第一种正极活性材料中M元素的含量均为303ppm,执行粉磨工艺以去除粒径大于13μm的颗粒,得到粒径小于等于13μm的第一种正极活性材料。第二种正极活性材料中N元素的含量均为292ppm,执行粉磨工艺以去除粒径小于11μm的颗粒,得到粒径大于等于11μm的第二种正极活性材料。
通过激光粒径测试仪测试得到的Dv10为2.70μm,Dv50为17.20μm,Dv90为26.40μm。根据式(3)计算的(Dv90-Dv50)-(Dv50-Dv10)值为-5.3,通过ICP(电感耦合等离子体光谱仪)分别检测第一颗粒中Co元素的含量、M元素的总含量和第二颗粒中Co元素的含量、N元素的总含量,由式(1)计算(a/b)/(c/d)的值为2.6。
实施例20
与实施例4的制备方法一致,不同的地方是实施例20中第一种正极活性材料中M元素的含量均为303ppm,执行粉磨工艺以去除粒径大于11μm 的颗粒,得到粒径小于等于11μm的第一种正极活性材料。第二种正极活性材料中N元素的含量均为292ppm,执行粉磨工艺以去除粒径小于9.3μm的颗粒,得到粒径大于等于9.3μm的第二种正极活性材料。
通过激光粒径测试仪测试得到的Dv10为2.5μm,Dv50为14.70μm,Dv90为28.50μm。根据式(3)计算的(Dv90-Dv50)-(Dv50-Dv10)值为1.6,通过ICP(电感耦合等离子体光谱仪)分别检测第一颗粒中Co元素的含量、M元素的总含量和第二颗粒中Co元素的含量、N元素的总含量,由式(1)计算(a/b)/(c/d)的值为2.6。
实施例21
与实施例5的制备方法一致,不同的地方是实施例21中第一种正极活性材料中M元素的含量均为303ppm,执行粉磨工艺以去除粒径大于13μm的颗粒,得到粒径小于等于13μm的第一种正极活性材料。第二种正极活性材料中N元素的含量为292ppm,执行粉磨工艺以去除粒径小于11μm的颗粒,得到粒径大于等于11μm的第二种正极活性材料。
通过激光粒径测试仪测试得到的Dv10为3.70μm,Dv50为17.20μm,Dv90为32.0μm。根据式(3)计算的(Dv90-Dv50)-(Dv50-Dv10)值为1.3,通过ICP(电感耦合等离子体光谱仪)分别检测第一颗粒中Co元素的含量、M元素的总含量和第二颗粒中Co元素的含量、N元素的总含量,由式(1)计算(a/b)/(c/d)的值为2.6。
实施例22
与实施例6的制备方法一致,不同的地方是实施例22中第一种正极活性材料中M元素的含量均为303ppm,执行粉磨工艺以去除粒径大于15μm的颗粒,得到粒径小于等于15μm的第一种正极活性材料。第二种正极活性材料中N元素的含量均为292ppm,执行粉磨工艺以去除粒径小于12μm的颗粒,得到粒径大于等于12μm的第二种正极活性材料。
通过激光粒径测试仪测试得到的Dv10为4.10μm,Dv50为18.50μm,Dv90为32.90μm。根据式(3)计算的(Dv90-Dv50)-(Dv50-Dv10)值为0, 通过ICP(电感耦合等离子体光谱仪)分别检测第一颗粒中Co元素的含量、M元素的总含量和第二颗粒中Co元素的含量、N元素的总含量,由式(1)计算(a/b)/(c/d)的值为2.6。
实施例23
与实施例7的制备方法一致,不同的地方是实施例23中第一种正极活性材料中M元素的含量均为303ppm,执行粉磨工艺以去除粒径大于6μm的颗粒,得到粒径小于等于6μm的第一种正极活性材料。第二种正极活性材料中N元素的含量均为292ppm,执行粉磨工艺以去除粒径小于5μm的颗粒,得到粒径大于等于5μm的第二种正极活性材料。
通过激光粒径测试仪测试得到的Dv10为1.50μm,Dv50为9.70μm,Dv90为20.20μm。根据式(3)计算的(Dv90-Dv50)-(Dv50-Dv10)值为2.3,通过ICP(电感耦合等离子体光谱仪)分别检测第一颗粒中Co元素的含量、M元素的总含量和第二颗粒中Co元素的含量、N元素的总含量,由式(1)计算(a/b)/(c/d)的值为2.6。
实施例24
与实施例8的制备方法一致,不同的地方是实施例24中第一种正极活性材料中M元素的含量均为303ppm,执行粉磨工艺以去除粒径大于13μm的颗粒,得到粒径小于等于13μm的第一种正极活性材料。第二种正极活性材料中N元素的含量为292ppm,执行粉磨工艺以去除粒径小于11μm的颗粒,得到粒径大于等于11μm的第二种正极活性材料。
通过激光粒径测试仪测试得到的Dv10为3.20μm,Dv50为17μm,Dv90为33.30μm。根据式(3)计算的(Dv90-Dv50)-(Dv50-Dv10)值为2.5,通过ICP(电感耦合等离子体光谱仪)分别检测第一颗粒中Co元素的含量、M元素的总含量和第二颗粒中Co元素的含量、N元素的总含量,由式(1)计算(a/b)/(c/d)的值为2.6。
实施例25
与实施例9的制备方法一致,不同的地方是实施例25中第一种正极活性材料中M元素的含量均为303ppm,执行粉磨工艺以去除粒径大于11μm的颗粒,得到粒径小于等于11μm的第一种正极活性材料。第二种正极活性材料中N元素的含量为292ppm,执行粉磨工艺以去除粒径小于9.3μm的颗粒,得到粒径大于等于9.3μm的第二种正极活性材料。
通过激光粒径测试仪测试得到的Dv10为2.50μm,Dv50为14.70μm,Dv90为28.50μm。根据式(3)计算的(Dv90-Dv50)-(Dv50-Dv10)值为1.6,通过ICP(电感耦合等离子体光谱仪)分别检测第一颗粒中Co元素的含量、M元素的总含量和第二颗粒中Co元素的含量、N元素的总含量,由式(1)计算(a/b)/(c/d)的值为2.6。
实施例26
与实施例10的制备方法一致,不同的地方是实施例26中第一种正极活性材料中M元素的含量均为303ppm,执行粉磨工艺以去除粒径大于11μm的颗粒,得到粒径小于等于11μm的第一种正极活性材料。第二种正极活性材料中N元素的含量为292ppm,执行粉磨工艺以去除粒径小于9.3μm的颗粒,得到粒径大于等于9.3μm的第二种正极活性材料。
通过激光粒径测试仪测试得到的Dv10为2.50μm,Dv50为14.70μm,Dv90为28.50μm。根据式(3)计算的(Dv90-Dv50)-(Dv50-Dv10)值为1.6,通过ICP(电感耦合等离子体光谱仪)分别检测第一颗粒中Co元素的含量、M元素的总含量和第二颗粒中Co元素的含量、N元素的总含量,由式(1)计算(a/b)/(c/d)的值为2.6。
对比例1
与实施例1的制备方法一致,不同的地方是对比例1中第一种正极活性材料中M元素为Mg、Al、Mn,执行粉磨工艺以去除粒径大于15μm的颗粒,得到粒径小于等于15μm的第一种正极活性材料。第二种正极活性材料中N元素为Mg、Al、Mn、Ni,执行粉磨工艺以去除粒径小于11μm的颗粒,得到粒径大于等于11μm的第二种正极活性材料。
通过激光粒径测试仪测试得到的Dv10为5.70μm,Dv50为17.60μm,Dv90为32.90μm。根据式(3)计算的(Dv90-Dv50)-(Dv50-Dv10)值为3.4,通过ICP(电感耦合等离子体光谱仪)分别检测第一颗粒中Co元素的含量、M元素的总含量和第二颗粒中Co元素的含量、N元素的总含量,由式(1)计算(a/b)/(c/d)的值为0.8。
对比例2
与实施例1的制备方法一致,不同的地方是对比例2中第一种正极活性材料中M元素为Mg、Al、Mn,执行粉磨工艺以去除粒径大于11μm的颗粒,得到粒径小于等于11μm的第一种正极活性材料。第二种正极活性材料中N元素为Mg、Al、Mn、Ni,执行粉磨工艺以去除粒径小于10μm的颗粒,得到粒径大于等于10μm的第二种正极活性材料。
通过激光粒径测试仪测试得到的Dv10为4.30μm,Dv50为15.70μm,Dv90为29.70μm。根据式(3)计算的(Dv90-Dv50)-(Dv50-Dv10)值为2.6,通过ICP(电感耦合等离子体光谱仪)分别检测第一颗粒中Co元素的含量、M元素的总含量和第二颗粒中Co元素的含量、N元素的总含量,由式(1)计算(a/b)/(c/d)的值为0.8。
对比例3
与实施例1的制备方法一致,不同的地方是对比例3中第一种正极活性材料中M元素为Mg、Al、Mn,执行粉磨工艺以去除粒径大于12μm的颗粒,得到粒径小于等于12μm的第一种正极活性材料。第二种正极活性材料中N元素为Mg、Al、Mn、Ni,执行粉磨工艺以去除粒径小于11μm的颗粒,得到粒径大于等于11μm的第二种正极活性材料。
通过激光粒径测试仪测试得到的Dv10为7.10μm,Dv50为16.60μm,Dv90为30.40μm。根据式(3)计算的(Dv90-Dv50)-(Dv50-Dv10)值为4.3,通过ICP(电感耦合等离子体光谱仪)分别检测第一颗粒中Co元素的含量、M元素的总含量和第二颗粒中Co元素的含量、N元素的总含量,由式(1)计算(a/b)/(c/d)的值为0.8。
对比例4
与实施例1的制备方法一致,不同的地方是对比例4中第一种正极活性材料中M元素为Mg、Al、Mn,执行粉磨工艺以去除粒径大于14μm的颗粒,得到粒径小于等于14μm的第一种正极活性材料。第二种正极活性材料中N元素为Mg、Al、Mn、Ni,执行粉磨工艺以去除粒径小于12μm的颗粒,得到粒径大于等于12μm的第二种正极活性材料。
通过激光粒径测试仪测试得到的Dv10为6.60μm,Dv50为18.00μm,Dv90为33.20μm。根据式(3)计算的(Dv90-Dv50)-(Dv50-Dv10)值为3.8,通过ICP(电感耦合等离子体光谱仪)分别检测第一颗粒中Co元素的含量、M元素的总含量和第二颗粒中Co元素的含量、N元素的总含量,由式(1)计算(a/b)/(c/d)的值为0.8。
对比例5
与实施例1的制备方法一致,不同的地方是对比例5中第一种正极活性材料中M元素为Mg、Al、Mn,执行粉磨工艺以去除粒径大于18μm的颗粒,得到粒径小于等于18μm的第一种正极活性材料。第二种正极活性材料中N元素为Mg、Al、Mn、Ni,执行粉磨工艺以去除粒径小于16μm的颗粒,得到粒径大于等于16μm的第二种正极活性材料。
通过激光粒径测试仪测试得到的Dv10为4.60μm,Dv50为18.20μm,Dv90为34.50μm。根据式(3)计算的(Dv90-Dv50)-(Dv50-Dv10)值为2.7,通过ICP(电感耦合等离子体光谱仪)分别检测第一颗粒中Co元素的含量、M元素的总含量和第二颗粒中Co元素的含量、N元素的总含量,由式(1)计算(a/b)/(c/d)的值为0.8。
对比例6
将含有沉淀剂(碳酸钠)的溶液、Co盐(硫酸钴)溶液、金属M盐(硝酸镁、硝酸铝、硝酸锰、硝酸镍)溶液并流加入反应釜中充分的混合进行共沉淀反应得到沉淀物,沉淀物过滤后干燥,在780~1200℃下焙烧形 成前驱体,随后将前驱体和碳酸锂按一定的比例混合,在920~1200℃下焙烧,其中M元素为Mg、Al、Mn、Ni,含量均为209ppm,执行粉磨工艺以去除粒径大于9.5μm的颗粒,得到粒径小于等于9.5μm的第一种正极活性材料。
将含有沉淀剂(碳酸钠)的溶液、Co盐(硫酸钴)溶液、金属N盐(硝酸镁、硝酸铝、硝酸锰、硝酸镍)溶液并流加入反应釜中充分的混合进行共沉淀反应得到沉淀物,沉淀物过滤后干燥,在780~1200℃下焙烧形成前驱体,随后将前驱体和碳酸锂按一定的比例混合,在920~1200℃下焙烧,其中N元素为Mg、Al、Mn、Ni,含量均为263ppm,执行粉磨工艺以去除粒径小于8.6μm的颗粒,得到粒径大于等于8.6μm的第二种正极活性材料。
将上述第一种和第二种正极活性材料按照实施例1中的方法制备成锂离子电池,之后拆解锂离子电池获得正极活性材料样品进行测试。
通过激光粒径测试仪测试得到的Dv10为5.20μm,Dv50为15.30μm,Dv90为28.40μm。根据式(3)计算的(Dv90-Dv50)-(Dv50-Dv10)值为3,通过ICP(电感耦合等离子体光谱仪)分别检测第一颗粒中Co元素的含量、M元素的总含量和第二颗粒中Co元素的含量、N元素的总含量,由式(1)计算(a/b)/(c/d)的值为0.8。
对比例7
将含有沉淀剂(碳酸钠)的溶液、Co盐(硫酸钴)溶液、金属M盐(硝酸镁、硝酸铝、硝酸锰、硝酸镍)溶液并流加入反应釜中充分的混合进行共沉淀反应得到沉淀物,沉淀物过滤后干燥,在780~1200℃下焙烧形成前驱体,随后将前驱体和碳酸锂按一定的比例混合,在920~1200℃下焙烧,其中M元素为Mg、Al、Mn、Ni,含量均为223ppm,执行粉磨工艺以去除粒径大于12.3μm的颗粒,得到粒径小于等于12.3μm的第一种正极活性材料。
将含有沉淀剂(碳酸钠)的溶液、Co盐(硫酸钴)溶液、金属N盐(硝酸镁、硝酸铝、硝酸锰、硝酸镍)溶液并流加入反应釜中充分的混合进行 共沉淀反应得到沉淀物,沉淀物过滤后干燥,在780~1200℃下焙烧形成前驱体,随后将前驱体和碳酸锂按一定的比例混合,在920~1200℃下焙烧,其中N元素为Mg、Al、Mn、Ni,含量均为249ppm,执行粉磨工艺以去除粒径大于10.3μm的颗粒,得到粒径大于等于10.3μm的第二种正极活性材料。
将上述第一种和第二种正极活性材料按照实施例1中的方法制备成锂离子电池,之后拆解锂离子电池获得正极活性材料样品进行测试。
通过激光粒径测试仪测试得到的Dv10为8.37μm,Dv50为17.98μm,Dv90为32.40μm。根据式(3)计算的(Dv90-Dv50)-(Dv50-Dv10)值为4.81,通过ICP(电感耦合等离子体光谱仪)分别检测第一颗粒中Co元素的含量、M元素的总含量和第二颗粒中Co元素的含量、N元素的总含量,由式(1)计算(a/b)/(c/d)的值为0.8。
对比例8
将含有沉淀剂(碳酸钠)的溶液、Co盐(硫酸钴)溶液、金属M盐(硝酸镁、硝酸铝、硝酸锰、硝酸镍)溶液并流加入反应釜中充分的混合进行共沉淀反应得到沉淀物,沉淀物过滤后干燥,在780~1200℃下焙烧形成前驱体,随后将前驱体和碳酸锂按一定的比例混合,在920~1200℃下焙烧,其中M元素为Mg、Al、Mn、Ni,含量均为221ppm,执行粉磨工艺以去除粒径大于11.8μm的颗粒,得到粒径小于等于11.8μm的第一种正极活性材料。
将含有沉淀剂(碳酸钠)的溶液、Co盐(硫酸钴)溶液、金属N盐(硝酸镁、硝酸铝、硝酸锰、硝酸镍)溶液并流加入反应釜中充分的混合进行共沉淀反应得到沉淀物,沉淀物过滤后干燥,在780~1200℃下焙烧形成前驱体,随后将前驱体和碳酸锂按一定的比例混合,在920~1200℃下焙烧,其中N元素为Mg、Al、Mn、Ni,含量均为239ppm,执行粉磨工艺以去除粒径大于9.7μm的颗粒,得到粒径大于等于9.7μm的第二种正极活性材料。
将上述第一种和第二种正极活性材料按照实施例1中的方法制备成锂 离子电池,之后拆解锂离子电池获得正极活性材料样品进行测试。
通过激光粒径测试仪测试得到的Dv10为6.40μm,Dv50为16.50μm,Dv90为30.60μm。根据式(3)计算的(Dv90-Dv50)-(Dv50-Dv10)值为4,通过ICP(电感耦合等离子体光谱仪)分别检测第一颗粒中Co元素的含量、M元素的总含量和第二颗粒中Co元素的含量、N元素的总含量,由式(1)计算(a/b)/(c/d)的值为0.8。
以下是相关参数的测试方法:
1.正极极片的压实密度
将化成后的锂离子电池放电至2.5~3.0V,然后将锂离子电池拆解,取出正极极片,放入DMC中浸泡2h,干燥房中自然晾干,用154.025mm 2的模具冲取6片所述正极极片及正极集流体,使用分析天平(上海精科天美电子天平FA2004B)称量6片正极极片的总重量为Mc g及6片正极集流体的总重量为Ma g,用千分尺(日本三丰千分尺293-230)测量6片正极极片的平均厚度为T1mm,6片正极集流体的平均厚度为T2mm,那么PD=[(Mc-Ma)/6]/(T1-T2)/154.025*1000,g/cm 3,PD表示正极极片的压实密度,本测试方法测得的正极极片压实密度为冷压后的压实密度。
2.锂离子电池的初次放电容量
锂离子电池化成后,在常温下,以0.5C恒流充电至电压为4.4V,然后以4.4V恒压充电至电流为0.05C,测试以0.2C放电时所放出的电量,标准容量为2990mAh。
3.500次循环放电容量
锂离子电池化成后,在常温下,以0.5C恒流充电至电压为4.4V,然后以4.4V恒压充电至电流为0.05C,并以0.2C放电,循环500次后,计算第500次放电所放出的电量与初次放电容量的比值,1C=2990mAh。
4.差示扫描量热法(DSC differential scanning calorimetry)初始失热峰主峰位
锂离子电池化成后,在常温下,以0.5C恒流充电至电压为4.4V,然后以4.4V恒压充电至电流为0.05C,然后在干燥房中拆解锂离子电池,取满 充后的正极极片作为测试样品。使用Netzsch STA449 DSC/TGA(德国耐STA449F3)对样品进行DSC测试,测试温度为50~450℃。
对实施例1-26和对比例1-8中各样品的压实密度、初次放电容量、500次循环放电容量和DSC测试初始失热峰主峰位分别进行测试,测试方法分别按照上述的压实密度的测量方法、初次放电容量的测试方法、500次循环放电容量测试方法和DSC测试初始失热峰主峰位的测试方法进行测定。
实施例1-26和对比例1-8的测量结果如下表1所示。
表1
Figure PCTCN2018122758-appb-000001
Figure PCTCN2018122758-appb-000002
Figure PCTCN2018122758-appb-000003
由表1中的实验数据进行分析,对实施例1-26和对比例1-8的结果进行比较可知:当正极活性材料中第一颗粒中M元素的种类数大于第二颗粒中N元素的种类数时,锂离子电池的初次放电容量高,500次循环放电容量增大,正极极片的热稳定性提高。
对实施例1-10与实施例11-16的结果进行比较可知:当正极活性材料的第一颗粒中M元素的种类数大于第二颗粒中N元素的种类数,在不满足(Dv90-Dv50)-(Dv50-Dv10)≤2.5的情况下,第一颗粒中M元素的总含量、Co元素的含量和第二颗粒中N元素的总含量、Co元素的含量满足式(2)或式(3)时,锂离子电池的500次循环放电容量得到有效提升,正极极片的热稳定性更高。
对实施例11-16与实施例17-26的结果进行比较可知:当正极活性材料 的第一颗粒中M元素的种类数大于第二颗粒中N元素的种类数,同时(Dv90-Dv50)-(Dv50-Dv10)≤2.5,且第一颗粒中M元素的总含量、Co元素的含量和第二颗粒中N元素的总含量、Co元素的含量满足式(2)或式(3)时,正极极片的压实密度得到提升,锂离子电池的能量密度更高。
此外,在图1中示出了根据本申请的实施例1和对比例6的正极活性材料的扫描电子显微镜对比图。由图1可以看出,相比于对比例6,本申请的活性材料采用更小的第一颗粒和更大的第二颗粒混合而成,为显著的大小颗粒堆积,有利于极片压实密度的提高。
在图2中示出了根据本申请的实施例1和对比例6的正极活性材料的粒径分布曲线图。由图1可以看出,相比于对比例6的单峰,本申请的活性材料具有明显的双峰。
在图3中示出了根据本申请的实施例1和对比例6的极片热稳定性测试结果。由图3可以看出,实施例1的起始失热峰主峰位(254.5℃)温度明显高于对比例6(223.1℃),说明实施例1的极片热稳定性高于对比例6的极片热稳定性。
本领域技术人员应理解,以上实施例仅是示例性实施例,在不背离本申请的精神和范围的情况下,可以进行多种变化、替换以及改变。

Claims (14)

  1. 一种正极活性材料,其包括第一颗粒和第二颗粒,其中,所述第一颗粒的化学式为:Li eCo gM 1-gO 2-i,所述第二颗粒的化学式为:Li fCo hN 1-hO 2-j,其中,M元素选自Ni、Mn、Al、Mg、Ti、La、Y和Zr中的至少两种,N元素选自Ni、Mn、Al、Mg、Ti、La、Y和Zr中的至少一种,且0.8≤e≤1.2、0<g<1、-0.1≤i≤0.2、0.8≤f≤1.2、0<h<1、-0.1≤j≤0.2,所述第一颗粒中的M元素的种类数大于所述第二颗粒中的N元素的种类数。
  2. 根据权利要求1所述的正极活性材料,其中,所述第一颗粒的化学式为:Li nCo xM 1-xO 2-y,所述第二颗粒的化学式为:Li nCo xN 1-xO 2-y,其中,0.8≤n≤1.2、0<x<1、-0.1≤y≤0.2。
  3. 根据权利要求1所述的正极活性材料,其中,所述第一颗粒的粒径小于所述第二颗粒的粒径。
  4. 根据权利要求3所述的正极活性材料,其中,所述第一颗粒的粒径小于所述正极活性材料的Dv50,所述第二颗粒的粒径大于所述正极活性材料的Dv50。
  5. 根据权利要求1所述的正极活性材料,其中,所述第一颗粒中的M元素的每一种元素的含量均大于200ppm,所述第二颗粒中的N元素的每一种元素的含量均大于200ppm。
  6. 根据权利要求1所述的正极活性材料,其中,所述正极活性材料满足下述的式(1):
    (a/b)/(c/d)>1    式(1)
    a表示第一颗粒中M元素的总质量;
    b表示第一颗粒中Co元素的质量;
    c表示第二颗粒中N元素的总质量;
    d表示第二颗粒中Co元素的质量。
  7. 根据权利要求1所述的正极活性材料,其中,所述正极活性材料满足下述的式(2):
    (A/B)/(C/D)>1    式(2)
    A表示第一颗粒中M元素的总摩尔量;
    B表示第一颗粒中Co元素的摩尔量;
    C表示第二颗粒中N元素的总摩尔量;
    D表示第二颗粒中Co元素的摩尔量。
  8. 根据权利要求6所述的正极活性材料,其中,所述正极活性材料的(a/b)/(c/d)的值为1.3~10。
  9. 根据权利要求1所述的正极活性材料,其中,所述正极活性材料的体积基准的粒度分布曲线包括第一峰和第二峰。
  10. 根据权利要求9所述的正极活性材料,其中,所述第二峰的峰高大于所述第一峰的峰高。
  11. 根据权利要求1所述的正极活性材料,其中,所述正极活性材料的粒径满足下述的式(3):
    (Dv90-Dv50)-(Dv50-Dv10)≤2.5    式(3)
  12. 一种正极极片,其中,包括权利要求1-11中任一项所述的正极活性材料。
  13. 根据权利要求12所述的正极极片,其中,所述正极极片的压实密度≥3.9g/cm 3
  14. 一种锂离子电池,其中,包括权利要求12或13所述的正极极片。
PCT/CN2018/122758 2018-02-07 2018-12-21 正极活性材料和锂离子电池 WO2019153909A1 (zh)

Priority Applications (8)

Application Number Priority Date Filing Date Title
EP23176946.4A EP4235848A3 (en) 2018-02-07 2018-12-21 Positive electrode active material and lithium ion battery
CA3090720A CA3090720A1 (en) 2018-02-07 2018-12-21 Positive active material, positive electrode and lithium-ion battery
CN202311502489.8A CN117457872A (zh) 2018-02-07 2018-12-21 正极活性材料和锂离子电池
CN201880088909.3A CN111699576A (zh) 2018-02-07 2018-12-21 正极活性材料和锂离子电池
JP2020542410A JP7059381B2 (ja) 2018-02-07 2018-12-21 正極活物質及びリチウムイオン電池
EP18905006.5A EP3731314B1 (en) 2018-02-07 2018-12-21 Positive electrode active material and lithium ion battery
US16/249,888 US20190245199A1 (en) 2018-02-07 2019-01-16 Positive active material and lithium-ion battery
US17/847,801 US20220336793A1 (en) 2018-02-07 2022-06-23 Positive active material and lithium-ion battery

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
CN201810123144.4A CN110120497B (zh) 2018-02-07 2018-02-07 一种活性材料和锂离子电池
CN201810123144.4 2018-02-07
CN201810779137.XA CN110729477B (zh) 2018-07-16 2018-07-16 正极活性材料和锂离子电池
CN201810779137.X 2018-07-16

Related Child Applications (1)

Application Number Title Priority Date Filing Date
US16/249,888 Continuation US20190245199A1 (en) 2018-02-07 2019-01-16 Positive active material and lithium-ion battery

Publications (1)

Publication Number Publication Date
WO2019153909A1 true WO2019153909A1 (zh) 2019-08-15

Family

ID=67548818

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2018/122758 WO2019153909A1 (zh) 2018-02-07 2018-12-21 正极活性材料和锂离子电池

Country Status (6)

Country Link
US (1) US20220336793A1 (zh)
EP (2) EP4235848A3 (zh)
JP (1) JP7059381B2 (zh)
CN (2) CN117457872A (zh)
CA (1) CA3090720A1 (zh)
WO (1) WO2019153909A1 (zh)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN112467078B (zh) * 2020-11-30 2022-06-17 宁德新能源科技有限公司 电化学装置和电子装置
CN113745452B (zh) * 2021-09-08 2023-06-20 东莞新能安科技有限公司 一种电化学装置及电子装置
JP2024503741A (ja) * 2021-09-28 2024-01-26 寧徳新能源科技有限公司 電気化学装置及びそれを含む電力使用設備

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2000082466A (ja) * 1998-07-02 2000-03-21 Nippon Chem Ind Co Ltd 正極活物質及び非水電解質二次電池
CN101246957A (zh) * 2007-02-13 2008-08-20 三洋电机株式会社 非水电解质二次电池用正极及其制造方法
CN101714630A (zh) * 2008-09-30 2010-05-26 日立车辆能源株式会社 锂二次电池用正极材料及使用该正极材料的锂二次电池
CN102082269A (zh) * 2009-11-27 2011-06-01 株式会社日立制作所 锂离子二次电池用正极材料及采用它的锂离子二次电池

Family Cites Families (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001185142A (ja) 1999-12-24 2001-07-06 Sumitomo Metal Mining Co Ltd リチウムイオン二次電池用正極活物質およびその製造方法
JP2002100356A (ja) * 2000-09-25 2002-04-05 Seimi Chem Co Ltd リチウム二次電池
AU2003266620A1 (en) * 2002-09-26 2004-04-19 Seimi Chemical Co., Ltd. Positive electrode active substance for lithium secondary battery and process for producing the same
JP4222519B2 (ja) 2005-04-13 2009-02-12 日立マクセル株式会社 リチウムイオン二次電池およびこれを用いた機器
KR100670507B1 (ko) * 2005-04-28 2007-01-16 삼성에스디아이 주식회사 리튬 이차 전지
CN101188282B (zh) * 2006-03-20 2010-09-08 日立麦克赛尔株式会社 非水二次电池及其使用方法
JP2007302504A (ja) 2006-05-10 2007-11-22 Honjo Chemical Corp コバルト酸リチウム粒子とその製造方法
CN101667663B (zh) 2007-10-10 2013-05-15 日立麦克赛尔能源株式会社 非水二次电池及使用其的设备
KR20100079535A (ko) * 2008-12-31 2010-07-08 주식회사 엘앤에프신소재 분쇄 전이금속 화합물을 첨가하여 제조된 비수계 이차전지용 리튬 전이금속 산화물
JP2011192541A (ja) * 2010-03-15 2011-09-29 Hitachi Maxell Energy Ltd 非水二次電池
PL2399869T3 (pl) * 2010-06-25 2015-11-30 Evonik Degussa Gmbh Proszek tlenku mieszanego zawierający pierwiastki lit, mangan, nikiel i kobalt i sposoby otrzymywania
JP5670671B2 (ja) 2010-09-02 2015-02-18 日立マクセル株式会社 電池用正極の製造方法およびリチウムイオン二次電池の製造方法
EP2932544B1 (en) * 2012-12-14 2016-08-24 Umicore Bimodal lithium transition metal based oxide powder for use in a rechargeable battery

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2000082466A (ja) * 1998-07-02 2000-03-21 Nippon Chem Ind Co Ltd 正極活物質及び非水電解質二次電池
CN101246957A (zh) * 2007-02-13 2008-08-20 三洋电机株式会社 非水电解质二次电池用正极及其制造方法
CN101714630A (zh) * 2008-09-30 2010-05-26 日立车辆能源株式会社 锂二次电池用正极材料及使用该正极材料的锂二次电池
CN102082269A (zh) * 2009-11-27 2011-06-01 株式会社日立制作所 锂离子二次电池用正极材料及采用它的锂离子二次电池

Also Published As

Publication number Publication date
EP3731314A4 (en) 2021-04-21
EP3731314B1 (en) 2023-08-02
CA3090720A1 (en) 2019-08-15
JP7059381B2 (ja) 2022-04-25
EP4235848A2 (en) 2023-08-30
CN117457872A (zh) 2024-01-26
EP4235848A3 (en) 2023-10-04
JP2021513193A (ja) 2021-05-20
US20220336793A1 (en) 2022-10-20
EP3731314A1 (en) 2020-10-28
CN111699576A (zh) 2020-09-22

Similar Documents

Publication Publication Date Title
CN110429252B (zh) 正极及电化学装置
EP3588613A1 (en) Electrochemical device
US11936042B2 (en) Cathode material, and electrochemical device including the same
KR102301470B1 (ko) 비수 전해질 이차 전지
US20230261250A1 (en) Separator and energy storage device
US20080213670A1 (en) Non-aqueous electrolyte secondary battery
CN111370695B (zh) 负极活性材料及使用其的电化学装置和电子装置
KR20080031151A (ko) 비수전해질 2차 전지 및 그의 제조방법
KR102277734B1 (ko) 리튬 이차전지용 음극 활물질, 이를 포함하는 리튬 이차전지용 음극 및 리튬 이차전지
JP2012164624A (ja) リチウムイオン二次電池用負極活物質及びその負極活物質を用いたリチウムイオン二次電池
KR20160141676A (ko) 리튬 이온 이차전지
US20220336793A1 (en) Positive active material and lithium-ion battery
US11043675B2 (en) Positive electrode material and lithium-ion battery
KR102283794B1 (ko) 리튬 이차 전지용 양극 및 이를 포함하는 리튬 이차 전지
US20200227741A1 (en) Cathode material and electrochemical device including cathode material
JP2001345101A (ja) 二次電池
JP2014022294A (ja) 非水電解質二次電池用正極活物質およびその製造方法
CN112106235B (zh) 锂二次电池用正极活性材料、其制备方法以及包含其的锂二次电池用正极和锂二次电池
CN110729477B (zh) 正极活性材料和锂离子电池
EP4060761A1 (en) Cathode for secondary battery, manufacturing method therefor, and lithium secondary battery comprising same
KR101617490B1 (ko) 전극 조립체 및 이를 포함하는 리튬 이차전지
JP2022543762A (ja) 二次電池用正極活物質の製造方法
KR20220034586A (ko) 음극재, 이를 포함하는 음극 및 이차전지
EP3863091B1 (en) Lithium secondary battery
US20190245199A1 (en) Positive active material and lithium-ion battery

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 18905006

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2020542410

Country of ref document: JP

Kind code of ref document: A

ENP Entry into the national phase

Ref document number: 3090720

Country of ref document: CA

NENP Non-entry into the national phase

Ref country code: DE

ENP Entry into the national phase

Ref document number: 2018905006

Country of ref document: EP

Effective date: 20200907