WO2019146550A1 - 電力増幅回路 - Google Patents

電力増幅回路 Download PDF

Info

Publication number
WO2019146550A1
WO2019146550A1 PCT/JP2019/001688 JP2019001688W WO2019146550A1 WO 2019146550 A1 WO2019146550 A1 WO 2019146550A1 JP 2019001688 W JP2019001688 W JP 2019001688W WO 2019146550 A1 WO2019146550 A1 WO 2019146550A1
Authority
WO
WIPO (PCT)
Prior art keywords
circuit
signal
harmonic
amplifier
power amplification
Prior art date
Application number
PCT/JP2019/001688
Other languages
English (en)
French (fr)
Inventor
昌俊 長谷
Original Assignee
株式会社村田製作所
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 株式会社村田製作所 filed Critical 株式会社村田製作所
Priority to CN201980008561.7A priority Critical patent/CN111615787B/zh
Publication of WO2019146550A1 publication Critical patent/WO2019146550A1/ja
Priority to US16/928,084 priority patent/US11418151B2/en

Links

Images

Classifications

    • HELECTRICITY
    • H03ELECTRONIC CIRCUITRY
    • H03FAMPLIFIERS
    • H03F1/00Details of amplifiers with only discharge tubes, only semiconductor devices or only unspecified devices as amplifying elements
    • H03F1/32Modifications of amplifiers to reduce non-linear distortion
    • HELECTRICITY
    • H03ELECTRONIC CIRCUITRY
    • H03FAMPLIFIERS
    • H03F1/00Details of amplifiers with only discharge tubes, only semiconductor devices or only unspecified devices as amplifying elements
    • H03F1/32Modifications of amplifiers to reduce non-linear distortion
    • H03F1/3241Modifications of amplifiers to reduce non-linear distortion using predistortion circuits
    • H03F1/3247Modifications of amplifiers to reduce non-linear distortion using predistortion circuits using feedback acting on predistortion circuits
    • HELECTRICITY
    • H03ELECTRONIC CIRCUITRY
    • H03FAMPLIFIERS
    • H03F1/00Details of amplifiers with only discharge tubes, only semiconductor devices or only unspecified devices as amplifying elements
    • H03F1/56Modifications of input or output impedances, not otherwise provided for
    • HELECTRICITY
    • H03ELECTRONIC CIRCUITRY
    • H03FAMPLIFIERS
    • H03F3/00Amplifiers with only discharge tubes or only semiconductor devices as amplifying elements
    • H03F3/189High frequency amplifiers, e.g. radio frequency amplifiers
    • H03F3/19High frequency amplifiers, e.g. radio frequency amplifiers with semiconductor devices only
    • H03F3/195High frequency amplifiers, e.g. radio frequency amplifiers with semiconductor devices only in integrated circuits
    • HELECTRICITY
    • H03ELECTRONIC CIRCUITRY
    • H03FAMPLIFIERS
    • H03F3/00Amplifiers with only discharge tubes or only semiconductor devices as amplifying elements
    • H03F3/20Power amplifiers, e.g. Class B amplifiers, Class C amplifiers
    • H03F3/21Power amplifiers, e.g. Class B amplifiers, Class C amplifiers with semiconductor devices only
    • H03F3/211Power amplifiers, e.g. Class B amplifiers, Class C amplifiers with semiconductor devices only using a combination of several amplifiers
    • HELECTRICITY
    • H03ELECTRONIC CIRCUITRY
    • H03FAMPLIFIERS
    • H03F3/00Amplifiers with only discharge tubes or only semiconductor devices as amplifying elements
    • H03F3/20Power amplifiers, e.g. Class B amplifiers, Class C amplifiers
    • H03F3/24Power amplifiers, e.g. Class B amplifiers, Class C amplifiers of transmitter output stages
    • H03F3/245Power amplifiers, e.g. Class B amplifiers, Class C amplifiers of transmitter output stages with semiconductor devices only
    • HELECTRICITY
    • H03ELECTRONIC CIRCUITRY
    • H03FAMPLIFIERS
    • H03F2200/00Indexing scheme relating to amplifiers
    • H03F2200/165A filter circuit coupled to the input of an amplifier
    • HELECTRICITY
    • H03ELECTRONIC CIRCUITRY
    • H03FAMPLIFIERS
    • H03F2200/00Indexing scheme relating to amplifiers
    • H03F2200/222A circuit being added at the input of an amplifier to adapt the input impedance of the amplifier
    • HELECTRICITY
    • H03ELECTRONIC CIRCUITRY
    • H03FAMPLIFIERS
    • H03F2200/00Indexing scheme relating to amplifiers
    • H03F2200/411Indexing scheme relating to amplifiers the output amplifying stage of an amplifier comprising two power stages
    • HELECTRICITY
    • H03ELECTRONIC CIRCUITRY
    • H03FAMPLIFIERS
    • H03F2200/00Indexing scheme relating to amplifiers
    • H03F2200/451Indexing scheme relating to amplifiers the amplifier being a radio frequency amplifier

Definitions

  • the present invention relates to a power amplification circuit.
  • a mobile communication device such as a mobile phone is equipped with a power amplifier for amplifying the power of a transmission signal.
  • a power amplifier for amplifying the power of a transmission signal.
  • IMD inter-modulation distortion
  • a technique is proposed in which the component of intermodulation distortion is canceled by intentionally injecting harmonics into the signal path.
  • Patent Document 1 divides the output of an amplifier at the first stage into a fundamental wave and a second harmonic, adjusts the phase and amplitude of the second harmonic, adds it to the fundamental wave, and inputs it to the amplifier at the second stage.
  • a distortion-compensated power amplification device is disclosed that compensates for intermodulation distortion.
  • the present invention has been made in view of such circumstances, and an object thereof is to provide a power amplification circuit that suppresses the influence of intermodulation distortion while suppressing an increase in circuit size.
  • a power amplification circuit extracts a first amplifier that amplifies a first signal and outputs a second signal, and extraction that extracts a double wave included in the second signal.
  • FIG. 1 is a view showing a configuration example of a power amplification circuit according to a first embodiment of the present invention.
  • the power amplification circuit 100A shown in FIG. 1 is mounted, for example, on a mobile communication device such as a mobile phone, and is used to amplify the power of a radio frequency (RF: Radio-Frequency) signal transmitted to a base station.
  • RF Radio-Frequency
  • the power amplification circuit 100A may be, for example, 2G (second generation mobile communication system), 3G (third generation mobile communication system), 4G (fourth generation mobile communication system), 5G (fifth generation mobile communication system), LTE ( Long Term Evolution)-Amplifies the signal power of communication standards such as Frequency Division Duplex (FDD), Time Division Duplex (LTE-TDD), LTE-Advanced, and LTE-Advanced Pro. Further, the frequency of the RF signal is, for example, about several hundred MHz to several tens of GHz. The communication standard and the frequency of the signal amplified by the power amplification circuit 100A are not limited to these.
  • the power amplification circuit 100A includes, for example, amplifiers 110 and 111, a combiner 120, matching circuits 130 and 131, a harmonic extraction circuit 140, a distortion compensation circuit 150A, an input terminal T1, and an output terminal T2.
  • Power amplifier circuit 100A also includes a main path P1 and a sub path P2.
  • the amplifiers 110 (third amplifier) and 111 (first amplifier) respectively amplify and output the input RF signal. That is, the power amplification circuit 100A amplifies power in two stages. Specifically, the amplifier 110 of the first stage (drive stage) amplifies the RF signal RF1 (fourth signal) input from the input terminal T1 via the matching circuit 130 to generate an RF signal RF2 (third signal). Output. The amplifier 111 in the subsequent stage (power stage) amplifies an RF signal RF3 (first signal) synthesized in the synthesizer 120 described later, and outputs an RF signal RF4 (second signal). The RF signals RF2 and RF4 respectively include harmonics including the second harmonic generated by the amplification operation of the amplifiers 110 and 111.
  • Each of the amplifiers 110 and 111 is formed of, for example, a bipolar transistor such as a heterojunction bipolar transistor (HBT).
  • the amplifiers 110 and 111 may be configured by field effect transistors (MOSFETs: Metal-oxide-semiconductor Field-Effect Transistors) instead of the HBT.
  • MOSFETs Metal-oxide-semiconductor Field-Effect Transistors
  • the main path P1 is a path from the input terminal T1 to the output terminal T2 via the amplifiers 110 and 111 and the like.
  • Main path P1 is a path for passing a fundamental wave F 0 of the RF signal RF1.
  • the sub path P2 is a path from the harmonic extraction circuit 140 to the synthesizer 120 via the distortion compensation circuit 150A, and constitutes a feedback circuit.
  • Pathway P2 is a path for generating a second harmonic 2F 0 injected to compensate for the third order intermodulation distortion generated at the later stage of the amplifier 111.
  • the combiner 120 combines the fundamental wave F 0 passing through the main path P 1 and the second harmonic 2 F 0 passing through the sub path P 2, and outputs an RF signal RF 3 (first signal).
  • the generated RF signal RF3 is supplied to the amplifier 111 in the subsequent stage.
  • the matching circuit 130 matches the impedance of the amplifier 110 with the circuit (not shown) provided in the previous stage.
  • a matching circuit 131 is provided between the amplifier 110 and the combiner 120 to match the impedances of the amplifier 110 and the amplifier 111.
  • the matching circuit 131 also has a function to attenuate harmonic distortion (HD) generated by the amplification operation of the amplifier 110. That is, the matching circuit 131 constitutes one specific example of the double wave attenuation circuit.
  • the second harmonic wave is prevented from being supplied to the combiner 120 via the main path P1.
  • the matching circuit 131 may be, for example, a low pass filter (LPF) circuit having a frequency characteristic that passes the fundamental wave and attenuates the second harmonic.
  • LPF low pass filter
  • the harmonic extraction circuit 140 is provided downstream of the amplifier 111. Harmonic extraction circuit 140 extracts the second harmonic 2F 0 contained in the RF signal RF4, supplies at least part of the distortion compensation circuit 150A. The remaining signal from which the second harmonic wave 2F 0 has been extracted by the harmonic wave extraction circuit 140 is output from the output terminal T2 as a transmission signal.
  • a harmonic termination circuit which shorts a harmonic to ground is used as the harmonic extraction circuit 140.
  • the second harmonic supplied to the harmonic termination circuit may be distributed, a part may be supplied to the distortion compensation circuit 150A, and a part may be shorted to the ground.
  • the harmonic extraction circuit can be configured while suppressing an increase in circuit scale.
  • the harmonic extraction circuit 140 is not limited to the configuration using the harmonic termination circuit, and a filter circuit or the like that extracts only the second harmonic from the RF signal RF4 may be used.
  • the distortion compensation circuit 150 A is provided between the harmonic extraction circuit 140 and the combiner 120 in the sub path P 2.
  • the distortion compensation circuit 150A is a circuit that adjusts and outputs the amplitude and phase of the second harmonic 2F 0 intentionally injected to compensate for third-order intermodulation distortion.
  • the distortion compensation circuit 150A includes, for example, an amplitude adjustment circuit 200, a phase adjustment circuit 210, and a matching circuit 220.
  • the amplitude adjustment circuit 200 adjusts the amplitude of the second harmonic 2F 0 extracted by the harmonic extraction circuit 140 and supplies the adjusted amplitude to the phase adjustment circuit 210.
  • distortion compensation circuit 150A comprises an amplitude adjustment circuit 200 may adjust the power of the second harmonic 2F 0 depending on the output power of the transmission signal.
  • the amplitude adjustment circuit 200 may be configured of, for example, an amplifier (second amplifier) that increases the power of the second harmonic.
  • the amplitude adjustment circuit 200 may be constituted by an attenuator.
  • the phase adjustment circuit 210 is provided, for example, at a stage subsequent to the amplitude adjustment circuit 200.
  • the phase adjustment circuit 210 adjusts and outputs the phase of the supplied second harmonic 2F 0 so as to be a phase suitable for distortion compensation.
  • the matching circuit 220 matches the impedances of the phase adjustment circuit 210 and the combiner 120.
  • distortion compensation circuit 150A can adjust the amplitude and phase of second harmonic 2F 0 intentionally injected to the input of amplifier 111 at the subsequent stage.
  • the order of the components included in the distortion compensation circuit 150A is not limited to this, and may be changed as appropriate.
  • the amplitude adjustment circuit 200 may be provided downstream of the phase adjustment circuit 210.
  • the synthesizer 120, the matching circuits 130, 131 and 220, the harmonic extraction circuit 140, and the phase adjustment circuit 210 may each be configured to include elements such as an inductor and a capacitor, or a surface acoustic wave (SAW: It may be configured to include a resonator using an elastic wave such as a surface acoustic wave) filter.
  • SAW surface acoustic wave
  • FIG. 2 is a diagram showing the spectrum of the signal (that is, the RF signal RF3 in FIG. 1) supplied to the amplifier 111 in the subsequent stage.
  • FIG. 3 is a diagram showing a part of the spectrum of the signal (i.e., the RF signal RF4 in FIG. 1) output from the amplifier 111 in the subsequent stage.
  • the horizontal axis indicates the frequency of the signal
  • the vertical axis indicates power spectral density (PSD).
  • the fundamental wave F 0 passing through the main path P 1 and the double wave 2 F 0 passing through the sub path P 2 are supplied to the amplifier 111 of the subsequent stage.
  • the fundamental wave F 0 includes components of two frequencies f 1 and f 2 (f 1 ⁇ f 2 ) close to each other.
  • the second harmonic 2F 0 includes components of the two frequencies 2 f 1 and 2 f 2 .
  • the signals of the frequencies f 1 and f 2 and the signals of the frequencies 2 f 1 and 2 f 2 are added to the amplifier 111 and supplied.
  • the amplified signal is fundamental F 0 is amplified as shown in FIG. 3 is output. Also, due to the amplification operation of the amplifier 111, a third-order intermodulation distortion IM3 L having a frequency of 2f 1 -f 2 is generated on the low frequency side of the fundamental wave F 0 and a third-order mutual modulation signal having a frequency 2f 2 -f 1 The modulation distortion IM3 H occurs on the high frequency side of the fundamental wave F 0 .
  • the third-order intermodulation distortions IM3 L and IM3 H are relatively close to the frequencies f 1 and f 2 of the fundamental wave F 0 and therefore difficult to remove by a filter circuit or the like, and the linearity of the amplifier is degraded. It can be a factor of In the amplification operation of the amplifier 111, other distortions such as third-order intermodulation distortion with a frequency of 2f 1 + f 2 , 2f 2 + f 1 may occur, but the frequency of these distortions is the fundamental wave F 0 Therefore, the description thereof is omitted here because it is relatively far from the frequencies f 1 and f 2 of .
  • the second-order intermodulation distortion IM 3 is generated by intentionally injecting the second harmonic 2F 0. L, IM3 compensation signal as offset with H CS L, CS H is generated. Specifically, a signal obtained by adding the fundamental wave F 0 and the second harmonic 2F 0 in the combiner 120 is input to the amplifier 111, whereby one frequency 2f 1 of the second harmonic 2F 0 is obtained. Compensation signal CS L having a frequency difference of the other frequency f 2 (2f 1 -f 2) of the wave F 0 is generated.
  • the compensation signal CS H having one of frequencies f 1 of the frequency difference (2f 2 -f 1) of the fundamental wave F 0 is generated.
  • the phase of the compensation signal CS L, CS H, 3 order intermodulation and distortion IM3 L, IM3 H of phase so as to be substantially opposite phase at the output of each amplifier 111, 2 in the phase adjustment circuit 210 harmonic
  • the phase of 2F 0 is transformed.
  • the compensation signal CS L, the amplitude of the CS H, and amplitude of the third-order intermodulation distortion IM3 L, IM3 H is, as cancel at the output of the amplifier 111, the amplitude of the second harmonic 2F 0 in the amplitude adjustment circuit 200 Is adjusted.
  • the third-order intermodulation distortion IM3 L, IM3 H is canceled by the compensation signal CS L, CS H.
  • FIG. 3 to indicate that the compensation signal CS L, CS H is third-order intermodulation distortion IM3 L, IM3 H substantially opposite phase compensation signal CS L, CS H is shown downward .
  • the influence of the third-order intermodulation distortion IM3 L and IM3 H generated in the amplifier 111 can be suppressed.
  • the power amplification circuit 100A the deterioration of the linearity can be suppressed.
  • the double wave generated by the amplification operation of the amplifier 111 is extracted, and the double wave is injected to the input of the amplifier 111 by feedback operation. That is, according to the present embodiment, it is not necessary to newly provide a generation circuit, an amplifier or the like for generating the injected second harmonic. Therefore, as disclosed in, for example, Patent Document 1, the power amplification circuit 100A suppresses the increase in the circuit scale as compared with the configuration including the amplifier different from the amplifier that causes the intermodulation distortion, and performs the intermodulation. The influence of distortion can be suppressed.
  • a harmonic termination circuit is used as the harmonic extraction circuit 140.
  • the harmonic extraction circuit can be configured while suppressing an increase in circuit size.
  • the distortion compensation circuit 150A since the extracted second harmonic is supplied to the distortion compensation circuit 150A, the distortion compensation circuit 150A does not have to include a filter circuit or the like for attenuating the fundamental wave. This also suppresses the increase in circuit scale. It is not intended to exclude the configuration in which the distortion compensation circuit includes the filter circuit.
  • the second harmonic generated by the amplification operation of the first stage amplifier is It passes the main route.
  • the second harmonic through the main path and the second harmonic through the sub path can be offset when they are added in the synthesizer. Therefore, the power of the second harmonic injected into the amplifier 111 may be insufficient.
  • the matching circuit 131 provided on the main path P1 also has a function to attenuate the double wave.
  • the double wave generated in the subsequent stage (power stage) amplifier 111 is used for injection. Therefore, as disclosed in Patent Document 1, it is possible to inject a second power of higher power than a configuration in which a second harmonic generated in the first stage (drive stage) amplifier is used for injection. Therefore, this also enables the power amplification circuit 100A to suppress the influence of intermodulation distortion while increasing the output power.
  • the circuit that performs the function of attenuation of the double wave provided between the amplifier 110 and the combiner 120 is not limited to the matching circuit 131.
  • the matching circuit 131 may be an amplifier is provided which is designed to amplify the frequency band of the fundamental wave F 0.
  • the power amplification circuit includes three stages of amplifiers in the main path P1, the output power of the transmission signal can be further increased.
  • matching circuits may be provided at the front stage and the rear stage of the amplifier provided instead of the matching circuit 131, respectively.
  • each component included in the power amplification circuit 100A shown in FIG. 1 does not necessarily have to be all provided as an individual circuit, and one circuit may have a plurality of functions.
  • the phase adjustment circuit 210 may have the function of the matching circuit 220.
  • the case where the second harmonic is injected into the amplifier 111 to compensate for third-order intermodulation distortion is described as an example, but higher-order intermodulation distortion can also be compensated.
  • the frequencies are ⁇ 2N + 1) of ⁇ (N + 1) f 1 ⁇ Nf 2 ⁇ and ⁇ (N + 1) f 2 ⁇ Nf 1 ⁇ .
  • Next intermodulation distortion (N is an integer of 1 or more) is generated. Therefore, these higher order intermodulation distortions can be offset by injecting harmonics at integer multiples of the fundamental frequency.
  • FIGS. 4A and 4B are graphs showing simulation results of third-order intermodulation distortion in the power amplification circuit according to the first embodiment of the present invention and the comparative example.
  • the comparative example is a configuration not including the distortion compensation circuit 150A in the power amplification circuit 100A shown in FIG.
  • FIG. 4A shows third-order intermodulation distortion lower than the fundamental wave
  • FIG. 4B shows third-order intermodulation distortion higher than the fundamental wave.
  • the horizontal axis indicates the output power Pout (dBm) of the transmission signal
  • the vertical axis indicates the output level (dBc) of third-order intermodulation distortion with respect to the fundamental wave.
  • the output level of third-order intermodulation distortion rapidly increases when a certain output power is exceeded.
  • the output power when the output power when the distortion is ⁇ 40 dBc is compared, in FIG. 4A, the output power is approximately 28 dBm in the comparative example, but approximately 29 dBm in the present embodiment. It has improved by about 0 dB.
  • FIG. 4B while it is about 27.5 dBm in a comparative example, it is about 29 dBm in this embodiment, and it is improving about 1.5 dB compared with a comparative example. From this, it can be seen that in the present embodiment, the influence of intermodulation distortion is suppressed while the output power is increased.
  • FIG. 5 is a view showing a configuration example of a power amplification circuit according to a second embodiment of the present invention.
  • descriptions of matters common to the first embodiment will be omitted, and only differences will be described.
  • the same operation and effect by the same configuration will not be sequentially referred to in each embodiment.
  • the power amplification circuit 100B shown in FIG. 5 includes a distortion compensation circuit 150B in place of the distortion compensation circuit 150A.
  • the distortion compensation circuit 150B further includes a filter circuit 230 as compared to the distortion compensation circuit 150A.
  • the filter circuit 230 is provided between the harmonic extraction circuit 140 and the combiner 120 (in the present embodiment, between the harmonic extraction circuit 140 and the amplitude adjustment circuit 200).
  • the filter circuit 230 is provided for the case where the amount of attenuation of signals other than the second harmonic is insufficient in the extraction of the second harmonic by the harmonic extraction circuit 140, and attenuates a signal having a frequency different from that of the second harmonic.
  • the specific configuration of the filter circuit 230 is not particularly limited.
  • the filter circuit 230 may be configured to include an inductor and a capacitor, or may be configured to include a resonator using an elastic wave such as a SAW filter.
  • the power amplification circuit 100B can improve the accuracy of suppression of third-order intermodulation distortion as compared to the power amplification circuit 100A.
  • the position of the filter circuit 230 in the distortion compensation circuit 150B is not limited to this, and may be changed as appropriate.
  • the filter circuit 230 is provided at the front stage of the amplitude adjustment circuit 200, the power of the input signal is smaller than that of the configuration provided at the rear stage, which is preferable.
  • FIG. 6 is a view showing a configuration example of a transmission module including the power amplification circuit according to the first embodiment of the present invention.
  • the transmission module 300A includes a semiconductor chip 20A mounted on a module substrate 10A, a matching circuit 132, and bias networks 180 to 182.
  • the power amplification circuit 100A according to the first embodiment and the bias circuits 170 to 172 are integrated in the semiconductor chip 20A.
  • the matching circuit 132 matches the impedance of the power amplification circuit 100A provided in the previous stage and the circuit (not shown) provided in the rear stage of the power amplification circuit 100A.
  • the matching circuit 132 may be formed inside the semiconductor chip 20A.
  • the bias networks 180-182 provide power supply voltages to the amplifiers 110, 111 and the amplitude adjustment circuit 200, respectively.
  • Bias circuits 170 to 172 are supplied with battery voltage Vbatt respectively, and bias currents or bias voltages to amplifiers 110 and 111 and amplitude adjustment circuit 200 based on control signals Ctrl1 to Ctrl3 supplied from the outside of module substrate 10A. Supply.
  • the distortion compensation circuit 150A is formed outside the semiconductor chip 20A.
  • the size of the transmission module can be reduced.
  • FIG. 7 is a view showing a configuration example of a transmission module including a power amplification circuit according to a second embodiment of the present invention.
  • the transmission module 300B is different from the transmission module 300A in that the semiconductor chip 20B is mounted on the module substrate 10B instead of the semiconductor chip 20A.
  • the semiconductor chip 20B includes the power amplification circuit 100B according to the second embodiment.
  • the transmission module can be miniaturized by integrating the power amplification circuit 100B including the distortion compensation circuit 150B and the bias circuits 170 to 172 on the same semiconductor chip 20B.
  • FIG. 8 is a diagram showing another configuration example of the transmission module including the power amplification circuit according to the second embodiment of the present invention.
  • the transmission module 300C is different from the transmission module 300A in that the filter circuit 230 included in the distortion compensation circuit 150B is formed outside the semiconductor chip 20C. That is, in this configuration example, the harmonics output from the harmonic extraction circuit 140 once go out of the semiconductor chip 20C, and return to the semiconductor chip 20C again through the filter circuit 230.
  • the filter circuit 230 when the filter circuit 230 is formed of, for example, a SAW filter, the cost can be reduced as compared with the configuration in which the filter circuit 230 is formed in the semiconductor chip 20C.
  • the filter circuit 230 may be mounted on the module substrate 10C by, for example, a surface mount device (SMD).
  • SMD surface mount device
  • the above-described transmission modules 300A to 300C may constitute a high frequency module together with a reception module including a low noise amplifier (LNA). Further, the plurality of transmission modules 300A to 300C may constitute a multiband high frequency module together with the plurality of reception modules. In this case, each of the plurality of modules corresponds to signals in different frequency bands.
  • the multiband high frequency module may be provided with a module corresponding to each of an FDD (Frequency Division Duplex) system and a TDD (Time Division Duplex) system.
  • the power amplification circuits 100A and 100B amplify the RF signal RF3 and output an RF signal RF4, the harmonic extraction circuit 140 extracting the second harmonic included in the RF signal RF4, and the extracted second harmonic And a combiner 120 for combining the phase-adjusted second harmonic with the RF signal RF2 and outputting an RF signal RF3. Accordingly, the power amplification circuits 100A and 100B do not need to newly include a generation circuit, an amplifier, and the like for generating the injected second harmonic. Therefore, the power amplification circuits 100A and 100B can suppress the influence of the intermodulation distortion IM3 L and IM3 H while suppressing an increase in circuit scale as compared with the configuration disclosed in Patent Document 1.
  • the power amplifier circuit 100A, 100B is 2 and harmonic 2F 0, a signal of a difference between the fundamental wave F 0 contained in the RF signal RF3, and the third-order intermodulation distortion IM3 L, IM3 H generated in the amplifier 111
  • the circuit further includes an amplitude adjustment circuit 200 that adjusts the amplitude of the second harmonic 2F 0 so as to cancel each other at the output of the amplifier 111.
  • an amplitude adjustment circuit 200 that adjusts the amplitude of the second harmonic 2F 0 so as to cancel each other at the output of the amplifier 111.
  • the amplitude adjustment circuit 200 may be composed of an amplifier for amplifying the power of the second harmonic 2F 0. Thus, with increasing output power of the transmission signal, it is possible to increase the power of the second harmonic 2F 0.
  • power amplification circuits 100A and 100B are provided between amplifier 110 for amplifying RF signal RF1 and outputting RF signal RF2, and between amplifier 110 and combiner 120, and the signal of the frequency of double wave 2F 0 is It further comprises a matching circuit 131 having a function of attenuating. As a result, in the combiner 120, cancellation of the second harmonic through the main path P1 and the second harmonic through the sub path P2 is avoided. Therefore, the power amplification circuits 100A and 100B can inject a high power second harmonic into the amplifier 111 as compared with the configuration disclosed in Patent Document 1.
  • the power amplification circuit 100B is further provided with a filter circuit 230 provided between the harmonic extraction circuit 140 and the combiner 120 for attenuating a signal having a frequency different from that of the second harmonic,
  • the circuit 230 is formed outside the semiconductor chip 20C in which the amplifier 111 is formed.
  • the filter circuit 230 is formed of, for example, a SAW filter, the cost can be reduced as compared with the configuration in which the filter circuit 230 is formed in the semiconductor chip 20C.
  • each embodiment described above is for facilitating the understanding of the present invention, and is not for limiting and interpreting the present invention.
  • the present invention can be changed or improved without departing from the gist thereof, and the present invention also includes the equivalents thereof. That is, those in which persons skilled in the art appropriately modify the design of each embodiment are also included in the scope of the present invention as long as they have the features of the present invention.
  • each element included in each embodiment and its arrangement, material, conditions, shape, size, and the like are not limited to those illustrated, and may be changed as appropriate. Further, the elements included in each embodiment can be combined as much as technically possible, and combinations of these are included in the scope of the present invention as long as they include the features of the present invention.

Abstract

回路規模の増大を抑制しつつ、相互変調歪みの影響を抑制する電力増幅回路を提供する。 電力増幅回路は、第1信号を増幅して第2信号を出力する第1増幅器と、第2信号に含まれる2倍波を抽出する抽出回路と、抽出された2倍波の位相を調整する位相調整回路と、位相が調整された2倍波と第3信号とを合成して第1信号を出力する合成器と、を備える。

Description

電力増幅回路
 本発明は、電力増幅回路に関する。
 携帯電話等の移動体通信機には、送信信号の電力を増幅するための電力増幅器が搭載されている。このような電力増幅器に、例えば周波数が近接した複数の信号が供給されると、これらの複数の信号から相互変調歪み(IMD:Inter-modulation Distortion)が生じ、利得の線形性が劣化するおそれがある。従って、このような相互変調歪みの影響を抑制すべく、信号経路に高調波を意図的に注入することにより、相互変調歪みの成分を打ち消す技術が提案されている。例えば、特許文献1には、初段の増幅器の出力を基本波と2倍波に分配し、当該2倍波の位相及び振幅を調整したのち、基本波に加算して後段の増幅器に入力することにより相互変調歪みを補償する、歪み補償電力増幅装置が開示されている。
米国特許出願公開第2005/0242877号明細書
 特許文献1に開示される構成は、相互変調歪みの発生要因となる増幅器とは異なる増幅器が設けられ、当該増幅器によって2倍波が生成されている。しかしながら、携帯電話等の移動体通信機における小型化の要求はますます高まっている。従って、回路規模を極力増大させることなく相互変調歪みの影響を抑制し、線形性を向上させることが望ましい。
 本発明は、かかる事情に鑑みてなされたものであり、回路規模の増大を抑制しつつ、相互変調歪みの影響を抑制する電力増幅回路を提供することを目的とする。
 かかる目的を達成するため、本発明の一側面に係る電力増幅回路は、第1信号を増幅して第2信号を出力する第1増幅器と、第2信号に含まれる2倍波を抽出する抽出回路と、抽出された2倍波の位相を調整する位相調整回路と、位相が調整された2倍波と第3信号とを合成して第1信号を出力する合成器と、を備える。
 本発明によれば、回路規模の増大を抑制しつつ、相互変調歪みの影響を抑制する電力増幅回路を提供することができる。
本発明の第1実施形態に係る電力増幅回路の構成例を示す図である。 後段の増幅器111に供給される信号のスペクトルを示した図である。 後段の増幅器111から出力される信号のスペクトルの一部を示した図である。 本発明の第1実施形態に係る電力増幅回路及び比較例における3次相互変調歪みのシミュレーション結果を示すグラフである。 本発明の第1実施形態に係る電力増幅回路及び比較例における3次相互変調歪みのシミュレーション結果を示すグラフである。 本発明の第2実施形態に係る電力増幅回路の構成例を示す図である。 本発明の第1実施形態に係る電力増幅回路を含む送信用モジュールの構成例を示す図である。 本発明の第2実施形態に係る電力増幅回路を含む送信用モジュールの構成例を示す図である。 本発明の第2実施形態に係る電力増幅回路を含む送信用モジュールの他の構成例を示す図である。
 以下、本発明の実施の形態について、図面を参照しつつ詳細に説明する。なお、同一の要素には同一の符号を付し、重複する説明を省略する。
 図1は、本発明の第1実施形態に係る電力増幅回路の構成例を示す図である。図1に示される電力増幅回路100Aは、例えば、携帯電話等の移動体通信機に搭載され、基地局に送信する無線周波数(RF:Radio-Frequency)信号の電力を増幅するために用いられる。電力増幅回路100Aは、例えば、2G(第2世代移動通信システム)、3G(第3世代移動通信システム)、4G(第4世代移動通信システム)、5G(第5世代移動通信システム)、LTE(Long Term Evolution)-FDD(Frequency Division Duplex)、LTE-TDD(Time Division Duplex)、LTE-Advanced、LTE-Advanced Pro等の通信規格の信号の電力を増幅する。また、RF信号の周波数は、例えば数百MHz~数十GHz程度である。なお、電力増幅回路100Aが増幅する信号の通信規格及び周波数はこれらに限られない。
 電力増幅回路100Aは、例えば、増幅器110,111、合成器120、整合回路130,131、高調波抽出回路140、歪み補償回路150A、入力端子T1及び出力端子T2を備える。また、電力増幅回路100Aは、主経路P1と副経路P2を含む。
 増幅器110(第3増幅器),111(第1増幅器)は、それぞれ、入力されるRF信号を増幅して出力する。すなわち、電力増幅回路100Aは2段階にわたって電力を増幅する。具体的に、初段(ドライブ段)の増幅器110は、入力端子T1から整合回路130を経由して入力されるRF信号RF1(第4信号)を増幅して、RF信号RF2(第3信号)を出力する。後段(パワー段)の増幅器111は、後述する合成器120において合成されたRF信号RF3(第1信号)を増幅して、RF信号RF4(第2信号)を出力する。なお、RF信号RF2,RF4には、それぞれ、増幅器110,111の増幅動作によって発生する2倍波を含む高調波が含まれている。増幅器110,111は、それぞれ、例えばヘテロ接合バイポーラトランジスタ(HBT:Heterojunction Bipolar Transistor)等のバイポーラトランジスタにより構成される。なお、増幅器110,111は、HBTに替えて電界効果トランジスタ(MOSFET:Metal-oxide-semiconductor Field-Effect Transistor)により構成されてもよい。
 主経路P1は、入力端子T1から増幅器110,111等を経由して出力端子T2に至る経路である。主経路P1は、RF信号RF1の基本波Fを通すための経路である。副経路P2は、高調波抽出回路140から歪み補償回路150Aを経由して合成器120に至る経路であり、フィードバック回路を構成する。副経路P2は、後段の増幅器111において発生する3次相互変調歪みを補償するために注入される2倍波2Fを生成するための経路である。
 合成器120は、主経路P1を経由した基本波Fと、副経路P2を経由した2倍波2Fとを合成して、RF信号RF3(第1信号)を出力する。生成されたRF信号RF3は、後段の増幅器111に供給される。
 整合回路130(MN:Matching Network)は、前段に設けられた回路(不図示)と増幅器110のインピーダンスを整合させる。
 整合回路131は、増幅器110と合成器120の間に設けられ、増幅器110と増幅器111のインピーダンスを整合させる。また、整合回路131は、増幅器110の増幅動作によって発生する高調波歪み(HD:Harmonic Distortion)を減衰させる機能を兼ね備える。すなわち、整合回路131は、2倍波減衰回路の一具体例を構成する。これにより、主経路P1経由においては、2倍波が合成器120へと供給されることが抑制される。具体的には、整合回路131は、例えば基本波を通過させ、2倍波を減衰させる周波数特性を有する低域通過フィルタ(LPF:Low Pass Filter)回路であってもよい。
 高調波抽出回路140は、増幅器111の後段に設けられる。高調波抽出回路140は、RF信号RF4に含まれる2倍波2Fを抽出して、その少なくとも一部を歪み補償回路150Aに供給する。高調波抽出回路140により2倍波2Fが抽出された残りの信号は、送信信号として出力端子T2から出力される。なお、本実施形態においては、高調波抽出回路140として、例えば高調波を接地に短絡する高調波終端回路が用いられている。この場合、例えば、高調波終端回路に供給される2倍波を分配し、一部を歪み補償回路150Aに供給し、一部を接地に短絡する構成としてもよい。これにより、回路規模の増大を抑制しつつ、高調波抽出回路を構成することができる。なお、高調波抽出回路140は、高調波終端回路を用いる構成に限られず、RF信号RF4から2倍波のみを抽出するフィルタ回路等が用いられてもよい。
 歪み補償回路150Aは、副経路P2において、高調波抽出回路140と合成器120の間に設けられる。歪み補償回路150Aは、3次相互変調歪みを補償するために意図的に注入される2倍波2Fの振幅及び位相を調整して出力する回路である。具体的に、歪み補償回路150Aは、例えば、振幅調整回路200、位相調整回路210及び整合回路220を備える。
 振幅調整回路200は、高調波抽出回路140によって抽出された2倍波2Fの振幅を調整して、位相調整回路210に供給する。歪み補償回路150Aが振幅調整回路200を備えることにより、送信信号の出力電力のレベルに応じて2倍波2Fの電力を調整することができる。振幅調整回路200は、例えば2倍波の電力を増大させる増幅器(第2増幅器)によって構成されてもよい。これにより、送信信号の出力電力の増大に伴って、2倍波2Fの電力を増大させることができる。あるいは、2倍波2Fの電力が歪み補償に必要な電力レベルに比べて大きい場合には、振幅調整回路200は減衰器により構成されていてもよい。
 位相調整回路210は、例えば振幅調整回路200の後段に設けられる。位相調整回路210は、供給される2倍波2Fの位相が、歪み補償に適した位相となるように調整して出力する。
 整合回路220は、位相調整回路210と合成器120のインピーダンスを整合する。
 上述の構成により、歪み補償回路150Aは、後段の増幅器111の入力に意図的に注入される2倍波2Fの振幅及び位相を調整することができる。なお、歪み補償回路150Aが備える各構成要素の順序はこれに限定されず、適宜変更されてもよい。例えば、位相調整回路210の後段に振幅調整回路200が設けられてもよい。また、合成器120、整合回路130,131,220、高調波抽出回路140、位相調整回路210は、それぞれ、インダクタ及びキャパシタなどの素子を含んで構成されてもよく、あるいは弾性表面波(SAW:Surface Acoustic Wave)フィルタなどの弾性波を利用した共振子を含んで構成されてもよい。
 次に、図2及び図3を参照しつつ、3次相互変調歪みの補償の作用について説明する。図2は、後段の増幅器111に供給される信号(すなわち、図1におけるRF信号RF3)のスペクトルを示した図である。図3は、後段の増幅器111から出力される信号(すなわち、図1におけるRF信号RF4)のスペクトルの一部を示した図である。なお、図2及び図3に示されるグラフにおいて、横軸は信号の周波数を示し、縦軸はパワースペクトル密度(PSD:Power Spectral Density)を示す。
 図2に示されるように、後段の増幅器111には、主経路P1を経由した基本波Fと、副経路P2を経由した2倍波2Fが供給される。ここで、基本波Fは互いに近接した2つの周波数f,f(f<f)の成分を含むものとする。この時、高調波抽出回路140ではこれらの2つの周波数f,fのそれぞれの2倍波が抽出されるため、2倍波2Fは2つの周波数2f,2fの成分を含む。このように、増幅器111には、周波数f,fの信号と、周波数2f,2fの信号が足し合わされて供給される。
 そして、増幅器111の増幅動作により、図3に示されるように基本波Fが増幅された増幅信号が出力される。また、増幅器111の増幅動作により、周波数が2f-fである3次相互変調歪みIM3が基本波Fの低域側に発生し、周波数が2f-fである3次相互変調歪みIM3が基本波Fの高域側に発生する。当該3次相互変調歪みIM3,IM3は、基本波Fの周波数f,fと比較的近接しているため、フィルタ回路等によって取り除くことが困難であり、増幅器の線形性の劣化の要因となり得る。なお、増幅器111の増幅動作においては、例えば周波数が2f+f,2f+fである3次相互変調歪み等の他の歪みも発生し得るが、これらの歪みの周波数は基本波Fの周波数f,fから比較的遠いため、ここでは説明を省略する。
 基本波Fに比較的近い3次相互変調歪みIM3,IM3の補償のため、本実施形態においては、2倍波2Fが意図的に注入されることにより、3次相互変調歪みIM3,IM3と相殺されるような補償信号CS,CSが生成される。具体的には、合成器120において、基本波Fと2倍波2Fが足し合わされた信号が増幅器111に入力されることにより、2倍波2Fのうち一方の周波数2fと、基本波Fのうち他方の周波数fの差の周波数(2f-f)を有する補償信号CSが生成される。また、2倍波2Fのうち他方の周波数2fと、基本波Fのうち一方の周波数fの差の周波数(2f-f)を有する補償信号CSが生成される。これらの補償信号CS,CSの周波数は、それぞれ、3次相互変調歪みIM3,IM3の周波数と等しい。また、補償信号CS,CSの位相と、3次相互変調歪みIM3,IM3の位相とが、それぞれ増幅器111の出力において略逆位相となるように、位相調整回路210において2倍波2Fの位相が変換される。さらに、補償信号CS,CSの振幅と、3次相互変調歪みIM3,IM3の振幅とが、増幅器111の出力において打ち消し合うように、振幅調整回路200において2倍波2Fの振幅が調整される。これにより、図3に示されるように、3次相互変調歪みIM3,IM3が補償信号CS,CSによって相殺される。なお、図3では、補償信号CS,CSが3次相互変調歪みIM3,IM3と略逆位相であることを示すために、補償信号CS,CSは下向きに図示されている。
 上述の作用により、電力増幅回路100Aでは、増幅器111において発生する3次相互変調歪みIM3,IM3の影響を抑制することができる。これにより、電力増幅回路100Aによると、線形性の劣化を抑制することができる。
 また、本実施形態では、増幅器111の増幅動作によって発生する2倍波が抽出され、フィードバック動作により当該増幅器111の入力に当該2倍波が注入される。すなわち、本実施形態によると、注入される2倍波を生成するための生成回路や増幅器等を新たに備える必要がない。従って、電力増幅回路100Aは、例えば特許文献1に開示されるように、相互変調歪みの発生要因となる増幅器とは異なる増幅器を備える構成に比べて、回路規模の増大を抑制しつつ、相互変調歪みの影響を抑制することができる。
 また、本実施形態では、高調波抽出回路140として、高調波終端回路が用いられている。これにより、回路規模の増大を抑制しつつ高調波抽出回路を構成することができる。また、歪み補償回路150Aには抽出された2倍波が供給されるため、歪み補償回路150Aが基本波を減衰させるフィルタ回路等を備える必要がない。これによっても、回路規模の増大を抑制することができる。なお、歪み補償回路がフィルタ回路を備える構成を除外する意図ではない。
 さらに、特許文献1に開示される構成によると、分配器と合成器との間の主経路に2倍波を減衰させる回路を有しないため、初段の増幅器の増幅動作によって発生する2倍波が主経路を通過してしまう。これにより、副経路において2倍波が生成されても、主経路を経由した2倍波と副経路を経由した2倍波が、合成器において足し合わされる際に相殺され得る。従って、増幅器111に注入される2倍波の電力が不足し得る。他方、本実施形態では、主経路P1に設けられた整合回路131が2倍波を減衰させる機能を兼ね備える。これにより、本実施形態では、特許文献1に開示される構成に比べて、高い電力の2倍波を増幅器111に注入することができる。従って、電力増幅回路100Aによると、出力電力を増大しつつ相互変調歪みの影響を抑制することができる。
 また、本実施形態においては、後段(パワー段)の増幅器111において発生する2倍波が注入に用いられる。従って、特許文献1に開示されるように、初段(ドライブ段)の増幅器において発生する2倍波が注入に用いられる構成に比べて、大きな電力の2倍波を注入することができる。従って、これによっても、電力増幅回路100Aは、出力電力を増大しつつ相互変調歪みの影響を抑制することができる。
 なお、電力増幅回路100Aにおいて、増幅器110と合成器120の間に設けられる2倍波の減衰の機能を果たす回路は、整合回路131に限られない。例えば、整合回路131に替えて、基本波Fの周波数帯域を増幅するように設計された増幅器が設けられていてもよい。これにより、初段の増幅器110の増幅動作によって発生した2倍波を減衰させることができる。この場合、電力増幅回路は主経路P1に3段の増幅器を備えるため、送信信号の出力電力をさらに増大させることができる。なお、この場合、整合回路131に替えて設けられる増幅器の前段及び後段に、それぞれ整合回路が設けられてもよい。
 また、図1に示される電力増幅回路100Aに含まれる各構成要素は、必ずしも個別の回路として全てが備えられている必要はなく、一つの回路が複数の機能を備えていてもよい。例えば、歪み補償回路150Aが整合回路220を備える代わりに、位相調整回路210が整合回路220の機能を兼ね備えていてもよい。
 また、上述の実施形態においては、増幅器111に2倍波が注入され、3次相互変調歪みを補償する場合を例として説明したが、より高次の相互変調歪みを補償することも可能である。より一般的には、増幅器111において周波数f,fの信号が増幅されると、周波数が{(N+1)f-Nf}と{(N+1)f-Nf}の(2N+1)次相互変調歪み(Nは1以上の整数)が生成される。従って、基本周波数の整数倍の高調波を注入することにより、これらの高次の相互変調歪みを相殺することができる。
 図4A及び図4Bは、本発明の第1実施形態に係る電力増幅回路及び比較例における3次相互変調歪みのシミュレーション結果を示すグラフである。ここで、比較例とは、図1に示される電力増幅回路100Aのうち、歪み補償回路150Aを備えない構成である。図4Aは、基本波より低域側の3次相互変調歪みを示し、図4Bは、基本波より高域側の3次相互変調歪みを示す。図4A及び図4Bに示されるグラフにおいて、横軸は送信信号の出力電力Pout(dBm)を示し、縦軸は基本波に対する3次相互変調歪みの出力レベル(dBc)を示す。
 図4A及び図4Bに示されるように、本実施形態及び比較例ともに、ある出力電力を超えると急激に3次相互変調歪みの出力レベルが大きくなっている。しかしながら、例えば歪みが-40dBcである時の出力電力を比較とすると、図4Aにおいては、比較例では28dBm程度であるのに対し、本実施形態では29dBm程度であり、比較例に比べて1.0dB程度向上している。また、図4Bにおいては、比較例では27.5dBm程度であるのに対し、本実施形態では29dBm程度であり、比較例に比べて1.5dB程度向上している。このことから、本実施形態では、出力電力を増大しつつ、相互変調歪みの影響を抑制していることが分かる。
 図5は、本発明の第2実施形態に係る電力増幅回路の構成例を示す図である。なお、本実施形態では、第1実施形態と共通の事柄についての記述を省略し、異なる点についてのみ説明する。特に、同様の構成による同様の作用効果については実施形態毎には逐次言及しない。
 図5に示される電力増幅回路100Bは、図1に示される電力増幅回路100Aに比べて、歪み補償回路150Aに替えて歪み補償回路150Bを備える。歪み補償回路150Bは、歪み補償回路150Aに比べて、フィルタ回路230をさらに備える。
 フィルタ回路230は、高調波抽出回路140と合成器120との間(本実施形態においては、高調波抽出回路140と振幅調整回路200との間)に設けられる。フィルタ回路230は、高調波抽出回路140による2倍波の抽出において、2倍波以外の信号の減衰量が不十分である場合のために設けられ、2倍波とは異なる周波数の信号を減衰させる。フィルタ回路230の具体的な構成は特に限定されないが、例えばインダクタ及びキャパシタを含んで構成されてもよく、あるいはSAWフィルタなどの弾性波を利用した共振子を含んで構成されてもよい。
 このような構成により、電力増幅回路100Bは、電力増幅回路100Aに比べて、3次相互変調歪みの抑制の精度が向上し得る。なお、歪み補償回路150Bにおけるフィルタ回路230の位置はこれに限定されず、適宜変更されてもよい。フィルタ回路230が振幅調整回路200より前段に設けられると、後段に設けられる構成に比べて入力される信号のパワーが小さくなるので、好ましい。
 図6は、本発明の第1実施形態に係る電力増幅回路を含む送信用モジュールの構成例を示す図である。
 同図に示されるように、送信用モジュール300Aは、モジュール基板10Aに搭載された半導体チップ20Aと、整合回路132と、バイアスネットワーク180~182と、を備える。半導体チップ20Aには、第1実施形態に係る電力増幅回路100Aと、バイアス回路170~172と、が集積化される。
 整合回路132は、前段に設けられた電力増幅回路100Aと、電力増幅回路100Aの後段に設けられた回路(不図示)のインピーダンスを整合させる。なお、整合回路132は、半導体チップ20Aの内部に形成されてもよい。
 バイアスネットワーク180~182は、それぞれ、増幅器110,111、及び振幅調整回路200に電源電圧を供給する。バイアス回路170~172は、それぞれ、バッテリ電圧Vbattが供給され、モジュール基板10Aの外部から供給される制御信号Ctrl1~Ctrl3に基づいて、増幅器110,111、及び振幅調整回路200にバイアス電流又はバイアス電圧を供給する。
 このように、歪み補償回路150Aを含む電力増幅回路100Aとバイアス回路170~172を同一の半導体チップ20Aに集積化することにより、例えば歪み補償回路150Aを半導体チップ20Aの外部に形成する構成に比べて、送信用モジュールの小型化を図ることができる。
 図7は、本発明の第2実施形態に係る電力増幅回路を含む送信用モジュールの構成例を示す図である。
 同図に示されるように、送信用モジュール300Bは、送信用モジュール300Aに比べて、半導体チップ20Aに替えて半導体チップ20Bがモジュール基板10Bに搭載される点において相違する。半導体チップ20Bは、第2実施形態に係る電力増幅回路100Bを備える。
 この場合であっても、歪み補償回路150Bを含む電力増幅回路100Bとバイアス回路170~172を同一の半導体チップ20Bに集積化することにより、送信用モジュールの小型化を図ることができる。
 図8は、本発明の第2実施形態に係る電力増幅回路を含む送信用モジュールの他の構成例を示す図である。
 同図に示されるように、送信用モジュール300Cは、送信用モジュール300Aに比べて、歪み補償回路150Bに含まれるフィルタ回路230が半導体チップ20Cの外部に形成される点において相違する。すなわち、本構成例では、高調波抽出回路140から出力された高調波が、一度半導体チップ20Cの外に出て、フィルタ回路230を通じて再び半導体チップ20Cへと戻る。
 この構成では、フィルタ回路230が例えばSAWフィルタにより構成される場合、フィルタ回路230を半導体チップ20C内に形成する構成に比べて費用を抑えることができる。この場合、フィルタ回路230は、例えば表面実装部品(SMD:Surface Mount Device)によりモジュール基板10Cに実装されてもよい。
 上述の送信用モジュール300A~300Cは、低雑音増幅器(LNA:Low Noise Amplifier)を含む受信用モジュールとともに、高周波モジュールを構成してもよい。また、複数の送信用モジュール300A~300Cは、複数の受信用モジュールとともに、マルチバンド高周波モジュールを構成してもよい。この場合、複数のモジュールの各々が、互いに異なる周波数帯域の信号に対応する。また、マルチバンド高周波モジュールは、FDD(Frequency Division Duplex)方式と、TDD(Time Division Duplex)方式のそれぞれに対応したモジュールを備えていてもよい。
 以上、本発明の例示的な実施形態について説明した。電力増幅回路100A,100Bは、RF信号RF3を増幅してRF信号RF4を出力する増幅器111と、RF信号RF4に含まれる2倍波を抽出する高調波抽出回路140と、抽出された2倍波の位相を調整する位相調整回路210と、位相が調整された2倍波とRF信号RF2とを合成してRF信号RF3を出力する合成器120と、を備える。これにより、電力増幅回路100A,100Bは、注入される2倍波を生成するための生成回路や増幅器等を新たに備える必要がない。従って、電力増幅回路100A,100Bは、特許文献1に開示される構成に比べて、回路規模の増大を抑制しつつ、相互変調歪みIM3,IM3の影響を抑制することができる。
 また、位相調整回路210は、2倍波2Fと、RF信号RF3に含まれる基本波Fの差の信号の位相と、増幅器111において発生する3次相互変調歪みIM3,IM3の位相とが、増幅器111の出力において略逆位相となるように2倍波2Fの位相を変換する。これにより、3次相互変調歪みIM3,IM3が補償信号CS,CSによって相殺されるため、相互変調歪みの影響を抑制することができる。
 また、電力増幅回路100A,100Bは、2倍波2Fと、RF信号RF3に含まれる基本波Fの差の信号と、増幅器111において発生する3次相互変調歪みIM3,IM3とが、増幅器111の出力において打ち消し合うように2倍波2Fの振幅を調整する振幅調整回路200をさらに備える。これにより、送信信号の出力電力のレベルに応じて、2倍波2Fの電力を調整することができる。
 また、振幅調整回路200は、2倍波2Fの電力を増幅する増幅器により構成されていてもよい。これにより、送信信号の出力電力の増大に伴って、2倍波2Fの電力を増大させることができる。
 また、電力増幅回路100A,100Bは、RF信号RF1を増幅してRF信号RF2を出力する増幅器110と、増幅器110と合成器120との間に設けられ、2倍波2Fの周波数の信号を減衰させる機能を有する整合回路131をさらに備える。これにより、合成器120において、主経路P1を経由した2倍波と副経路P2を経由した2倍波が相殺されることが回避される。従って、電力増幅回路100A,100Bは、特許文献1に開示される構成に比べて、高い電力の2倍波を増幅器111に注入することができる。
 また、送信用モジュール300Cにおいて、電力増幅回路100Bは、高調波抽出回路140と合成器120との間に設けられ、2倍波とは異なる周波数の信号を減衰させるフィルタ回路230をさらに備え、フィルタ回路230は、増幅器111が形成された半導体チップ20Cの外部に形成されている。フィルタ回路230が例えばSAWフィルタにより構成される場合、フィルタ回路230を半導体チップ20C内に形成する構成に比べて費用を抑えることができる。
 以上説明した各実施形態は、本発明の理解を容易にするためのものであり、本発明を限定して解釈するためのものではない。本発明は、その趣旨を逸脱することなく、変更又は改良され得るととともに、本発明にはその等価物も含まれる。即ち、各実施形態に当業者が適宜設計変更を加えたものも、本発明の特徴を備えている限り、本発明の範囲に包含される。例えば、各実施形態が備える各要素およびその配置、材料、条件、形状、サイズなどは、例示したものに限定されるわけではなく適宜変更することができる。また、各実施形態が備える各要素は、技術的に可能な限りにおいて組み合わせることができ、これらを組み合わせたものも本発明の特徴を含む限り本発明の範囲に包含される。
10A~10C…モジュール基板、20A~20C…半導体チップ、100A,100B…電力増幅回路、110,111…増幅器、120…合成器、130,131,132,220…整合回路、140…高調波抽出回路、150A,150B…歪み補償回路、170~172…バイアス回路、180~182…バイアスネットワーク、200…振幅調整回路、210…位相調整回路、230…フィルタ回路、300A~300C…送信用モジュール、T1…入力端子、T2…出力端子、P1…主経路、P2…副経路

Claims (6)

  1.  第1信号を増幅して第2信号を出力する第1増幅器と、
     前記第2信号に含まれる2倍波を抽出する抽出回路と、
     抽出された前記2倍波の位相を調整する位相調整回路と、
     位相が調整された前記2倍波と第3信号とを合成して前記第1信号を出力する合成器と、
     を備える、電力増幅回路。
  2.  前記位相調整回路は、前記2倍波と、前記第1信号に含まれる基本波の差の信号の位相と、前記第1増幅器において発生する3次相互変調歪みの位相とが、前記第1増幅器の出力において略逆位相となるように前記2倍波の位相を変換する、
     請求項1に記載の電力増幅回路。
  3.  前記2倍波と、前記第1信号に含まれる基本波の差の信号と、前記第1増幅器において発生する3次相互変調歪みとが、前記第1増幅器の出力において打ち消し合うように前記2倍波の振幅を調整する振幅調整回路をさらに備える、
     請求項1又は2に記載の電力増幅回路。
  4.  前記振幅調整回路は、前記2倍波の電力を増幅する第2増幅器を含む、
     請求項3に記載の電力増幅回路。
  5.  第4信号を増幅して前記第3信号を出力する第3増幅器と、
     前記第3増幅器と前記合成器との間に設けられ、前記2倍波の周波数の信号を減衰させる2倍波減衰回路と、をさらに備える、
     請求項1から4のいずれか一項に記載の電力増幅回路。
  6.  前記電力増幅回路は、前記抽出回路と前記合成器との間に設けられ、前記2倍波とは異なる周波数の信号を減衰させるフィルタ回路をさらに備え、
     前記フィルタ回路は、前記第1増幅器が形成された半導体チップの外部に形成された、
     請求項1から5のいずれか一項に記載の電力増幅回路。
PCT/JP2019/001688 2018-01-23 2019-01-21 電力増幅回路 WO2019146550A1 (ja)

Priority Applications (2)

Application Number Priority Date Filing Date Title
CN201980008561.7A CN111615787B (zh) 2018-01-23 2019-01-21 功率放大电路
US16/928,084 US11418151B2 (en) 2018-01-23 2020-07-14 Power amplifier circuit

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2018008868 2018-01-23
JP2018-008868 2018-01-23

Related Child Applications (1)

Application Number Title Priority Date Filing Date
US16/928,084 Continuation US11418151B2 (en) 2018-01-23 2020-07-14 Power amplifier circuit

Publications (1)

Publication Number Publication Date
WO2019146550A1 true WO2019146550A1 (ja) 2019-08-01

Family

ID=67395354

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2019/001688 WO2019146550A1 (ja) 2018-01-23 2019-01-21 電力増幅回路

Country Status (3)

Country Link
US (1) US11418151B2 (ja)
CN (1) CN111615787B (ja)
WO (1) WO2019146550A1 (ja)

Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5573115A (en) * 1978-11-27 1980-06-02 Nec Corp Traveling wave tube amplifying device
JPH05243860A (ja) * 1992-02-28 1993-09-21 Fujitsu Ltd 増幅回路
JP2000232325A (ja) * 1999-02-08 2000-08-22 Japan Radio Co Ltd 増幅回路における歪補償方法
JP2001217659A (ja) * 2000-02-03 2001-08-10 Mitsubishi Electric Corp マイクロ波増幅器
JP2002057533A (ja) * 2000-05-30 2002-02-22 Matsushita Electric Ind Co Ltd 前置歪み補償回路、低歪み電力増幅器、及びその制御方法
JP2002064340A (ja) * 2000-08-14 2002-02-28 Matsushita Electric Ind Co Ltd 高周波電力増幅器
JP2008219453A (ja) * 2007-03-05 2008-09-18 Alps Electric Co Ltd 送受信回路モジュール
JP2017208729A (ja) * 2016-05-19 2017-11-24 株式会社村田製作所 電力増幅モジュール

Family Cites Families (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
AU2098700A (en) * 1999-12-17 2001-06-25 Nokia Corporation Linearisation method and signal processing device
US6590449B2 (en) 2000-05-30 2003-07-08 Matsushita Electric Industrial Co., Ltd. Predistortion circuit, low-distortion power amplifier, and control methods therefor
JP4671622B2 (ja) 2004-04-30 2011-04-20 ソニー・エリクソン・モバイルコミュニケーションズ株式会社 歪み補償電力増幅装置
JP4753255B2 (ja) 2006-09-01 2011-08-24 ソニー・エリクソン・モバイルコミュニケーションズ株式会社 電力増幅装置および携帯電話端末
JP2012095058A (ja) * 2010-10-26 2012-05-17 Fujitsu Ltd 通信装置および送信高調波低減方法
CN106685467B (zh) * 2017-01-04 2019-02-15 电子科技大学 一种二倍频程宽带高效功率放大器

Patent Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5573115A (en) * 1978-11-27 1980-06-02 Nec Corp Traveling wave tube amplifying device
JPH05243860A (ja) * 1992-02-28 1993-09-21 Fujitsu Ltd 増幅回路
JP2000232325A (ja) * 1999-02-08 2000-08-22 Japan Radio Co Ltd 増幅回路における歪補償方法
JP2001217659A (ja) * 2000-02-03 2001-08-10 Mitsubishi Electric Corp マイクロ波増幅器
JP2002057533A (ja) * 2000-05-30 2002-02-22 Matsushita Electric Ind Co Ltd 前置歪み補償回路、低歪み電力増幅器、及びその制御方法
JP2002064340A (ja) * 2000-08-14 2002-02-28 Matsushita Electric Ind Co Ltd 高周波電力増幅器
JP2008219453A (ja) * 2007-03-05 2008-09-18 Alps Electric Co Ltd 送受信回路モジュール
JP2017208729A (ja) * 2016-05-19 2017-11-24 株式会社村田製作所 電力増幅モジュール

Also Published As

Publication number Publication date
US11418151B2 (en) 2022-08-16
US20200343863A1 (en) 2020-10-29
CN111615787A (zh) 2020-09-01
CN111615787B (zh) 2023-08-11

Similar Documents

Publication Publication Date Title
US8380144B1 (en) Systems and methods for digital predistortion in a dual band transmitter
CN108702134B (zh) 负载调制放大器
JP4868433B2 (ja) 歪み補償装置および歪み補償機能付き電力増幅装置
KR101758086B1 (ko) 개선된 선형적 특징을 가지는 전력 증폭기
US6242979B1 (en) Linearization using parallel cancellation in linear power amplifier
US7821337B2 (en) Power amplifier
KR100597157B1 (ko) 고주파 증폭기
KR20030090518A (ko) 전력증폭장치와 그것을 이용한 무선통신장치
US9214968B2 (en) Apparatus and methods for providing a power amplifier with interference cancellation
SG191912A1 (en) Systems and methods for a radio frequency transmitter with improved linearity and power out utilizing pre-distortion and a gan (gallium nitride) power amplifier device
KR20080006466A (ko) 왜곡 보상 장치 및 무선통신 장치
US11750152B2 (en) Power amplifier circuit
KR102611706B1 (ko) 전력 증폭 회로
WO2019146550A1 (ja) 電力増幅回路
KR101145830B1 (ko) 전치왜곡장치 및 간섭억제시스템 필터-유닛이 적용된 이동통신장치의 출력단
CN210327513U (zh) 功率放大电路
KR101106955B1 (ko) 이동통신시스템의 출력단
CN113572439B (zh) 功率放大电路
KR101046350B1 (ko) 간섭억제시스템 필터모듈 기반 전치왜곡장치 및 적응형 피드포워드 선형화회로가 적용된 이동통신장치의 출력단
KR101003001B1 (ko) 통신시스템의 출력단
KR200252145Y1 (ko) 광대역 전력 증폭기의 혼변조 성능 개선을 위해 다이오드믹서를 이용한 소형 프리디스토션 선형화기
KR101131923B1 (ko) 적응형 피드포워드 선형화회로 및 간섭억제시스템 필터유닛이 적용된 이동통신장치의 출력단
KR20100060346A (ko) 통신시스템의 출력단
JP2001016047A (ja) 歪み発生器、プリディストータおよび歪み補償器
AU2016273977A1 (en) Low-noise radio-frequency power amplifier and transmission and reception system comprising such an amplifier

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 19743565

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 19743565

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: JP