WO2019148954A1 - 一种多级罗茨干式真空泵 - Google Patents

一种多级罗茨干式真空泵 Download PDF

Info

Publication number
WO2019148954A1
WO2019148954A1 PCT/CN2018/118358 CN2018118358W WO2019148954A1 WO 2019148954 A1 WO2019148954 A1 WO 2019148954A1 CN 2018118358 W CN2018118358 W CN 2018118358W WO 2019148954 A1 WO2019148954 A1 WO 2019148954A1
Authority
WO
WIPO (PCT)
Prior art keywords
roots
electric drive
rotor
shaft
stage
Prior art date
Application number
PCT/CN2018/118358
Other languages
English (en)
French (fr)
Inventor
丁东胜
任卫国
马亦文
Original Assignee
中山市天元真空设备技术有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 中山市天元真空设备技术有限公司 filed Critical 中山市天元真空设备技术有限公司
Priority to KR1020207025266A priority Critical patent/KR102561552B1/ko
Priority to AU2018406349A priority patent/AU2018406349B2/en
Priority to JP2020542261A priority patent/JP7121416B2/ja
Priority to EP18903580.1A priority patent/EP3748166A4/en
Publication of WO2019148954A1 publication Critical patent/WO2019148954A1/zh
Priority to US16/945,254 priority patent/US11415133B2/en

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04CROTARY-PISTON, OR OSCILLATING-PISTON, POSITIVE-DISPLACEMENT MACHINES FOR LIQUIDS; ROTARY-PISTON, OR OSCILLATING-PISTON, POSITIVE-DISPLACEMENT PUMPS
    • F04C2/00Rotary-piston machines or pumps
    • F04C2/08Rotary-piston machines or pumps of intermeshing-engagement type, i.e. with engagement of co-operating members similar to that of toothed gearing
    • F04C2/12Rotary-piston machines or pumps of intermeshing-engagement type, i.e. with engagement of co-operating members similar to that of toothed gearing of other than internal-axis type
    • F04C2/126Rotary-piston machines or pumps of intermeshing-engagement type, i.e. with engagement of co-operating members similar to that of toothed gearing of other than internal-axis type with radially from the rotor body extending elements, not necessarily co-operating with corresponding recesses in the other rotor, e.g. lobes, Roots type
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04CROTARY-PISTON, OR OSCILLATING-PISTON, POSITIVE-DISPLACEMENT MACHINES FOR LIQUIDS; ROTARY-PISTON, OR OSCILLATING-PISTON, POSITIVE-DISPLACEMENT PUMPS
    • F04C18/00Rotary-piston pumps specially adapted for elastic fluids
    • F04C18/08Rotary-piston pumps specially adapted for elastic fluids of intermeshing-engagement type, i.e. with engagement of co-operating members similar to that of toothed gearing
    • F04C18/12Rotary-piston pumps specially adapted for elastic fluids of intermeshing-engagement type, i.e. with engagement of co-operating members similar to that of toothed gearing of other than internal-axis type
    • F04C18/126Rotary-piston pumps specially adapted for elastic fluids of intermeshing-engagement type, i.e. with engagement of co-operating members similar to that of toothed gearing of other than internal-axis type with radially from the rotor body extending elements, not necessarily co-operating with corresponding recesses in the other rotor, e.g. lobes, Roots type
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01CROTARY-PISTON OR OSCILLATING-PISTON MACHINES OR ENGINES
    • F01C21/00Component parts, details or accessories not provided for in groups F01C1/00 - F01C20/00
    • F01C21/007General arrangements of parts; Frames and supporting elements
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04CROTARY-PISTON, OR OSCILLATING-PISTON, POSITIVE-DISPLACEMENT MACHINES FOR LIQUIDS; ROTARY-PISTON, OR OSCILLATING-PISTON, POSITIVE-DISPLACEMENT PUMPS
    • F04C23/00Combinations of two or more pumps, each being of rotary-piston or oscillating-piston type, specially adapted for elastic fluids; Pumping installations specially adapted for elastic fluids; Multi-stage pumps specially adapted for elastic fluids
    • F04C23/001Combinations of two or more pumps, each being of rotary-piston or oscillating-piston type, specially adapted for elastic fluids; Pumping installations specially adapted for elastic fluids; Multi-stage pumps specially adapted for elastic fluids of similar working principle
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04CROTARY-PISTON, OR OSCILLATING-PISTON, POSITIVE-DISPLACEMENT MACHINES FOR LIQUIDS; ROTARY-PISTON, OR OSCILLATING-PISTON, POSITIVE-DISPLACEMENT PUMPS
    • F04C23/00Combinations of two or more pumps, each being of rotary-piston or oscillating-piston type, specially adapted for elastic fluids; Pumping installations specially adapted for elastic fluids; Multi-stage pumps specially adapted for elastic fluids
    • F04C23/02Pumps characterised by combination with, or adaptation to, specific driving engines or motors
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04CROTARY-PISTON, OR OSCILLATING-PISTON, POSITIVE-DISPLACEMENT MACHINES FOR LIQUIDS; ROTARY-PISTON, OR OSCILLATING-PISTON, POSITIVE-DISPLACEMENT PUMPS
    • F04C25/00Adaptations of pumps for special use of pumps for elastic fluids
    • F04C25/02Adaptations of pumps for special use of pumps for elastic fluids for producing high vacuum
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04CROTARY-PISTON, OR OSCILLATING-PISTON, POSITIVE-DISPLACEMENT MACHINES FOR LIQUIDS; ROTARY-PISTON, OR OSCILLATING-PISTON, POSITIVE-DISPLACEMENT PUMPS
    • F04C28/00Control of, monitoring of, or safety arrangements for, pumps or pumping installations specially adapted for elastic fluids
    • F04C28/02Control of, monitoring of, or safety arrangements for, pumps or pumping installations specially adapted for elastic fluids specially adapted for several pumps connected in series or in parallel
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04CROTARY-PISTON, OR OSCILLATING-PISTON, POSITIVE-DISPLACEMENT MACHINES FOR LIQUIDS; ROTARY-PISTON, OR OSCILLATING-PISTON, POSITIVE-DISPLACEMENT PUMPS
    • F04C29/00Component parts, details or accessories of pumps or pumping installations, not provided for in groups F04C18/00 - F04C28/00
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04CROTARY-PISTON, OR OSCILLATING-PISTON, POSITIVE-DISPLACEMENT MACHINES FOR LIQUIDS; ROTARY-PISTON, OR OSCILLATING-PISTON, POSITIVE-DISPLACEMENT PUMPS
    • F04C29/00Component parts, details or accessories of pumps or pumping installations, not provided for in groups F04C18/00 - F04C28/00
    • F04C29/0042Driving elements, brakes, couplings, transmissions specially adapted for pumps
    • F04C29/005Means for transmitting movement from the prime mover to driven parts of the pump, e.g. clutches, couplings, transmissions
    • F04C29/0064Magnetic couplings
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04CROTARY-PISTON, OR OSCILLATING-PISTON, POSITIVE-DISPLACEMENT MACHINES FOR LIQUIDS; ROTARY-PISTON, OR OSCILLATING-PISTON, POSITIVE-DISPLACEMENT PUMPS
    • F04C29/00Component parts, details or accessories of pumps or pumping installations, not provided for in groups F04C18/00 - F04C28/00
    • F04C29/0042Driving elements, brakes, couplings, transmissions specially adapted for pumps
    • F04C29/0078Fixing rotors on shafts, e.g. by clamping together hub and shaft
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04CROTARY-PISTON, OR OSCILLATING-PISTON, POSITIVE-DISPLACEMENT MACHINES FOR LIQUIDS; ROTARY-PISTON, OR OSCILLATING-PISTON, POSITIVE-DISPLACEMENT PUMPS
    • F04C29/00Component parts, details or accessories of pumps or pumping installations, not provided for in groups F04C18/00 - F04C28/00
    • F04C29/0042Driving elements, brakes, couplings, transmissions specially adapted for pumps
    • F04C29/0085Prime movers
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04CROTARY-PISTON, OR OSCILLATING-PISTON, POSITIVE-DISPLACEMENT MACHINES FOR LIQUIDS; ROTARY-PISTON, OR OSCILLATING-PISTON, POSITIVE-DISPLACEMENT PUMPS
    • F04C2220/00Application
    • F04C2220/10Vacuum
    • F04C2220/12Dry running
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04CROTARY-PISTON, OR OSCILLATING-PISTON, POSITIVE-DISPLACEMENT MACHINES FOR LIQUIDS; ROTARY-PISTON, OR OSCILLATING-PISTON, POSITIVE-DISPLACEMENT PUMPS
    • F04C2240/00Components
    • F04C2240/40Electric motor
    • F04C2240/402Plurality of electronically synchronised motors
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04CROTARY-PISTON, OR OSCILLATING-PISTON, POSITIVE-DISPLACEMENT MACHINES FOR LIQUIDS; ROTARY-PISTON, OR OSCILLATING-PISTON, POSITIVE-DISPLACEMENT PUMPS
    • F04C2240/00Components
    • F04C2240/70Use of multiplicity of similar components; Modular construction
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F05INDEXING SCHEMES RELATING TO ENGINES OR PUMPS IN VARIOUS SUBCLASSES OF CLASSES F01-F04
    • F05BINDEXING SCHEME RELATING TO WIND, SPRING, WEIGHT, INERTIA OR LIKE MOTORS, TO MACHINES OR ENGINES FOR LIQUIDS COVERED BY SUBCLASSES F03B, F03D AND F03G
    • F05B2210/00Working fluid
    • F05B2210/10Kind or type
    • F05B2210/12Kind or type gaseous, i.e. compressible

Definitions

  • the invention belongs to the technical field of vacuum equipment, and in particular relates to a multi-stage Roots dry vacuum pump.
  • the traditional in-line multi-stage Roots dry vacuum pump is to install all the Roots rotors in sequence on the same pair (two) shafts, just like two sugar gourd strings placed side by side: from the same
  • the motor is driven to ensure the movement relationship of the two shafts through a pair of meshing gear transmissions; the roots of the Roots rotors are separated by a partition in the axial direction to form an independent working chamber, and the inlet and exhaust ports are mechanically end to end.
  • the size of the Roots rotor and its working chamber should be composed according to the pumping speed, speed, number of stages and interstage compression coefficient of the vacuum pump in a certain proportional relationship.
  • the gearbox of the conventional pump Since the gearbox of the conventional pump has lubricating oil, in order to prevent pollution, the gearbox and the rotor working chamber must be sealed with a dynamic seal; and the motor end is also sealed against the atmosphere. Furthermore, the transmission shaft seal of the conventional pump mainly uses the skeleton oil seal, and the requirements for the shaft and the seal and the cooperation thereof are high, which is the main failure point and the replacement is difficult; and the conventional pump maintains the fixed motion relationship between the main and the driven shafts. With the involute gear meshing transmission, not only lubrication and sealing are required, but also noise is generated.
  • the present invention provides a multi-stage Roots dry vacuum pump, each pair of Roots rotors of the design is independent, and the mutual involvement is released, which provides a broad space for further optimization of design and manufacture;
  • the mechanical transmission length of the Roots rotor through independent electric drive, the mechanical manufacturing precision requirements are reduced, the noise reduction is effectively realized, and the mechanical service life is improved.
  • the magnetic gear transmission and the magnetic coupling are used to reduce lubrication and noise.
  • the use of a static seal instead of a dynamic seal improves the sealing state, significantly improving the performance and equipment life.
  • a multi-stage Roots dry vacuum pump comprising a pump body and an electric drive terminal, the pump body comprising at least a first-order Roots system, the Roots system At least one primary Roots work unit is provided, the Roots work unit being provided with a pair of Roots rotors and a Roots shaft, the electric drive terminal being coupled to the Roots shaft.
  • an engagement mechanism is further included, the engagement mechanism coupling the Roots shaft through the magnetic coupling and the vacuum operation by interlocking the Roots rotor through the electric drive terminal.
  • the engagement mechanism is provided with a magnetic drive gear.
  • the electric drive terminal comprises an electric drive rotor and an electric drive stator
  • the electric drive rotor is mounted on the Roots shaft
  • the air gap between the electric drive rotor and the electric drive stator is provided with a sealing sleeve.
  • the Roots working units are sequentially connected from the air inlet to the exhaust port by parallel or series piping on the Roots working unit of the same or different stages in the pump body.
  • each pair of Roots rotors is a separate Roots working unit, and the Roots working unit is arbitrarily arranged on the pump body when the gas flow conduit between the Roots rotors is normally coupled.
  • the Roots system comprises one or more levels of Roots work units, each Roots work unit is an independent work unit, and the pair of Roots rotors and Roots shafts are independently arranged in Roots Within the work unit.
  • the Roots rotor comprises an active Roots rotor and an driven Roots rotor, the Roots shaft comprising an active Roots shaft and a driven Roots shaft, the active Roots rotor being disposed on the active Roots shaft Above, the driven Roots rotor is disposed on the driven Roots shaft.
  • the digital integrated electric drive system is further connected to the electric drive terminal for electrically controlling, controlling, starting, and interlocking.
  • the invention has the beneficial effects that the present invention adopts the above technical solution, and each pair of Roots rotors designed is independent, and the mutual involvement is released, which provides a broad space for optimization of design and manufacture; and each pair of Roots rotors
  • the independent electric drive reduces the mechanical transmission length, reduces the mechanical manufacturing precision requirements, reduces the noise, and increases the life; the magnetic gear transmission and the magnetic coupling reduce the lubrication and noise.
  • Replacing the dynamic seal with a static seal improves the seal and improves performance and equipment life. It has the characteristics of reasonable structure, ingenious design, economical and practical, high efficiency and environmental protection, long service life and low production cost.
  • Figure 1 is a schematic view showing the structure of the present invention
  • Figure 2 is a schematic view showing the structure of the A-A plane of Figure 1.
  • the present invention provides a multi-stage Roots dry vacuum pump comprising: a pump body 1 comprising at least a first-order Roots system (not shown), each Roots system comprising at least one stage Roots work unit 2, each Roots work unit 2 is provided with a pair of Roots rotors 3, 4, a pair of Roots shafts 24, and an electric drive terminal comprising an electric drive rotor 13 and an electric drive Stator 10.
  • the electric drive terminal is coupled to the Roots shaft 24.
  • the present invention comprises each Roots system consisting of a Roots work unit 2 or a plurality of Roots work units 2, each Roots work unit 2 comprising an independent pair of rotating shafts, the shafts moving in a certain relationship
  • the inlet and exhaust ports of the Roots system of each level are connected in series according to the end-to-end connection.
  • the specific end-to-end connection is either direct communication or connected through the splicing pipeline, and the Roots system can be used according to the respective size and rotation speed.
  • the number and position of each Roots work unit are flexibly matched, so that the compression ratio between the various Roots systems is realized by a simple volume ratio, and the volume ratio, the rotational speed ratio, or the rotational speed ratio and volume are changed. The technical effect achieved by the joint.
  • the volume reduction can be exchanged by increasing the rotational speed of the large pumping speed chamber, and the small pumping speed chamber can be exchanged for the increase of the volume by reducing the rotational speed, so that the volume of each Roots working unit chamber is uniform or close.
  • the geometry of the pump is reduced due to the reduction of the large pumping speed chamber at the same pumping speed, thereby achieving the purpose of reducing manufacturing cost, reducing operating energy consumption, and improving the discharge end condition;
  • the geometric size improves the heat dissipation of the exhaust end of the pump due to the increase of the small pumping speed chamber; the size of the large pumping speed chamber and the size of the small pumping speed chamber become larger, so that the specification range of the pump is larger and more
  • the development of Xiaohua's second end has become possible. This reduces the length of each Roots shaft and improves the support of the Roots shaft; each Roots shaft end of each stage can have bearing support and sealing, and these bearings and seals are easy to maintain. Advances in modern processing technology have provided convenient conditions for mechanical transmissions that achieve a strict ratio between the various stages, making it possible to separate the design of the Roots shafts at all levels above.
  • the meshing mechanism (not shown) is coupled to the Roots shaft 24, and is connected to the Roots rotor by an electric drive terminal for vacuum operation; a magnetic coupling is assembled between the meshing mechanism and the Roots shaft 24, and each magnetic force is The air gap of the coupling is provided with a sealing sleeve.
  • the meshing mechanism comprises a magnetic drive gear.
  • a magnetic coupling is used to connect the power transmission between the driving part and the working part, so that the rigid or semi-rigid connection of the mechanical coupling becomes an electromagnetic flexible connection, which reduces the transmission precision requirement, reduces the transmission impact, and reduces noise.
  • the pollution is improved; further, the patent adopts a container that does not affect the magnetic force between the air gaps of the magnetic coupling, and the container that does not affect the magnetic force of the present invention includes a sealing sleeve that does not affect the magnetic force.
  • the sealing of the moving seal into a static seal is achieved by separating the working member from the external space by the air gap between the air gaps of the magnetic coupling, so that the sealing performance and the life are improved.
  • the patent further replaces the driving end of the magnetic coupling described above with the driving component of the integrated teletype driving terminal (ie, the motor stator), and the driven end is changed into a corresponding rotor, so that the motor directly replaces the magnetic coupling.
  • the device further simplifies the structure, further reduces the size, further reduces the cost, and further improves the reliability.
  • the digital integrated teletype drive system 8 connects each electric drive terminal for unified control of electric energy drive, speed regulation, start-stop and interlock.
  • digital integrated teletype drive technology one drive is used to drive all levels of pumps, and each Roots work unit is started, operated, and shut down according to strict requirements. That is, at the start of the startup, the stages are started at the same time and gradually accelerated to the normal operation according to the respective allowed load and working conditions; respectively, the operation is performed according to the speed required by the pumping speed specified by the strict compression relationship, and is automatically adjusted according to the change of the load; It is the safest, most energy-saving and most environmentally friendly way to minimize the pollution to the grid and to the pump itself and the associated parent machine.
  • the electric drive terminal of the patent comprises an electric drive rotor and an electric drive stator; the electric drive rotor is mounted on the Roots shaft 24, and a sealing sleeve is arranged between the air gap of the electric drive rotor and the electric drive stator.
  • the technical feature is that the mechanical coupling between the conventional motor and the rotor shaft is cancelled, and the rotor of the electric drive terminal of each independent Roots working unit 2 is directly mounted on the corresponding Roots shaft 24, and the stator is mounted. Go to the relevant part.
  • a sealing sleeve which does not affect the magnetic transmission is installed between the air gap of the rotor and the stator, and the Roots rotor and its working unit are separated from the outside, thereby realizing the change of the dynamic seal into a static seal without affecting the magnetic drive.
  • each Roots working unit 2 Preferably, on the Roots working unit 2 of the same stage or different stages in the pump body, the chambers of each Roots working unit are sequentially connected from the air inlet to the exhaust port through parallel or series piping.
  • Each pair of Roots rotors is a separate Roots working unit 2, and each Roots working unit 2 can be arbitrarily arranged on the pump body when the gas flow conduits between the Roots rotors are normally coupled.
  • the one Roots system comprises one or more stages Roots work units 2, each stage Roots work unit 2 is a separate work unit, the paired Roots rotors, the paired Roots shafts 24 are independently set In the Roots work unit 2.
  • the invention consists of a multi-stage Roots system, each of which includes a Roots work unit 2 or a plurality of Roots work units 2.
  • Each pair of Roots rotors is a separate Roots work unit 2: a separate vacuum working chamber and a pair of independent Roots rotors and their shafts mounted in them; that is, as long as the gas flow conduits are connected regularly
  • These independent Roots work units 2 can be arranged arbitrarily on the pump body.
  • the engagement mechanism of this patent includes a transmission gear that includes a main drive gear and a slave drive gear.
  • the Roots rotor includes an active Roots rotor and a driven Roots rotor; the Roots shaft 24 includes an active Roots shaft and a driven Roots shaft.
  • Each individual Roots work unit 2 is coupled by a pair of gears, which are magnetic drive gears.
  • a magnetic coupling is placed between the magnetic transmission gear and the main driven Roots shaft to transmit torque, and a sealing sleeve that does not affect the magnetic force is placed between the air gaps of the magnetic coupling, and the Roots rotor and The working unit is separated from the outside, thereby changing the dynamic seal to a static seal.
  • each independent Roots working unit in this patent has an independent electric drive terminal, and these electric independent drive terminals are coordinated and controlled by the same digital integrated teletype drive system 8.
  • the multi-stage Roots dry vacuum pump of the pair of rotor shafts of the present embodiment is a direct-flowing atmospheric multi-stage Roots dry vacuum pump comprising: pump body 1, Roots system (not shown), Roots Working unit 2, active Roots rotor 3, driven Roots rotor 4, main transmission gear 5, slave transmission gear 6, air flow passage 7, integrated teletype drive control room 8, electric drive end cover 9, electric drive stator 10, Drive end air gap static sealing sleeve 11, bearing 12, electric drive rotor 13, sealing ring 14, electric drive end partition 16, pump body seal 17, right partition 18, magnetic coupling inner disc 19, magnetic coupling The air gap static sealing sleeve 20, the magnetic coupling outer disk 21, the transmission gear bearing 22, and the gear cover 23.
  • the Roots rotor comprises an active Roots rotor 3 and a driven Roots rotor 4, the transmission gears provided as an engagement mechanism comprising a main transmission gear 5, a slave transmission gear 6, a transmission gear bearing 22 and a gear cover 23.
  • the electric drive terminal includes an electric drive end cover 9, an electric drive stator 10, a drive end air gap static seal sleeve 11, and an electric drive rotor 13.
  • the magnetic coupling includes a magnetic coupling inner disk 19, a magnetic coupling air gap static sealing sleeve 20 and a magnetic coupling outer disk 21.
  • the invention patent consists of three major functional components: a pump body component, each Roots working unit 2, a master-slave transmission gear 5, 6, and an integrated fly-by-wire drive control system 8.
  • the pump body part consists of a pump body 1 (including a number of vacuum chambers, a Roots working unit 2, an air flow passage 7, an intake and exhaust port, etc.), a plurality of pairs of Roots rotors 3, 4, and an electrically driven end partition 16
  • the bearing 12, a right partition plate 18 and a bearing 12, a plurality of pump body sealing rings 17 and the like are composed.
  • the integrated teletype drive control system 8 is composed of a digital telemetry drive control room, a human-machine dialogue window, a plurality of electric drive terminals (including an excitation stator, a magnetic gap seal sleeve, an electric drive rotor and a seal ring), and a control box.
  • the whole system is a smart whole, fully statically sealed, with good heat dissipation and low noise.
  • the exhaust pressure of this embodiment is slightly higher than one atmospheric pressure, and the working pressure and the ultimate pressure of the intake end are determined according to the use requirements; the pumping speed is also determined according to the series type spectrum requirement.
  • each stage Roots work unit 2 can be either single or multiple connected; each Roots work unit 2 is provided with a separate pair of Roots shafts. 24, these Roots shafts move in a certain relationship; the Roots working units 2 at all levels are connected in series in the gas compression direction from the intake port to the exhaust port in series.
  • each level of Roots work unit 2 is determined according to the needs (such as pump size, structural size, desired and possible speed, and manufacturing costs, etc.), but the basic principle is: each level of Roots
  • the sum of the product of the geometric volume and the rotational speed of the closed gas per unit of rotation of the working unit 2 and the value of the adjacent stage are the same as the compression ratio between them, namely:
  • A is the compression ratio between the a and b levels
  • N is the Roots Rotor speed
  • V is the Rotz working unit 2 chamber can be closed per revolution
  • the geometric volume of the gas, i, m, n are positive integers.
  • All Roots work units 2 are in the same pump body, both in the same level and in different stages.
  • the chambers are connected in sequence from the air inlet to the exhaust port through parallel or series pipes; but they are mechanical and geometric.
  • the position is a separate small system: there is a separate electric drive terminal directly controlled by the integrated teletype drive system 8, a pair of independently operated Roots rotors, a separate meshing mechanism and a separate inlet and exhaust pipe
  • the other chambers are associated with the rest of the working chamber; all of these Roots work units 2 can be arranged according to the needs of use and design and manufacture.
  • the above-mentioned intake and exhaust ports are the beginning and the end of the entire vacuum pump system piping.
  • the entire system has only one intake port at the intake end and only one exhaust port at the exhaust end.
  • the above-mentioned pipeline is a passage for communicating the air inlet, each Roots working unit 2, and the exhaust port so that the vacuuming work can be smoothly carried out; the passage can be directly processed in the pump body or bypassed outside the pump;
  • the arrangement of the studio is different.
  • the channel may have parallel branches, which may be straight or curved.
  • the Roots rotor described above is a functional actuator of the Roots pump.
  • each Roots rotor compressed gas is a special-shaped cylinder.
  • the radial profile of the cylinder is a multi-section Roots curve plus arc, or a multi-section arc curve, or a multi-segment cycloid, or a mixed curve of the above curve.
  • the axial ends of the Roots rotor each have a shaft for mounting on the bearing support and for transmission, the two axes are parallel to the busbar of the intermediate shaped cylinder, and the central axis coincides with the geometric centerline of the shaped cylinder.
  • the two shafts and the intermediate shaped cylinder are each connected excessively by a shoulder; the excessive shoulder is perpendicular to the central axis, and the shoulders are parallel to each other.
  • the above-mentioned meshing mechanism is also a direct-engaged precision gear which has the same modulus and number of teeth for ensuring the coupling relationship between the two Roots rotors.
  • the precision gear of this embodiment uses a magnetic gear instead of the conventional involute mechanical gear. To reduce lubrication and noise.
  • the above-mentioned coupling between the pair of magnetic gears and the corresponding pair of Roots shafts is realized by two magnetic couplings, and a container that does not affect the magnetic force is used between the air gaps of the two magnetic couplings.
  • the shaft and its attachment are separated from the outside so that the dynamic seal becomes a static seal.
  • the inner wall of the pumping chamber of the Roots working unit 2 is composed of two diameters which are the outer diameter of the long axis of the Roots impeller, and the center distance is one-half of the sum of the longest and smallest dimensions of the Roots impeller.
  • the cylindrical holes are formed by the length of the sum of the length of the pressure section of the Roots impeller in the Roots vacuum chamber and the total matching clearance of the two ends of the mechanism.
  • the above-mentioned pump body is a Roots vacuum chamber pump chamber on which all of the above Roots rotors are dependent, and includes a main body part of a pump that regularly connects the pipes of the Roots working unit 2, the intake port and the exhaust port. There are heat sinks, mounting connections, etc. on the pump body.
  • the two ends of the pump body are respectively provided with an electric drive end partition plate and a right partition plate and a sealing ring thereof, and the partition plate and the pump body constitute a closed Roots working unit 2; and the support bearings of the two Roots rotors are installed at On the two partitions, the shoulders at both ends of the working section of the Roots rotor cooperate with the inner walls of the two partitions to block the intake side of the vacuum chamber of each stage, the closed portion of the gas to be transported, and the exhaust side to achieve compressed exhaust.
  • the above-mentioned digital integrated teletype drive control system 8 means that each Roots rotor of the Roots work unit 2 has an electric drive terminal directly driven, and the electric drive terminals are directly distributed by the integrated teletype drive control room. Drive, speed control, start and stop, and the drive, speed control, start and stop, interlock, etc. are carried out in strict logical relationship.
  • the electric drive rotor 13 is directly coupled to the active Roots shaft.
  • the air gap between the electric drive stator 10 and the electric drive rotor 13 is also separated from the outside by a container that does not affect the magnetic force, thereby causing the dynamic seal to become Static seal. In this way, the working part of the whole pump is sealed by a static seal except for the inlet and outlet.
  • the integrated fly-by-wire drive control system 8 is coupled to the pump body at one end of the pump.
  • the prior art of the background of the present invention has the following drawbacks: First, all of the rotor strings are on the same pair of drive shafts, so the rotational speeds must be uniform, thus causing mutual pinning.
  • the various levels can not choose the required rotation speed according to their own differences, but only the volume change of each level can be used to achieve the compression ratio between the stages, thus restricting the pumping speed range of the pump: it is difficult to have a large volume. Large, limited the design and manufacture of large displacement pumps; the level of small volume is difficult to be small, and limits the design and manufacture of small displacement pumps.
  • the shaft is long: if the bearing supports are placed at the level spacers, over-constraint interference occurs, and the bearing is difficult to maintain; for example, the bearing supports are not provided at the level spacers. Vibration or even resonance may occur due to long length, which is not conducive to the operation of the pump and affects the life of the pump.
  • the drive shaft seal of the pump is mainly based on the skeleton oil seal, and the requirements for the shaft and the seal and the matching thereof are high, which is the main failure point and the replacement is difficult.
  • the pump now uses a revolving gear meshing drive to maintain a fixed motion relationship between the main and driven shafts; therefore, lubrication and sealing are required, as well as noise.
  • the involute precision gear transmission requires high precision, difficult loading and unloading, and large transmission noise.
  • the interstage compression ratio of the pump can only be achieved by the volume ratio, so the final discharge stage geometry of the pump with a large number of stages in five, six or more stages. It will be small and its heat dissipation is difficult.
  • the prior art is that all the rotors are strung on the same pair of transmission shafts, so the rotation speeds must be the same, so that mutual restraint is generated; the stages cannot select the respective required rotation speeds according to their own differences, but only the volume changes of the respective stages can be changed.
  • the master-slave coupling gear is an involute gear, which is lubricated with oil and sealed with a dynamic seal; the connection between the pump and the motor is a mechanical coupling, and the shaft coupled to the motor is also a rubber dynamic seal. Therefore, the noise is large and there is leakage.
  • the improved invention consists of a multi-stage Roots system, each of which includes a Roots work unit or a number of Roots work units; each Roots work unit has an independent pair of shafts, and these The rotating shaft moves in a certain (set) relationship; wherein, the inlet and exhaust ports of the Roots system of each stage are connected in series according to the end-to-end connection, and the end-to-tail connection is directly connected or connected through the connecting pipeline; The inlet and exhaust ports between the working units are connected in parallel.
  • the parallel connection is only the inlet port and the inlet port, and the exhaust port and the exhaust port are connected to realize the parallel arrangement of the Roots rotor working unit on the gas circulation pipe. .
  • Roots system and each Roots work unit can be flexibly matched according to their respective sizes, rotational speeds, number of positions and positions of each Roots, and the geometrical position and the rotational speed can be correlated, and the geometric position can be Arbitrarily set.
  • This design uses magnetic transmission mechanism technology to replace the traditional involute gear to realize the coupling transmission between the main and driven rotors of the pump chamber of the same stage, to eliminate the impact and noise of the mechanical gear transmission, and to eliminate the lubrication.
  • the device is coupled to transmit power between the drive member and the working member such that the rigid or semi-rigid coupling of the mechanical coupling becomes an electromagnetically flexible coupling.
  • each independent Roots work unit has an independent drive terminal, and these independent The driving terminals are all coordinated by the same digital integrated teletype drive system 8; the slave end is changed to the corresponding rotor, so that the motor directly replaces the magnetic coupling, so that the structure is further simplified and the size is further reduced. The cost is further reduced and the reliability is further improved.
  • the invention uses an integrated teletype drive to drive the various units of the Roots working unit to start, run and stop according to strict requirements.
  • each Roots work unit is simultaneously started and gradually accelerated to the normal operation according to the respective allowed load and working conditions; at the time of operation, each Roots work unit operates at the speed required by the pumping speed specified by the strict compression relationship, and Automatically adjust according to the change of load; when stopping, stop the machine with the least pollution to the grid, the safest, most energy-saving and most environmentally friendly way for the pump itself and the assigned parent machine.
  • Each pair of Roots rotors of the invention is independent, disengages from each other, and provides a broad space for optimization of design and manufacture; at the same time, each pair of Roots rotor independent electric drives reduces the mechanical transmission length, so that the mechanical manufacturing precision requirements are lowered.
  • the noise is reduced and the service life is increased; the magnetic gear transmission and the magnetic coupling are used to reduce lubrication and noise; the static seal is used instead of the dynamic seal to improve the sealing state, improving the performance and equipment life. It has the characteristics of reasonable structure, ingenious design, economical and practical, high efficiency and environmental protection, long service life and low production cost. Therefore, it is a product of practical, economical and technical superiority.

Landscapes

  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Applications Or Details Of Rotary Compressors (AREA)

Abstract

一种多级罗茨干式真空泵,其包括一泵体(1)和电驱动终端,泵体(1)至少包括一级罗茨系统,罗茨系统至少包括一级罗茨工作单元(2),罗茨工作单元(2)设有成对的罗茨转子(3、4)和罗茨转轴(24),电驱动终端传动连接罗茨转轴(24)。由于每对罗茨转子都是独立的,解除了相互牵扯,优化了设计制造;各对罗茨转子独立电驱动减小了机械传动长度;用磁力齿轮传动、磁力联轴器联接减少了噪音;用静密封代替动密封改善了密封状态,提高了使用性能和设备寿命。

Description

一种多级罗茨干式真空泵 技术领域
本发明属于真空设备技术领域,具体涉及一种多级罗茨干式真空泵。
背景技术
传统的直排大气的多级罗茨干式真空泵是将所有的各级罗茨转子按顺序依次装在同一对(二根)轴上,就像二根并排放置的糖葫芦串一样:由同一个电机驱动,通过一对啮合齿轮传动保证两轴的运动关系不变;各级罗茨转子之间在轴向用隔板隔开形成独立工作腔室,而进排气口之间通过机械方式首尾相连构成串联工作关系;同时,各级罗茨转子及其工作腔室的大小,应根据真空泵的抽速、转速、级数和级间压缩系数需要按一定的比例关系组成。由于传统泵的齿轮箱有润滑油,为防污染,齿轮箱与转子工作室必须用动密封封住;而且,电机端为防进大气也要密封。再者,传统泵的传动轴密封使用骨架油封为主,对轴和密封件及其配合要求较高,是主要故障点且更换困难;而且传统泵为保持主、从动轴间的固定运动关系,采用了渐开线齿轮啮合传动,不仅需要润滑和密封,同时也产生噪音。
发明内容
为了解决上述问题,本发明提供一种多级罗茨干式真空 泵,本设计的每对罗茨转子都是独立的,解除了相互牵扯,给设计制造的进一步优化提供了广阔的空间;同时各对罗茨转子通过独立电驱减小了机械传动长度,使机械制造精度要求降低,有效实现噪音下降,提高机械使用寿命;再者,采用磁力齿轮传动、磁力联轴器联接减少了润滑和噪音,并利用静密封代替动密封改善了密封状态,明显提高了使用性能和设备寿命。
本发明解决其技术问题所采用的技术方案是:一种多级罗茨干式真空泵,其包括一泵体和电驱动终端,所述泵体至少包括一级罗茨系统,所述罗茨系统至少包括一级罗茨工作单元,所述罗茨工作单元设有成对的罗茨转子和罗茨转轴,所述电驱动终端传动连接罗茨转轴。
作为优选的,还包括啮合机构,所述啮合机构通过磁力联轴器联接罗茨转轴并通过电驱动终端联动罗茨转子进行真空作业。
作为优选的,所述啮合机构设置有磁力传动齿轮。
作为优选的,所述电驱动终端包括电驱转子和电驱定子,所述电驱转子装配于罗茨转轴上,且电驱转子和电驱定子的气隙间套装有密封套。
作为优选的,在泵体内的同级或不同级的罗茨工作单元上,通过并联或串联管道将各罗茨工作单元从进气口至排气口依次联通。
作为优选的,每一成对的罗茨转子均为一独立的罗茨工作单元,所述罗茨转子间的气体流通管道正常联接时,罗茨工作单元任意布置于泵体上。
作为优选的,所述罗茨系统包括一级或多级罗茨工作单元,每一罗茨工作单元均为独立的工作单元,成对的罗茨转子和罗茨转轴均独立地设置于罗茨工作单元内。
作为优选的,所述罗茨转子包括主动罗茨转子和从动罗茨转子,所述罗茨转轴包括主动罗茨转轴和从动罗茨转轴,所述主动罗茨转子设置于主动罗茨转轴上,所述从动罗茨转子设置于从动罗茨转轴上。
作为优选的,还包括数字化综合电传驱动系统,所述综合电传驱动系统电性连接电驱动终端,以用于实现电能驱动、调速、启停和联锁的统一控制。
本发明的有益效果是:本发明采用了上述技术方案,所设计的每对罗茨转子都是独立的,解除了相互牵扯,给设计制造的优化提供了广阔的空间;同时各对罗茨转子独立电驱减小了机械传动长度,使机械制造精度要求降低,噪音会下降,寿命会提高;用磁力齿轮传动、磁力联轴器联接减少了润滑和噪音。用静密封代替动密封改善了密封状态,提高了使用性能和设备寿命。它具有结构合理、设计巧妙、经济实用、高效环保、使用寿命长、生产成本低的特点。
附图说明
下面结合附图和实施例对本发明进一步说明:
图1是本发明的结构原理示意图;
图2是图1中A-A面的结构示意图。
具体实施方式
为使本发明实施例的目的、技术方案和优点更加清楚,下面将结合本发明实施例中的附图,对本发明实施例中的技术方案进行清楚、完整地描述,显然,所描述的实施例是本发明一部分实施例,而不是全部的实施例。通常在此处附图中描述和示出的本发明实施例的组件可以以各种不同的配置来布置和设计。因此,以下对在附图中提供的本发明的实施例的详细描述并非旨在限制要求保护的本发明的范围,而是仅仅表示本发明的选定实施例。
参照图1~图2,本发明提供一种多级罗茨干式真空泵,它包括:至少包括一级罗茨系统(图中未标示)的泵体1,每一罗茨系统至少包括一级罗茨工作单元2,每一罗茨工作单元2设有成对的罗茨转子3、4,成对的罗茨转轴24,以及电驱动终端,该电驱动终端包括电驱转子13和电驱定子10。电驱动终端联接在罗茨转轴24上。本发明将每一级罗茨系统都由一个罗茨工作单元2或若干个罗茨工作单元2构成,每个罗茨工作单元2都包括有独立的一对转轴,这些转轴按一定的关系运动;而各级罗茨系统的进排气口按首尾相接依次串联,具体的其首尾相接或者是直接相通或通过傍接管路 相连,可由各级罗茨系统按各自合适的尺寸、转速、各罗茨工作单元2个数和位置来灵活的搭配,从而将各级罗茨系统间的压缩比以单纯的用容积比来实现,改成用容积比、或转速比、或转速比与容积比联合来实现的技术效果。
这样,就可以通过大抽速腔的转速提高来换取容积的减小,小抽速腔可以用降低转速的方式来换取容积的增大,从而使各罗茨工作单元腔室的容积均匀或接近均匀;使泵在同样抽速的情况下几何尺寸因大抽速腔的减小而减小,从而实现降低制造成本、降低运行能耗、改善排出端状况的目的;使泵在同样抽速的情况下,几何尺寸因小抽速腔的增大而改善泵的排气端散热;大抽速腔的尺寸减小和小抽速腔的尺寸变大使泵的规格型号范围向更大化和更小化二端发展变为了可能。从而减小了每根罗茨转轴的长度,改善了罗茨转轴的支撑状况;使每级泵的每个罗茨转轴端都可以有轴承支撑和密封,并且这些轴承和密封都易于维护。现代加工技术的进步为各级之间实现严格比关系的机械传动提供了便捷的条件,使以上的各级罗茨转轴独立分离设计提供了可能。
啮合机构(图中未标示)联接于罗茨转轴24上,并通过电驱动终端联动罗茨转子进行真空作业;在啮合机构与罗茨转轴24之间装配有一组磁力联轴器,而各磁力联轴器的气隙间套装有密封套。其中,啮合机构包括磁力传动齿轮。本专利采用磁力传动技术代替传统的渐开线齿轮来实现同级 泵腔的主、从动转子间的耦合传动,从而消除机械齿轮传动的冲击和噪音、取消润滑。同时采用磁力联轴器来联接驱动部件与工作部件间的动力传输,从而使机械联轴器的刚性或半刚性联接变成了电磁的柔性联接,使传动精度要求降低、传动冲击减小、噪音污染得到改善;进一步地,本专利在磁力联轴器的气隙间采用不影响磁力的容器,本发明的不影响磁力的容器包括为不影响磁力的密封套。通过磁力联轴器的气隙间采用不影响磁力的容器将工作部件与外界空间隔开而实现将动密封变成静密封,使密封性能和寿命都得到改善。本专利进而将以上述的磁力联轴器的驱动端换成综合电传驱动终端的驱动件(即电机定子),而从动端改成与之相对应的转子,让电机直接代替磁力联轴器,使结构进一步简洁、尺寸进一步减小、成本进一步下降、可靠性进一步提高。
本专利设置的数字化综合电传驱动系统8,连接各电驱动终端进行电能驱动、调速、启停和联锁的统一控制。使用数字化综合电传驱动技术,用一个驱动器驱动各级泵、各罗茨工作单元按严格的要求启动、运行、停机。即启动时各级同时启动并按各自允许的负载、工况逐渐加速直至正常运行;运行时各自按严格的压缩关系规定的抽速所要求的速度运行、并根据负载的变化自动调节;停止时按对电网污染最小、对泵自身和被配属的母机最安全、最节能、最环保的方式停机。
本专利的电驱动终端包括有电驱转子、电驱定子;电驱转子装配于罗茨转轴24上,同时于电驱转子和电驱定子的气隙间套装有密封套。本技术特征为,将传统的电机与转子轴间联接的机械联轴器取消,让每个独立罗茨工作单元2的电驱动终端的转子直接装到相应的罗茨转轴24上,而定子装到相关的零件上。同时,在转子与定子的气隙间装一个不影响磁力传动的密封套,将罗茨转子及其工作单元与外界隔开,从而实现将动密封改成静密封而又不影响磁力驱动。
优选的,在泵体内的同级或不同级的罗茨工作单元2上,将各罗茨工作单元的腔室通过并联或串联管道从进气口至排气口依次联通。每一成对的罗茨转子均为一独立的罗茨工作单元2,各罗茨转子间的气体流通管道正常联接时,各罗茨工作单元2能够任意布置在泵体上。一罗茨系统包括一级或多级罗茨工作单元2,每一级罗茨工作单元2均为一独立的工作单元,成对的罗茨转子、成对的罗茨转轴24均独立地设置于罗茨工作单元2内。本发明由多级罗茨系统组成,每级罗茨系统包括有一个罗茨工作单元2或多个罗茨工作单元2。每对罗茨转子都是一个独立的罗茨工作单元2:一个独立的真空工作腔室和装于其内的一对独立的罗茨转子及其轴等附件;即只要气体流通管道是按规律联接的,这些独立的罗茨工作单元2可在泵体上任意布置。
本专利中的啮合机构包括传动齿轮,该传动齿轮包括主 传动齿轮和从传动齿轮。罗茨转子包括主动罗茨转子和从动罗茨转子;罗茨转轴24包括主动罗茨转轴和从动罗茨转轴。每个独立的罗茨工作单元2都用一对齿轮来耦合,而这对齿轮是磁力传动齿轮。同时,将磁力传动齿轮与主从动罗茨转轴间装一组磁力联轴器来传递扭矩,并且在磁力联轴器的气隙间套装一个不影响磁力传统的密封套,将罗茨转子及其工作单元与外界隔开,从而实现将动密封改成静密封。进一步优化结构上,本专利中每个独立的罗茨工作单元都有一个独立的电驱动终端,而这些电独立驱动终端都由同一个数字化综合电传驱动系统8进行协调控制。
实施例:
参照附图1-2所示,本实施例的成对转子转轴独立的直排大气的多级罗茨干式真空泵,它包括:泵体1、罗茨系统(图中未标示)、罗茨工作单元2、主动罗茨转子3、从动罗茨转子4、主传动齿轮5、从传动齿轮6、气流通道7、综合电传驱动控制室8、电驱端盖9、电驱定子10、驱动端气隙静密封套11、轴承12、电驱转子13、密封圈14、电驱动端隔板16、泵体密封圈17、右隔板18、磁力联轴器内盘19、磁力联轴器气隙静密封套20、磁力联轴器外盘21、传动齿轮轴承22、齿轮罩23。罗茨转子包括主动罗茨转子3和从动罗茨转子4,设置为啮合机构的传动齿轮包括主传动齿轮5、从传动齿轮6、传动齿轮轴承22和齿轮罩23。电驱动终端 包括电驱端盖9、电驱定子10、驱动端气隙静密封套11和电驱转子13。磁力联轴器包括磁力联轴器内盘19、磁力联轴器气隙静密封套20和磁力联轴器外盘21。本发明专利由三大功能部件组成:泵体部件、各罗茨工作单元2、主从传动齿轮5、6、综合电传驱动控制系统8。泵体部件由一个泵体1(含若干为真空腔室的罗茨工作单元2、气流通道7、进排气口等)、若干对罗茨转子3、4、一个电驱动端隔板16及轴承12、一个右隔板18及轴承12、若干泵体密封圈17等组成。各罗茨工作单元2、罗茨转子啮合的主从动传动齿轮5、6,由若干对磁力传动齿轮5、6、若干对磁隙带静密封套20的磁力联轴器、若干密封圈14、一个齿轮罩23等组成。综合电传驱动控制系统8,由数字电传驱动控制室一个、人机对话窗口一个、电力驱动终端若干(含励磁定子、磁隙密封套、电驱转子和密封圈)和控制箱等组成。整个系统成一个智能的整体,全静密封,散热良好,噪音小。
本实施例的排气压力稍高于一个大气压,进气端的工作压力和极限压力按使用要求而定;其抽速也是根据系列型谱要求来定。
本专利由多级罗茨工作单元2组成:每级罗茨工作单元2既可以是单个,也可以是多个连接而成的;每个罗茨工作单元2都设置独立的一对罗茨转轴24,这些罗茨转轴按一定的关系运动;各级罗茨工作单元2按一定规律在气体压缩方 向依次从进气口到排气口用管道串联。
罗茨系统的级数多少是根据泵所需要达到的极限压力(真空度)和级间压缩比不同而不同。而每级罗茨工作单元2的多少则是根据需要(如:泵的大小、结构尺寸、希望和可能达到的合适转速、以及制造成本等)而定,但基本原则是:每级各罗茨工作单元2每转能封闭气体的几何容积与转速乘积之和再与相邻级的该数值之比要与他们各自间的压缩比一至,即:
Figure PCTCN2018118358-appb-000001
A为a级与b级间的压缩比,a与b为相邻级的序号(如b=a+1),N为罗茨转子转速,V为罗茨工作单元2腔室内每转能封闭气体的几何容积,i、m、n均为正整数。
所有的罗茨工作单元2不论是同级的还是不同级的都在同一个泵体内,其腔室通过并联或串联管道按规律从进气口到排气口依次联通;但它们在机械和几何位置上都是一个独立的小系统:有一个受综合电传驱动系统8直接控制的独立的电驱动终端、一对独立运行的罗茨转子、一个独立的啮合机构和一个除进、排管道与其它室有关联外其余都独立的工作腔;所有这些罗茨工作单元2都可以根据使用需要和设计制造方便任意布置。
以上所说的进气口和排气口是整个真空泵系统管道的 开始和结尾,整个系统只在进气端有一个进气口,也只在排气端有一个排气口。
以上所说的管道是沟通进气口、各罗茨工作单元2、排气口,以便抽真空工作顺利进行的通道;该通道可直接在泵体内加工出来,也可以在泵体外旁接;根据工作室的布置不同该通道可能会出现并联分支,可能是直的、也可能弯曲。
以上所说的罗茨转子是罗茨泵的功能执行元件。
每个罗茨转子压缩气体的工作部分为异型柱体,该柱体的径向断面轮廓外形为多段罗茨曲线加圆弧、或多段圆弧曲线、或多段摆线、或以上曲线的混合曲线组成的有凹凸形状的封闭曲线,有三头罗茨也有两叶罗茨等等,这里对曲线和头数不做限制,但要求在旋转工作时能保证与泵腔的内壁和配偶转子有良好配合与密封、压缩气体的效率高、节能环保即可。
罗茨转子的轴向两端各有一个用来装在轴承支撑上和用来传动的轴,该两轴与中间异型柱体的母线平行,且中心轴线与异型柱体的几何中心线重合,两轴与中间异型柱体间各由一肩台连接过度;该过度肩台与中心轴线垂直,且两肩台相互平行。
工作时两件形状、尺寸都一样的罗茨转子,轴线平行,径向按一定的相位关系装在同一个罗茨工作单元2内,成对耦合使用;其中一个是直接由电力驱动的主动件,另一个是 从动件,他们之间的耦合(相位)关系由一对分别装在他们同一端的转轴上,直接啮合且模数和齿数都相等的精密齿轮来实现,因此两罗茨转子的旋向相反,转速相同。
以上所说的啮合机构也就是这对保证两罗茨转子耦合关系的模数和齿数都相同的直接啮合的精密齿轮,本实施例的精密齿轮采用磁力齿轮来代替传统的渐开线机械齿轮,以减少润滑和噪音。
以上所说的这对磁力齿轮与对应的一对罗茨转轴之间的联接用两个磁力联轴器来实现,并且在该两磁力联轴器的气隙间用不影响磁力的容器将罗茨转轴及其附件与外界隔开,从而使动密封变为静密封。
以上所说的罗茨工作单元2泵腔的内壁是由两个直径均为罗茨叶轮长轴方向外缘回转直径,中心距为罗茨叶轮最长与最小尺寸之和的二分之一的圆柱孔相贯而成,该孔的长度是该罗茨真空室内罗茨叶轮压气段长度与该机构两端总配合间隙之和。
以上所说的泵体是其上述所有罗茨转子赖以依存的罗茨真空室泵腔,包括按规律连接这些罗茨工作单元2、进气口和排气口的管道的泵的主体零件。泵体上还有散热装置、安装连接装置等。泵体两端分别装有电驱动端隔板和右隔板及其密封圈等,该隔板等与泵体构成封闭的罗茨工作单元2;且两个罗茨转子的支撑轴承就安装在该二隔板上,罗茨转子 工作段两端的肩台与两隔板内壁构成配合,以隔断各级真空室进气侧、被输送气体封闭处和排气侧,实现压缩排气。
以上所说的数字化综合电传驱动控制系统8,是指每个罗茨工作单元2的罗茨转子都有一个电力驱动终端直接驱动,该电驱动终端皆由综合电传驱动控制室直接分配电能驱动、调速、启停,且该驱动、调速、启停、联锁等是按照严格的逻辑关系进行的。电驱转子13直接联接在主动罗茨转轴上,电驱定子10与电驱转子13气隙间同样由不影响磁力的容器将罗茨转轴及其附件与外界隔开,从而使动密封变为静密封。这样,全泵的工作部分除进排气口外,其余全部都由静密封封住。该综合电传驱动控制系统8在泵的一端并与泵体相连。
本发明专利背景的现有技术存在以下缺陷:第一,所有转子串在同一对传动轴上,因此其转速必须一致,这样就产生互相牵制。各级不能根据自己的不同选择各自所需的转速,而只能靠各级容积的改变来实现各级间的压缩比,因此制约了泵的抽速范围:要大容积的那一级难以再大,限制了大排量泵的设计制造;要小容积的那一级难以再小,又限制了小排量泵的设计制造。第二,因为各级共轴,所以轴较长:如级间隔板处都设置轴承支撑,就出现了过约束而干涉,且该轴承维护困难;如级间隔板处都不设置轴承支撑,轴因长而可能发生振动甚至共振,而不利于泵的运行、影响泵的寿命。第三,现在泵的传动轴密封使用骨架油封为主,对轴和密封 件及其配合要求较高,是主要故障点且更换困难。第四,现在泵为保持主、从动轴间的固定运动关系,采用了渐开线齿轮啮合传动;因此就需要润滑和密封,同时也产生噪音。第五,渐开线精密齿轮传动要求精度高,装卸困难,传动噪音大。第六,因为共轴而同转速,泵的级间压缩比只能靠容积比来实现,所以在五级、或六级、或更多级这样的级数多的泵最后的排出级几何尺寸将很小,其散热很困难。
现有技术是将所有转子串在同一对传动轴上,因此其转速必须一致,这样就产生互相牵制;各级不能根据自己的不同选择各自所需的转速,而只能靠各级容积的改变来实现各级间的压缩比,因此制约了该种泵的优化。同时主从动耦合齿轮是渐开线齿轮,用油润滑,用动密封密封;泵与电机的联接是用机械联轴器,与电机联接的轴也用的是橡胶动密封。因此噪音大、有渗漏。
而改进后的本发明由多级罗茨系统组成,每级罗茨系统包括一个罗茨工作单元或若干个罗茨工作单元;每一罗茨工作单元设有独立的成对的转轴,而这些转轴按一定(设定)的关系运动;其中,各级罗茨系统的进排气口按首尾相接依次串联,且该首尾相接或者是直接相通或通过傍接管路相连;而多个罗茨工作单元间的进排气口进行并联连接,该并联只是进气口与进气口相贯通、排气口与排气口相贯通,实现罗茨转子工作单元在气体流通管道上的并列设置。这样就可以 让各级罗茨系统及各罗茨工作单元按各自合适的尺寸、转速、各罗茨工作单元个数和位置来灵活的搭配,实现几何尺寸和转速的相关联,而几何位置可任意设置。本设计采用磁力传动机构技术代替传统的渐开线齿轮来实现同级泵腔的主、从动转子间的耦合传动,以消除机械齿轮传动的冲击和噪音、取消润滑;同时,通过磁力联轴器来联接驱动部件与工作部件间的动力传输,从而使机械联轴器的刚性或半刚性联接变成了电磁的柔性联接。
本专利进而将以上述的磁力联轴器的驱动端换成数字化综合电传驱动终端的驱动件(即电机定子):每个独立的罗茨工作单元都有一个独立的驱动终端,而这些独立驱动终端都是由同一个数字化综合电传驱动系统8协调控制的;而从动端改成与之相对应的转子,让电机直接代替磁力联轴器,使结构进一步简洁、尺寸进一步减小、成本进一步下降、可靠性进一步提高。本发明用一个综合电传驱动器驱动各级泵各罗茨工作单元按严格的要求启动、运行、停机。即启动时,各罗茨工作单元同时启动并按各自允许的负载、工况逐渐加速直至正常运行;运行时,各罗茨工作单元按严格的压缩关系规定的抽速所要求的速度运行、并根据负载的变化自动调节;停止时,按对电网污染最小、对泵自身和被配属的母机最安全、最节能、最环保的方式停机。本发明每对罗茨转子都是独立的,解除了相互牵扯,给设计制造的优化提供了广 阔的空间;同时各对罗茨转子独立电驱减小了机械传动长度,使机械制造精度要求降低,从而下降噪音,提高使用寿命;用磁力齿轮传动、磁力联轴器联接减少了润滑和噪音;采用静密封代替动密封改善了密封状态,提高了使用性能和设备寿命。它具有结构合理、设计巧妙、经济实用、高效环保、使用寿命长、生产成本低的特点。因此,它是一种实用性、经济性和技术性均优级的产品。
上述实施例只是本发明的优选方案,本发明还可有其他实施方案。本领域的技术人员在不违背本发明精神的前提下还可作出等同变形或替换,这些等同的变型或替换均包含在本申请权利要求所设定的范围内。

Claims (9)

  1. 一种多级罗茨干式真空泵,其特征在于,包括一泵体和电驱动终端,所述泵体至少包括一级罗茨系统,所述罗茨系统至少包括一级罗茨工作单元,所述罗茨工作单元设有成对的罗茨转子和罗茨转轴,所述电驱动终端传动连接罗茨转轴。
  2. 如权利要求1所述的一种多级罗茨干式真空泵,其特征在于,还包括啮合机构,所述啮合机构通过磁力联轴器联接罗茨转轴并通过电驱动终端联动罗茨转子进行真空作业。
  3. 如权利要求2所述的一种多级罗茨干式真空泵,其特征在于,所述啮合机构设置有磁力传动齿轮。
  4. 如权利要求1所述的一种多级罗茨干式真空泵,其特征在于,所述电驱动终端包括电驱转子和电驱定子,所述电驱转子装配于罗茨转轴上,且电驱转子和电驱定子的气隙间套装有密封套。
  5. 如权利要求1所述的一种多级罗茨干式真空泵,其特征在于,在泵体内的同级或不同级的罗茨工作单元上,通过并联或串联管道将各罗茨工作单元从进气口至排气口依次联通。
  6. 如权利要求1所述的一种多级罗茨干式真空泵,其特征在于,每一成对的罗茨转子均为一独立的罗茨工作单元,所述罗茨转子间的气体流通管道正常联接时,罗茨工作单元 任意布置于泵体上。
  7. 如权利要求1-6任一项所述的一种多级罗茨干式真空泵,其特征在于,所述罗茨系统包括一级或多级罗茨工作单元,每一罗茨工作单元均为独立的工作单元,成对的罗茨转子和罗茨转轴均独立地设置于罗茨工作单元内。
  8. 如权利要求7所述的一种多级罗茨干式真空泵,其特征在于,所述罗茨转子包括主动罗茨转子和从动罗茨转子,所述罗茨转轴包括主动罗茨转轴和从动罗茨转轴,所述主动罗茨转子设置于主动罗茨转轴上,所述从动罗茨转子设置于从动罗茨转轴上。
  9. 如权利要求7所述的一种多级罗茨干式真空泵,其特征在于,还包括数字化综合电传驱动系统,所述综合电传驱动系统电性连接电驱动终端,以用于实现电能驱动、调速、启停和联锁的统一控制。
PCT/CN2018/118358 2018-02-02 2018-11-30 一种多级罗茨干式真空泵 WO2019148954A1 (zh)

Priority Applications (5)

Application Number Priority Date Filing Date Title
KR1020207025266A KR102561552B1 (ko) 2018-02-02 2018-11-30 다단 루츠 건식 진공 펌프
AU2018406349A AU2018406349B2 (en) 2018-02-02 2018-11-30 Multi-stage roots dry vacuum pump
JP2020542261A JP7121416B2 (ja) 2018-02-02 2018-11-30 多段ルーツ型ドライ真空ポンプ
EP18903580.1A EP3748166A4 (en) 2018-02-02 2018-11-30 ROOTS SEC AND MULTI-STAGE DEPRESSOR
US16/945,254 US11415133B2 (en) 2018-02-02 2020-07-31 Multi-stage dry roots vacuum pump

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201810106097.2 2018-02-02
CN201810106097.2A CN108194353B (zh) 2018-02-02 2018-02-02 一种成对转子转轴独立的直排大气的多级罗茨干式真空泵

Related Child Applications (1)

Application Number Title Priority Date Filing Date
US16/945,254 Continuation US11415133B2 (en) 2018-02-02 2020-07-31 Multi-stage dry roots vacuum pump

Publications (1)

Publication Number Publication Date
WO2019148954A1 true WO2019148954A1 (zh) 2019-08-08

Family

ID=62592019

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2018/118358 WO2019148954A1 (zh) 2018-02-02 2018-11-30 一种多级罗茨干式真空泵

Country Status (7)

Country Link
US (1) US11415133B2 (zh)
EP (1) EP3748166A4 (zh)
JP (1) JP7121416B2 (zh)
KR (1) KR102561552B1 (zh)
CN (1) CN108194353B (zh)
AU (1) AU2018406349B2 (zh)
WO (1) WO2019148954A1 (zh)

Families Citing this family (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN108194353B (zh) * 2018-02-02 2019-12-13 中山市天元真空设备技术有限公司 一种成对转子转轴独立的直排大气的多级罗茨干式真空泵
FR3098869B1 (fr) * 2019-07-17 2021-07-16 Pfeiffer Vacuum Groupe de pompage
GB2588424B (en) * 2019-10-23 2022-01-26 Edwards Ltd Pump apparatus
DK3889431T3 (da) * 2020-03-31 2024-03-18 Alfa Laval Corp Ab Roterende, positiv fortrængningspumpe
CN114412788B (zh) * 2022-03-02 2024-03-22 南通诺博特机器人制造有限公司 一种节能型罗茨-螺杆集成式无油真空泵
CN116517828B (zh) * 2023-06-07 2024-03-22 北京通嘉宏瑞科技有限公司 一种变相位角多级罗茨真空泵及其工作方法

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN2504406Y (zh) * 2001-06-25 2002-08-07 温州市工科所磁传动设备厂 磁传动式罗茨真空泵
US20040213686A1 (en) * 1994-04-21 2004-10-28 Ebara Corporation Multishaft electric motor and positive-displacement pump combined with such multishaft electric motor
CN101382137A (zh) * 2007-09-07 2009-03-11 中国科学院沈阳科学仪器研制中心有限公司 一种直排大气的多级罗茨干式真空泵
US20130336828A1 (en) * 2012-06-18 2013-12-19 Kabushiki Kaisha Toshiba Roots pump and exhaust method
US20140093412A1 (en) * 2012-03-26 2014-04-03 Edwards Limited Vacuum pump stators and vacuum pumps
CN108194353A (zh) * 2018-02-02 2018-06-22 中山市天元真空设备技术有限公司 一种成对转子转轴独立的直排大气的多级罗茨干式真空泵

Family Cites Families (20)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US2937807A (en) * 1956-12-26 1960-05-24 Heraeus Gmbh W C High vacuum pumps
JPS6019132B2 (ja) * 1975-09-04 1985-05-14 松下電器産業株式会社 半導体磁器コンデンサの製造方法
JPH05231366A (ja) * 1991-07-09 1993-09-07 Ebara Corp 多段式真空ポンプ装置
DE4318707A1 (de) * 1993-06-04 1994-12-08 Sihi Gmbh & Co Kg Verdrängermaschine mit elektronischer Motorsynchronisation
JPH08254193A (ja) * 1995-03-15 1996-10-01 Ebara Corp 容積式真空ポンプ
JP3767052B2 (ja) * 1996-11-30 2006-04-19 アイシン精機株式会社 多段式真空ポンプ
JP3763193B2 (ja) * 1997-09-22 2006-04-05 アイシン精機株式会社 多段式真空ポンプ
JP2000283024A (ja) * 1999-03-30 2000-10-10 Aisin Seiki Co Ltd ポンプ装置
JP3571985B2 (ja) * 2000-02-21 2004-09-29 株式会社アンレット 多段ルーツ式真空ポンプ
FR2883934B1 (fr) * 2005-04-05 2010-08-20 Cit Alcatel Pompage rapide d'enceinte avec limitation d'energie
JP4767625B2 (ja) * 2005-08-24 2011-09-07 樫山工業株式会社 多段ルーツ式ポンプ
JP2008157446A (ja) 2006-11-30 2008-07-10 Anest Iwata Corp 2軸以上の回転軸間の駆動力伝達機構と該駆動力伝達機構を用いた無給油流体機械
DE102010055798A1 (de) 2010-08-26 2012-03-01 Vacuubrand Gmbh + Co Kg Vakuumpumpe
US9273568B2 (en) * 2010-11-17 2016-03-01 Ulvac, Inc. Coupling structure for vacuum exhaust device and vacuum exhaust system
JP6009193B2 (ja) 2012-03-30 2016-10-19 株式会社荏原製作所 真空排気装置
DE202012010401U1 (de) * 2012-10-31 2014-02-03 Hugo Vogelsang Maschinenbau Gmbh Drehkolbenpumpe mit Direktantrieb
CN104632629A (zh) * 2013-11-13 2015-05-20 中国科学院沈阳科学仪器股份有限公司 用于高效抽除小分子量气体的真空系统
EP3061973B1 (en) * 2015-02-25 2017-12-13 Ebara Corporation Vacuum pump
WO2017031807A1 (zh) * 2015-08-27 2017-03-02 上海伊莱茨真空技术有限公司 一种多驱动腔非共轴真空泵
CN208474109U (zh) * 2018-02-02 2019-02-05 中山市天元真空设备技术有限公司 一种成对转子转轴独立的直排大气的多级罗茨干式真空泵

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20040213686A1 (en) * 1994-04-21 2004-10-28 Ebara Corporation Multishaft electric motor and positive-displacement pump combined with such multishaft electric motor
CN2504406Y (zh) * 2001-06-25 2002-08-07 温州市工科所磁传动设备厂 磁传动式罗茨真空泵
CN101382137A (zh) * 2007-09-07 2009-03-11 中国科学院沈阳科学仪器研制中心有限公司 一种直排大气的多级罗茨干式真空泵
US20140093412A1 (en) * 2012-03-26 2014-04-03 Edwards Limited Vacuum pump stators and vacuum pumps
US20130336828A1 (en) * 2012-06-18 2013-12-19 Kabushiki Kaisha Toshiba Roots pump and exhaust method
CN108194353A (zh) * 2018-02-02 2018-06-22 中山市天元真空设备技术有限公司 一种成对转子转轴独立的直排大气的多级罗茨干式真空泵

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP3748166A4 *

Also Published As

Publication number Publication date
CN108194353A (zh) 2018-06-22
US20210054841A1 (en) 2021-02-25
KR20200115629A (ko) 2020-10-07
JP7121416B2 (ja) 2022-08-18
CN108194353B (zh) 2019-12-13
JP2021513023A (ja) 2021-05-20
US11415133B2 (en) 2022-08-16
KR102561552B1 (ko) 2023-07-28
EP3748166A4 (en) 2021-11-03
EP3748166A1 (en) 2020-12-09
AU2018406349B2 (en) 2021-11-18
AU2018406349A1 (en) 2020-09-24

Similar Documents

Publication Publication Date Title
WO2019148954A1 (zh) 一种多级罗茨干式真空泵
KR100647012B1 (ko) 루츠 로터와 스크루 로터 복합건식진공펌프
US8936450B2 (en) Roots fluid machine with reduced gas leakage
CA2330425C (en) Rotary piston blower
WO2022179143A1 (zh) 转子组件、压缩机和空调
CN109931262B (zh) 一种非圆齿轮驱动的同步回转式压缩机
EP0674106A1 (en) A multistage vacuum pump
EP1327078B1 (en) Multi-stage helical screw rotor
CN208474109U (zh) 一种成对转子转轴独立的直排大气的多级罗茨干式真空泵
CN114607600B (zh) 一种新型多级罗茨真空泵
JP5663798B2 (ja) 二軸回転ポンプ
CN209818301U (zh) 一种共用驱动轴的多级真空泵
JPH07305689A (ja) 多段式真空ポンプ
KR20190122608A (ko) 터보 압축기
KR102036201B1 (ko) 터보 압축기
CN215890463U (zh) 压缩机及空调器
CN214617037U (zh) 一种微油螺杆真空泵
CN114320917B (zh) 一种直排式罗茨泵
CN211082252U (zh) 一种用于压缩机上的多级传动结构
KR20130063069A (ko) 스크류 로터를 구비하는 진공 펌프
CN211819910U (zh) 一种旋转轴挡点结构
TWM406658U (en) Multi-stage spiral type compressor
CN113819056A (zh) 压缩机及空调器
KR100591079B1 (ko) 루츠로터와 스크류로터 복합건식 진공펌프
CN117450068A (zh) 压缩组件及压缩机

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 18903580

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2020542261

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

ENP Entry into the national phase

Ref document number: 20207025266

Country of ref document: KR

Kind code of ref document: A

ENP Entry into the national phase

Ref document number: 2018903580

Country of ref document: EP

Effective date: 20200902

ENP Entry into the national phase

Ref document number: 2018406349

Country of ref document: AU

Date of ref document: 20181130

Kind code of ref document: A