WO2019150858A1 - 回転電機、固定子 - Google Patents

回転電機、固定子 Download PDF

Info

Publication number
WO2019150858A1
WO2019150858A1 PCT/JP2018/047722 JP2018047722W WO2019150858A1 WO 2019150858 A1 WO2019150858 A1 WO 2019150858A1 JP 2018047722 W JP2018047722 W JP 2018047722W WO 2019150858 A1 WO2019150858 A1 WO 2019150858A1
Authority
WO
WIPO (PCT)
Prior art keywords
stator
peripheral surface
stator core
outer peripheral
housing
Prior art date
Application number
PCT/JP2018/047722
Other languages
English (en)
French (fr)
Inventor
モハマドバシール ズライカ
山崎 慎司
伸次郎 渡
Original Assignee
日立オートモティブシステムズ株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 日立オートモティブシステムズ株式会社 filed Critical 日立オートモティブシステムズ株式会社
Priority to CN201880084811.0A priority Critical patent/CN111684684B/zh
Priority to EP18904296.3A priority patent/EP3748815A4/en
Priority to JP2019568944A priority patent/JP7030140B2/ja
Priority to US16/966,517 priority patent/US11368061B2/en
Publication of WO2019150858A1 publication Critical patent/WO2019150858A1/ja

Links

Images

Classifications

    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02KDYNAMO-ELECTRIC MACHINES
    • H02K1/00Details of the magnetic circuit
    • H02K1/06Details of the magnetic circuit characterised by the shape, form or construction
    • H02K1/12Stationary parts of the magnetic circuit
    • H02K1/18Means for mounting or fastening magnetic stationary parts on to, or to, the stator structures
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02KDYNAMO-ELECTRIC MACHINES
    • H02K1/00Details of the magnetic circuit
    • H02K1/06Details of the magnetic circuit characterised by the shape, form or construction
    • H02K1/12Stationary parts of the magnetic circuit
    • H02K1/18Means for mounting or fastening magnetic stationary parts on to, or to, the stator structures
    • H02K1/185Means for mounting or fastening magnetic stationary parts on to, or to, the stator structures to outer stators
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02KDYNAMO-ELECTRIC MACHINES
    • H02K1/00Details of the magnetic circuit
    • H02K1/06Details of the magnetic circuit characterised by the shape, form or construction
    • H02K1/12Stationary parts of the magnetic circuit
    • H02K1/14Stator cores with salient poles
    • H02K1/146Stator cores with salient poles consisting of a generally annular yoke with salient poles
    • H02K1/148Sectional cores
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02KDYNAMO-ELECTRIC MACHINES
    • H02K3/00Details of windings
    • H02K3/46Fastening of windings on the stator or rotor structure
    • H02K3/52Fastening salient pole windings or connections thereto
    • H02K3/521Fastening salient pole windings or connections thereto applicable to stators only
    • H02K3/525Annular coils, e.g. for cores of the claw-pole type
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02KDYNAMO-ELECTRIC MACHINES
    • H02K3/00Details of windings
    • H02K3/46Fastening of windings on the stator or rotor structure
    • H02K3/52Fastening salient pole windings or connections thereto
    • H02K3/527Fastening salient pole windings or connections thereto applicable to rotors only
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02KDYNAMO-ELECTRIC MACHINES
    • H02K3/00Details of windings
    • H02K3/32Windings characterised by the shape, form or construction of the insulation
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02KDYNAMO-ELECTRIC MACHINES
    • H02K3/00Details of windings
    • H02K3/32Windings characterised by the shape, form or construction of the insulation
    • H02K3/325Windings characterised by the shape, form or construction of the insulation for windings on salient poles, such as claw-shaped poles
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02KDYNAMO-ELECTRIC MACHINES
    • H02K3/00Details of windings
    • H02K3/46Fastening of windings on the stator or rotor structure
    • H02K3/52Fastening salient pole windings or connections thereto
    • H02K3/521Fastening salient pole windings or connections thereto applicable to stators only
    • H02K3/522Fastening salient pole windings or connections thereto applicable to stators only for generally annular cores with salient poles
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02KDYNAMO-ELECTRIC MACHINES
    • H02K5/00Casings; Enclosures; Supports
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02KDYNAMO-ELECTRIC MACHINES
    • H02K5/00Casings; Enclosures; Supports
    • H02K5/04Casings or enclosures characterised by the shape, form or construction thereof

Definitions

  • the present invention relates to a rotating electric machine and a stator.
  • a rotary electric machine having a split core structure in which a stator is formed by fixing a stator core divided into a plurality of parts to a cylindrical housing by shrink fitting or press fitting is known.
  • the fixing force is too high, the stator core may be deformed by the stress applied to the stator core, which may cause a decrease in magnetic characteristics or a buckling phenomenon. Therefore, a method for improving the fixing force of the stator core while suppressing deformation of the stator core has been proposed.
  • Patent Document 1 describes the following press-fit fixing structure.
  • the radial end surface 12a of the stator core 12 has a plurality of core protrusions 25 formed intermittently in the circumferential direction, and the inner peripheral surface 13a of the stator holder 13 is in the stacking direction (axial direction) of the plurality of steel plates 18.
  • the core convex portion 25 includes the holder convex portion 27.
  • the inner surface 13a of the stator holder 13 is plastically deformed to enter the inner side of the inner peripheral surface 13a, and the axial end portion 29 of the inner peripheral surface 13a of the stator holder 13 is formed flat in the stacking direction.
  • a rotating electrical machine includes a stator in which a plurality of stator cores are arranged in an annular shape, a rotor that is arranged on the inner peripheral side of the stator, and a cylindrical shape that fixes the plurality of stator cores.
  • a stator core, and the stator core has an outer peripheral surface disposed to face the inner peripheral surface of the housing, and the outer peripheral surface of the stator core is relative to the inner peripheral surface of the housing. Tilted.
  • a stator according to the present invention is used in a rotating electrical machine, and includes a plurality of stator cores that are annularly arranged and fixed to a cylindrical housing, and the stator core has an inner periphery of the housing. The outer peripheral surface of the stator core is inclined with respect to the inner peripheral surface of the housing.
  • the fixing force of the stator core can be improved at a low cost.
  • Sectional drawing of the rotary electric machine which concerns on one Embodiment of this invention.
  • Sectional view of the rotating electrical machine at section AA The figure which shows a mode that a plurality of tea scores are arranged in a circle and fixed to the housing Diagram showing the shape of the stator core Diagram showing the winding process
  • FIG. 1 is a partial cross-sectional view of a rotating electrical machine 100 according to an embodiment of the present invention.
  • the rotating electrical machine 100 is a device that converts electrical energy into rotational energy, and includes a rotor 200, a rotating shaft 250, and a stator 300.
  • the stator 300 generates a magnetic field by a current flowing through a conductor, and is configured by arranging a plurality of stator cores in an annular shape as will be described later.
  • the rotating electrical machine 100 is generally formed large in the radial direction so that it can output large rotational energy, for example, because it is mounted on an automobile and used for driving the automobile. Therefore, when the rotating electrical machine 100 is rotationally driven, a large load is applied to each stator core in the circumferential direction.
  • the rotor 200 has a plurality of magnets arranged along the outer peripheral surface, and the magnetic field generated from the magnets is rotated by being affected by the magnetic field generated from the stator 300.
  • a rotating shaft 250 is connected to the center of the rotor 200, and the rotational energy of the rotor 200 is transmitted to the rotating shaft 250.
  • the rotor 200 is disposed on the inner peripheral side of the stator 300, and faces the stator 300 via a predetermined gap in the radial direction.
  • FIG. 2 is a cross-sectional view of the rotating electrical machine 100 taken along a cross-section AA shown in FIG.
  • the rotor 200 has a rotor core 210 and a plurality of permanent magnets 220.
  • the rotor core 210 forms a magnetic path and houses the permanent magnet 220.
  • the permanent magnet 220 generates a magnetic flux and rotates the rotor 200 by an attractive force with a rotating magnetic field generated in the stator 300.
  • the stator 300 is formed by arranging a plurality of tea scores 350 in a ring shape and fixing them to the housing 500.
  • one tee score 350 is surrounded by a broken line frame.
  • Each tee score 350 is configured by winding a coil 310 around a stator core 400 via an insulating resin bobbin 320.
  • the stator core 400 of each tee score 350 is fixed to the inner peripheral side of the housing 500 by an interference fit. That is, the stator 300 is formed by arranging a plurality of stator cores 400 around which the coils 310 are respectively wound in an annular shape and fitting them into the housing 500 by shrink fitting or press fitting.
  • a three-phase alternating current flows through a coil 310 of each tea score 350 from a three-phase circuit (not shown).
  • a magnetic path is formed in the stator core 400 to generate a magnetic flux from each tee score 350, and a rotating magnetic field is generated in the stator 300.
  • the housing 500 is configured using a soft magnetic material so that the magnetic flux generated in each tea score 350 can be blocked from leaking to the outside.
  • the stator core 400 and the rotor core 210 are configured, for example, by laminating a plurality of silicon steel plates and fastening them with caulking or an adhesive. Thereby, the magnetic permeability can be improved and the rotary electric machine 100 with low iron loss can be realized.
  • FIG. 3 is a diagram showing a state in which a plurality of tea scores 350 are arranged in a ring shape and fixed to the housing 500.
  • the stator 300 is configured by inserting and fixing a plurality of teascores 350 in an annular shape inside a cylindrical housing 500.
  • the rotor 200 is arranged on the inner peripheral side of the stator 300 as described above, but is not shown in FIG.
  • a point indicated by reference numeral 450 indicates the center of the rotating electrical machine 100, that is, the center of the rotating electrical machine that is the center of the rotor 200, the rotating shaft 250, and the stator 300.
  • the rotating shaft 250 arranged with the rotating electrical machine center 450 as the central axis rotates.
  • the plurality of stator cores 400 that are arranged in a ring and constitute the tea score 350 respectively have outer peripheral surfaces 410 and 420.
  • the outer peripheral surface 410 is the side where the connection terminal (not shown) connected to the coil 310 is disposed, that is, the outer peripheral surface of the stator core 400 disposed to face the inner peripheral surface of the housing 500, that is, illustrated in FIG. It is the upper part.
  • the outer peripheral surface 420 is an axially opposite side of the outer peripheral surface of the stator core 400 disposed opposite to the inner peripheral surface of the housing 500 in the axial direction, that is, in FIG. This is the lower part of the figure.
  • the outer peripheral surface 410 and the outer peripheral surface 420 are distinguished from each other, but actually, the outer peripheral surface of the stator core 400 is formed as an integral one.
  • the total outer peripheral surface 480 is the outer peripheral surface of the stator 300 formed by combining the outer peripheral surface 410 and the outer peripheral surface 420 of each stator core 400.
  • the housing 500 has an inner peripheral surface 510 on the inner side.
  • a plurality of stator cores 400 (tea scores 350) arranged in an annular shape are fixed to the housing 500 by a frictional force.
  • the bonding strength between the housing 500 and the stator core 400 at this time, that is, the fixing force with which the stator core 400 is fixed to the housing 500 depends on the difference in size between the inner peripheral surface 510 and the total outer peripheral surface 480 in the radial direction. Determined.
  • FIG. 4 is a diagram showing the shape of the stator core 400.
  • FIG. 4A is a side view of the stator core 400 as viewed from the circumferential direction of the rotating electrical machine 100.
  • FIG. 4B is a cross-sectional view of the stator core 400 taken along the cross section BB shown in FIG.
  • FIG. 4C is a cross-sectional view of the stator core 400 taken along the section CC shown in FIG.
  • the stator core 400 has an S fastening portion 411 and a T fastening portion 412 that are in close contact with the other adjacent stator core 400 on the left and right sides of the outer peripheral surface 410.
  • the S fastening portion 411 and the T fastening portion 412 are respectively formed with a convex portion 411a and a concave portion 412a that act as alignment guides when the plurality of stator cores 400 are arranged in a ring.
  • the convex portions 411a are fitted into the concave portions 412a of the adjacent stator core 400, and the concave portions 412a are fitted into the convex portions 411a of the adjacent stator core 400, so that the stator cores 400 are arranged in a ring shape. Positioning is performed.
  • a point where the boundary line between the S fastening portion 411 and the outer peripheral surface 410 intersects the cross section BB is defined as an S vertex 413, and the above-mentioned rotating electrical machine center 450 to the S vertex 413 is used.
  • the distance is defined as r1.
  • a point where the boundary line between the T fastening portion 412 and the outer peripheral surface 410 intersects the cross section BB is defined as a T vertex 414, and a distance from the rotating electrical machine center 450 to the T vertex 414 is defined as r2.
  • the shape of the outer peripheral surface 410 can be set asymmetrical.
  • the stator core 400 has a V fastening portion 421 and a W fastening portion 422 that are in close contact with the other adjacent stator core 400 on the left and right sides of the outer peripheral surface 420.
  • the V fastening portion 421 and the W fastening portion 422 are respectively formed with a convex portion 421a and a concave portion 422a that act as alignment guides when the plurality of stator cores 400 are arranged in a ring.
  • the convex portions 421a are fitted into the concave portions 422a of the adjacent stator core 400, and the concave portions 422a are fitted into the convex portions 421a of the adjacent stator core 400, so that the stator cores 400 are arranged in a ring shape. Positioning is performed.
  • a point where the boundary line between the V fastening portion 421 and the outer peripheral surface 420 intersects the cross section CC is defined as a V vertex 423, and the above-mentioned rotating electrical machine center 450 to the V vertex 423 is used.
  • the distance is defined as r3.
  • a point where the boundary line between the W fastening portion 422 and the outer peripheral surface 420 intersects the cross section CC is defined as a W vertex 424, and a distance from the rotating electrical machine center 450 to the W vertex 424 is defined as r4.
  • the shape of the outer peripheral surface 420 can be set to be left-right asymmetric.
  • the outer peripheral surface 410 of the stator core 400 at one end in the axial direction of the rotating electrical machine 100 and the outer peripheral surface 420 of the stator core 400 at the other end in the axial direction are connected to the housing 500.
  • the twisted stator core 400 can be realized by tilting the inner circumferential surface 510 in directions opposite to each other. Thereby, as will be described later, the stator core 400 can be held in the housing 500 with a high fixing force with respect to both the regenerative torque and the driving torque.
  • FIG. 5 is a diagram illustrating a winding operation in which a coil 310 is wound around the stator core 400 to create a tee score 350.
  • FIG. 5A shows the state of the first stage winding work
  • FIG. 5B shows the state of the second stage winding work.
  • the coil 310 is applied with an appropriate tension by being pulled by a winding mechanism (not shown).
  • the tee score 350 is created by winding the coil 310 around the resin bobbin 320 attached to the stator core 400 in order from the first stage.
  • the coil 310 is extended in the axial direction along the resin bobbin 320 from a predetermined winding start position. Then, the coil 310 is extended on the opposite side in the axial direction from the point located on the diagonal line toward the winding start position. As a result, the coil 310 is wound around the stator core 400 via the resin bobbin 320.
  • the second stage winding work shown in FIG. 5B after the winding position of the coil 310 is shifted by one stage, the same work as the first stage is performed. The coil 310 is wound around the stator core 400 by repeatedly performing such winding work.
  • the coil 310 can be aligned at a predetermined winding position step by step by pulling the coil 310 with an appropriate tension.
  • the stator core 400 is twisted in a predetermined direction when the stator core 400 receives compressive forces in different directions on the left and right due to the tension of the coil 310.
  • the outer peripheral surfaces 410 and 420 of the stator core 400 can be inclined along the diagonal line of the stator core 400 that passes through the winding start position of the coil 310.
  • stator core 400 can be manufactured using any method. Is possible.
  • FIG. 6 is a diagram showing a state in which a plurality of stator cores 400 are arranged in a ring in the stator 300.
  • FIG. 6A is a side view of the stator 300 as viewed from the radial direction of the rotating electrical machine 100.
  • FIG. 6B is a partially enlarged view of the stator 300 in the section DD shown in FIG.
  • FIG. 6C is a partially enlarged view of the stator 300 in the section EE shown in FIG.
  • positioning of the stator core 400 clearly, the illustration of the housing 500, the coil 310, and the resin bobbin 320 is abbreviate
  • the S fastening portion 411 of each stator core 400 has a T of the adjacent stator core 400.
  • the convex portions 411a of the S fastening portion 411 and the concave portions 412a of the T fastening portion 412 are fitted together, so that the stator cores 400 are aligned.
  • each step 415 of the outer peripheral surface 410 of the stator 300 has a clockwise convex shape, that is, a shape that continuously protrudes when the total outer peripheral surface 480 is viewed clockwise in the circumferential direction.
  • r1 ⁇ r2 may be satisfied.
  • each step 415 on the outer peripheral surface 410 of the stator 300 has a shape that is convex counterclockwise.
  • the V fastening portion 421 of each stator core 400 has a W of the adjacent stator core 400.
  • the fastening portion 422 the convex portion 421a of the V fastening portion 421 and the concave portion 422a of the W fastening portion 422 are fitted to each other, thereby aligning each stator core 400.
  • each step 425 of the outer peripheral surface 420 of the stator 300 has a shape that is convex counterclockwise, that is, a shape that is continuously convex when the total outer peripheral surface 480 is viewed counterclockwise in the circumferential direction. .
  • each step 415 on the outer peripheral surface 410 has a clockwise convex shape.
  • each step 425 on the outer peripheral surface 420 on the opposite side in the axial direction has a convex shape counterclockwise in the reverse direction.
  • the stator core 400 has a shape in which a plurality of steps in opposite directions are generated on the outer peripheral surface 410 and the outer peripheral surface 420 when a plurality of stator cores 400 are arranged in a ring shape.
  • each step 415 on the outer peripheral surface 410 of the stator 300 has a convex shape in the counterclockwise direction
  • each step 425 in the outer peripheral surface 420 has a convex shape in the clockwise direction in the reverse direction.
  • FIG. 7 is a diagram showing the measurement results of the cross-sectional shape of the stator 300.
  • FIG. 7A shows the measurement result of the cross-sectional shape of the stator 300 in the cross-section DD shown in FIG.
  • FIG. 7B shows the measurement result of the cross-sectional shape of the stator 300 in the cross-section EE shown in FIG.
  • the conditions of r1> r2 and r3 ⁇ r4 are satisfied as described above.
  • each step 415 on the outer peripheral surface 410 has a clockwise convex shape and is aligned in one direction of rotation of the rotating electrical machine 100.
  • each step 425 on the outer peripheral surface 420 has a convex shape in the counterclockwise direction, and in a direction opposite to the cross-section DD. It can be seen that the rotating electrical machines 100 are aligned in one direction of rotation. Therefore, the stator core 400 can be held in the housing 500 with a high fixing force with respect to both the regenerative torque and the driving torque.
  • stator core 400 can be held in the housing 500 with a high fixing force against both the regenerative torque and the driving torque.
  • the rotating electrical machine 100 fixes a stator 300 in which a plurality of stator cores 400 are annularly arranged, a rotor 200 that is arranged on the inner peripheral side of the stator 300, and a plurality of stator cores 400, respectively. And a cylindrical housing 500.
  • the stator core 400 has outer peripheral surfaces 410 and 420 arranged to face the inner peripheral surface 510 of the housing 500, and the outer peripheral surfaces 410 and 420 of the stator core 400 are arranged on the inner peripheral surface 510 of the housing 500. It is leaning against. Since it did in this way, the fixing force of the stator core 400 can be improved at low cost.
  • the rotating electrical machine 100 includes a plurality of coils 310 wound around the plurality of stator cores 400, respectively.
  • the stator core 400 is twisted by receiving the tension of the coil 310, so that the outer peripheral surfaces 410 and 420 of the stator core 400 are inclined with respect to the inner peripheral surface 510 of the housing 500.
  • the outer peripheral surfaces 410 of the plurality of stator cores 400 are inclined in the same direction with respect to the inner peripheral surface 510 of the housing 500.
  • the outer peripheral surfaces 420 of the plurality of stator cores 400 are also inclined in the same direction with respect to the inner peripheral surface 510 of the housing 500. Since it did in this way, the stator 300 comprised by the some stator core 400 arrange
  • the plurality of stator cores 400 are fixed to the inner peripheral side of the housing 500 by an interference fit. Since it did in this way, it becomes possible to fix each stator core 400 to the housing 500 reliably and firmly.
  • the torsion-shaped stator in which the outer peripheral surface 410 and the outer peripheral surface 420 are inclined in directions opposite to each other with respect to the inner peripheral surface 510 of the housing 500.
  • achieves the stator 300 which can be fixed to the housing 500 with high fixing force by using the iron core 400 was demonstrated.
  • this may be achieved using a stator core of another shape.
  • the center lines along the axial direction of the rotating electrical machine 100 are defined on the outer peripheral surfaces 410 and 420 of the stator core, respectively, and the inclination of the outer peripheral surface is switched to be discontinuous in the circumferential direction with the center line as a boundary.
  • a child iron core may be used.
  • the present invention can be realized using stator cores having various shapes.

Landscapes

  • Engineering & Computer Science (AREA)
  • Power Engineering (AREA)
  • Iron Core Of Rotating Electric Machines (AREA)
  • Motor Or Generator Frames (AREA)

Abstract

本発明の課題は、固定子鉄心の固定力を低コストで向上することである。 回転電機は、複数の固定子鉄心400が環状に配置された固定子300と、固定子300の内周側に配置される回転子と、複数の固定子鉄心400をそれぞれ固定する円筒状のハウジング500とを備える。固定子鉄心400は、ハウジング500の内周面510に対向して配置される外周面410、420を有し、この固定子鉄心400の外周面410、420は、ハウジング500の内周面510に対して傾いている。

Description

回転電機、固定子
 本発明は、回転電機および固定子に関する。
 従来、複数に分割された固定子鉄心を円筒状のハウジングに焼嵌めや圧入によって固定することで固定子を形成した分割コア構造の回転電機が知られている。こうした構造の回転電機では、高トルク化に対応するため、固定子鉄心をハウジングに固定する固定力を向上することが好ましい。しかしながら、固定力が高すぎると固定子鉄心が受ける応力によって固定子鉄心が変形し、磁気特性の低下や座屈現象が発生する恐れがある。そこで、固定子鉄心の変形を抑えつつ、固定子鉄心の固定力を向上する方法が提案されている。
 下記の特許文献1には、次のような圧入固定構造が記載されている。ステータコア12の径方向端面12aは、周方向において断続的に形成された複数のコア凸部25を有し、ステータホルダ13の内周面13aは、複数の鋼板18の積層方向(軸方向)において断続的に形成された複数のホルダ凸部27を有し、ステータコア12の径方向端面12aがステータホルダ13の内周面13aに圧入される際に、コア凸部25は、ホルダ凸部27を塑性変形させてステータホルダ13の内周面13aの表面よりも内側に入り込んでおり、ステータホルダ13の内周面13aの軸方向端部29は、積層方向において平坦に形成されている。
特開2014-103716号公報
 上記特許文献1に記載の圧入固定構造では、ステータコアの径方向端面とステータホルダの内周面の両方に凹凸形状を形成するために複雑な加工が必要であり、加工コストが上昇する。そのため、低固定子鉄心の固定力をコストで向上できる構造が求められている。
 本発明による回転電機は、複数の固定子鉄心が環状に配置された固定子と、前記固定子の内周側に配置される回転子と、前記複数の固定子鉄心をそれぞれ固定する円筒状のハウジングと、を備え、前記固定子鉄心は、前記ハウジングの内周面に対向して配置される外周面を有し、前記固定子鉄心の前記外周面は、前記ハウジングの内周面に対して傾いている。
 本発明による固定子は、回転電機に用いられるものであって、環状に配置されて円筒状のハウジングにそれぞれ固定された複数の固定子鉄心を備え、前記固定子鉄心は、前記ハウジングの内周面に対向して配置される外周面を有し、前記固定子鉄心の前記外周面は、前記ハウジングの内周面に対して傾いている。
 本発明によれば、固定子鉄心の固定力を低コストで向上することができる。
本発明の一実施形態に係る回転電機の部分断面図 断面A-Aにおける回転電機の断面図 複数のティースコアを環状に並べてハウジングに固定する様子を示す図 固定子鉄心の形状を示す図 巻線作業の様子を示す図 複数の固定子鉄心が環状に並べられた様子を示す図 固定子の断面形状の測定結果を示す図
 以下、本発明の一実施形態について図面を参照して説明する。
 図1は、本発明の一実施形態に係る回転電機100の部分断面図である。図1の部分断面図では、回転軸250に沿って切断された回転電機100の断面形状を示している。回転電機100は、電気エネルギーを回転エネルギーに変換する装置であり、回転子200、回転軸250および固定子300を有している。
 固定子300は、導体に流れる電流によって磁界を生じさせるものであり、後述するように、複数の固定子鉄心が環状に配置されて構成されている。なお、回転電機100は、たとえば自動車に搭載されて自動車の走行駆動に利用されるため、大きな回転エネルギーを出力できるように、一般に径方向に大きく形成されている。したがって、回転電機100が回転駆動しているときには、各固定子鉄心に対して周方向に大きな荷重がかかることになる。
 回転子200は、外周面に沿って配置された複数の磁石を有しており、この磁石から生じる磁界が固定子300から生じる磁界の影響を受けることで回転駆動される。回転子200の中心部には回転軸250が接続されており、回転子200の回転エネルギーは回転軸250に伝達される。回転子200は、固定子300の内周側に配置されており、径方向において所定の空隙を介して固定子300と対向している。
 図2は、図1に示した断面A-Aにおける回転電機100の断面図である。図2に示すように、回転子200は、回転子鉄心210および複数の永久磁石220を有する。回転子鉄心210は、磁路を形成すると共に、永久磁石220を収納する。永久磁石220は、磁束を発生させ、固定子300において発生する回転磁界との吸引力により回転子200を回転させる。
 固定子300は、複数のティースコア350を環状に並べてハウジング500に固定することで形成されている。なお、図2では一つのティースコア350を破線枠で囲って示している。各ティースコア350は、コイル310が絶縁用の樹脂ボビン320を介して固定子鉄心400に巻き付けられることで構成されている。各ティースコア350の固定子鉄心400は、ハウジング500の内周側に締り嵌めで固定されている。すなわち、コイル310がそれぞれ巻き付けられた複数の固定子鉄心400を環状に並べて配置し、これを焼き嵌めや圧入によってハウジング500の内側にはめ込むことにより、固定子300が形成される。
 各ティースコア350のコイル310には、不図示の3相回路から3相の交流電流が流される。これにより、固定子鉄心400に磁路を形成して各ティースコア350から磁束を発生し、固定子300において回転磁界を生じさせる。ハウジング500は、各ティースコア350に発生する磁束が外部に漏れ出るのを遮断できるように、軟磁性材料を用いて構成される。
 固定子鉄心400および回転子鉄心210は、たとえば複数の珪素鋼板を積層してカシメや接着剤で締結することで構成されている。これにより、透磁率を向上して低鉄損の回転電機100を実現できる。
 図3は、複数のティースコア350を環状に並べてハウジング500に固定する様子を示す図である。図3に示すように、複数のティースコア350を環状に並べた状態で、円筒状のハウジング500の内側に挿入して固定することで、固定子300が構成される。この固定子300の内周側には、前述のように回転子200が配置されるが、図3では図示を省略している。
 図3において、符号450に示す点は、回転電機100の中心、すなわち回転子200、回転軸250および固定子300の中心である回転電機中心を示している。この回転電機中心450を中心に回転子200が回転駆動することで、回転電機中心450を中心軸として配置された回転軸250が回転する。
 図3に示すように、環状に並べられてティースコア350をそれぞれ構成する複数の固定子鉄心400は、外周面410および420をそれぞれ有している。外周面410は、ハウジング500の内周面に対向して配置される固定子鉄心400の外周面のうち、コイル310と接続される不図示の接続端子が配置される側、すなわち図3において図示上側の部分である。一方、外周面420は、ハウジング500の内周面に対向して配置される固定子鉄心400の外周面のうち、上記の接続端子が配置される側と軸方向で反対側、すなわち図3において図示下側の部分である。なお、ここでは説明の便宜上、外周面410と外周面420を区別しているが、実際にはこれらは一体のものとして固定子鉄心400の外周面を形成している。総外周面480は、各固定子鉄心400の外周面410と外周面420を総合して形成される固定子300の外周面である。
 ハウジング500は、内側に内周面510を有している。この内周面510が固定子300の総外周面480と接触することで、環状に並べられた複数の固定子鉄心400(ティースコア350)が摩擦力によってハウジング500に固定される。このときのハウジング500と固定子鉄心400の接合強度、すなわち固定子鉄心400がハウジング500に固定される固定力は、径方向における内周面510と総外周面480の大きさの差に応じて定まる。
 図4は、固定子鉄心400の形状を示す図である。図4(a)は、固定子鉄心400を回転電機100の周方向から見た側面図である。図4(b)は、図4(a)に示した断面B-Bにおける固定子鉄心400の断面図である。図4(c)は、図4(a)に示した断面C-Cにおける固定子鉄心400の断面図である。
 図4(b)に示すように、固定子鉄心400は、外周面410の左右に、隣接する他の固定子鉄心400との密着面であるS締結部411およびT締結部412を有する。S締結部411とT締結部412には、複数の固定子鉄心400を環状に並べて配置する際の位置合わせガイドとしてそれぞれ作用する凸部411aと凹部412aがそれぞれ形成されている。すなわち、凸部411aが隣接する固定子鉄心400の凹部412aに嵌合すると共に、凹部412aが隣接する固定子鉄心400の凸部411aに嵌合することで、各固定子鉄心400を環状に並べる際の位置決めが行われる。
 また、図4(b)に示すように、S締結部411と外周面410の境界線が断面B-Bと交差する点をS頂点413とし、前述の回転電機中心450からS頂点413までの距離をr1と定義する。同様に、T締結部412と外周面410の境界線が断面B-Bと交差する点をT頂点414とし、回転電機中心450からT頂点414までの距離をr2と定義する。この場合、距離r1と距離r2を異なる値とすることで、外周面410の形状を左右非対称に設定することが可能である。
 図4(c)に示すように、固定子鉄心400は、外周面420の左右に、隣接する他の固定子鉄心400との密着面であるV締結部421およびW締結部422を有する。V締結部421とW締結部422には、複数の固定子鉄心400を環状に並べて配置する際の位置合わせガイドとしてそれぞれ作用する凸部421aと凹部422aがそれぞれ形成されている。すなわち、凸部421aが隣接する固定子鉄心400の凹部422aに嵌合すると共に、凹部422aが隣接する固定子鉄心400の凸部421aに嵌合することで、各固定子鉄心400を環状に並べる際の位置決めが行われる。
 また、図4(c)に示すように、V締結部421と外周面420の境界線が断面C-Cと交差する点をV頂点423とし、前述の回転電機中心450からV頂点423までの距離をr3と定義する。同様に、W締結部422と外周面420の境界線が断面C-Cと交差する点をW頂点424とし、回転電機中心450からW頂点424までの距離をr4と定義する。この場合、距離r3と距離r4を異なる値とすることで、外周面420の形状を左右非対称に設定することが可能である。
 なお、上記の距離r1~r4の設定においては、r1>r2かつr3<r4と設定するか、あるいは反対に、r1<r2かつr3>r4にすることが好ましい。このようにすれば、回転電機100の軸方向の一方の端部における固定子鉄心400の外周面410と、軸方向の他方の端部における固定子鉄心400の外周面420とを、ハウジング500の内周面510に対して互いに逆方向に傾けて、捩れ形状の固定子鉄心400を実現できる。これにより、後述するように、回生トルクと駆動トルクの両方に対して固定子鉄心400をハウジング500に高い固定力で保持することができる。
 次に、上記の固定子鉄心400の捩れ形状を実現する一手法について、図5を参照して説明する。図5は、固定子鉄心400にコイル310を巻き付けてティースコア350を作成する巻線作業の様子を示す図である。図5(a)は1段目の巻線作業の様子を示しており、図5(b)は2段目の巻線作業の様子を示している。なお、コイル310は、不図示の巻線機構により引っ張られることで適切な張力がかけられている。この状態で、固定子鉄心400に取り付けられた樹脂ボビン320にコイル310を1段目から順に巻き付けることで、ティースコア350が作成される。
 図5(a)に示すように、1段目の巻線作業の際には、たとえばコイル310を所定の巻始め位置から樹脂ボビン320に沿って軸方向に延伸した後、巻始め位置に対して対角線上に位置する点から巻始め位置に向かって、軸方向の反対側にコイル310を延伸する。これにより、コイル310を固定子鉄心400に樹脂ボビン320を介して巻き付ける。図5(b)に示す2段目の巻線作業では、コイル310の巻き付け位置を1段分ずらした後、1段目と同様の作業を行う。こうした巻線作業を繰り返し行うことで、固定子鉄心400にコイル310が巻き付けられる。
 上記の巻線作業では、適切な張力でコイル310を引っ張ることにより、コイル310を一段ずつ所定の巻線位置に整列させることができる。また、図5(a)、(b)に示すように、コイル310の張力によって固定子鉄心400が左右で異なる方向の圧縮力を受けることで、固定子鉄心400が所定の方向に捩れる。その結果、図4で説明したように、外周面410と外周面420とがハウジング500の内周面510に対して互いに逆方向に傾いた捩れ形状の固定子鉄心400を制作することが可能となる。すなわち、コイル310の巻始め位置を通る固定子鉄心400の対角線に沿って、固定子鉄心400の外周面410、420を傾けることができる。
 なお、以上説明した固定子鉄心400の捩れ形状の実現手法はあくまで一例であり、他の手法を採用してもよい。図4で説明したように、外周面410と外周面420とをハウジング500の内周面510に対して互いに逆方向に傾けることができれば、任意の手法を用いて固定子鉄心400を製作することが可能である。
 図6は、固定子300において複数の固定子鉄心400が環状に並べられた様子を示す図である。図6(a)は、固定子300を回転電機100の径方向から見た側面図である。図6(b)は、図6(a)に示した断面D-Dにおける固定子300の部分拡大図である。図6(c)は、図6(a)に示した断面E-Eにおける固定子300の部分拡大図である。なお、固定子鉄心400の配置を分かりやすく示すため、図6ではハウジング500、コイル310および樹脂ボビン320の図示を省略している。
 図6(b)に示すように、複数の固定子鉄心400が環状に並べられて配置された固定子300では、各固定子鉄心400のS締結部411は、隣接する固定子鉄心400のT締結部412と接触する。このとき前述のように、S締結部411の凸部411aとT締結部412の凹部412aとが嵌合することで、各固定子鉄心400の位置合わせが行われる。
 ここで、前述のS頂点413とT頂点414の関係がr1>r2であるとすると、隣接する2つの固定子鉄心400の外周面410において段差415が形成される。なお、各固定子鉄心400の外周面410は、ハウジング500の内周面510に対して同じ方向にそれぞれ傾いている。したがって、固定子300における外周面410の各段差415は、右回りに凸な形状、すなわち、前述の総外周面480を周方向で右回りに見たときに連続的に凸となる形状を呈する。なお、図6(b)とは反対に、r1<r2としてもよい。この場合、固定子300における外周面410の各段差415は、左回りに凸な形状となる。
 図6(c)に示すように、複数の固定子鉄心400が環状に並べられて配置された固定子300では、各固定子鉄心400のV締結部421は、隣接する固定子鉄心400のW締結部422と接触する。このとき前述のように、V締結部421の凸部421aとW締結部422の凹部422aとが嵌合することで、各固定子鉄心400の位置合わせが行われる。
 ここで、前述のV頂点423とW頂点424の関係がr3<r4であるとすると、隣接する2つの固定子鉄心400の外周面420において段差425が形成される。なお、各固定子鉄心400の外周面420は、ハウジング500の内周面510に対して同じ方向にそれぞれ傾いている。したがって、固定子300における外周面420の各段差425は、左回りに凸な形状、すなわち、前述の総外周面480を周方向で左回りに見たときに連続的に凸となる形状を呈する。
 以上説明したように、固定子300を構成するために環状に並べて配置された複数の固定子鉄心400では、外周面410における各段差415は右回りに凸な形状となっている。一方、軸方向で反対側の外周面420における各段差425は、逆方向の左回りに凸な形状を有している。このように、固定子鉄心400は、複数個を環状に並べて配置すると外周面410と外周面420で互いに反対向きの段差が生じる形状を有している。
 なお、図6(b)、図6(c)とは反対に、r1<r2かつr3>r4としてもよい。この場合、固定子300における外周面410の各段差415は、左回りに凸な形状となり、外周面420の各段差425は、逆方向の右回りに凸な形状となる。
 図7は、固定子300の断面形状の測定結果を示す図である。図7(a)は、図6(a)に示した断面D-Dにおける固定子300の断面形状の測定結果である。図7(b)は、図6(a)に示した断面E-Eにおける固定子300の断面形状の測定結果である。なお、図7の断面形状の測定結果では、前述のようにr1>r2かつr3<r4の条件が満たされているものとする。
 図7(a)に示す断面形状の測定結果から、断面D-Dでは、外周面410における各段差415が右回りに凸な形状となっており、回転電機100の回転方向の一方向に揃っていることが分かる。また、図7(b)に示す断面形状の測定結果から、断面E-Eでは、外周面420における各段差425が左回りに凸な形状となっており、断面D-Dとは反対方向で、回転電機100の回転方向の一方向に揃っていることが分かる。したがって、回生トルクと駆動トルクの両方に対して、固定子鉄心400をハウジング500に高い固定力で保持することができる。なお、図7(a)、図7(b)とは反対に、r1<r2かつr3>r4としてもよい。この場合でも、回生トルクと駆動トルクの両方に対して、固定子鉄心400をハウジング500に高い固定力で保持することができる。
 以上説明した本発明の一実施形態によれば、以下の作用効果を奏する。
(1)回転電機100は、複数の固定子鉄心400が環状に配置された固定子300と、固定子300の内周側に配置される回転子200と、複数の固定子鉄心400をそれぞれ固定する円筒状のハウジング500とを備える。固定子鉄心400は、ハウジング500の内周面510に対向して配置される外周面410、420を有し、この固定子鉄心400の外周面410、420は、ハウジング500の内周面510に対して傾いている。このようにしたので、固定子鉄心400の固定力を低コストで向上することができる。
(2)回転電機100の軸方向の一方の端部における固定子鉄心400の外周面410と、軸方向の他方の端部における固定子鉄心400の外周面420とは、図4で説明したように、ハウジング500の内周面510に対して互いに逆方向に傾いている。このようにしたので、回生トルクと駆動トルクの両方に対して、固定子鉄心400をハウジング500に高い固定力で保持することができる。
(3)回転電機100は、複数の固定子鉄心400の周囲にそれぞれ巻回された複数のコイル310を備える。図5で説明したように、固定子鉄心400がコイル310の張力を受けて捩れることで、固定子鉄心400の外周面410、420がハウジング500の内周面510に対して傾いているようにすることができる。すなわち、固定子鉄心400の外周面410、420は、コイル310の巻始め位置を通る固定子鉄心400の対角線に沿って傾いているようにすることができる。このようにすれば、特別な形状の金型を使用することなく、簡易な製法で外周面410、420が傾いた固定子鉄心400を製作することが可能となる。
(4)図6、図7で説明したように、複数の固定子鉄心400の外周面410は、ハウジング500の内周面510に対して同じ方向にそれぞれ傾いている。同様に、複数の固定子鉄心400の外周面420も、ハウジング500の内周面510に対して同じ方向にそれぞれ傾いている。このようにしたので、回転電機100が回転駆動するそれぞれの方向において、複数の固定子鉄心400が環状に配置されて構成される固定子300をハウジング500に高い固定力で保持することができる。
(5)複数の固定子鉄心400は、ハウジング500の内周側に締り嵌めで固定されている。このようにしたので、各固定子鉄心400をハウジング500に確実かつ強固に固定することが可能となる。
 なお、以上説明した本発明の一実施形態では、図4で説明したように、外周面410と外周面420がハウジング500の内周面510に対して互いに逆方向に傾いた捩れ形状の固定子鉄心400を用いることで、高い固定力でハウジング500に固定可能な固定子300を実現する例を説明した。しかしながら、他の形状の固定子鉄心を用いてこれを実現してもよい。たとえば、固定子鉄心の外周面410、420において回転電機100の軸方向に沿った中心線をそれぞれ定義し、この中心線を境界として外周面の傾きを周方向で非連続に切り替えた形状の固定子鉄心を用いてもよい。このとき、外周面410と外周面420とで傾き方向を互いに反対方向とすることで、図4で説明した捩れ形状を有する固定子鉄心400と同様の作用効果を奏することができる。あるいは、外周面410と外周面420において突起部をそれぞれ設けた固定子鉄心を用いてもよい。このとき、外周面410と外周面420とで突起部の位置を周方向で互いに反対とすることで、図4で説明した捩れ形状を有する固定子鉄心400と同様の作用効果を奏することができる。これら以外にも、様々な形状の固定子鉄心を用いて本発明を実現可能である。
 以上説明した実施形態や各種変形例はあくまで一例であり、発明の特徴が損なわれない限り、本発明はこれらの内容に限定されるものではない。また、上記では種々の実施形態や変形例を説明したが、本発明はこれらの内容に限定されるものではない。本発明の技術的思想の範囲内で考えられるその他の態様も本発明の範囲内に含まれる。
 100…回転電機、200…回転子、210…回転子鉄心、220…永久磁石、250…回転軸、300…固定子、310…コイル、320…樹脂ボビン、350…ティースコア、400…固定子鉄心、410,420…外周面、450…回転電機中心、500…ハウジング、510…内周面

Claims (7)

  1.  複数の固定子鉄心が環状に配置された固定子と、
     前記固定子の内周側に配置される回転子と、
     前記複数の固定子鉄心をそれぞれ固定する円筒状のハウジングと、を備え、
     前記固定子鉄心は、前記ハウジングの内周面に対向して配置される外周面を有し、
     前記固定子鉄心の前記外周面は、前記ハウジングの内周面に対して傾いている回転電機。
  2.  請求項1に記載の回転電機において、
     前記回転電機の軸方向の一方の端部における前記固定子鉄心の前記外周面と、前記軸方向の他方の端部における前記固定子鉄心の前記外周面とは、前記ハウジングの内周面に対して互いに逆方向に傾いている回転電機。
  3.  請求項2に記載の回転電機において、
     前記複数の固定子鉄心の周囲にそれぞれ巻回された複数のコイルを備え、
     前記固定子鉄心が前記コイルの張力を受けて捩れることで、前記固定子鉄心の前記外周面が前記ハウジングの内周面に対して傾いている回転電機。
  4.  請求項3に記載の回転電機において、
     前記固定子鉄心の前記外周面は、前記コイルの巻始め位置を通る前記固定子鉄心の対角線に沿って傾いている回転電機。
  5.  請求項1から請求項4のいずれか一項に記載の回転電機において、
     前記複数の固定子鉄心の前記外周面は、前記ハウジングの内周面に対して同じ方向にそれぞれ傾いている回転電機。
  6.  請求項1から請求項4のいずれか一項に記載の回転電機において、
     前記複数の固定子鉄心は、前記ハウジングの内周側に締り嵌めで固定されている回転電機。
  7.  回転電機に用いられる固定子であって、
     環状に配置されて円筒状のハウジングにそれぞれ固定された複数の固定子鉄心を備え、
     前記固定子鉄心は、前記ハウジングの内周面に対向して配置される外周面を有し、
     前記固定子鉄心の前記外周面は、前記ハウジングの内周面に対して傾いている固定子。
PCT/JP2018/047722 2018-02-01 2018-12-26 回転電機、固定子 WO2019150858A1 (ja)

Priority Applications (4)

Application Number Priority Date Filing Date Title
CN201880084811.0A CN111684684B (zh) 2018-02-01 2018-12-26 旋转电机、定子
EP18904296.3A EP3748815A4 (en) 2018-02-01 2018-12-26 DYNAMOELECTRIC MACHINE AND STATOR
JP2019568944A JP7030140B2 (ja) 2018-02-01 2018-12-26 回転電機、固定子
US16/966,517 US11368061B2 (en) 2018-02-01 2018-12-26 Rotating electric machine and stator having slanted portions

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2018016630 2018-02-01
JP2018-016630 2018-02-01

Publications (1)

Publication Number Publication Date
WO2019150858A1 true WO2019150858A1 (ja) 2019-08-08

Family

ID=67479200

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2018/047722 WO2019150858A1 (ja) 2018-02-01 2018-12-26 回転電機、固定子

Country Status (5)

Country Link
US (1) US11368061B2 (ja)
EP (1) EP3748815A4 (ja)
JP (1) JP7030140B2 (ja)
CN (1) CN111684684B (ja)
WO (1) WO2019150858A1 (ja)

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002218714A (ja) * 2001-01-15 2002-08-02 Sony Corp 分割コア方式のサーボ・モータの製造方法及び製造装置、並びに固定装置
JP2003284277A (ja) * 2002-03-20 2003-10-03 Hitachi Ltd 回転電機及びその製造方法
JP2014103716A (ja) 2012-11-16 2014-06-05 Honda Motor Co Ltd 圧入固定構造
JP2015192592A (ja) * 2014-03-31 2015-11-02 日立オートモティブシステムズエンジニアリング株式会社 ブラシレスモータおよびこれを用いた電動パワーステアリング装置
JP2016192831A (ja) * 2015-03-30 2016-11-10 株式会社ミツバ 巻線方法、巻線装置、および巻線対象物

Family Cites Families (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3569336B2 (ja) * 1995-02-17 2004-09-22 ファナック株式会社 同期電動機のステータの製造方法
JP5877035B2 (ja) * 2011-10-31 2016-03-02 株式会社ミツバ 平角線の巻線構造
WO2014128938A1 (ja) 2013-02-22 2014-08-28 三菱電機株式会社 永久磁石埋込型電動機、圧縮機、および冷凍空調装置
JP2015061385A (ja) 2013-09-18 2015-03-30 アスモ株式会社 ステータ及びステータの製造方法
JP6402915B2 (ja) * 2014-10-28 2018-10-10 パナソニックIpマネジメント株式会社 ブラシレスモータ及び電動工具
WO2016199203A1 (ja) * 2015-06-08 2016-12-15 三菱電機株式会社 モータ及び圧縮機
JP6578180B2 (ja) 2015-09-30 2019-09-18 日本電産サンキョー株式会社 ステータ、モータおよびポンプ装置
CN107508391B (zh) * 2016-06-14 2022-02-01 德昌电机(深圳)有限公司 无刷直流电机、定子部件及其绕线方法
CN106602753B (zh) * 2016-12-29 2019-05-28 中山大洋电机股份有限公司 一种定子组件及其制造方法
JP6787257B2 (ja) * 2017-06-06 2020-11-18 株式会社デンソー 回転電機
CN107276282A (zh) * 2017-08-01 2017-10-20 珠海凯邦电机制造有限公司 电机卡扣、电机定子及电机
WO2019132338A1 (ko) * 2017-12-26 2019-07-04 엘지이노텍 주식회사 스테이터 및 이를 포함하는 모터
EP3709486A4 (en) * 2018-01-18 2021-01-20 Aisin Aw Co., Ltd. MANUFACTURING PROCESS FOR A STATOR AND STATOR

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002218714A (ja) * 2001-01-15 2002-08-02 Sony Corp 分割コア方式のサーボ・モータの製造方法及び製造装置、並びに固定装置
JP2003284277A (ja) * 2002-03-20 2003-10-03 Hitachi Ltd 回転電機及びその製造方法
JP2014103716A (ja) 2012-11-16 2014-06-05 Honda Motor Co Ltd 圧入固定構造
JP2015192592A (ja) * 2014-03-31 2015-11-02 日立オートモティブシステムズエンジニアリング株式会社 ブラシレスモータおよびこれを用いた電動パワーステアリング装置
JP2016192831A (ja) * 2015-03-30 2016-11-10 株式会社ミツバ 巻線方法、巻線装置、および巻線対象物

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP3748815A4

Also Published As

Publication number Publication date
EP3748815A1 (en) 2020-12-09
JPWO2019150858A1 (ja) 2020-11-19
US11368061B2 (en) 2022-06-21
CN111684684A (zh) 2020-09-18
CN111684684B (zh) 2022-08-26
US20210044161A1 (en) 2021-02-11
EP3748815A4 (en) 2021-11-03
JP7030140B2 (ja) 2022-03-04

Similar Documents

Publication Publication Date Title
JP5258509B2 (ja) 永久磁石型モータの回転子
KR100624381B1 (ko) 영구자석 매립형 전동기의 회전자와 그 제조방법
US20180041080A1 (en) Rotor, rotary electric machine, and method for manufacturing rotor
JP2018201303A (ja) モータ
JP2006333657A (ja) モータ
JP3137510B2 (ja) 同期機の固定子,その製造方法並びにティース片及びヨーク片
JP6461381B2 (ja) 回転電機の固定子、回転電機、および、回転電機の固定子の製造方法
WO2009093380A1 (ja) 積層巻きコア及びこれを備えた回転子、回転電機
WO2015093157A1 (ja) 回転電機
JP5313935B2 (ja) 回転電機の固定子の製造方法および回転電機の固定子
JP2012115124A (ja) 回転電機のステータ
JP4885689B2 (ja) ステータの製造方法
WO2017195498A1 (ja) 回転子および回転電機
JP4291211B2 (ja) 回転電機の回転子および回転電機
JP2009177907A (ja) 回転電動機のステータおよびそれを備えた回転電動機
JP2008306796A (ja) 回転電機
JP2007202363A (ja) 回転電機
JP5296856B2 (ja) ステータの製造方法
WO2017122445A1 (ja) 回転電機の固定子、回転電機、および回転電機の固定子の製造方法
KR20160040788A (ko) Bldc 모터 및 bldc 모터의 스테이터 하우징 고정방법
WO2019150858A1 (ja) 回転電機、固定子
JP2015220846A (ja) 回転電機の回転子
JP2007053864A (ja) 永久磁石埋込型ロータ
JP6641601B2 (ja) 回転電機用回転子
JP2002112521A (ja) ステップモータのロータ構造

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 18904296

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2019568944

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

ENP Entry into the national phase

Ref document number: 2018904296

Country of ref document: EP

Effective date: 20200901