WO2019146671A1 - 逆浸透膜、及び逆浸透膜の製造方法 - Google Patents
逆浸透膜、及び逆浸透膜の製造方法 Download PDFInfo
- Publication number
- WO2019146671A1 WO2019146671A1 PCT/JP2019/002195 JP2019002195W WO2019146671A1 WO 2019146671 A1 WO2019146671 A1 WO 2019146671A1 JP 2019002195 W JP2019002195 W JP 2019002195W WO 2019146671 A1 WO2019146671 A1 WO 2019146671A1
- Authority
- WO
- WIPO (PCT)
- Prior art keywords
- carbon
- reverse osmosis
- osmosis membrane
- film
- porous support
- Prior art date
Links
- 239000012528 membrane Substances 0.000 title claims abstract description 90
- 238000001223 reverse osmosis Methods 0.000 title claims abstract description 56
- 238000000034 method Methods 0.000 title description 25
- 238000004519 manufacturing process Methods 0.000 title description 3
- OKTJSMMVPCPJKN-UHFFFAOYSA-N Carbon Chemical compound [C] OKTJSMMVPCPJKN-UHFFFAOYSA-N 0.000 claims abstract description 111
- 229910052799 carbon Inorganic materials 0.000 claims abstract description 108
- 239000000758 substrate Substances 0.000 claims abstract description 47
- 238000000926 separation method Methods 0.000 claims abstract description 41
- 238000000576 coating method Methods 0.000 claims description 55
- 239000011248 coating agent Substances 0.000 claims description 54
- 238000001914 filtration Methods 0.000 claims description 37
- FAPWRFPIFSIZLT-UHFFFAOYSA-M Sodium chloride Chemical compound [Na+].[Cl-] FAPWRFPIFSIZLT-UHFFFAOYSA-M 0.000 claims description 24
- 238000011033 desalting Methods 0.000 claims description 21
- 239000002904 solvent Substances 0.000 claims description 19
- 229920003023 plastic Polymers 0.000 claims description 18
- 239000004033 plastic Substances 0.000 claims description 18
- 239000011780 sodium chloride Substances 0.000 claims description 12
- 238000005240 physical vapour deposition Methods 0.000 claims description 7
- 239000013077 target material Substances 0.000 claims description 6
- 239000007864 aqueous solution Substances 0.000 claims description 5
- 239000010410 layer Substances 0.000 description 68
- XLYOFNOQVPJJNP-UHFFFAOYSA-N water Substances O XLYOFNOQVPJJNP-UHFFFAOYSA-N 0.000 description 36
- 239000000243 solution Substances 0.000 description 26
- LFQSCWFLJHTTHZ-UHFFFAOYSA-N Ethanol Chemical compound CCO LFQSCWFLJHTTHZ-UHFFFAOYSA-N 0.000 description 17
- 229920000036 polyvinylpyrrolidone Polymers 0.000 description 14
- 239000001267 polyvinylpyrrolidone Substances 0.000 description 14
- 235000013855 polyvinylpyrrolidone Nutrition 0.000 description 14
- 239000007788 liquid Substances 0.000 description 12
- 230000008569 process Effects 0.000 description 12
- 230000001771 impaired effect Effects 0.000 description 10
- 239000000463 material Substances 0.000 description 10
- 230000035699 permeability Effects 0.000 description 10
- 238000011156 evaluation Methods 0.000 description 9
- 150000003839 salts Chemical class 0.000 description 9
- 230000015572 biosynthetic process Effects 0.000 description 8
- 239000007789 gas Substances 0.000 description 8
- 239000011148 porous material Substances 0.000 description 7
- 230000008520 organization Effects 0.000 description 6
- 239000000126 substance Substances 0.000 description 6
- IJGRMHOSHXDMSA-UHFFFAOYSA-N Atomic nitrogen Chemical compound N#N IJGRMHOSHXDMSA-UHFFFAOYSA-N 0.000 description 5
- 125000004432 carbon atom Chemical group C* 0.000 description 5
- 229910001873 dinitrogen Inorganic materials 0.000 description 5
- 239000012530 fluid Substances 0.000 description 5
- 238000011084 recovery Methods 0.000 description 5
- 229920005989 resin Polymers 0.000 description 5
- 239000011347 resin Substances 0.000 description 5
- 238000011144 upstream manufacturing Methods 0.000 description 5
- XKRFYHLGVUSROY-UHFFFAOYSA-N Argon Chemical compound [Ar] XKRFYHLGVUSROY-UHFFFAOYSA-N 0.000 description 4
- 229910003481 amorphous carbon Inorganic materials 0.000 description 4
- 230000000052 comparative effect Effects 0.000 description 4
- 238000000151 deposition Methods 0.000 description 4
- 230000008021 deposition Effects 0.000 description 4
- 230000004907 flux Effects 0.000 description 4
- 238000007654 immersion Methods 0.000 description 4
- 229920002492 poly(sulfone) Polymers 0.000 description 4
- CSCPPACGZOOCGX-UHFFFAOYSA-N Acetone Chemical compound CC(C)=O CSCPPACGZOOCGX-UHFFFAOYSA-N 0.000 description 3
- YMWUJEATGCHHMB-UHFFFAOYSA-N Dichloromethane Chemical compound ClCCl YMWUJEATGCHHMB-UHFFFAOYSA-N 0.000 description 3
- XEKOWRVHYACXOJ-UHFFFAOYSA-N Ethyl acetate Chemical compound CCOC(C)=O XEKOWRVHYACXOJ-UHFFFAOYSA-N 0.000 description 3
- 238000009295 crossflow filtration Methods 0.000 description 3
- 238000005115 demineralization Methods 0.000 description 3
- 230000002328 demineralizing effect Effects 0.000 description 3
- 239000000706 filtrate Substances 0.000 description 3
- 229910002804 graphite Inorganic materials 0.000 description 3
- 239000010439 graphite Substances 0.000 description 3
- 229910021385 hard carbon Inorganic materials 0.000 description 3
- 230000006872 improvement Effects 0.000 description 3
- 239000012046 mixed solvent Substances 0.000 description 3
- RTZKZFJDLAIYFH-UHFFFAOYSA-N Diethyl ether Chemical compound CCOCC RTZKZFJDLAIYFH-UHFFFAOYSA-N 0.000 description 2
- 229910052786 argon Inorganic materials 0.000 description 2
- 238000000168 high power impulse magnetron sputter deposition Methods 0.000 description 2
- 238000001755 magnetron sputter deposition Methods 0.000 description 2
- 125000004433 nitrogen atom Chemical group N* 0.000 description 2
- 239000004745 nonwoven fabric Substances 0.000 description 2
- 239000012466 permeate Substances 0.000 description 2
- 229920002239 polyacrylonitrile Polymers 0.000 description 2
- 229920001707 polybutylene terephthalate Polymers 0.000 description 2
- -1 polyethylene terephthalate Polymers 0.000 description 2
- 229920000139 polyethylene terephthalate Polymers 0.000 description 2
- 239000005020 polyethylene terephthalate Substances 0.000 description 2
- 239000000843 powder Substances 0.000 description 2
- 238000004088 simulation Methods 0.000 description 2
- 238000000108 ultra-filtration Methods 0.000 description 2
- VEXZGXHMUGYJMC-UHFFFAOYSA-M Chloride anion Chemical compound [Cl-] VEXZGXHMUGYJMC-UHFFFAOYSA-M 0.000 description 1
- VGGSQFUCUMXWEO-UHFFFAOYSA-N Ethene Chemical compound C=C VGGSQFUCUMXWEO-UHFFFAOYSA-N 0.000 description 1
- 239000005977 Ethylene Substances 0.000 description 1
- 125000004429 atom Chemical group 0.000 description 1
- 230000005540 biological transmission Effects 0.000 description 1
- 238000002425 crystallisation Methods 0.000 description 1
- 230000008025 crystallization Effects 0.000 description 1
- 238000010612 desalination reaction Methods 0.000 description 1
- 238000010586 diagram Methods 0.000 description 1
- 229910003460 diamond Inorganic materials 0.000 description 1
- 239000010432 diamond Substances 0.000 description 1
- 238000009792 diffusion process Methods 0.000 description 1
- 230000000694 effects Effects 0.000 description 1
- 239000000835 fiber Substances 0.000 description 1
- 238000010438 heat treatment Methods 0.000 description 1
- 230000005764 inhibitory process Effects 0.000 description 1
- 238000002955 isolation Methods 0.000 description 1
- 229910052743 krypton Inorganic materials 0.000 description 1
- DNNSSWSSYDEUBZ-UHFFFAOYSA-N krypton atom Chemical compound [Kr] DNNSSWSSYDEUBZ-UHFFFAOYSA-N 0.000 description 1
- 238000005259 measurement Methods 0.000 description 1
- 238000001728 nano-filtration Methods 0.000 description 1
- 229910052754 neon Inorganic materials 0.000 description 1
- GKAOGPIIYCISHV-UHFFFAOYSA-N neon atom Chemical compound [Ne] GKAOGPIIYCISHV-UHFFFAOYSA-N 0.000 description 1
- 229910052757 nitrogen Inorganic materials 0.000 description 1
- 229910052756 noble gas Inorganic materials 0.000 description 1
- 239000003960 organic solvent Substances 0.000 description 1
- 230000000149 penetrating effect Effects 0.000 description 1
- 230000000737 periodic effect Effects 0.000 description 1
- 229920001225 polyester resin Polymers 0.000 description 1
- 239000004645 polyester resin Substances 0.000 description 1
- 229920005672 polyolefin resin Polymers 0.000 description 1
- 229920006316 polyvinylpyrrolidine Polymers 0.000 description 1
- 238000002360 preparation method Methods 0.000 description 1
- 238000003825 pressing Methods 0.000 description 1
- QQONPFPTGQHPMA-UHFFFAOYSA-N propylene Natural products CC=C QQONPFPTGQHPMA-UHFFFAOYSA-N 0.000 description 1
- 125000004805 propylene group Chemical group [H]C([H])([H])C([H])([*:1])C([H])([H])[*:2] 0.000 description 1
- 238000007873 sieving Methods 0.000 description 1
- 229910001415 sodium ion Inorganic materials 0.000 description 1
- 239000007787 solid Substances 0.000 description 1
- 230000006641 stabilisation Effects 0.000 description 1
- 238000011105 stabilization Methods 0.000 description 1
- 239000011550 stock solution Substances 0.000 description 1
- 239000002344 surface layer Substances 0.000 description 1
- 229910052724 xenon Inorganic materials 0.000 description 1
- FHNFHKCVQCLJFQ-UHFFFAOYSA-N xenon atom Chemical compound [Xe] FHNFHKCVQCLJFQ-UHFFFAOYSA-N 0.000 description 1
Images
Classifications
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B01—PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
- B01D—SEPARATION
- B01D61/00—Processes of separation using semi-permeable membranes, e.g. dialysis, osmosis or ultrafiltration; Apparatus, accessories or auxiliary operations specially adapted therefor
- B01D61/02—Reverse osmosis; Hyperfiltration ; Nanofiltration
- B01D61/025—Reverse osmosis; Hyperfiltration
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B01—PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
- B01D—SEPARATION
- B01D67/00—Processes specially adapted for manufacturing semi-permeable membranes for separation processes or apparatus
- B01D67/0039—Inorganic membrane manufacture
- B01D67/0072—Inorganic membrane manufacture by deposition from the gaseous phase, e.g. sputtering, CVD, PVD
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B01—PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
- B01D—SEPARATION
- B01D67/00—Processes specially adapted for manufacturing semi-permeable membranes for separation processes or apparatus
- B01D67/0039—Inorganic membrane manufacture
- B01D67/0074—Inorganic membrane manufacture from melts
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B01—PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
- B01D—SEPARATION
- B01D67/00—Processes specially adapted for manufacturing semi-permeable membranes for separation processes or apparatus
- B01D67/0081—After-treatment of organic or inorganic membranes
- B01D67/0086—Mechanical after-treatment
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B01—PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
- B01D—SEPARATION
- B01D69/00—Semi-permeable membranes for separation processes or apparatus characterised by their form, structure or properties; Manufacturing processes specially adapted therefor
- B01D69/10—Supported membranes; Membrane supports
- B01D69/107—Organic support material
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B01—PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
- B01D—SEPARATION
- B01D69/00—Semi-permeable membranes for separation processes or apparatus characterised by their form, structure or properties; Manufacturing processes specially adapted therefor
- B01D69/10—Supported membranes; Membrane supports
- B01D69/107—Organic support material
- B01D69/1071—Woven, non-woven or net mesh
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B01—PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
- B01D—SEPARATION
- B01D69/00—Semi-permeable membranes for separation processes or apparatus characterised by their form, structure or properties; Manufacturing processes specially adapted therefor
- B01D69/12—Composite membranes; Ultra-thin membranes
- B01D69/1213—Laminated layers
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B01—PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
- B01D—SEPARATION
- B01D69/00—Semi-permeable membranes for separation processes or apparatus characterised by their form, structure or properties; Manufacturing processes specially adapted therefor
- B01D69/12—Composite membranes; Ultra-thin membranes
- B01D69/1216—Three or more layers
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B01—PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
- B01D—SEPARATION
- B01D71/00—Semi-permeable membranes for separation processes or apparatus characterised by the material; Manufacturing processes specially adapted therefor
- B01D71/02—Inorganic material
- B01D71/021—Carbon
-
- C—CHEMISTRY; METALLURGY
- C01—INORGANIC CHEMISTRY
- C01B—NON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
- C01B32/00—Carbon; Compounds thereof
- C01B32/05—Preparation or purification of carbon not covered by groups C01B32/15, C01B32/20, C01B32/25, C01B32/30
-
- C—CHEMISTRY; METALLURGY
- C01—INORGANIC CHEMISTRY
- C01B—NON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
- C01B32/00—Carbon; Compounds thereof
- C01B32/15—Nano-sized carbon materials
-
- C—CHEMISTRY; METALLURGY
- C02—TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
- C02F—TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
- C02F1/00—Treatment of water, waste water, or sewage
- C02F1/44—Treatment of water, waste water, or sewage by dialysis, osmosis or reverse osmosis
- C02F1/441—Treatment of water, waste water, or sewage by dialysis, osmosis or reverse osmosis by reverse osmosis
-
- C—CHEMISTRY; METALLURGY
- C23—COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
- C23C—COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
- C23C14/00—Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material
- C23C14/0005—Separation of the coating from the substrate
-
- C—CHEMISTRY; METALLURGY
- C23—COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
- C23C—COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
- C23C14/00—Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material
- C23C14/02—Pretreatment of the material to be coated
- C23C14/024—Deposition of sublayers, e.g. to promote adhesion of the coating
-
- C—CHEMISTRY; METALLURGY
- C23—COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
- C23C—COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
- C23C14/00—Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material
- C23C14/06—Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material characterised by the coating material
- C23C14/0605—Carbon
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B01—PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
- B01D—SEPARATION
- B01D2323/00—Details relating to membrane preparation
- B01D2323/10—Specific pressure applied
-
- C—CHEMISTRY; METALLURGY
- C01—INORGANIC CHEMISTRY
- C01P—INDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
- C01P2004/00—Particle morphology
- C01P2004/01—Particle morphology depicted by an image
- C01P2004/04—Particle morphology depicted by an image obtained by TEM, STEM, STM or AFM
-
- C—CHEMISTRY; METALLURGY
- C02—TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
- C02F—TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
- C02F2101/00—Nature of the contaminant
- C02F2101/10—Inorganic compounds
- C02F2101/12—Halogens or halogen-containing compounds
-
- C—CHEMISTRY; METALLURGY
- C02—TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
- C02F—TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
- C02F2103/00—Nature of the water, waste water, sewage or sludge to be treated
- C02F2103/08—Seawater, e.g. for desalination
Definitions
- the present invention relates to a reverse osmosis membrane and a method of manufacturing the reverse osmosis membrane.
- Patent Document 1 describes a reverse osmosis membrane using a hard carbon membrane (diamond-like carbon membrane) as a separation active layer.
- Patent Document 2 describes a reverse osmosis membrane in which a carbon membrane provided with an amorphous carbon structure containing nitrogen atoms is used as a separation active layer.
- the hard carbon film of Patent Document 1 has a maximum diameter of a hole of less than 0.86 nm and is referred to as a reverse osmosis membrane
- the actual situation is that constant holes are formed through the hard carbon film. It can be said that it is a type of filtration membrane that performs sieving according to the size of the substance relative to its pore size. Therefore, in the reverse osmosis membrane of Patent Document 1, the inhibition rate of sodium chloride in an aqueous sodium chloride solution (concentration: 0.01 M) remains at about 80%.
- the carbon membrane of Patent Document 2 is a filtration membrane using the principle of diffusion, and is presumed to have small holes whose shape constantly changes without providing constant through holes. Therefore, in the reverse osmosis membrane of Patent Document 2, the rejection rate (desalting rate) of sodium chloride in a sodium chloride aqueous solution (concentration: 0.2% by mass) recorded up to 96.8%.
- the carbon film of Patent Document 2 has room for improvement in durability, and further improvement in rejection rate (demineralization rate) has also been desired.
- An object of the present invention is to provide a reverse osmosis membrane using a carbon membrane excellent in desalting performance (separation performance) as a separation active layer.
- a reverse osmosis membrane comprising: a porous support substrate; and a separation active layer formed of a structured carbon-containing carbon film formed on the surface of the porous support substrate.
- the reverse osmosis membrane as described in said ⁇ 1> whose desalting rate at the time of desalting ⁇ 2> NaCl aqueous solution (concentration: 3.2 mass%) with the filtration pressure of 5.5 Mpa or more is 99% or more.
- ⁇ 3> The reverse osmosis membrane according to ⁇ 1> or ⁇ 2>, wherein the porous support substrate includes a non-woven backing layer and a porous plastic layer formed on the backing layer.
- the coating film is formed by a coating film forming step of forming a coating film soluble in a predetermined solvent on the surface of the porous supporting substrate insoluble in the solvent, and physical vapor deposition using carbon as a target material A step of forming a precarbon film on the upper surface, a step of removing the coating film by dissolving and removing the coating film with the solvent after forming the carbon film, and compressing the precarbon film to form an organized structure And (f) forming a separation active layer comprising a carbon membrane containing carbon.
- Explanatory drawing which represented the cross-sectional structure of a reverse osmosis membrane typically Schematic of filtration device of cross flow filtration system Graph showing evaluation results of water permeability and desalting in each of the membranes of Example 1 and Comparative Example 1 The figure which shows the diffraction pattern of each film
- FIG. 1 is an explanatory view schematically showing the cross-sectional configuration of the reverse osmosis membrane 1.
- the reverse osmosis membrane 1 comprises a porous substrate 2 and a separation active layer 3 formed on the surface of the porous support substrate 2 and made of a carbon film containing organized carbon.
- the reverse osmosis membrane 1 can separate the specific substance contained in the solution from the solution by filtering the solution to be filtered.
- the solution to be filtered is salt water
- the reverse osmosis membrane 1 can remove salt water (NaCl) while extracting pure water from the salt water by filtering the salt water (sodium chloride aqueous solution). It is presumed that this is because water molecules in the salt water are incorporated so as to dissolve in the carbon film which is the separation active layer 3 and move diffusively in the carbon film. And, sodium ions and chloride ions in the salt water are in a cluster state accompanied by at least several water molecules, and it is presumed that the entry into the carbon film is blocked.
- the porous support substrate 2 is a porous member that supports the separation active layer 3 and is in the form of a sheet.
- a so-called nanofiltration membrane (NF membrane) or an ultrafiltration membrane (UF membrane) can be used.
- the pure water permeability coefficient Lp of the porous support substrate 2 is not particularly limited as long as the object of the present invention is not impaired, and for example, 200 L / (m 2 ⁇ h ⁇ MPa) to 3500 L / (m 2 ⁇ h ⁇ MPa).
- porous support substrate 2 for example, a two-layer structure composed of a nonwoven fabric-like backing layer 2A and a porous plastic layer 2B formed on the surface of the backing layer 2A is used.
- the backing layer 2A is formed of a resin-made fiber in the form of a non-woven fabric, and is in the form of a sheet (layered).
- resin utilized for 2 A of backing layers what is insoluble in the immersion liquid (solvent) mentioned later is selected.
- the resin used for the backing layer 2A include polyester resins such as polyethylene terephthalate (PET) and polybutylene terephthalate (PBT), and polyolefin resins such as ethylene and propylene.
- PET polyethylene terephthalate
- PBT polybutylene terephthalate
- polyolefin resins such as ethylene and propylene.
- the porous plastic layer 2B consists of a porous plastic layer (sheet) laminated on the surface of the backing layer 2A.
- the porous plastic layer 2B has a plurality of pores of about 0.001 ⁇ m to 10 ⁇ m penetrating in the thickness direction.
- plastic material constituting the porous plastic layer 2B
- a material which is insoluble in an immersion liquid (solvent) to be described later and which retains its shape even in the state in which pores are formed is selected .
- the plastic material (resin material) used for the porous plastic layer 2B include polysulfone (PSF) and polyacrylonitrile (PAN).
- PSF polysulfone
- PAN polyacrylonitrile
- the thickness of the porous support substrate 2 is not particularly limited and is appropriately set according to the purpose as long as the purpose of the present invention is not impaired.
- porous supporting substrates examples include UF membranes (trade name: “GR40PP”, manufactured by Alfa Laval Co., Ltd.), UF membranes (trade name: “MW2450F30”, manufactured by General Electric), and the like.
- the porous support substrate 2 may be laminated with other layers as long as the object of the present invention is not impaired.
- the porous support substrate 2 may have a shape other than a sheet shape.
- the separation active layer 3 is composed of a carbon film containing organized carbon, and has a function capable of separating a specific substance contained in the solution from the solution. In the separation active layer 3, no pore having a size as seen in the porous plastic layer 2B of the porous support substrate 2 is formed. It is presumed that the separation active layer 3 does not have a constant through hole but has a hole whose shape changes constantly.
- the separation active layer 3 is formed on at least the surface of the porous support substrate 2 in contact with the solution to be filtered. In the case of this embodiment, the separation active layer 3 is formed on the surface of one of the sheet-like porous support substrates 2.
- the separation active layer 3 is made of a carbon film containing partially organized carbon.
- structured carbon refers to a film structure in which a specific significant periodic distance is formed between carbon atoms in amorphous carbon (diamond-like carbon) having no specific structural periodicity. Means The organization of carbon is a concept different from crystallization, and its presence is inferred from the analysis result of the carbon film by TEM described later.
- the separated active layer (carbon film) 3 at least a part of carbon may be organized, and it is not necessary for the entire carbon of the carbon film 3 to be organized.
- carbon (other than carbon atoms) may contain another atom such as a nitrogen atom.
- the separation active layer 3 is formed, for example, by compressing an amorphous pre-carbon film under high pressure in a structuring step described later.
- the method of forming the separation active layer 3 is not particularly limited as long as the object of the present invention is not impaired, and for example, separation is performed through steps other than the structuring step described later.
- Active layer 3 (carbon film containing organized carbon) may be formed.
- the separation active layer of the other embodiment may be organized by heating the pre-carbon film, or the formation of the organized separation active layer may be performed using a deposition pressure. Good.
- the thickness of the separation active layer 3 is set, for example, in the range of 5 nm to 100 nm as long as the object of the present invention is not impaired.
- the method for producing the reverse osmosis membrane of the present embodiment includes a coating membrane forming step, a pre-carbon membrane forming step, a coating membrane removing step, and an organization step.
- the coating film forming step is a step of forming a coating film which is soluble in a predetermined solvent on the surface of the porous support substrate 2 which is unnecessary for the solvent.
- the coating film is formed on the surface of the porous support substrate 2 in advance before forming the separation active layer 3.
- the coating film is formed to cover the surface of the porous plastic layer 2B while closing the pores provided in the porous plastic layer 2B of the porous support substrate 2.
- the coating film is not particularly limited as long as it can be removed by a predetermined solvent in a coating film removing step described later, and is appropriately selected from known resin materials and known solvents according to the purpose. Ru.
- a coating film the PVP solution etc. which dissolved the powder of polyvinyl pyrrolidone (PVP) in the mixed solvent of water and ethanol are mentioned, for example.
- a well-known coating method is applied. For example, by immersing the porous support substrate for a predetermined time in a predetermined container containing a coating solution for forming a coating film, the porous support substrate is then pulled up from the coating solution. The method etc. of forming a coating film in the surface of a base material are mentioned. In addition, the coating film on the porous support base material 2 is suitably dried.
- the thickness of the coating film, unless impair the object of the present invention is not particularly limited, for example, to the surface of the porous support substrate (per unit area), 1mg / cm 2 ⁇ 20mg / cm 2 In the range of (solid content), a coating solution for forming a coating film is applied.
- the pre-carbon film forming step is a step of forming a pre-carbon film to be a source of the separation active layer 3 on the coating film by physical vapor deposition using carbon as a target material.
- the pre-carbon film is an amorphous carbon film which is not compressed (structured) in the structuring step described later.
- the pre-carbon film is formed in a form of being laminated on the coating film on the porous support substrate 2 using physical vapor deposition with carbon as a target material.
- physical vapor deposition method as mentioned later, high current pulse magnetron sputtering method (HiPIMS: High Power Impulse Magnetron Sputtering) etc. are mentioned, for example.
- the carbon used as a target material is not particularly limited as long as the object of the present invention is not impaired, but for example, high purity graphite is preferable, and one having a purity of 5N or more (purity 99.999% or more) is particularly preferable .
- pre-carbon film forming step physical vapor deposition such as HiPIMS for forming the pre-carbon film is performed under an atmosphere containing a rare gas. Also, if necessary, it is performed in an atmosphere containing nitrogen gas with a rare gas.
- noble gas examples include argon (Ar), neon (Ne), krypton (Kr), xenon (Xe) and the like.
- Nitrogen gas may be used together with a rare gas such as argon when forming the precarbon film.
- nitrogen gas it is preferable to use nitrogen gas together from a viewpoint of the high demineralization performance of the isolation
- the thickness of the pre-carbon film is adjusted by appropriately setting the film formation time.
- the pre-carbon film has an amorphous carbon structure (DLC structure), and in the pre-carbon film, carbon atoms of the sp 3 hybrid orbital (diamond structure in addition to carbon atoms of the sp 2 hybrid orbital (graphite structure) ), And it is presumed that the proportion of carbon atoms in the sp 3 hybrid orbital is high. Then, such a pre-carbon film in an amorphous state is organized while being densified when it is compressed at a high pressure in an organization step to be described later.
- DLC structure amorphous carbon structure
- the coating film removing step is a step of dissolving and removing the coating film with a predetermined solvent after forming the pre-carbon film.
- the coating film is dissolved and removed by a shaking method while using a predetermined solvent in the porous support substrate 2 on which the precarbon films are formed.
- organic solvents such as ether, ethyl acetate, acetone and dichloromethane may be used in addition to water and alcohol such as ethanol. These may be used alone or in combination of two or more.
- the coating film comes in contact with a predetermined solvent, the coating film dissolves in the solvent and is removed from the porous support substrate 2. As a result, a pre-carbon film is formed in a form of being laminated on the porous plastic layer 2B of the porous support substrate 2.
- the structuring step is a step of compressing the pre-carbon film on the porous support substrate 2 to form on the porous support substrate 2 a separation active layer composed of a structured carbon-containing carbon film.
- a method of compressing the pre-carbon film for example, there is a method in which a fluid is brought into contact with the pre-carbon film at a high pressure to organize while compressing the pre-carbon film.
- the fluid to be used is not particularly limited as long as the object of the present invention is not impaired, and examples thereof include gas, liquid and the like.
- high pressure may be applied to the pre-carbon film using a predetermined press machine or the like to organize the pre-carbon film.
- the structuring step is performed using, for example, a cross flow filtration type filtration apparatus described later, using a liquid (for example, pure water) capable of transmitting the pre-carbon membrane as a fluid.
- the pressure applied to the pre-carbon film is preferably 5.5 MPa or more.
- the upper limit of the pressure to be applied is not particularly limited as long as the object of the present invention is not impaired.
- the time for applying a high pressure to the pre-carbon film is not particularly limited as long as the object of the present invention is not impaired, and is, for example, 1 hour or more, preferably 10 hours or more, more preferably 20 hours or more.
- a carbon film (separating active layer 3) containing organized carbon directly is formed by physical vapor deposition or the like. You may form.
- Example 1 As a porous support substrate, an ultrafiltration membrane (trade name "GR40PP", manufactured by Alfa Laval Co., Ltd.) was prepared.
- the porous support substrate comprises a resinous non-woven backing layer and a porous plastic layer of polysulfone (PSF) laminated on one side of the backing layer.
- PSF polysulfone
- the porous support substrate was immersed in a predetermined container containing the coating solution, and then the porous support substrate was pulled out of the coating solution.
- the polyvinyl pyrrolidone (PVP) solution 10 mass%) was prepared.
- PVP powder trade name "polyvinylpyrrolidone K30", manufactured by Wako Pure Chemical Industries, Ltd.
- ethanol ethanol
- the porous support substrate to which the coating solution is attached is allowed to stand at room temperature for 10 hours to dry the PVP coating (coating film) on the porous support substrate, and the porous support substrate with the PVP coating I got
- Pre-carbon film formation process A high current pulsed magnetron sputtering method (HiPIMS: High Power Impulse Magnetron Sputtering) was used to form a pre-carbon film in the form of being laminated on the PVP coating on the porous support substrate.
- HiPIMS High Power Impulse Magnetron Sputtering
- ⁇ Deposition condition Example 1> Film forming apparatus: Batch type carbon film forming apparatus Duty ratio: 25% ⁇ Frequency: 1.5kHz ⁇ Duty cycle: 180 ⁇ s Process gas (flow rate): Ar (44 sccm), N 2 (44 sccm), CH 4 (4 sccm) Target material: high purity graphite (purity: 99.999%) Peak power density: 1.14 Wcm -2 ⁇ Power density: 0.09 Wcm -2 Deposition pressure: 0.61 Pa Deposition time: 825 seconds
- the thickness of the pre-carbon film of Example 1 was measured by a spectroscopic ellipsometer. From the measurement results, the thickness of the pre-carbon film of Example 1 was about 30 nm.
- the porous support substrate on which the pre-carbon film is formed is immersed in an immersion liquid in a predetermined container, and is shaken using a digital shaker (manufactured by Taiyo Corporation) to form a PVP coating film (coating film) Was removed.
- the porous support base 2 (hereinafter, pre-reverse osmosis membrane 1P) on which the pre-carbon membrane was formed was subjected to a texturing process using a filtration apparatus of the Chris flow filtration system shown in FIG. 2 described later.
- pre reverse osmosis membrane 1P was set in the above-mentioned filtration apparatus, and the pure reverse osmosis membrane 1P was compressed for 24 hours under a pressure condition of 5.5 MPa using pure water.
- pre reverse osmosis membrane 1P set to the said filtration apparatus is comprising the circular shape of diameter 25 mm.
- the separation active layer 3 is obtained by compressing the pre-carbon film and organizing a part of carbon in the pre-carbon film by using a predetermined filtration device.
- the reverse osmosis membrane 1 of Example 1 was obtained.
- Example 1 Evaluation of water permeability and desalination
- the reverse osmosis membrane 1 of Example 1 was subjected to a filtration test using a Kris flow filtration type filtration device shown in FIG.
- the filtration device 10 will be described with reference to FIG.
- FIG. 2 is a schematic view of a cross flow filtration type filtration apparatus 10.
- the filtration apparatus 10 includes a filtration unit 11, a filtrate collection container 12, a pressure gauge 13, a valve 14, a collection container 15, a pump 16, an upstream pipe 17, and a downstream pipe 18. .
- the filtration unit 11 holds the test sample so that the solution to be filtered flows along the surface layer (carbon membrane) of the test sample (reverse osmosis membrane 1) to be set, while using the test sample in the middle of the flow
- the liquid to be filtered is filtered.
- the filtrate collection container 12 is a container for collecting the liquid (permeate) which has permeated the test sample.
- the filtration target solution (salt water) contained in the recovery container 15 is supplied to the filtration unit 11 through the upstream pipe 17.
- the filtration unit 11 and the recovery container 15 are connected by an upstream pipe 17. Further, in the middle of the upstream pipe 17, a pump 16 for sending out the solution to be filtered to the filtration unit 11 is set.
- the filtration unit 11 and the recovery container 15 are connected by the downstream piping 18, and the solution to be filtered (salt water) discharged from the filtration unit 11 passes through the downstream piping 18 and is again collected in the recovery container. It is returned to 15.
- a pressure gauge 13 and a valve 14 are provided in the middle of the downstream pipe 18, and the flow rate of the solution to be filtered circulating in the downstream pipe 18 or the like is adjusted by opening and closing the valve 14.
- the pre-reverse osmosis membrane 1P is used as a test sample, and pure water is circulated in the filtration device 10 for 24 hours at a supply pressure of 5.5 MPa.
- the water permeation and desalting evaluation of the reverse osmosis membrane 1 was continuously performed after the above-mentioned organization process.
- the evaluation results (5.5 MPa) of water permeability and desalting in the reverse osmosis membrane 1 of Example 1 are shown in the graph of FIG.
- F L / ST (1)
- F is a permeation flux (Lm ⁇ 2 h ⁇ 1 )
- L is a permeation amount (L)
- S is an effective area (m 2 ) of a test sample
- T is test time (h).
- the desalting rate (%) of a test sample is calculated
- R (1-C2 / C1) x 100 (%) ...
- R is the desalting rate (%)
- C1 is the NaCl concentration of the stock solution (the fluid to be filtered)
- C2 is the NaCl concentration of the liquid (permeate) that has permeated the test sample It is.
- the water permeability and dewatering of the reverse osmosis membrane 1 of Example 1 are the same as in the case of 5.5 MPa described above except that the pressure condition is changed to 7.0 MPa. Salt ratio evaluation (7.0 MPa) was performed, and the results are shown in the graph of FIG.
- Comparative Example 1 The reverse osmosis membrane of Comparative Example 1 was used as the produced pre-reverse osmosis membrane (that is, the one provided with the pre-carbon membrane in a state in which the structuring step was not performed) in the same manner as in Example 1. And about this reverse osmosis membrane, using sodium chloride aqueous solution (concentration: 0.2wt%) as filtration object liquid, using the above-mentioned filtration device 10, water permeability and desalting evaluation are performed on 3.0MPa pressure conditions. The The results are shown in the graph of FIG.
- a pre-reverse osmosis membrane similar to that used in the sample 1 was prepared.
- the pre-carbon membrane was compressed and organized in the same manner as the sample 1 except that the supply pressure of pure water was changed to 7.0 MPa.
- the sample obtained in this manner was used as Sample 2.
- FIG. 4 is a diagram showing the diffraction pattern of each film of samples 1 to 3 obtained using TEM
- FIG. 5 is the intensity and distance of the diffraction pattern of each film of samples 1 to 3 shown in FIG. Is a graph of the 45 ° diagonal line passing through the center.
- the vertical axis in FIG. 5 represents the intensity
- the horizontal axis represents the distance when the total length is 1.
- SYMBOLS 1 reverse osmosis membrane, 2 ... porous support base material, 2A ... backing layer, 2B ... porous plastic layer, 3 ... separation active layer (carbon membrane), 10 ... filtration apparatus, 11 ... filtration unit, 12 ... filtrate Collection container, 13 ... pressure gauge, 14 ... valve, 15 ... recovery container, 16 ... pump, 17 ... upstream piping, 18 ... downstream piping
Landscapes
- Chemical & Material Sciences (AREA)
- Chemical Kinetics & Catalysis (AREA)
- Engineering & Computer Science (AREA)
- Organic Chemistry (AREA)
- Inorganic Chemistry (AREA)
- Water Supply & Treatment (AREA)
- Materials Engineering (AREA)
- Manufacturing & Machinery (AREA)
- Mechanical Engineering (AREA)
- Metallurgy (AREA)
- Nanotechnology (AREA)
- Life Sciences & Earth Sciences (AREA)
- Hydrology & Water Resources (AREA)
- Environmental & Geological Engineering (AREA)
- Separation Using Semi-Permeable Membranes (AREA)
Abstract
Description
特許文献1の硬質カーボン膜は、孔の最大径が0.86nm未満であり、逆浸透膜と称されているものの、その実態は、硬質カーボン膜を貫通する形で恒常的な孔が形成されており、その孔径に対する物質のサイズによってふるい分けを行うろ過膜の一種と言える。そのため、特許文献1の逆浸透膜では、塩化ナトリウム水溶液(濃度:0.01M)中の塩化ナトリウムの阻止率が80%程度に留まっていた。
前記課題を解決するための手段は、以下の通りである。即ち、
<1> 多孔性支持基材と、前記多孔性支持基材の表面に形成され、組織化されたカーボンを含むカーボン膜からなる分離活性層とを備える逆浸透膜。
本願発明によれば、脱塩性能(分離性能)等に優れるカーボン膜を分離活性層として利用した逆浸透膜を提供することができる。
図1は、逆浸透膜1の断面構成を模式的に表した説明図である。逆浸透膜1は、多孔性基材2と、この多孔性支持基材2の表面上に形成される、組織化されたカーボンを含むカーボン膜からなる分離活性層3とを備えている。
多孔性支持基材2は、分離活性層3を支持する多孔性の部材であり、シート状をなしている。多孔性支持基材2としては、いわゆるナノフィルトレーション膜(NF膜)やウルトラフィルトレーション膜(UF膜)を利用することができる。多孔性支持基材2の純水透過係数Lpは、本発明の目的を損なわない限り、特に制限はないが、例えば、200L/(m2・h・MPa)~3500L/(m2・h・MPa)である。
分離活性層3は、組織化されたカーボンを含むカーボン膜からなり、溶液に含まれる特定物質を溶液から分離することができる機能を備える。分離活性層3には、多孔性支持基材2の多孔性プラスチック層2Bにみられるような大きさの細孔は形成されていない。分離活性層3は、恒常的な貫通孔を備えず、形状が絶えず変化する孔を備えているものと推測される。
本実施形態の逆浸透膜の製造方法は、コーティング膜形成工程、プレカーボン膜形成工程、コーティング膜除去工程、及び組織化工程を備えている。
コーティング膜形成工程は、所定の溶媒に溶解可能なコーティング膜を、前記溶媒に不要な多孔性支持基材2の表面上に形成する工程である。
プレカーボン膜形成工程は、カーボンをターゲット材とする物理蒸着法により、コーティング膜上に分離活性層3の元となるプレカーボン膜を形成する工程である。プレカーボン膜は、後述する組織化工程で圧縮されていない(組織化されていない)、アモルファス状態のカーボン膜である。
コーティング膜除去工程は、プレカーボン膜を形成後、コーティング膜を所定の溶媒で溶解除去する工程である。
組織化工程は、多孔性支持基材2上のプレカーボン膜を圧縮して、組織化されたカーボンを含むカーボン膜からなる分離活性層を多孔性支持基材2上に形成する工程である。プレカーボン膜を圧縮する方法としては、例えば、プレカーボン膜に流体を高圧力で接触させて、プレカーボン膜を圧縮しつつ、組織化する方法が挙げられる。用いる流体としては、本発明の目的を損なわない限り、特に制限はなく、例えば、気体、液体等が挙げられる。また、流体を使用せずに、例えば、所定のプレス機等を利用してプレカーボン膜に高圧力を加えて、プレカーボン膜の組織化を行ってもよい。
(多孔性支持基材)
多孔性支持基材として、ウルトラフィルトレーション膜(品名「GR40PP」、アルファ・ラバル株式会社製)を用意した。この多孔性支持基材は、樹脂製の不織布状の裏打ち層と、この裏打ち層の一方の面上に積層されるポリサルフォン(PSF)製の多孔性プラスチック層とからなる。
多孔性支持基材を、コーティング溶液が入った所定の容器内に浸漬し、その後、多孔性支持基材をコーティング溶液から引き上げた。なお、コーティング溶液としては、ポリビニルピロリドン(PVP)溶液(10質量%)を用意した。PVP溶液中のPVPとしては、PVP粉末(品名「ポリビニルピロリドン K30」、和光純薬工業株式会社製)を用いた。また、PVP溶液の溶媒としては、エタノールと水の混合溶媒(エタノール:水=8:2(体積比))を用いた。
大電流パルスマグネトロンスパッタリング法(HiPIMS:High Power Impulse Magnetron Sputtering)を利用して、多孔性支持基材上のPVP塗膜に積層する形で、プレカーボン膜を形成した。プレカーボン膜の成膜条件は、以下の通りである。
・成膜装置:バッチ型カーボン膜成形装置
・Duty比:25%
・周波数:1.5kHz
・Dutyサイクル:180μs
・プロセスガス(流量):Ar(44sccm)、N2(44sccm)、CH4(4sccm)
・ターゲット材:高純度グラファイト(純度:99.999%)
・ピーク電力密度:1.14Wcm-2
・電力密度:0.09Wcm-2
・成膜圧力:0.61Pa
・成膜時間:825秒
実施例1のプレカーボン膜の厚みを、分光エリプソメーターにより、測定した。測定結果より、実施例1のプレカーボン膜の厚みは、約30nmであった。
プレカーボン膜が形成された多孔性支持基材を、所定容器内の浸漬液に浸漬し、それを、デジタルシェーカー(大洋株式会社製)を用いて振とうさせながら、PVP塗膜(コーティング膜)を除去した。なお、前記浸漬液としては、エタノールと純水の混合溶媒(エタノール:水=8:2(体積比))を用いた。
プレカーボン膜が形成された多孔性支持基材2(以下、プレ逆浸透膜1P)を、後述する図2に示されるクリスフローろ過方式のろ過装置を用いて、組織化工程を行った。
実施例1の逆浸透膜1について、図2に示されるクリスフローろ過方式のろ過装置を用いて、ろ過試験を行った。ここで、図2を参照しつつ、ろ過装置10について説明する。
F=L/ST ・・・・・(1)
上記式(1)において、Fは、透過流束(Lm-2h-1)であり、Lは、透過水量(L)であり、Sは、試験サンプルの有効面積(m2)であり、Tは、試験時間(h)である。
R=(1-C2/C1)×100(%) ・・・・・(2)
上記式(2)において、Rは、脱塩率(%)であり、C1は、原液(ろ過対象液)のNaCl濃度であり、C2は、試験サンプルを透過した液体(透過水)のNaCl濃度である。
実施例1と同様にして、作製したプレ逆浸透膜(つまり、組織化工程を行っていない状態のプレカーボン膜を備えたもの)を、比較例1の逆浸透膜とした。そして、この逆浸透膜について、上記ろ過装置10を使用しつつ、塩化ナトリウム水溶液(濃度:0.2wt%)をろ過対象液としつつ、3.0MPaの圧力条件で、透水・脱塩評価を行った。結果は、図3のグラフに示した。
図3に示されるように、実施例1の逆浸透膜1において、ろ過圧力が5.5MPaの場合、脱塩率(%)は、99.2%であり、透過流束(Lm-2h-1)は、0.19Lm-2h-1であった。また、実施例1の逆浸透膜1において、ろ過圧力が7.0MPaの場合、脱塩率(%)は、99.4%であり、透過流束(Lm-2h-1)は、1.2Lm-2h-1であった。このように、組織化された実施例1の逆浸透膜1は、優れた脱塩性能(分離性能)を備えていることが確かめられた。
実施例1の逆浸透膜1は、上述した透水・脱塩評価を長時間行っても、脱塩性能が安定しており、耐久性に優れることが確かめられた。これは、逆浸透膜1が備えるカーボン膜からなる分離活性層3を構成する一部のカーボンが組織化されたことにより、構造が安定化したためと推測される。
(サンプルの作製)
実施例1と同様にして、プレ逆浸透膜を作製した。得られたプレ逆浸透膜を、上述したろ過装置10内にセットし、純水を5.5MPaの供給圧力で24時間、循環させることで、プレカーボン膜を圧縮し、組織化したものを、サンプル1とした。
シミュレーションにより、プレカーボン膜と、それより得られる分離活性層(カーボン膜)との間の電荷密度の変化を解析した。分離活性層は、プレカーボン膜に圧力が加えられる等して、組織化されたものであり、このような分離活性層の電荷密度は、プレカーボン膜の電荷密度と比べて高くなることが確認された。分離活性層は、このように電荷密度が高くなっているため、除去対象となる電荷を持つ物質を分離させ易いと推測される。また、分離活性層は、圧力等が加えられることにより、内部の空孔構造等に変化が生じ、その結果、除去対象となる物質を通過させ難くなると推測される。このような理由により、本発明の分離活性層を備えた逆浸透膜では、脱塩率の高い透過水が得られると推測される。
Claims (4)
- 多孔性支持基材と、
前記多孔性支持基材の表面に形成され、組織化されたカーボンを含むカーボン膜からなる分離活性層とを備える逆浸透膜。 - NaCl水溶液(濃度:3.2質量%)を、5.5MPa以上のろ過圧力で脱塩した際の脱塩率が、99%以上である請求項1に記載の逆浸透膜。
- 前記多孔性支持基材は、不織布状の裏打ち層と、前記裏打ち層上に形成される多孔性プラスチック層を含む請求項1又は請求項2に記載の逆浸透膜。
- 所定の溶媒に溶解可能なコーティング膜を、前記溶媒に不溶な多孔性支持基材の表面上に形成するコーティング膜形成工程と、
カーボンをターゲット材とする物理蒸着法により、前記コーティング膜上にプレカーボン膜を形成するプレカーボン膜形成工程と、
前記カーボン膜を形成後、前記コーティング膜を前記溶媒で溶解除去するコーティング膜除去工程と、
前記プレカーボン膜を圧縮して、組織化されたカーボンを含むカーボン膜からなる分離活性層を形成する組織化工程とを備える逆浸透膜の製造方法。
Priority Applications (6)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
EP19744602.4A EP3744421A4 (en) | 2018-01-24 | 2019-01-24 | REVERSE OSMOSIS MEMBRANE AND PROCESS FOR MANUFACTURING REVERSE OSMOSIS MEMBRANE |
CN201980006270.4A CN111432918B (zh) | 2018-01-24 | 2019-01-24 | 反渗透膜和反渗透膜的制造方法 |
PCT/JP2019/002195 WO2019146671A1 (ja) | 2018-01-24 | 2019-01-24 | 逆浸透膜、及び逆浸透膜の製造方法 |
US16/771,091 US11452973B2 (en) | 2018-01-24 | 2019-01-24 | Reverse osmosis membrane and method for producing reverse osmosis membrane |
KR1020207015795A KR102397127B1 (ko) | 2018-01-24 | 2019-01-24 | 역침투막 및 역침투막의 제조 방법 |
JP2019567130A JP7067720B2 (ja) | 2018-01-24 | 2019-01-24 | 逆浸透膜、及び逆浸透膜の製造方法 |
Applications Claiming Priority (3)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2018009722 | 2018-01-24 | ||
JP2018-009722 | 2018-01-24 | ||
PCT/JP2019/002195 WO2019146671A1 (ja) | 2018-01-24 | 2019-01-24 | 逆浸透膜、及び逆浸透膜の製造方法 |
Publications (1)
Publication Number | Publication Date |
---|---|
WO2019146671A1 true WO2019146671A1 (ja) | 2019-08-01 |
Family
ID=67395295
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
PCT/JP2019/002195 WO2019146671A1 (ja) | 2018-01-24 | 2019-01-24 | 逆浸透膜、及び逆浸透膜の製造方法 |
Country Status (6)
Country | Link |
---|---|
US (1) | US11452973B2 (ja) |
EP (1) | EP3744421A4 (ja) |
JP (1) | JP7067720B2 (ja) |
KR (1) | KR102397127B1 (ja) |
CN (1) | CN111432918B (ja) |
WO (1) | WO2019146671A1 (ja) |
Citations (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2009536916A (ja) * | 2006-05-12 | 2009-10-22 | ドレクセル・ユニバーシティー | ナノ多孔性炭素質膜及びそれに関する方法 |
WO2015080259A1 (ja) | 2013-11-29 | 2015-06-04 | 独立行政法人物質・材料研究機構 | 硬質カーボン膜製nf又はro膜、濾過フィルター、2層接合型濾過フィルター及びそれらの製造方法 |
JP2015535743A (ja) * | 2012-10-04 | 2015-12-17 | アプライド ナノストラクチャード ソリューションズ リミテッド ライアビリティー カンパニーApplied Nanostructuredsolutions, Llc | カーボンナノ構造体分離膜及び分離プロセス |
JP2017064692A (ja) | 2015-07-28 | 2017-04-06 | 北川工業株式会社 | 逆浸透膜の製造方法 |
Family Cites Families (6)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPH03166370A (ja) * | 1989-08-29 | 1991-07-18 | Nippon Steel Corp | 硬質炭素膜のコーティング方法 |
US5480554A (en) * | 1992-05-13 | 1996-01-02 | Pall Corporation | Integrity-testable wet-dry-reversible ultrafiltration membranes and method for testing same |
JP2007291430A (ja) * | 2006-04-24 | 2007-11-08 | Nissan Motor Co Ltd | 硬質炭素被膜 |
EP3329985B1 (en) * | 2015-07-28 | 2022-03-09 | Kitagawa Industries Co., Ltd. | Method for producing reverse osmosis membrane |
US20170092747A1 (en) * | 2015-09-30 | 2017-03-30 | Sumitomo Electric Industries, Ltd. | Hemt having heavily doped n-type regions and process of forming the same |
KR102548068B1 (ko) * | 2017-03-06 | 2023-06-26 | 커먼웰쓰 사이언티픽 앤드 인더스트리얼 리서치 오가니제이션 | 투과성 그래핀 및 투과성 그래핀 막 |
-
2019
- 2019-01-24 EP EP19744602.4A patent/EP3744421A4/en active Pending
- 2019-01-24 CN CN201980006270.4A patent/CN111432918B/zh active Active
- 2019-01-24 JP JP2019567130A patent/JP7067720B2/ja active Active
- 2019-01-24 US US16/771,091 patent/US11452973B2/en active Active
- 2019-01-24 KR KR1020207015795A patent/KR102397127B1/ko active IP Right Grant
- 2019-01-24 WO PCT/JP2019/002195 patent/WO2019146671A1/ja unknown
Patent Citations (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2009536916A (ja) * | 2006-05-12 | 2009-10-22 | ドレクセル・ユニバーシティー | ナノ多孔性炭素質膜及びそれに関する方法 |
JP2015535743A (ja) * | 2012-10-04 | 2015-12-17 | アプライド ナノストラクチャード ソリューションズ リミテッド ライアビリティー カンパニーApplied Nanostructuredsolutions, Llc | カーボンナノ構造体分離膜及び分離プロセス |
WO2015080259A1 (ja) | 2013-11-29 | 2015-06-04 | 独立行政法人物質・材料研究機構 | 硬質カーボン膜製nf又はro膜、濾過フィルター、2層接合型濾過フィルター及びそれらの製造方法 |
JP2017064692A (ja) | 2015-07-28 | 2017-04-06 | 北川工業株式会社 | 逆浸透膜の製造方法 |
Also Published As
Publication number | Publication date |
---|---|
JPWO2019146671A1 (ja) | 2020-11-19 |
US20210187445A1 (en) | 2021-06-24 |
KR102397127B1 (ko) | 2022-05-12 |
JP7067720B2 (ja) | 2022-05-16 |
EP3744421A4 (en) | 2021-10-27 |
CN111432918B (zh) | 2022-04-05 |
US11452973B2 (en) | 2022-09-27 |
CN111432918A (zh) | 2020-07-17 |
KR20200072551A (ko) | 2020-06-22 |
EP3744421A1 (en) | 2020-12-02 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
KR102289642B1 (ko) | 복합 반투막 | |
KR20120099564A (ko) | 여과 막의 제조 방법 및 그 방법으로 제조한 여과 막 | |
KR20150121006A (ko) | 복합 반투막 및 그 제조 방법 | |
EP2537578A1 (en) | Composite separation membrane and separation membrane element using same | |
US8794451B2 (en) | Hollow-fiber ultrafiltration membrane with excellent fouling resistance | |
EP2695670A1 (en) | Composite semipermeable membrane, composite semipermeable membrane element, and method for manufacturing composite semipermeable membrane | |
JP2013525108A (ja) | ポリマー被覆された加水分解膜 | |
KR101440970B1 (ko) | 역삼투 분리막의 제조 방법 및 이에 의해 제조된 역삼투 분리막 | |
US20140183135A9 (en) | Nanosieve composite membrane | |
WO2019146671A1 (ja) | 逆浸透膜、及び逆浸透膜の製造方法 | |
JP5527662B2 (ja) | ナノカーボン膜の製造方法及びナノカーボン膜 | |
JP6682077B2 (ja) | 逆浸透膜の製造方法 | |
KR102309602B1 (ko) | 고염배제율 역삼투막 및 그 제조방법 | |
JPH09313905A (ja) | ポリスルホン多孔質分離膜 | |
KR102230992B1 (ko) | 수처리 분리막 및 이의 제조방법 | |
KR101653414B1 (ko) | 내오염성이 우수한 폴리아마이드계 역삼투 분리막의 제조 방법 | |
JP3151817B2 (ja) | 複合多孔膜 | |
WO2017018482A1 (ja) | 逆浸透膜の製造方法 | |
JP3975933B2 (ja) | 複合半透膜および下水処理方法 | |
JP3105610B2 (ja) | スパイラル型膜分離モジュ−ルとその洗浄方法。 | |
KR20180040962A (ko) | 역삼투막 제조용 조성물, 이를 이용한 역삼투막 제조방법, 역삼투막 및 수처리 모듈 | |
KR20170048320A (ko) | 복합 반투막, 분리막 엘리먼트 및 그 제조 방법 | |
JP2005161293A (ja) | ポリイオンコンプレックス膜及びその製造方法と水処理装置 | |
Ng et al. | 4 Innovative Methods to | |
JPH06114245A (ja) | 有機物分離用半透膜およびその製造方法 |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
121 | Ep: the epo has been informed by wipo that ep was designated in this application |
Ref document number: 19744602 Country of ref document: EP Kind code of ref document: A1 |
|
ENP | Entry into the national phase |
Ref document number: 2019567130 Country of ref document: JP Kind code of ref document: A |
|
ENP | Entry into the national phase |
Ref document number: 20207015795 Country of ref document: KR Kind code of ref document: A |
|
NENP | Non-entry into the national phase |
Ref country code: DE |
|
ENP | Entry into the national phase |
Ref document number: 2019744602 Country of ref document: EP Effective date: 20200824 |