WO2019150820A1 - 温度制御装置、温度制御方法、及び、温度制御プログラム - Google Patents

温度制御装置、温度制御方法、及び、温度制御プログラム Download PDF

Info

Publication number
WO2019150820A1
WO2019150820A1 PCT/JP2018/046939 JP2018046939W WO2019150820A1 WO 2019150820 A1 WO2019150820 A1 WO 2019150820A1 JP 2018046939 W JP2018046939 W JP 2018046939W WO 2019150820 A1 WO2019150820 A1 WO 2019150820A1
Authority
WO
WIPO (PCT)
Prior art keywords
temperature
temperature control
unit
control information
nozzle
Prior art date
Application number
PCT/JP2018/046939
Other languages
English (en)
French (fr)
Inventor
山田 隆章
坂口 貴司
Original Assignee
オムロン株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by オムロン株式会社 filed Critical オムロン株式会社
Priority to US16/639,563 priority Critical patent/US11318653B2/en
Priority to EP18903344.2A priority patent/EP3747618B1/en
Priority to CN201880053710.7A priority patent/CN111032308B/zh
Publication of WO2019150820A1 publication Critical patent/WO2019150820A1/ja

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C45/00Injection moulding, i.e. forcing the required volume of moulding material through a nozzle into a closed mould; Apparatus therefor
    • B29C45/17Component parts, details or accessories; Auxiliary operations
    • B29C45/76Measuring, controlling or regulating
    • B29C45/78Measuring, controlling or regulating of temperature
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C45/00Injection moulding, i.e. forcing the required volume of moulding material through a nozzle into a closed mould; Apparatus therefor
    • B29C45/17Component parts, details or accessories; Auxiliary operations
    • B29C45/72Heating or cooling
    • B29C45/74Heating or cooling of the injection unit
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C48/00Extrusion moulding, i.e. expressing the moulding material through a die or nozzle which imparts the desired form; Apparatus therefor
    • B29C48/25Component parts, details or accessories; Auxiliary operations
    • B29C48/92Measuring, controlling or regulating
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C2945/00Indexing scheme relating to injection moulding, i.e. forcing the required volume of moulding material through a nozzle into a closed mould
    • B29C2945/76Measuring, controlling or regulating
    • B29C2945/76003Measured parameter
    • B29C2945/7604Temperature
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C2945/00Indexing scheme relating to injection moulding, i.e. forcing the required volume of moulding material through a nozzle into a closed mould
    • B29C2945/76Measuring, controlling or regulating
    • B29C2945/76177Location of measurement
    • B29C2945/7618Injection unit
    • B29C2945/7619Injection unit barrel
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C2945/00Indexing scheme relating to injection moulding, i.e. forcing the required volume of moulding material through a nozzle into a closed mould
    • B29C2945/76Measuring, controlling or regulating
    • B29C2945/76177Location of measurement
    • B29C2945/7618Injection unit
    • B29C2945/7621Injection unit nozzle
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C2945/00Indexing scheme relating to injection moulding, i.e. forcing the required volume of moulding material through a nozzle into a closed mould
    • B29C2945/76Measuring, controlling or regulating
    • B29C2945/76344Phase or stage of measurement
    • B29C2945/76381Injection
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C2945/00Indexing scheme relating to injection moulding, i.e. forcing the required volume of moulding material through a nozzle into a closed mould
    • B29C2945/76Measuring, controlling or regulating
    • B29C2945/76451Measurement means
    • B29C2945/76454Electrical, e.g. thermocouples
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C2945/00Indexing scheme relating to injection moulding, i.e. forcing the required volume of moulding material through a nozzle into a closed mould
    • B29C2945/76Measuring, controlling or regulating
    • B29C2945/76494Controlled parameter
    • B29C2945/76531Temperature
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C2945/00Indexing scheme relating to injection moulding, i.e. forcing the required volume of moulding material through a nozzle into a closed mould
    • B29C2945/76Measuring, controlling or regulating
    • B29C2945/76655Location of control
    • B29C2945/76658Injection unit
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C2945/00Indexing scheme relating to injection moulding, i.e. forcing the required volume of moulding material through a nozzle into a closed mould
    • B29C2945/76Measuring, controlling or regulating
    • B29C2945/76655Location of control
    • B29C2945/76658Injection unit
    • B29C2945/76668Injection unit barrel
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C2945/00Indexing scheme relating to injection moulding, i.e. forcing the required volume of moulding material through a nozzle into a closed mould
    • B29C2945/76Measuring, controlling or regulating
    • B29C2945/76655Location of control
    • B29C2945/76658Injection unit
    • B29C2945/76688Injection unit nozzle
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C2945/00Indexing scheme relating to injection moulding, i.e. forcing the required volume of moulding material through a nozzle into a closed mould
    • B29C2945/76Measuring, controlling or regulating
    • B29C2945/76822Phase or stage of control
    • B29C2945/76859Injection
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C2945/00Indexing scheme relating to injection moulding, i.e. forcing the required volume of moulding material through a nozzle into a closed mould
    • B29C2945/76Measuring, controlling or regulating
    • B29C2945/76929Controlling method
    • B29C2945/76933The operating conditions are corrected immediately, during the same phase or cycle
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C2945/00Indexing scheme relating to injection moulding, i.e. forcing the required volume of moulding material through a nozzle into a closed mould
    • B29C2945/76Measuring, controlling or regulating
    • B29C2945/76929Controlling method
    • B29C2945/76956Proportional
    • B29C2945/76966Proportional and integral, i.e. Pl regulation
    • B29C2945/76969Proportional and integral, i.e. Pl regulation derivative and integral, i.e. PID regulation
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C2948/00Indexing scheme relating to extrusion moulding
    • B29C2948/92Measuring, controlling or regulating
    • B29C2948/92009Measured parameter
    • B29C2948/92209Temperature
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C2948/00Indexing scheme relating to extrusion moulding
    • B29C2948/92Measuring, controlling or regulating
    • B29C2948/92504Controlled parameter
    • B29C2948/92704Temperature

Definitions

  • This invention relates to a technique for controlling the temperature of a resin in an injection molding machine or the like.
  • a plurality of temperature sensors are installed for nozzles and cylinders, and temperature control is performed on each of them. Further, the injection molding machine performs temperature control by controlling so that the latest temperature increase completion timing of the heated part coincides with the latest temperature increase completion time of the other heated parts.
  • the temperature control of the cylinder is performed based on the time of a predetermined section and the amount of heat taken away by the molten resin.
  • the temperature control is performed by calculating the feedforward amount.
  • the resin flow is fast with respect to the response time of heat conduction from the heater in the nozzle to the resin. Therefore, in the configuration using the configurations of Patent Document 1 and Patent Document 2, the temperature of the resin may not be accurately controlled.
  • an object of the present invention is to effectively perform temperature control on a resin or the like.
  • a resin flow path is formed by a nozzle part and a cylinder part connected to the nozzle part, and the temperature of the resin flowing through the resin flow path is controlled.
  • the temperature control device includes: a first temperature sensor that detects a nozzle temperature of resin flowing through the nozzle portion; a first temperature control portion that performs PID control so that the nozzle temperature becomes a first target temperature; and a resin cylinder flowing through the cylinder portion A plurality of second temperature sensors that detect temperatures, and a second temperature control unit that performs PID control so that the cylinder temperature becomes the second target temperature.
  • the second temperature control unit performs PID control of the cylinder temperature using the temperature control information from the first temperature control unit.
  • the temperature of the cylinder part can be controlled based on the temperature control information of the nozzle part.
  • the temperature control of a nozzle part can be performed effectively and the molding defect rate can be suppressed.
  • the temperature control information of this temperature control device is a nozzle temperature or a temperature deviation between the nozzle temperature and the first target temperature.
  • control according to the actual temperature can be performed.
  • This temperature control device has a temperature control information setting unit that sets a gain constant or a delay characteristic and corrects temperature control information according to the distance between the control position of each cylinder temperature and the control position of the nozzle temperature. It is preferable to provide.
  • temperature control can be performed in consideration of the positional relationship between the nozzle part and the cylinder part.
  • At least one of the plurality of second temperature control units of the temperature control device adds the temperature control information to the second target temperature.
  • At least one of the plurality of second temperature control units of the temperature control device multiply the gain constant before adding the temperature control information to the second target temperature.
  • the gain constant of this temperature control device is preferably greater than 0 and 1 or less.
  • At least one of the plurality of second temperature control units of the temperature control device insert a delay characteristic before adding the temperature control information to the second target temperature.
  • the delay characteristic of this temperature control device is preferably a first order delay or dead time.
  • 1 is a schematic diagram of a temperature control device according to a first embodiment of the present invention.
  • 1 is a block diagram of a temperature control device according to a first embodiment of the present invention. It is a flowchart of the temperature control apparatus which concerns on the 1st Embodiment of this invention. It is a flowchart of the temperature control apparatus which concerns on the 1st Embodiment of this invention. It is a graph which shows the control result of the temperature control apparatus which concerns on the 1st Embodiment of this invention. It is a block diagram of the temperature control apparatus which concerns on the 2nd Embodiment of this invention.
  • FIG. 2 is a block diagram of the temperature control apparatus according to the first embodiment.
  • the temperature control device is provided in, for example, an injection molding machine.
  • an injection molding machine is used as a specific example of control, but the present invention can also be applied to control of other extrusion molding machines.
  • the temperature control device 10 includes a first control loop unit 100, second control loop units 210, 220, and 230, and a temperature control information setting unit 300.
  • the first control loop unit 100 controls the temperature of the heater 102 of the nozzle unit 15 of the injection molding machine.
  • the second control loop units 210, 220, and 230 perform temperature control of the heaters 212, 222, and 232 in the cylinder unit 20 of the injection molding machine, respectively.
  • the temperature control information setting unit 300 includes a first temperature control information setting unit 310, a second temperature control information setting unit 320, and a third temperature control information setting unit 330.
  • the temperatures of the heaters 212, 222, and 232 are the “cylinder temperature” in the present invention.
  • the first control loop unit 100 includes a first temperature sensor 101, a heater 102, a first temperature control unit 103, and a temperature control information generation unit 104.
  • the second control loop unit 210 includes a second temperature sensor 211, a heater 212, a second temperature control unit 213, and a target value correction unit 214.
  • the second control loop unit 220 includes a second temperature sensor 221, a heater 222, a second temperature control unit 223, and a target value correction unit 224.
  • the second control loop unit 230 includes a second temperature sensor 231, a heater 232, a second temperature control unit 233, and a target value correction unit 234.
  • the first temperature sensor 101 detects the current temperature PV0 of the nozzle unit 15.
  • the first temperature sensor 101 feeds back the current temperature PV0 of the nozzle unit 15 to the first temperature control unit 103 and the temperature control information generation unit 104.
  • the temperature control information generation unit 104 calculates temperature control information TD1 from the current temperature PV0 of the nozzle unit 15 and the first target temperature SP0.
  • the temperature control information TD1 is the current temperature PV1 of the nozzle unit 15 or a temperature deviation.
  • the temperature deviation is a difference value between the current temperature PV1 and the first target temperature SP0. For example, if the first target temperature SP0 is Celsius temperature (° C.), the current temperature PV1 is also Celsius temperature (° C.).
  • the current temperature PV0 of the nozzle unit 15 is the “nozzle temperature” in the present invention.
  • the first temperature control unit 103 performs PID control using the current temperature PV0 of the nozzle unit 15 and the first target temperature SP0.
  • the first temperature control unit 103 calculates the operation amount MV0 and gives the operation amount MV0 to the heater 102. Thereby, the first temperature control unit 103 controls energization to the heater 102.
  • the first control loop unit 100 feeds back the temperature control information to the second control loop unit 210 via the first temperature control information setting unit 310 of the temperature control information setting unit 300.
  • Temperature control information generation unit 104 outputs temperature control information TD1 to first temperature control information setting unit 310.
  • the first temperature control information setting unit 310 outputs the temperature control information TD11 corrected by the gain constant K1 and the delay characteristic TL1 to the target value correction unit 214 of the second control loop unit 210.
  • the first temperature control information setting unit 310 multiplies the temperature control information TD1 by a gain constant K1.
  • the first temperature control information setting unit 310 inserts the delay characteristic TL1 into the temperature control information TD1.
  • the first temperature control information setting unit 310 can calculate the temperature control information TD11.
  • the first temperature control information setting unit 310 preferably inserts the delay characteristic TL1 into the temperature control information TD1 after multiplying the temperature control information TD1 by the gain constant K1. This can suppress a rapid change caused by noise or the like.
  • the gain constant K1 is a value between 0 and 1. This can prevent the temperature control from becoming unstable.
  • the delay characteristic TL1 is a first-order delay or dead time, and is determined by the control position of the cylinder unit 20 (distance from the nozzle unit 15).
  • the gain constant K1 may be set based on the control position of the cylinder unit 20 (distance from the nozzle unit 15), or may be set using a result of a prior experiment simulation.
  • the target value correction unit 214 calculates the correction target value SPM1 from the difference value between the second target temperature SP1 and the temperature control information TD11, and outputs it to the second temperature control unit 213.
  • the second temperature control unit 213 performs PID control using the corrected target value SPM1 and the current temperature PV1 of the second control loop unit 210, and calculates the operation amount MV1.
  • the second temperature control unit 213 controls the heater 212 with the operation amount MV1.
  • the second temperature sensor 211 detects the temperature of the heater 212.
  • the first control loop unit 100 feeds back the temperature control information to the second control loop unit 220 through the second temperature control information setting unit 320 of the temperature control information setting unit 300.
  • Temperature control information generation unit 104 outputs temperature control information TD1 to second temperature control information setting unit 320.
  • the second temperature control information setting unit 320 outputs temperature control information TD12 that is temperature control information TD1 corrected by the gain constant K2 and the delay characteristic TL2 to the target value correction unit 224 of the second control loop unit 220.
  • the second temperature control information setting unit 320 multiplies the temperature control information TD1 by a gain constant K2.
  • the second temperature control information setting unit 320 adds the delay characteristic TL2 to the temperature control information TD1.
  • the second temperature control information setting unit 320 can calculate the temperature control information TD12.
  • the second temperature control information setting unit 320 preferably inserts the delay characteristic TL2 into the temperature control information TD1 after multiplying the temperature control information TD1 by the gain constant K2. This can suppress a rapid change caused by noise or the like.
  • the gain constant K2 is a value between 0 and 1. This can prevent the temperature control from becoming unstable.
  • the delay characteristic TL2 is a first-order delay or dead time, and is determined by the control position of the cylinder unit 20 (distance from the nozzle unit 15).
  • the gain constant K2 may be set based on the control position of the cylinder unit 20 (distance from the nozzle unit 15), or may be set using a result of a prior experimental simulation.
  • the target value correction unit 224 calculates the correction target value SPM2 from the difference value between the second target temperature SP2 and the temperature control information TD12 and outputs the correction target value SPM2 to the second temperature control unit 223.
  • the second temperature control unit 223 performs PID control using the corrected target value SPM2 and the current temperature PV2 of the second control loop unit 220, and calculates the operation amount MV2.
  • the second temperature control unit 223 controls the heater 222 with the operation amount MV2.
  • the second temperature sensor 221 detects the temperature of the heater 222.
  • the first control loop unit 100 feeds back the temperature control information to the second control loop unit 230 via the third temperature control information setting unit 330 of the temperature control information setting unit 300.
  • the temperature control information generation unit 104 outputs the temperature control information TD1 to the third temperature control information setting unit 330.
  • the third temperature control information setting unit 330 outputs a gain constant K3 and temperature control information TD13, which is temperature control information TD1 corrected by the delay characteristic TL3, to the target value correction unit 234 of the second control loop unit 230.
  • the third temperature control information setting unit 330 multiplies the temperature control information TD1 by a gain constant K3.
  • the third temperature control information setting unit 330 inserts a delay characteristic TL3 into the temperature control information TD1.
  • the third temperature control information setting unit 330 can calculate the temperature control information TD13.
  • the third temperature control information setting unit 330 preferably inserts the delay characteristic TL3 into the temperature control information TD1 after multiplying the temperature control information TD1 by the gain constant K3. This can suppress a rapid change caused by noise or the like.
  • the gain constant K3 is a value between 0 and 1. This can prevent the temperature control from becoming unstable.
  • the delay characteristic TL3 is a first-order delay or dead time, and is determined by the control position of the cylinder portion 20, that is, the distance from the nozzle portion 15.
  • the target value correction unit 234 calculates a difference value between the second target temperature SP3 and the temperature control information TD13, calculates a correction target value SPM3, and outputs it to the second temperature control unit 233.
  • the second temperature control unit 233 performs PID control using the corrected target value SPM3 and the second target temperature SP3 of the second control loop unit 210, and calculates the operation amount MV3.
  • the second temperature control unit 233 controls the heater 232 with the operation amount MV3.
  • the second temperature sensor 231 detects the temperature of the heater 232.
  • the current temperature PV0 of the nozzle unit 15 is more effectively settled with respect to the first target temperature SP0, which is the target temperature.
  • the temperature can be controlled before the resin reaches the nozzle unit 15, and the first temperature control unit 103 can stably control the resin temperature in the nozzle unit 15. Therefore, an effective temperature control device 10 can be realized.
  • FIG. 1 is a schematic diagram of an injection molding machine including a temperature control device according to the first embodiment of the present invention.
  • FIG. 2 is a block diagram of the temperature control apparatus according to the first embodiment of the present invention.
  • FIG. 3 is a flowchart of the temperature control apparatus according to the first embodiment of the present invention.
  • FIG. 4 is a detailed flowchart of the temperature control apparatus according to the first embodiment of the present invention.
  • FIG. 5 is a graph showing a control result of the temperature control apparatus according to the first embodiment of the present invention.
  • the injection molding machine 1 includes a nozzle portion 15, a cylinder portion 20, a resin flow path 30, and heaters 212, 222, and 232.
  • the nozzle unit 15 includes a first temperature sensor 101.
  • the heater 212 includes a second temperature sensor 211, the heater 222 includes a second temperature sensor 221, and the heater 232 includes a second temperature sensor 231.
  • the resin flow path 30 is formed by the nozzle part 15 and the cylinder part 20 connected to the nozzle part 15.
  • the tip of the nozzle portion 15 is connected to the mold 150.
  • the injection molding machine 1 flows the resin into the mold 150 through the resin flow path 30 formed by the cylinder part 20 and the nozzle part 15.
  • Resin flowing through the resin flow path 30 is heated in the heaters 212, 222, 232 and the nozzle unit 15.
  • the first control loop unit 100 that regulates the temperature of the nozzle unit 15 feeds back temperature control information to the second control loop units 210, 220, and 230 that regulate the temperature of the cylinder unit 20 as described above.
  • the heaters 212, 222, and 232 perform PID control based on the temperature control information.
  • the first control loop unit 100 feeds back temperature control information to the heaters 212, 222, and 232, so that temperature control according to the state of the resin is performed before the resin reaches the nozzle unit 15.
  • the nozzle unit 15 can effectively and stably control the temperature of the resin when discharged to the mold 150. Therefore, it is possible to realize the temperature control device 10 that suppresses the molding defect rate.
  • the overall control procedure of the temperature control apparatus 10 will be described using the flowchart of FIG. The following procedure will be described by taking the second control loop unit 210 as an example, but the same control is performed on the second control loop unit 220 or the second control loop unit 230.
  • FIG. 3 shows the flow between controls.
  • the first control loop unit 100 and the second control loop unit 210 are sequentially executed in parallel.
  • the first control loop unit 100 performs PID control and calculates temperature control information TD1.
  • the first control loop unit 100 outputs the temperature control information TD1 to the first temperature control information setting unit 310 (S101).
  • the first temperature control information setting unit 310 outputs temperature control information TD11, which is temperature control information TD1 corrected by the gain constant K1 and the delay characteristic TL1, to the second control loop unit 210 (S102).
  • the second control loop unit 210 performs PID control using the temperature control information TD11 and the second target temperature SP1, and calculates the operation amount MV1.
  • the second control loop unit 210 performs temperature control on the heater 212 (S103). That is, for example, the processing in the second control loop unit 210 at time t is executed based on the result of the first control loop unit 100 at time t ⁇ 1.
  • the timer is started by starting the cycle control (S111).
  • the first temperature control unit 103 resets the timer and causes the processes after step S113 to be executed (S112).
  • step S111 is repeatedly performed until the time according to a timer and a control period becomes equal.
  • the first temperature control unit 103 reads the temperature of the nozzle unit 15 from the first temperature sensor 101 (S113).
  • the first temperature control unit 103 calculates temperature control information TD1 of the nozzle unit 15. Further, the temperature control information generation unit 104 outputs the temperature control information TD1 to the first temperature control information setting unit 310 (S114).
  • the temperature control information may be the current temperature PV0 detected by the first temperature sensor 101.
  • the first temperature control unit 103 performs PID control based on the temperature control information, and calculates the operation amount MV0 of the nozzle unit 15 (S115).
  • the first temperature control unit 103 performs heating control on the heater 102 based on the operation amount MV0 (S116).
  • the timer is started by starting the cycle control (S121).
  • the second temperature control unit 213 resets the timer and executes the processes after step S123 (S122).
  • step S121 is repeatedly performed until the time according to a timer and a control period becomes equal.
  • the second temperature control unit 213 reads the current temperature PV1 of the cylinder unit 20 from the second temperature sensor 211 (S123).
  • the timer of the first control loop unit 100 and the timer of the second control loop unit 210 are synchronized, and the control cycle is the same.
  • the first temperature control information setting unit 310 reads the temperature control information TD1 from the temperature control information generation unit 104 (S124).
  • the first temperature control information setting unit 310 calculates temperature control information TD11 from the temperature control information TD1, the gain constant K1, and the delay characteristic TL1, and outputs the temperature control information TD11 to the target value correction unit 214 (S125).
  • the target value correcting unit 214 calculates a corrected target value SPM1 based on the temperature control information TD11 and the second target temperature SP1.
  • the second temperature control unit 213 performs PID control based on the corrected target value SPM1 and the current temperature PV1, and calculates the operation amount MV1 (S126).
  • the second temperature control unit 213 performs heating control on the heater 212 based on the operation amount MV1 (S127).
  • the temperature deviation of the nozzle unit 15 can be suppressed by performing feedback control using the temperature control device 10 described above. From this, the nozzle part 15 can perform the control with respect to the temperature of resin at the time of discharging to the metal mold 150 effectively and stably. Therefore, the temperature control device 10 that suppresses the molding defect rate can be realized.
  • FIG. 6 is a block diagram of a temperature control apparatus according to the second embodiment of the present invention.
  • the second embodiment differs from the first embodiment in the temperature control information feedback execution method. About another point, it is the same as that of 1st Embodiment, and description of the same location is abbreviate
  • the temperature control apparatus 10A includes a first control loop unit 100, second control loop units 210A, 220A, and 230A, and a temperature control information setting unit 300A.
  • the temperature control information setting unit 300A includes a first temperature control information setting unit 310A, a second temperature control information setting unit 320A, and a third temperature control information setting unit 330A.
  • the first control loop unit 100 controls the temperature of the heater 102 of the nozzle unit 15 of the injection molding machine.
  • the second control loop portions 210A, 220A, and 230A perform temperature control of the heaters 212, 222, and 232 in the cylinder portion 20 of the injection molding machine, respectively.
  • the second control loop unit 210A includes a second temperature sensor 211, a heater 212, a second temperature control unit 213, and a target value correction unit 214A.
  • the second control loop unit 220A includes a second temperature sensor 221, a heater 222, a second temperature control unit 223, and a target value correction unit 224A.
  • the second control loop unit 230A includes a second temperature sensor 231, a heater 232, a second temperature control unit 233, and a target value correction unit 234A.
  • the first control loop unit 100 feeds back to the second control loop unit 210A via the first temperature control information setting unit 310A of the temperature control information setting unit 300A.
  • Temperature control information generation unit 104 outputs temperature control information TD1 to first temperature control information setting unit 310A.
  • the first temperature control information setting unit 310A outputs the temperature control information TD11 corrected by the gain constant K1 and the delay characteristic TL1 to the target value correction unit 214A of the second control loop unit 210A.
  • the first temperature control information setting unit 310A multiplies the temperature control information TD1 by a gain constant K1. Next, the first temperature control information setting unit 310A inserts the delay characteristic TL1 into the temperature control information TD1. From this, the first temperature control information setting unit 310A can calculate the temperature control information TD11.
  • the target value correction unit 214A calculates the correction target value SPM1 from the difference value between the second target temperature SP1 and the temperature control information TD11, and outputs it to the second temperature control unit 213.
  • the second temperature control unit 213 performs PID control using the corrected target value SPM1 and the current temperature PV1 of the second control loop unit 210, and calculates the operation amount MV1.
  • the second temperature control unit 213 controls the heater 212 with the operation amount MV1.
  • the second temperature sensor 211 detects the temperature of the heater 212.
  • the target value correction unit 214A outputs the temperature control information TD12 to the second temperature control information setting unit 320A in order to perform feedback to the second control loop unit 220A.
  • the temperature control information TD12 is calculated from the second target temperature SP1 and the current temperature PV1. That is, the temperature control information TD12 uses a deviation between the current temperature PV1 and the second target temperature SP1.
  • the temperature control information TD12 may be the current temperature PV1.
  • the second control loop unit 210A feeds back to the second control loop unit 220A via the second temperature control information setting unit 320A of the temperature control information setting unit 300A.
  • the second temperature control information setting unit 320A outputs the temperature control information TD21 corrected by the gain constant K2 and the delay characteristic TL2 to the target value correction unit 224A of the second control loop unit 220A.
  • the second temperature control information setting unit 320A multiplies the temperature control information TD12 by a gain constant K2. Next, the second temperature control information setting unit 320A inserts the delay characteristic TL2 into the temperature control information TD12. From this, the second temperature control information setting unit 320A can calculate the temperature control information TD21.
  • the target value correction unit 224A calculates the correction target value SPM2 from the difference value between the second target temperature SP2 and the temperature control information TD21, and outputs it to the second temperature control unit 223.
  • the second temperature control unit 223 performs PID control using the corrected target value SPM2 and the current temperature PV2 of the second control loop unit 220, and calculates the operation amount MV2.
  • the second temperature control unit 223 controls the heater 222 with the operation amount MV2.
  • the second temperature sensor 221 detects the temperature of the heater 212.
  • the target value correction unit 224A outputs the temperature control information TD22 to the third temperature control information setting unit 330A in order to perform feedback to the second control loop unit 230A.
  • the temperature control information TD22 is calculated from the second target temperature SP2 and the current temperature PV2. That is, the temperature control information TD22 uses a deviation between the current temperature PV2 and the second target temperature SP2.
  • the temperature control information TD22 may be the current temperature PV2.
  • the second control loop unit 220A feeds back to the second control loop unit 230A via the third temperature control information setting unit 330A of the temperature control information setting unit 300A.
  • the third temperature control information setting unit 330A outputs the temperature control information TD31 corrected by the gain constant K3 and the delay characteristic TL3 to the target value correction unit 234A of the second control loop unit 230A.
  • the third temperature control information setting unit 330A multiplies the temperature control information TD22 by a gain constant K3. Next, the third temperature control information setting unit 330A inserts the delay characteristic TL3 into the temperature control information TD22. From this, the third temperature control information setting unit 330A can calculate the temperature control information TD31.
  • the target value correction unit 234A calculates the correction target value SPM3 from the difference value between the second target temperature SP3 and the temperature control information TD31, and outputs it to the second temperature control unit 233.
  • the second temperature control unit 233 performs PID control using the corrected target value SPM3 and the current temperature PV3 of the second control loop unit 230, and calculates the operation amount MV3.
  • the second temperature control unit 233 controls the heater 232 with the operation amount MV3.
  • the second temperature sensor 231 detects the temperature of the heater 212.
  • the current temperature PV1 of the nozzle unit 15 is more effectively settled with respect to the first target temperature SP0 that is the target temperature.
  • K1, K2, K3 gain constants MV0, MV1, MV2, MV3 ... manipulated variables PV0, PV1, PV2, PV3 ... current temperature SP0 ... first target temperatures SP1, SP2, SP3 ... second target temperatures SPM1, SPM2, SPM3 ... Correction target values T1, T2, T3 ... Temperature deviation TD1, TD11, TD12, TD13, TD21, TD22, TD31 ... Temperature control information TL1, TL2, TL3 ... Delay characteristics 1 ... Injection molding machine 10, 10A ... Temperature control device 15 ... Nozzle part 20 ... cylinder part 30 ... resin flow path 100 ... first control loop part 101 ... first temperature sensor 102 ... heater 103 ...
  • first temperature control part 104 ... temperature control information generating part 150 ... mold 210, 210A ... first 2 control loop part 211 ... 2nd temperature sensor 212 ... heater 213 ... 2nd temperature control part 214, 214A ... target value correction

Landscapes

  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Manufacturing & Machinery (AREA)
  • Injection Moulding Of Plastics Or The Like (AREA)

Abstract

温度制御装置は、ノズル部と、ノズル部に連接するシリンダ部によって、樹脂流路が形成され、樹脂流路を流れる樹脂の温度を制御する。温度制御装置は、ノズル部を流れる樹脂のノズル温度を検出する第1温度センサと、ノズル温度を第1目標温度になるようにPID制御する第1温度制御部と、シリンダ部を流れる樹脂のシリンダ温度を検出する複数の第2温度センサと、シリンダ温度を第2目標温度になるようにPID制御する、第2温度制御部と、を備える。第2温度制御部は、第1温度制御部からの温度制御情報を用いて、シリンダ温度をPID制御する。

Description

温度制御装置、温度制御方法、及び、温度制御プログラム
 この発明は、射出成形機等における、樹脂の温度を制御する技術に関する。
 特許文献1に記載の構成においては、ノズルとシリンダに対して、複数の温度センサを設置して、それぞれに温度制御を行っている。また、射出成形機は、被加熱部の最も遅い昇温完了時期に、他の被加熱部の昇温完了時期が一致するように制御することによって、温度制御を行っている。
 また、特許文献2に記載の射出成形機の構成においては、運転中の成形条件やパージ条件が変更された場合に、所定区間の時間と溶融樹脂に奪われる熱量とに基づいてシリンダの温度制御のフィードフォワード量を算出することによって温度制御を行っている。
特開2016-83778号公報 特開2013-1015号公報
 しかしながら、樹脂の流れは、ノズル内のヒータから樹脂までの熱伝導の応答時間に対して速い。したがって、特許文献1、特許文献2の構成を用いた構成では、樹脂の温度を正確に制御できない虞がある。
 このことによって、樹脂の温度変動が抑制できず、成形不良率が高くなってしまう。
 したがって、本発明の目的は、樹脂等に対する温度制御を効果的に行うことである。
 この温度制御装置は、ノズル部と、ノズル部に連接するシリンダ部によって、樹脂流路が形成され、樹脂流路を流れる樹脂の温度を制御する。温度制御装置は、ノズル部を流れる樹脂のノズル温度を検出する第1温度センサと、ノズル温度を第1目標温度になるようにPID制御する第1温度制御部と、シリンダ部を流れる樹脂のシリンダ温度を検出する複数の第2温度センサと、シリンダ温度を第2目標温度になるようにPID制御する、第2温度制御部と、を備える。
 第2温度制御部は、第1温度制御部からの温度制御情報を用いて、シリンダ温度をPID制御する。
 この構成では、ノズル部の温度制御情報に基づいて、シリンダ部の温度制御を行うことができる。このことによって、ノズル部の温度制御を効果的に行うことができ、成形不良率を抑制できる。
 この温度制御装置の温度制御情報は、ノズル温度、または、ノズル温度と第1目標温度との温度偏差であることが好ましい。
 この構成では、実際の温度により準じた制御を行うことができる。
 この温度制御装置は、それぞれのシリンダ温度の制御位置と、ノズル温度の制御位置との距離に応じて、ゲイン定数、または、遅れ特性を設定し、温度制御情報を補正する温度制御情報設定部を備えていることが好ましい。
 この構成では、ノズル部とシリンダ部の位置関係を考慮した温度制御を行うことができる。
 この温度制御装置の複数の第2温度制御部の少なくとも1つは、温度制御情報を第2目標温度に加算することが好ましい。
 この構成では、実測値に応じた温度制御を行うことができる。
 この温度制御装置の複数の第2温度制御部の少なくとも1つは、温度制御情報を第2目標温度に加算する前に、ゲイン定数を乗ずることが好ましい。
 この構成では、より実測値に応じた温度制御を行うことができる。
 この温度制御装置のゲイン定数は、0より大きく、かつ、1以下であることが好ましい。
 この構成では、より安定した温度制御を行うことができる。
 この温度制御装置の複数の第2温度制御部の少なくとも1つは、温度制御情報を第2目標温度に加算する前に、遅れ特性を挿入することが好ましい。
 この構成では、ノズル部における、急激な変化を抑制でき、適正な温度制御を行うことができる。
 この温度制御装置の遅れ特性は、1次遅れ、または、むだ時間であることが好ましい。
 この構成では、より実際の状態に応じた温度制御を行うことができる。
 この発明によれば、樹脂の温度制御を効果的に行うことができる。
本発明の第1の実施形態に係る温度制御装置の概要図である。 本発明の第1の実施形態に係る温度制御装置のブロック図である。 本発明の第1の実施形態に係る温度制御装置のフローチャートである。 本発明の第1の実施形態に係る温度制御装置のフローチャートである。 本発明の第1の実施形態に係る温度制御装置の制御結果を示すグラフである。 本発明の第2の実施形態に係る温度制御装置のブロック図である。
・適用例 
 まず、図2を用いて、本発明が適用される一例について説明する。図2は、第1の実施形態に係る温度制御装置のブロック図である。温度制御装置は、例えば、射出成形機に備えられている。以下の実施形態では、制御の具体例として射出成形機を用いて示しているが、他の押出成形機等の制御に対しても適用することができる。
 温度制御装置10は、第1制御ループ部100と、第2制御ループ部210,220,230と、温度制御情報設定部300とを備える。第1制御ループ部100は、射出成形機のノズル部15のヒータ102の温度制御を行う。第2制御ループ部210,220,230は、射出成形機のシリンダ部20におけるヒータ212,222,232の温度制御をそれぞれ行う。温度制御情報設定部300は、第1温度制御情報設定部310と第2温度制御情報設定部320と第3温度制御情報設定部330を備える。なお、ヒータ212,222,232の温度は、本発明の「シリンダ温度」である。
 第1制御ループ部100は、第1温度センサ101と、ヒータ102と、第1温度制御部103と、温度制御情報生成部104とを備える。
 第2制御ループ部210は、第2温度センサ211、ヒータ212、第2温度制御部213、目標値補正部214を備える。第2制御ループ部220は、第2温度センサ221、ヒータ222、第2温度制御部223、目標値補正部224を備える。第2制御ループ部230は、第2温度センサ231、ヒータ232、第2温度制御部233、目標値補正部234を備える。
 まず、第1制御ループ部100について説明する。
 第1温度センサ101は、ノズル部15の現在温度PV0を検出する。第1温度センサ101は、ノズル部15の現在温度PV0を第1温度制御部103、および、温度制御情報生成部104にフィードバックする。温度制御情報生成部104は、ノズル部15の現在温度PV0と、第1目標温度SP0とから、温度制御情報TD1を算出する。温度制御情報TD1は、ノズル部15の現在温度PV1、または、温度偏差である。温度偏差とは、現在温度PV1と第1目標温度SP0との差分値である。例えば、第1目標温度SP0が摂氏温度(℃)であれば、現在温度PV1も摂氏温度(℃)である。なお、ノズル部15の現在温度PV0とは、本発明の「ノズル温度」である。
 第1温度制御部103は、ノズル部15の現在温度PV0と、第1目標温度SP0を用いて、PID制御を実行する。第1温度制御部103は、操作量MV0を算出し、操作量MV0をヒータ102に与える。これにより、第1温度制御部103は、ヒータ102への通電を制御する。
 次に、第1制御ループ部100から第2制御ループ部210への温度制御情報のフィードバックについて説明する。第1制御ループ部100は、温度制御情報設定部300の第1温度制御情報設定部310を介して、第2制御ループ部210へ温度制御情報をフィードバックする。
 温度制御情報生成部104は、第1温度制御情報設定部310に温度制御情報TD1を出力する。第1温度制御情報設定部310は、第2制御ループ部210の目標値補正部214に、ゲイン定数K1と遅れ特性TL1とで補正した温度制御情報TD11を出力する。
 より具体的には、第1温度制御情報設定部310は、温度制御情報TD1にゲイン定数K1を乗じる。次に、第1温度制御情報設定部310は、温度制御情報TD1に遅れ特性TL1を挿入する。このことから、第1温度制御情報設定部310は、温度制御情報TD11を算出できる。なお、第1温度制御情報設定部310は、温度制御情報TD1にゲイン定数K1を乗じた後に、温度制御情報TD1に遅れ特性TL1を挿入することが好ましい。このことによって、ノイズ等を起因とする急激な変化を抑制できる。
 ゲイン定数K1は、0以上1以下の値である。このことによって、温度制御が不安定となることを抑制できる。また、例えば、遅れ特性TL1は、1次遅れ、もしくは、むだ時間であり、シリンダ部20の制御位置(ノズル部15からの距離)によって決定される。なお、ゲイン定数K1はシリンダ部20の制御位置(ノズル部15からの距離)に基づいて設定してもよく、事前の実験シミュレーションの結果を用いて設定してもよい。
 目標値補正部214は、第2目標温度SP1と温度制御情報TD11の差分値から、補正目標値SPM1を算出し、第2温度制御部213に出力する。
 第2温度制御部213は、補正目標値SPM1と、第2制御ループ部210の現在温度PV1とを用いて、PID制御を行い、操作量MV1を算出する。第2温度制御部213は、操作量MV1によって、ヒータ212の制御を行う。第2温度センサ211は、ヒータ212の温度を検出する。
 次に、第1制御ループ部100から第2制御ループ部220への温度制御情報のフィードバックについて説明する。第1制御ループ部100は、温度制御情報設定部300の第2温度制御情報設定部320を介して、第2制御ループ部220へ温度制御情報をフィードバックする。
 温度制御情報生成部104は、第2温度制御情報設定部320に温度制御情報TD1を出力する。第2温度制御情報設定部320は、第2制御ループ部220の目標値補正部224にゲイン定数K2と遅れ特性TL2とで補正した温度制御情報TD1である温度制御情報TD12を出力する。
 より具体的には、第2温度制御情報設定部320は、温度制御情報TD1にゲイン定数K2を乗じる。次に、第2温度制御情報設定部320は、温度制御情報TD1に遅れ特性TL2を加算する。このことから、第2温度制御情報設定部320は、温度制御情報TD12を算出できる。なお、第2温度制御情報設定部320は、温度制御情報TD1にゲイン定数K2を乗じた後に、温度制御情報TD1に遅れ特性TL2を挿入することが好ましい。このことによって、ノイズ等を起因とする急激な変化を抑制できる。
 ゲイン定数K2は、0以上1以下の値である。このことによって、温度制御が不安定となることを抑制できる。また、例えば、遅れ特性TL2は、1次遅れ、もしくは、むだ時間であり、シリンダ部20の制御位置(ノズル部15からの距離)によって決定される。なお、ゲイン定数K2はシリンダ部20の制御位置(ノズル部15からの距離)に基づいて設定してもよく、事前の実験シミュレーションの結果を用いて設定してもよい。
 目標値補正部224は、第2目標温度SP2と温度制御情報TD12の差分値から、補正目標値SPM2を算出し、第2温度制御部223に出力する。
 第2温度制御部223は、補正目標値SPM2と、第2制御ループ部220の現在温度PV2とを用いて、PID制御を行い、操作量MV2を算出する。第2温度制御部223は、操作量MV2によって、ヒータ222の制御を行う。第2温度センサ221は、ヒータ222の温度を検出する。
 次に、第1制御ループ部100から第2制御ループ部230への温度制御情報のフィードバックについて説明する。第1制御ループ部100は、温度制御情報設定部300の第3温度制御情報設定部330を介して、第2制御ループ部230へ温度制御情報をフィードバックする。
 温度制御情報生成部104は、第3温度制御情報設定部330に温度制御情報TD1を出力する。第3温度制御情報設定部330は、第2制御ループ部230の目標値補正部234にゲイン定数K3と、遅れ特性TL3で補正した温度制御情報TD1である温度制御情報TD13を出力する。
 より具体的には、第3温度制御情報設定部330は、温度制御情報TD1にゲイン定数K3を乗じる。次に、第3温度制御情報設定部330は、温度制御情報TD1に遅れ特性TL3を挿入する。このことから、第3温度制御情報設定部330は、温度制御情報TD13を算出できる。なお、第3温度制御情報設定部330は、温度制御情報TD1にゲイン定数K3を乗じた後に、温度制御情報TD1に遅れ特性TL3を挿入することが好ましい。このことによって、ノイズ等を起因とする急激な変化を抑制できる。
 ゲイン定数K3は、0以上1以下の値である。このことによって、温度制御が不安定となることを抑制できる。また、遅れ特性TL3は、1次遅れ、もしくは、むだ時間であり、シリンダ部20の制御位置、すなわち、ノズル部15からの距離によって決定される。
 目標値補正部234は、第2目標温度SP3と温度制御情報TD13の差分値を算出し、補正目標値SPM3を算出し、第2温度制御部233に出力する。
 第2温度制御部233は、補正目標値SPM3と、第2制御ループ部210の第2目標温度SP3とを用いて、PID制御を行い、操作量MV3を算出する。第2温度制御部233は、操作量MV3によって、ヒータ232の制御を行う。第2温度センサ231は、ヒータ232の温度を検出する。
 このことによって、ノズル部15の現在温度PV0は、目標温度である、第1目標温度SP0に対して、より効果的に落ち着く。
 すなわち、ノズル部15に樹脂が到達するまでの間に、温度を制御することができ、第1温度制御部103は、ノズル部15における樹脂の温度制御を安定して行える。したがって、効果的な温度制御装置10が実現できる。
・構成例1 
 図1は、本発明の第1の実施形態に係る温度制御装置を備える射出成形機の概要図である。図2は、本発明の第1の実施形態に係る温度制御装置のブロック図である。図3は、本発明の第1の実施形態に係る温度制御装置のフローチャートである。図4は、本発明の第1の実施形態に係る温度制御装置の詳細なフローチャートである。図5は、本発明の第1の実施形態に係る温度制御装置の制御結果を示すグラフである。
 上述の図2の温度制御装置の構成に基づき、図1を用いて、より具体的な構成例を説明する。
 射出成形機1は、ノズル部15と、シリンダ部20と、樹脂流路30と、ヒータ212,222,232とを備えている。ノズル部15は、第1温度センサ101を備えている。また、ヒータ212の加熱部に、第2温度センサ211を備え、ヒータ222の加熱部は、第2温度センサ221を備え、ヒータ232の加熱部には、第2温度センサ231を備える。
 樹脂流路30は、ノズル部15と、ノズル部15に連接するシリンダ部20によって形成されている。ノズル部15の先端は、金型150に接続されている。
 射出成形機1は、シリンダ部20、ノズル部15によって形成される樹脂流路30を介して、樹脂を金型150に流し込む。
 樹脂流路30を流れる樹脂は、ヒータ212,222,232、および、ノズル部15において、加熱される。
 ノズル部15の温調をする第1制御ループ部100は、上述のように、温度制御情報をシリンダ部20の温調をする第2制御ループ部210,220,230に、それぞれにフィードバックする。ヒータ212,222,232は、温度制御情報に基づいて、PID制御を行う。
 第1制御ループ部100が、温度制御情報をヒータ212,222,232にフィードバックすることによって、樹脂がノズル部15に到達する前に、樹脂の状態に応じた温度制御が行われる。
 したがって、ノズル部15は、金型150に吐出される際の樹脂に対する温度制御を効果的かつ安定的に行うことができる。したがって、成形不良率を抑制した、温度制御装置10を実現できる。
 図3のフローチャートを用いて、温度制御装置10の全体の制御手順を示す。なお、以下の手順は、第2制御ループ部210を例として説明するが、第2制御ループ部220、または、第2制御ループ部230も同様の制御が行われる。
 また、図3は制御間の流れを示すものである。第1制御ループ部100と、第2制御ループ部210とは、同時並行に逐次実行されている。
 第1制御ループ部100は、PID制御を行うとともに、温度制御情報TD1を算出する。第1制御ループ部100は、温度制御情報TD1を第1温度制御情報設定部310に出力する(S101)。
 第1温度制御情報設定部310は、第2制御ループ部210に、ゲイン定数K1、遅れ特性TL1で補正した温度制御情報TD1である、温度制御情報TD11を出力する(S102)。
 第2制御ループ部210は、温度制御情報TD11と、第2目標温度SP1用いて、PID制御を行い、操作量MV1を算出する。第2制御ループ部210は、ヒータ212に対する温度制御を行う(S103)。すなわち、例えば、時刻tにおける第2制御ループ部210での処理は、時刻t-1での第1制御ループ部100の結果に基づいて実行される。
 次に、図3の制御手順を踏まえて、図4を用いて、第1制御ループ部100と、第2制御ループ部210による温度制御装置10の詳細な制御手順を示す。
 まず、第1制御ループ部100の制御手順について説明する。
 周期制御を開始することにより、タイマが起動される(S111)。タイマと制御周期に応じた時間が等しくなる場合(S111:Yes)、第1温度制御部103は、タイマをリセットし、ステップS113以降の処理を実行させる(S112)。なお、タイマと制御周期に応じた時間が等しくない場合(S111:No)は、タイマと制御周期に応じた時間が等しくなるまで、ステップS111を繰り返して実行する。
 第1温度制御部103は、第1温度センサ101からのノズル部15の温度を読み込む(S113)。
 第1温度制御部103は、ノズル部15の温度制御情報TD1を算出する。また、温度制御情報生成部104は、温度制御情報TD1を第1温度制御情報設定部310に出力する(S114)。なお、温度制御情報は、第1温度センサ101が検出した現在温度PV0であってもよい。
 第1温度制御部103は、温度制御情報に基づいて、PID制御を行い、ノズル部15の操作量MV0を算出する(S115)。
 第1温度制御部103は、ヒータ102に対して、操作量MV0を元に、加熱制御を行う(S116)。
 次に、第2温度制御ループの制御手順について説明する。周期制御を開始することにより、タイマが起動される(S121)。タイマと制御周期に応じた時間が等しくなる場合(S121:Yes)、第2温度制御部213は、タイマをリセットし、ステップS123以降の処理を実行させる(S122)。なお、タイマと制御周期に応じた時間が等しくない場合(S121:No)は、タイマと制御周期に応じた時間が等しくなるまで、ステップS121を繰り返して実行する。
 第2温度制御部213は、第2温度センサ211からシリンダ部20の現在温度PV1を読み込む(S123)。第1制御ループ部100のタイマと、第2制御ループ部210のタイマは同期しており、制御周期は同じである。
 第1温度制御情報設定部310は、温度制御情報生成部104から温度制御情報TD1を読み込む(S124)。
 第1温度制御情報設定部310は、温度制御情報TD1と、ゲイン定数K1と、遅れ特性TL1とから温度制御情報TD11を算出し、目標値補正部214に出力する(S125)。
 目標値補正部214は、温度制御情報TD11と第2目標温度SP1とを元に、補正目標値SPM1を算出する。第2温度制御部213は、補正目標値SPM1と現在温度PV1とに基づいて、PID制御を行い、操作量MV1を算出する(S126)。
 第2温度制御部213は、操作量MV1に基づき、ヒータ212に対して加熱制御を行う(S127)。
 図5を用いて、上述の構成を用いたフィードバック制御を行った、ノズル部15から最も遠いA地点、シリンダ部20の加熱部に近いB地点、ノズル部15に近いC地点の温度変化の一例をグラフに示す。
 図5に示すように、A地点、B地点においては、温度偏差に変化があまり見られない。しかしながら、C地点においては、時間を経るにつれて、温度偏差T1、T2、T3と変化する。より具体的には、温度偏差は、温度偏差T1>温度偏差T2>温度偏差T3と変化している。
 すなわち、上述の温度制御装置10を用いたフィードバック制御を行うことによって、ノズル部15の温度偏差を抑制することができる。このことから、ノズル部15は、金型150に吐出される際の樹脂の温度に対する制御を効果的、かつ安定的に行うことができる。したがって、成形不良率を抑制する、温度制御装置10を実現できる。
・構成例2 
 次に、図6を用いて、第2の実施形態に係る温度制御装置の概要について説明する。図6は、本発明の第2の実施形態に係る温度制御装置のブロック図である。
 第2の実施形態においては、第1の実施形態と比較して、温度制御情報のフィードバックの実行方法において異なる。その他の点については、第1の実施形態と同様であり、同様の箇所の説明は省略する。
 温度制御装置10Aは、第1制御ループ部100と、第2制御ループ部210A、220A、230Aと温度制御情報設定部300Aとを備える。温度制御情報設定部300Aは、第1温度制御情報設定部310A、第2温度制御情報設定部320A、第3温度制御情報設定部330Aを備える。第1制御ループ部100は、射出成形機のノズル部15のヒータ102の温度制御を行う。第2制御ループ部210A,220A,230Aは、射出成形機のシリンダ部20におけるヒータ212,222,232の温度制御をそれぞれ行う。
 第2制御ループ部210Aは、第2温度センサ211、ヒータ212、第2温度制御部213、目標値補正部214Aを備える。第2制御ループ部220Aは、第2温度センサ221、ヒータ222、第2温度制御部223、目標値補正部224Aを備える。第2制御ループ部230Aは、第2温度センサ231、ヒータ232、第2温度制御部233、目標値補正部234Aを備える。
 まず、第1制御ループ部100から第2制御ループ部210Aへの温度制御情報のフィードバックについて説明する。第1制御ループ部100は、温度制御情報設定部300Aの第1温度制御情報設定部310Aを介して、第2制御ループ部210Aへフィードバックする。
 温度制御情報生成部104は、第1温度制御情報設定部310Aに温度制御情報TD1を出力する。第1温度制御情報設定部310Aは、ゲイン定数K1と、遅れ特性TL1とで補正した温度制御情報TD11を、第2制御ループ部210Aの目標値補正部214Aに出力する。
 より具体的には、第1温度制御情報設定部310Aは、温度制御情報TD1にゲイン定数K1を乗じる。次に、第1温度制御情報設定部310Aは、温度制御情報TD1に遅れ特性TL1を挿入する。このことから、第1温度制御情報設定部310Aは、温度制御情報TD11を算出できる。
 目標値補正部214Aは、第2目標温度SP1と温度制御情報TD11の差分値から補正目標値SPM1を算出し、第2温度制御部213に出力する。
 第2温度制御部213は、補正目標値SPM1と、第2制御ループ部210の現在温度PV1とを用いて、PID制御を行い、操作量MV1を算出する。第2温度制御部213は、操作量MV1によって、ヒータ212の制御を行う。第2温度センサ211は、ヒータ212の温度を検出する。
 なお、目標値補正部214Aは、第2制御ループ部220Aへのフィードバックを行うために、第2温度制御情報設定部320Aに温度制御情報TD12を出力する。温度制御情報TD12は、第2目標温度SP1と現在温度PV1から算出される。すなわち、温度制御情報TD12は、現在温度PV1と第2目標温度SP1との偏差を用いる。なお、温度制御情報TD12は、現在温度PV1であってもよい。
 次に、第2制御ループ部210Aから第2制御ループ部220Aへの温度制御情報のフィードバックについて説明する。第2制御ループ部210Aは、温度制御情報設定部300Aの第2温度制御情報設定部320Aを介して、第2制御ループ部220Aへフィードバックする。
 第2温度制御情報設定部320Aは、ゲイン定数K2と遅れ特性TL2で補正した温度制御情報TD21を、第2制御ループ部220Aの目標値補正部224Aに出力する。
 より具体的には、第2温度制御情報設定部320Aは、温度制御情報TD12にゲイン定数K2を乗じる。次に、第2温度制御情報設定部320Aは、温度制御情報TD12に遅れ特性TL2を挿入する。このことから、第2温度制御情報設定部320Aは、温度制御情報TD21を算出できる。
 目標値補正部224Aは、第2目標温度SP2と温度制御情報TD21の差分値から、補正目標値SPM2を算出し、第2温度制御部223に出力する。
 第2温度制御部223は、補正目標値SPM2と第2制御ループ部220の現在温度PV2とを用いてPID制御を行い、操作量MV2を算出する。第2温度制御部223は、操作量MV2によって、ヒータ222の制御を行う。第2温度センサ221は、ヒータ212の温度を検出する。
 なお、目標値補正部224Aは、第2制御ループ部230Aへのフィードバックを行うために、第3温度制御情報設定部330Aに温度制御情報TD22を出力する。温度制御情報TD22は、第2目標温度SP2と現在温度PV2から算出される。すなわち、温度制御情報TD22は、現在温度PV2と第2目標温度SP2との偏差を用いる。なお、温度制御情報TD22は、現在温度PV2であってもよい。
 次に、第2制御ループ部220Aから第2制御ループ部230Aへの温度制御情報のフィードバックについて説明する。第2制御ループ部220Aは、温度制御情報設定部300Aの第3温度制御情報設定部330Aを介して、第2制御ループ部230Aへフィードバックする。
 第3温度制御情報設定部330Aは、ゲイン定数K3と、遅れ特性TL3とで補正した温度制御情報TD31を第2制御ループ部230Aの目標値補正部234Aに出力する。
 より具体的には、第3温度制御情報設定部330Aは、温度制御情報TD22にゲイン定数K3を乗じる。次に、第3温度制御情報設定部330Aは、温度制御情報TD22に遅れ特性TL3を挿入する。このことから、第3温度制御情報設定部330Aは、温度制御情報TD31を算出できる。
 目標値補正部234Aは、第2目標温度SP3と温度制御情報TD31の差分値から、補正目標値SPM3を算出し、第2温度制御部233に出力する。
 第2温度制御部233は、補正目標値SPM3と第2制御ループ部230の現在温度PV3を用いてPID制御を行い、操作量MV3を算出する。第2温度制御部233は、操作量MV3によって、ヒータ232の制御を行う。第2温度センサ231は、ヒータ212の温度を検出する。
 このことによって、ノズル部15の現在温度PV1は、目標温度である第1目標温度SP0に対して、より効果的に落ち着く。
 なお、上述の構成では、複数の第2制御ループ部を用いて説明した。しかしながら、少なくとも1つの第2制御ループを用いることでも、上述の構成を実現できる。
 また、上述の制御方法は、温度制御装置の温度上昇が一定になる状態で使用することが好ましい。このことによって、より適正なフィードバック制御を行うことができる。
K1、K2、K3…ゲイン定数
MV0、MV1、MV2、MV3…操作量
PV0、PV1、PV2、PV3…現在温度
SP0…第1目標温度
SP1、SP2、SP3…第2目標温度
SPM1、SPM2、SPM3…補正目標値
T1、T2、T3…温度偏差
TD1、TD11、TD12、TD13、TD21、TD22、TD31…温度制御情報
TL1、TL2、TL3…遅れ特性
1…射出成形機
10、10A…温度制御装置
15…ノズル部
20…シリンダ部
30…樹脂流路
100…第1制御ループ部
101…第1温度センサ
102…ヒータ
103…第1温度制御部
104…温度制御情報生成部
150…金型
210、210A…第2制御ループ部
211…第2温度センサ
212…ヒータ
213…第2温度制御部
214、214A…目標値補正部
220、220A…第2制御ループ部
221…第2温度センサ
222…ヒータ
223…第2温度制御部
224、224A…目標値補正部
230、230A…第2制御ループ部
231…第2温度センサ
232…ヒータ
233…第2温度制御部
234、234A…目標値補正部
310、310A…第1温度制御情報設定部
320、320A…第2温度制御情報設定部
330、330A…第3温度制御情報設定部

Claims (10)

  1.  ノズル部と、前記ノズル部に連接するシリンダ部によって、樹脂流路が形成され、前記樹脂流路を流れる樹脂の温度を制御する、温度制御装置であって、
     前記ノズル部を流れる樹脂のノズル温度を検出する、第1温度センサと、
     前記ノズル温度を第1目標温度になるようにPID制御する、第1温度制御部と、
     前記シリンダ部を流れる樹脂のシリンダ温度を検出する、第2温度センサと、
     前記シリンダ温度を第2目標温度になるようにPID制御する、複数の第2温度制御部と、
    を備え、
     前記第2温度制御部は、
     前記第1温度制御部からの温度制御情報を用いて、前記シリンダ温度をPID制御する、
     温度制御装置。
  2.  前記温度制御情報は、
     前記ノズル温度、または、前記ノズル温度と前記第1目標温度との温度偏差である、
     請求項1に記載の温度制御装置。
  3.  それぞれの前記シリンダ温度の制御位置と、前記ノズル温度の制御位置との距離に応じて、
     ゲイン定数、または、遅れ特性を設定し、前記温度制御情報を補正する温度制御情報設定部を備える、
     請求項1または請求項2に記載の温度制御装置。
  4.  前記複数の第2温度制御部の少なくとも1つは、
     前記温度制御情報を前記第2目標温度に加算する、
     請求項1乃至請求項3のいずれかに記載の温度制御装置。
  5.  前記複数の第2温度制御部の少なくとも1つは、
     前記温度制御情報を前記第2目標温度に加算する前に、
     ゲイン定数を乗じる、
     請求項3に記載の温度制御装置。
  6.  前記ゲイン定数は、0より大きく、かつ、1以下である、請求項5に記載の温度制御装置。
  7.  前記複数の第2温度制御部の少なくとも1つは、
     前記温度制御情報を前記第2目標温度に加算する前に、
     遅れ特性を挿入する、
     請求項3記載の温度制御装置。
  8.  前記遅れ特性は、1次遅れ、または、むだ時間である、請求項7に記載の温度制御装置。
  9.  ノズル部と、前記ノズル部に連接するシリンダ部によって、樹脂流路が形成され、前記樹脂流路を流れる樹脂の温度を制御する温度制御方法であって、
     前記ノズル部を流れる樹脂のノズル温度を検出するステップと、
     前記ノズル温度を第1目標温度になるようにPID制御するステップと、
     前記シリンダ部を流れる樹脂のシリンダ温度を検出するステップと、
     前記シリンダ温度を第2目標温度になるようにPID制御するステップと、
     をコンピュータが実行し、
     温度制御情報を用いて、前記シリンダ温度をPID制御するステップを実行する、
     温度制御方法。
  10.  ノズル部と、前記ノズル部に連接するシリンダ部によって、樹脂流路が形成され、前記樹脂流路を流れる樹脂の温度を制御する温度制御プログラムであって、
     前記ノズル部を流れる樹脂のノズル温度を検出するステップと、
     前記ノズル温度を第1目標温度になるようにPID制御するステップと、
     前記シリンダ部を流れる樹脂のシリンダ温度を検出するステップと、
     前記シリンダ温度を第2目標温度になるようにPID制御するステップと、
     をコンピュータに実行させ、
     温度制御情報を用いて、前記シリンダ温度をPID制御するステップをコンピュータに実行させる、
     温度制御プログラム。
PCT/JP2018/046939 2018-01-31 2018-12-20 温度制御装置、温度制御方法、及び、温度制御プログラム WO2019150820A1 (ja)

Priority Applications (3)

Application Number Priority Date Filing Date Title
US16/639,563 US11318653B2 (en) 2018-01-31 2018-12-20 Temperature control device, temperature control method, and non-transitory computer-readable storage medium
EP18903344.2A EP3747618B1 (en) 2018-01-31 2018-12-20 Temperature control device, temperature control method, and temperature control program
CN201880053710.7A CN111032308B (zh) 2018-01-31 2018-12-20 温度控制装置、温度控制方法以及存储介质

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2018014651A JP6919588B2 (ja) 2018-01-31 2018-01-31 温度制御装置、温度制御方法、及び、温度制御プログラム
JP2018-014651 2018-01-31

Publications (1)

Publication Number Publication Date
WO2019150820A1 true WO2019150820A1 (ja) 2019-08-08

Family

ID=67478669

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2018/046939 WO2019150820A1 (ja) 2018-01-31 2018-12-20 温度制御装置、温度制御方法、及び、温度制御プログラム

Country Status (6)

Country Link
US (1) US11318653B2 (ja)
EP (1) EP3747618B1 (ja)
JP (1) JP6919588B2 (ja)
CN (1) CN111032308B (ja)
TW (1) TWI756501B (ja)
WO (1) WO2019150820A1 (ja)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP7409345B2 (ja) 2021-03-31 2024-01-09 横河電機株式会社 学習処理装置、制御装置、学習処理方法、制御方法、学習プログラムおよび制御プログラム
AT525888B8 (de) * 2022-07-19 2023-11-15 Univ Linz Modellbasierte Regelung

Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH05228982A (ja) * 1992-02-20 1993-09-07 Toshiba Mach Co Ltd 押出機における樹脂温度制御装置
JPH05237892A (ja) * 1992-02-28 1993-09-17 Japan Steel Works Ltd:The 可塑化装置の加熱シリンダ温度調節方法およびその装置
JP2005035090A (ja) * 2003-07-17 2005-02-10 Rkc Instrument Inc 成形機の自動昇温制御方法
JP2006289781A (ja) * 2005-04-11 2006-10-26 Japan Steel Works Ltd:The 射出成形機用の温度制御装置および温度制御方法
JP2013001015A (ja) 2011-06-17 2013-01-07 Fanuc Ltd フィードフォワード機能を有する射出成形機の温度制御装置
JP2013052510A (ja) * 2011-08-31 2013-03-21 Sumitomo Heavy Ind Ltd 射出成形機
JP2016083778A (ja) 2014-10-22 2016-05-19 ファナック株式会社 温度制御装置を備える射出成形機
JP2018008424A (ja) * 2016-07-13 2018-01-18 株式会社日本製鋼所 射出成形機

Family Cites Families (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH05228973A (ja) * 1992-02-18 1993-09-07 Japan Steel Works Ltd:The 射出装置の温度制御方法及び装置
US5456870A (en) * 1994-05-20 1995-10-10 Van Dorn Demag Corporation Barrel temperature state controller for injection molding machine
JP4112552B2 (ja) * 2004-11-15 2008-07-02 株式会社名機製作所 温度制御方法と被制御体
CN101394984B (zh) * 2006-03-13 2012-07-04 住友重机械工业株式会社 射出成形机
JP5237892B2 (ja) 2009-06-29 2013-07-17 住友化学株式会社 積層体の製造方法、積層体およびsus基板
JP5189577B2 (ja) 2009-10-07 2013-04-24 日精樹脂工業株式会社 射出成形機の温度制御方法
JP5457396B2 (ja) * 2011-04-14 2014-04-02 日精樹脂工業株式会社 射出成形機の温度分布矯正装置
JP6000937B2 (ja) 2013-12-20 2016-10-05 株式会社日本製鋼所 加熱シリンダの温度制御方法
EP3226098B1 (en) 2014-11-26 2019-01-02 U-MHI PLATECH Co., Ltd. Temperature control method and temperature control device
US10169721B2 (en) * 2016-03-23 2019-01-01 Imflux, Inc. Injection molding controller interface with user-adjustable variables

Patent Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH05228982A (ja) * 1992-02-20 1993-09-07 Toshiba Mach Co Ltd 押出機における樹脂温度制御装置
JPH05237892A (ja) * 1992-02-28 1993-09-17 Japan Steel Works Ltd:The 可塑化装置の加熱シリンダ温度調節方法およびその装置
JP2005035090A (ja) * 2003-07-17 2005-02-10 Rkc Instrument Inc 成形機の自動昇温制御方法
JP2006289781A (ja) * 2005-04-11 2006-10-26 Japan Steel Works Ltd:The 射出成形機用の温度制御装置および温度制御方法
JP2013001015A (ja) 2011-06-17 2013-01-07 Fanuc Ltd フィードフォワード機能を有する射出成形機の温度制御装置
JP2013052510A (ja) * 2011-08-31 2013-03-21 Sumitomo Heavy Ind Ltd 射出成形機
JP2016083778A (ja) 2014-10-22 2016-05-19 ファナック株式会社 温度制御装置を備える射出成形機
JP2018008424A (ja) * 2016-07-13 2018-01-18 株式会社日本製鋼所 射出成形機

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP3747618A4

Also Published As

Publication number Publication date
CN111032308B (zh) 2022-03-04
CN111032308A (zh) 2020-04-17
US20210129405A1 (en) 2021-05-06
JP6919588B2 (ja) 2021-08-18
US11318653B2 (en) 2022-05-03
TW201934306A (zh) 2019-09-01
EP3747618B1 (en) 2022-07-27
TWI756501B (zh) 2022-03-01
EP3747618A4 (en) 2021-09-29
JP2019130771A (ja) 2019-08-08
EP3747618A1 (en) 2020-12-09

Similar Documents

Publication Publication Date Title
WO2019150820A1 (ja) 温度制御装置、温度制御方法、及び、温度制御プログラム
JP6345801B2 (ja) 温度制御方法、及び、温度制御装置
JP5627106B2 (ja) 制御装置および制御方法
CN103940093A (zh) 供给热水装置及其控制方法
JP6409876B2 (ja) 制御装置
TWI530382B (zh) Injection molding machine
WO2018220690A1 (ja) 制御系設計装置及び制御システム
JP4849961B2 (ja) 熱分析装置
US9912215B2 (en) Motor control device for estimating temperature of windings, and method for calculating allowable duty cycle time for machine
JP2009301258A (ja) 制御装置
JP2011079222A (ja) 射出成形機の温度制御方法
JP5484859B2 (ja) 温度制御装置および温度制御方法
JP5668301B2 (ja) 加熱対象物の温度制御方法および温度制御装置
JP2002222001A (ja) 制御装置
JP2008299697A (ja) 制御方法、温度制御方法、補正装置、温度調節器、およびプログラム
JP6974143B2 (ja) 制御装置および制御方法
US20220006066A1 (en) Method and system for drying electrode plate of secondary battery
JP7006637B2 (ja) 外乱抑制装置、外乱抑制方法、およびプログラム
JP7401331B2 (ja) 制御装置および制御方法
JP2022061664A (ja) 制御装置および制御方法
JPS58169202A (ja) プロセス制御装置
JP2022112873A (ja) 制御装置および制御方法
JP2022061663A (ja) 制御装置および制御方法
JP2017182503A (ja) 制御装置
KR20030093413A (ko) 반도체 제조용 베이크의 온도조절장치

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 18903344

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

ENP Entry into the national phase

Ref document number: 2018903344

Country of ref document: EP

Effective date: 20200831