WO2019146247A1 - 電源装置および溶接用電源装置 - Google Patents

電源装置および溶接用電源装置 Download PDF

Info

Publication number
WO2019146247A1
WO2019146247A1 PCT/JP2018/043795 JP2018043795W WO2019146247A1 WO 2019146247 A1 WO2019146247 A1 WO 2019146247A1 JP 2018043795 W JP2018043795 W JP 2018043795W WO 2019146247 A1 WO2019146247 A1 WO 2019146247A1
Authority
WO
WIPO (PCT)
Prior art keywords
inverter
current
power supply
circuit
transformer
Prior art date
Application number
PCT/JP2018/043795
Other languages
English (en)
French (fr)
Inventor
善行 濱野
芳行 田畑
徹也 森川
宏太 堀江
司 三澤
Original Assignee
パナソニックIpマネジメント株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by パナソニックIpマネジメント株式会社 filed Critical パナソニックIpマネジメント株式会社
Priority to JP2019567879A priority Critical patent/JP7065464B2/ja
Priority to CN201880087451.XA priority patent/CN111630764B/zh
Publication of WO2019146247A1 publication Critical patent/WO2019146247A1/ja

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23KSOLDERING OR UNSOLDERING; WELDING; CLADDING OR PLATING BY SOLDERING OR WELDING; CUTTING BY APPLYING HEAT LOCALLY, e.g. FLAME CUTTING; WORKING BY LASER BEAM
    • B23K9/00Arc welding or cutting
    • B23K9/10Other electric circuits therefor; Protective circuits; Remote controls
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02MAPPARATUS FOR CONVERSION BETWEEN AC AND AC, BETWEEN AC AND DC, OR BETWEEN DC AND DC, AND FOR USE WITH MAINS OR SIMILAR POWER SUPPLY SYSTEMS; CONVERSION OF DC OR AC INPUT POWER INTO SURGE OUTPUT POWER; CONTROL OR REGULATION THEREOF
    • H02M3/00Conversion of dc power input into dc power output
    • H02M3/22Conversion of dc power input into dc power output with intermediate conversion into ac
    • H02M3/24Conversion of dc power input into dc power output with intermediate conversion into ac by static converters
    • H02M3/28Conversion of dc power input into dc power output with intermediate conversion into ac by static converters using discharge tubes with control electrode or semiconductor devices with control electrode to produce the intermediate ac

Definitions

  • the present invention relates to a power supply apparatus including an inverter circuit and an abnormality detection circuit that detects an abnormal operation thereof, and more particularly to a power supply apparatus (power supply apparatus for welding) used in an arc welding apparatus.
  • an arc welding apparatus processes a welding torch attached to a manipulator, a consumable electrode (wire) sent from a wire feeding unit provided to the welding torch, and a voltage suitable for arc welding through the welding torch A power supply is provided between the object and the wire.
  • the power supply apparatus generally includes an input-side rectifier circuit, an inverter circuit, a transformer circuit, and an output-side rectifier circuit.
  • the input-side rectifier circuit rectifies the 200 V three-phase AC voltage supplied from the commercial power supply into a DC voltage
  • the inverter circuit converts the DC voltage rectified by the input-side rectifier circuit into an AC voltage of a predetermined frequency to transform
  • the circuit is configured to output a voltage obtained by transforming the AC voltage output from the inverter circuit to the primary coil from the secondary coil to the load (both ends of the wire).
  • the voltage output from each of the pair of switching elements constituting the inverter circuit is affected by the fluctuation of the load of the power supply during welding and / or the noise added to the above-mentioned component circuit.
  • An imbalance may occur, and the magnetic flux of the transformer circuit may be biased to one of the polarities (biased phenomenon).
  • an IGBT or a MOSFET is suitably used as the switching element.
  • the biased magnetization phenomenon occurs, an overcurrent flows through either of the pair of switching elements, causing abnormal heat generation, which may eventually cause damage.
  • a compensation resistor or a compensating capacitor is incorporated in the circuit of the power supply device, but if these parts deteriorate, the uneven magnetization phenomenon similarly occurs.
  • Patent Document 1 shows a power supply apparatus including a switching power supply circuit that performs power conversion by switching operation of a switching element, and a control circuit that controls the same, and an abnormal heat generation state of the switching element caused by a polarization phenomenon or the like.
  • a power supply device is disclosed for the purpose of properly detecting.
  • the power supply device described in Patent Document 1 includes a first temperature sensor installed around a switching element to detect an actual temperature of the element, and a second temperature sensor installed at a predetermined location in the power supply device to detect an ambient temperature. And the control circuit obtains the power consumption and usage rate of the power supply device, and calculates the estimated temperature of the switching element from the usage environment information including the power usage and usage rate and the ambient temperature obtained from the second temperature sensor. It has a function of determining whether or not the switching element is in an abnormal heating state, based on the comparison between the calculated estimated temperature of the switching element and the measured temperature of the switching element obtained from the first temperature sensor.
  • the abnormal heat generation state can not be detected until the difference between the measured temperature of the switching element and the estimated temperature exceeds a predetermined threshold. That is, in the power supply device described in Patent Document 1, there is a possibility that parts other than the switching element may be abnormally heated and damaged by the overcurrent flowing until the abnormality is detected, and the switching element may be damaged by the instantaneous overcurrent. There is also a fear.
  • a current transformer that detects a high frequency current flowing in a switching element is more expensive than a temperature detection element such as a thermistor, and causes an increase in the manufacturing cost of the power supply device.
  • One aspect of the present invention is a simple and inexpensive power supply device capable of determining whether an overcurrent flows in a switching element included in an inverter circuit or whether an abnormality has occurred in the inverter circuit in view of the above-described problems. It is an object of the present invention to provide a power supply for a welding device.
  • a power supply apparatus includes a hollow coil having at least a pair of inverter circuits connected in parallel, at least a pair of transformer circuits transforming an output voltage of each inverter circuit, and a detection wire wound around a magnetic core.
  • the phase of the inverter current from each of the inverter circuits flowing to the current transformer through which one of the detected wires of each of the inverter circuits is inserted and the current of each of the detected wires inserted through the current transformer is inverted.
  • an abnormality determination unit determines whether or not there is an abnormality in one of the inverter circuits based on an inverter control unit that controls a plurality of switching elements that configure each of the inverter circuits, and an induced current that flows through the detection wire of the current transformer. And an abnormality determination unit.
  • a simple and inexpensive power supply device and welding apparatus capable of determining whether an overcurrent flows through switching elements constituting an inverter circuit or whether an abnormality has occurred in the inverter circuit. Power supply can be provided.
  • FIG. 1 is a circuit diagram of a power supply device showing an embodiment of the present invention.
  • (A) is a circuit diagram of the inverter circuit incorporated in the power supply device, and (b) is a timing chart of the drive voltage of the first phase applied to the inverter circuit.
  • (A) is a circuit diagram of the inverter circuit incorporated in the power supply device, and (b) is a timing chart of the drive voltage of the second phase applied to the inverter circuit.
  • (A) and (b) are timing charts of the output current (inverter current) of a pair of inverter circuits that are synchronously controlled in phase with each other, and (c) and (d) are wires at one output side of each inverter circuit It is a schematic perspective view of the current transformer by which was inserted.
  • (A) and (b) are timing charts of the output current (inverter current) of a pair of inverter circuits synchronously controlled in reverse phase with each other, and (c) and (d) are at one output side of each inverter circuit It is a schematic perspective view of the current transformer with which the electric wire was penetrated.
  • (A) is a timing chart which shows waveforms, such as inverter current, when the inverter circuit of the power supply device (short circuit transition welding) concerning Embodiment 1 is operate
  • waveforms such as inverter current
  • (A) is a timing chart which shows waveforms, such as inverter current, when the inverter circuit of the power supply device (pulse welding) concerning Embodiment 2 is operate
  • (b) and (c) is one side
  • (A) and (b) are timing charts of welding current and welding voltage, and even if the frequency of pulse welding is the same, the percentage of the peak period where the welding current value is high and the base period where the welding current value is low are different. Indicates that.
  • FIG. 1 is a circuit diagram of a power supply device 1 used for an arc welding apparatus.
  • the arc welding apparatus includes a welding torch TH attached to a manipulator, and a wire W (consumable electrode) provided to the welding torch TH and fed from a wire feeding unit.
  • the power supply device 1 according to the present invention is a workpiece M And a wire W via a welding torch TH to apply a welding voltage suitable for arc welding.
  • the power supply device 1 generally includes an input-side rectifier circuit 10, an inverter circuit 20, a transformer circuit 30, an output-side rectifier circuit 40, and a control device 50.
  • the input-side rectifier circuit 10 rectifies the 200 V three-phase AC voltage supplied from the commercial power supply 100 into a DC voltage of approximately 280 V.
  • the inverter circuit 20 converts the rectified DC voltage into an AC voltage having a predetermined frequency between 20 kHz and 50 kHz.
  • the inverter circuit 20 of FIG. 1 is a full bridge type, but may be a half bridge type.
  • the transformer circuit 30 steps down the alternating voltage output from the inverter circuit 20 to the primary coil and outputs the voltage from the secondary coil to the load (both ends of the wire W).
  • the output side rectification circuit 40 (40A, 40B, DCL) rectifies the stepped-down voltage to a predetermined DC voltage of 10 to 60V.
  • input side rectifier circuits 10 (10A, 10B), inverter circuits 20 (20A, 20B), and transformer circuits 30 (30A, 30B), so that a large capacity welding current of about 700 A at maximum can be supplied.
  • the output side rectifier circuits 40 (40A, 40B) are connected in parallel in a pair.
  • the input-side rectifier circuit 10 (10A, 10B) is formed of a diode bridge circuit for full-wave rectification, and the full-wave rectified pulsating current is smoothed by the capacitors C1, C2.
  • inverter circuit 20 (20A and 20B) a pair of switching elements S1 and S2 or S3 and S4 are connected in series. It is a full bridge circuit provided with two switching arms SA1 and SA2.
  • the primary coil of the transformer circuit 30 connected to the nodes N1 and N2 An alternating voltage is applied and an alternating current flows.
  • an IGBT or a MOSFET is used as each switching element.
  • the inverter circuit 20 is driven at a predetermined switching frequency between 20 kHz and 50 kHz, and in order to obtain a desired output voltage (welding voltage), ignition timings of the switching elements S1, S4 and S3, S2 (each switching The output cycle of the control signal to the element is adjusted.
  • the AC voltage that is transformed (stepped down) by the transformer circuit 30 (30A, 30B) and output from the secondary side coil is between 10 and 60 V by the output side rectifier circuit 40 (40A, 40B).
  • the turns ratio of the primary / secondary side coil of the transformer circuit 30 is set to 7: 3 and functions as a step-down transformer, but there is no particular restriction on the turn ratio and a step-up transformer circuit is also possible. it can.
  • full-wave rectification is performed by the diode based on the middle point of the secondary side coil of the transformer circuit 30 (30A, 30B).
  • Control device 50 of power supply device 1 functions as inverter control unit 50A that controls inverter circuit 20 (outputs appropriate control signals to switching devices S1 to S4) and supplies desired DC power from terminal OT. It functions as an abnormality determination unit 50B that detects an abnormality in the power supply device 1 (particularly, the inverter circuit 20).
  • the control device 50 includes, for example, a microcomputer and an input / output peripheral circuit, and the CPU executes a control program stored in a built-in memory of the microcomputer by the CPU to function as the inverter control unit 50A and the abnormality determination unit 50B. Is embodied.
  • the inverter control unit 50A is configured such that the current Io detected by the current transformer CT1 disposed downstream of the output side rectification circuit 40 (40A, 40B) matches the predetermined current value Is set by the setting circuit IS.
  • the firing angle of each switching element of the inverter circuit 20 is controlled.
  • control device 50 causes any one of a difference value, a differential value or an integral value of the two values to converge to the current value Is set by setting circuit IS, with current value Io detected by current transformer CT1.
  • the PID control calculation is performed according to the combination or these to determine the control value, and the obtained control value is input to the PWM control circuits SD1 and SD2, and the firing angle of the inverter circuit 20 (control to each switching element Control the output phase of the signal).
  • the PWM control circuits SD1 and SD2 shown in FIG. 1 control control signals (gate signals) to the switching elements S1 and S4 and S3 and S2 based on the control value output from the inverter control unit 50A.
  • the current transformer CT1 is formed of a hollow coil in which a detection wire is wound around a magnetic core, and an induced current flows in the detection wire due to the inverter current flowing in the wire (detection wire) inserted in the hollow coil. Is configured to detect the inverter current. The same applies to a current transformer CT2 described later.
  • the voltage output from each of the pair of switching elements S1 to S4 constituting the inverter circuit 20 is not received under the influence of the load fluctuation of the power supply device 1 during welding and / or the noise added to the above configuration circuit.
  • a balance may occur, and the magnetic flux of the transformer circuit 30 may be biased to one of the polarities (a polarization phenomenon may occur).
  • an overcurrent may flow in one of the switching elements (for example, S4) of the pair of switching elements (for example, S1 and S4) to generate abnormal heat and damage.
  • the power supply device 1 includes the current transformer CT2 into which any one of the wires (detected wires) of each of the inverter circuits 20A and 20B is inserted, and the abnormality determination unit 50B is based on the inverter current detected by the current transformer CT2. It is configured to determine the presence or absence of abnormality of each inverter circuit 20A, 20B.
  • the inverter control unit 50A controls each of the inverter circuits 20A and 20B based on the current Io from the current transformer CT1 as described above, and at the same time, the inverter current flowing in each detected electric wire inserted into the hollow coil of the current transformer CT2.
  • Each inverter circuit 20A, 20B is controlled so that the phase is inverted.
  • Example 1 As shown in FIGS. 4 (a) and 4 (b), the inverter control unit 50A sets the inverter current of each of the inverter circuits 20A and 20B (in the present application, for the sake of convenience, the "output current" for the transformer circuits 30A and 30B or
  • the switching elements S1 to S4 are synchronously controlled such that they are also referred to as “primary side current” in the same phase (in phase).
  • the inverter circuits 20A and 20B each have a pair of electric wires L1 and L2; L3 and L4 connected to the output part (see FIG. 1), and among these electric wires, the inverter current flows in the opposite direction in the first embodiment.
  • a pair of electric wires L2 and L3 are inserted into the hollow coil of the current transformer CT2 (see FIG. 4 (c)). That is, although the inverter currents flowing in the pair of electric wires L2 and L3 are synchronized with the same polarity, the hollow coils of the current transformer CT2 are disposed by arranging the electric wires L2 and L3 such that the inverter currents of the pair of electric wires L2 and L3 are in opposite directions. Is inserted.
  • the inverter current from the inverter circuit 20A is returned to the inverter circuit 20A through the electric wire L1, the primary coil of the transformer circuit 30A, the electric wire L2, and the inverter current from the inverter circuit 20B is the electric wire L3, transformation
  • the primary side coil of the circuit 30B and the electric wire L4 return to the inverter circuit 20B (see FIG. 1), and the electric wires L2 and L3 are inserted into the current transformer CT2 (see FIG. 4C).
  • FIG. 6 (a) is a timing chart showing waveforms of inverter current and the like flowing through the electric wires L2 and L3 in a normal state in which no polarization phenomenon occurs.
  • FIG. 6 (b) is a timing chart showing waveforms of inverter currents etc. flowing through the electric wires L2 and L3 at the time of abnormality in which the magnetic polarization phenomenon has occurred, and shows that overcurrent flows in one inverter circuit 20.
  • FIG. 6C is a timing chart showing waveforms of the inverter current or the like flowing through the wires L2 and L3 at the time of abnormality in which one inverter current is stopped due to noise or the like.
  • the waveforms shown in FIGS. 6 (a) to 6 (c) are theoretical.
  • FIG. 6 (b) shows the induced current (CT2 output) induced at both ends L5 and L6 of the detection wire of the current transformer CT2, and since this induced current has a pulse-like waveform exceeding a predetermined threshold, It indicates that an overcurrent flows in the inverter circuit 20B corresponding to the circuit 30B.
  • FIG. 6 (c) shows an induced current (CT2 output) of the current transformer CT2, and since this induced current exceeds a predetermined threshold and has a waveform corresponding to one inverter current, the other inverter current Indicates that it has stopped.
  • the value of the induced current detected by the current transformer CT2 exceeds the threshold set by the threshold setting unit ITC (hereinafter, also referred to as "induced current threshold"). At this time, it can be determined that an abnormality has occurred in the inverter circuit 20 due to, for example, a biased magnetization phenomenon.
  • the threshold setting unit ITC inputs the induced current threshold as an absolute value, and the abnormality determination unit 50B outputs the inverter circuit when the absolute value of the induced current exceeds the absolute value of the induced current threshold (regardless of plus or minus). It is determined that an abnormality has occurred in 20.
  • the induced current (CT2 output) of the current transformer CT2 actually measured includes large spike-like noise centered on the ground level at the timing when the direction of the current flowing through the electric wires L2 and L3 switches, but the abnormality determination unit 50B It is preferable to make a determination based on the CT2 output signal after noise removal by filtering processing.
  • the inverter control unit 50A controls the switching elements S1 to S4 such that the inverter currents of the inverter circuits 20A and 20B have the same phase (in phase). Do.
  • the inverter circuits 20A and 20B each have a pair of electric wires L1 and L2; L3 and L4 connected to the output part (see FIG. 1), and among these electric wires, the inverter current flows in the opposite direction in the second embodiment.
  • the pair of electric wires L1 and L3 arranged as described above are inserted into the hollow coil of the current transformer CT2 (see FIG. 4 (d)).
  • the abnormality determination unit 50B of the second embodiment can determine that an abnormality has occurred in the inverter circuit 20 due to, for example, a biased magnetization phenomenon.
  • the inverter control unit 50A is configured such that the inverter currents of the inverter circuits 20A and 20B have opposite phases (in opposite phase, or by 180 degrees of phase difference). Control each switching element S1 to S4).
  • the inverter circuits 20A and 20B each have a pair of electric wires L1 and L2; L3 and L4 connected to the output portion (see FIG. 1), and among these electric wires, the inverter current flows in the same direction in the third embodiment.
  • the pair of electric wires L1 and L3 arranged as described above are inserted into the hollow coil of the current transformer CT2 (see FIG. 5 (c)).
  • the abnormality determination unit 50B of the third embodiment can determine that an abnormality has occurred in the inverter circuit 20 due to, for example, a biased magnetization phenomenon.
  • the inverter control unit 50A is configured such that the inverter currents of the inverter circuits 20A and 20B have opposite phases (in opposite phase, or by 180 degrees of phase difference). Control each switching element S1 to S4).
  • the inverter circuits 20A and 20B each have a pair of electric wires L1 and L2; L3 and L4 connected to the output portion (see FIG. 1), and among these electric wires, the inverter current flows in the same direction in the fourth embodiment.
  • the pair of electric wires L2 and L3 arranged as described above are inserted into the hollow coil of the current transformer CT2 (see FIG. 5D).
  • the abnormality determination unit 50B of the fourth embodiment can determine that an abnormality has occurred in the inverter circuit 20 due to, for example, a biased magnetization phenomenon.
  • the abnormality determination in the case of performing the short circuit transition welding has been described, but in the second embodiment, in order to substantially reduce or avoid scattering of molten metal during welding.
  • An abnormality determination in the case of performing pulse welding will be described below.
  • the circuit configuration of the power supply device 1 according to the second embodiment is the same as that of the first embodiment, and therefore the description of the overlapping contents is omitted.
  • the pair of electric wires L2 and L3 arranged such that the inverter currents from the inverter circuits 20A and 20B flow in the opposite direction are inserted into the current transformer CT2.
  • the abnormality determination unit 50B is configured to detect an abnormality of the inverter circuit 20.
  • the welding voltage and the welding current applied between the workpiece M and the wire W are controlled to increase and decrease in a predetermined cycle. That is, the inverter control unit 50A controls the inverter circuits 20A and 20B such that the primary currents (inverter currents from the inverter circuits 20A and 20B) input to the transformer circuits 30A and 30B increase and decrease in the cycle.
  • the inverter current flowing in the pair of electric wires L2 and L3 inserted in the current transformer CT2 is offset, so both ends L5 of the detection electric wire wound around the magnetic core of the current transformer CT2 , L6 is maintained at zero.
  • FIG. 7C shows the waveform of the inverter current or the like flowing through the wires L2 and L3 at the time of abnormality in which one inverter current has stopped due to noise or the like.
  • an induced current is output from both ends L5 and L6 of the detection wire according to the difference value of the inverter current flowing through the pair of wires L2 and L3 inserted in the current transformer CT2.
  • the induction current from current transformer CT2 does not exceed a predetermined induction current threshold in a period in which welding current and welding voltage are low in one cycle of pulse welding, and only in a period in which welding current and welding voltage are high, It does not exceed the predetermined induced current threshold.
  • abnormality determination unit 50B counts accumulated time Tt in which the induced current of current transformer CT2 exceeds the induced current threshold within a determination time Ts sufficiently longer than one cycle of pulse welding, and the ratio (Tt / When Ts) is equal to or greater than a predetermined value (abnormality determination threshold value), it is determined that the biased magnetization phenomenon is occurring.
  • the switching period of the inverter current is about half of the pulse welding frequency (ie, the switching frequency is about twice the pulse welding frequency) for simplification.
  • the frequency of pulse welding can be controlled to about 50 Hz to 300 Hz.
  • the anomaly judgment threshold of the ratio (Tt / Ts) at which the anomaly judgment unit 50B judges that the biased magnetization phenomenon is occurring is Tp from the peak period of pulse welding and Tb from the base period from Tp / (Tb + Tp) Is also set to a small value. For example, if the value of Tp / (Tb + Tp) in the normal state is 0.2, the abnormality determination threshold of the ratio (Tt / Ts) may be set to about 0.1 to 0.15. Accordingly, the abnormality detection accuracy may be enhanced by setting the abnormality determination threshold of the ratio (Tt / Ts) to a smaller value.
  • a period in which the welding current value is high is referred to as a peak period Tp
  • a period in which the welding current value is low is referred to as a base period Tb.
  • the induced current from the current transformer CT2 exceeds the induced current threshold during the peak period but does not exceed the induced current threshold during the base period.
  • the ratio of the peak period Tp to the base period Tb is adjusted to optimize pulse welding according to the welding conditions (set current value, set voltage value, wire used, etc.) set by the operator. Even if the frequency of pulse welding is the same, the ratio of the peak period Tp to the base period Tb may be different (see FIGS. 8A and 8B).
  • the power supply device includes at least a pair of inverter circuits 20A and 20B connected in parallel, and at least a pair of transformer circuits 30A and 30B that transform output voltages of the inverter circuits 20A and 20B.
  • a current transformer CT2 in which one of the detected wires of each of the inverter circuits 20A and 20B is inserted in a hollow coil formed by winding a detection wire in a magnetic core, and each detected member inserted in the current transformer CT2
  • One inverter circuit based on the induced current flowing in the detection wire of transformer CT2 Comprising 20A, and the abnormality determination unit 50B to determine whether or not there is an abnormality in 20B, the.
  • the abnormality determination unit 50B determines the presence or absence of an abnormality based on the ratio of the cumulative time Tt during which the induced current detected by the current transformer CT2 exceeds the preset induced current threshold in the determination time Ts. Specifically, when the ratio (Tt / Ts) becomes equal to or more than the abnormality determination threshold value, it is determined that there is an abnormality.
  • the power supply device 1 includes temperature measuring elements for detecting the temperatures of the switching elements provided in the switching arms SA1 and SA2 of the inverter circuits 20, and the temperature measuring elements when the abnormality determination unit 50B determines that there is an abnormality. It is preferable to include a failure determination unit that determines whether or not the switching element is broken based on the temperature difference of
  • the failure determination unit obtains the difference between the temperatures detected by both of the temperature measurement elements, and can determine that the switching element on the low temperature side is broken if the value becomes larger than a preset threshold value.
  • the failure determination unit preferably has an output unit that outputs the determination result, and can quickly specify the failure location at the time of maintenance, which enables quick repair.
  • a power supply for a welding apparatus including the output-side rectifier circuit 40 that converts the AC voltage output from the transformer circuit 30 into a DC voltage, and the output voltage of the output-side rectifier circuit 40 can be applied to the welding torch.
  • the apparatus has been described, the application of the present invention is not limited to a power supply apparatus for a welding apparatus, and includes any power conversion circuit such as a DC / DC converter including a plurality of pairs of inverter circuits. Applicable to power supply devices in general.
  • each inverter circuit is obtained in any of the embodiments 1 to 4 described above. It is possible to determine abnormality by inserting the electric wire connected to the terminal into a single current transformer CT2 and comparing the induced current from the current transformer CT2 with a predetermined induced current threshold. Note that one current transformer CT2 may be provided for each pair of inverter circuits to make an abnormality determination.
  • the present invention it is possible to realize a power supply device capable of quickly and inexpensively detecting an overcurrent generated in an inverter circuit due to a biased magnetization phenomenon or the like.

Landscapes

  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Plasma & Fusion (AREA)
  • Mechanical Engineering (AREA)
  • Power Engineering (AREA)
  • Arc Welding Control (AREA)
  • Inverter Devices (AREA)
  • Dc-Dc Converters (AREA)

Abstract

電源装置は、並列接続された少なくとも一対のインバータ回路と、前記各インバータ回路の出力電圧を変圧する少なくとも一対の変圧回路と、磁性体コアに検出電線を巻回した中空コイルに、前記各インバータ回路のいずれか一方の被検出電線がそれぞれ挿通された電流トランスと、前記電流トランスに挿通された前記各被検出電線に流れる前記各インバータ回路からのインバータ電流の位相が反転するように、前記各インバータ回路を構成する複数のスイッチング素子を制御するインバータ制御部と、前記電流トランスの前記検出電線に流れる誘導電流に基づいて、一方の前記インバータ回路に異常があったか否かを判定する異常判定部と、を備える。

Description

電源装置および溶接用電源装置
(関連出願の相互参照)
 本願は、2018年1月23日付けで提出された日本特許出願第2018-008529を基礎とする優先権を主張するとともに、これに開示されたすべての内容は、参考として本願に一体のものとして統合する。
(技術分野)
 本発明は、インバータ回路とその異常動作を検出する異常検出回路とを備えた電源装置に関し、とりわけアーク溶接装置に用いられる電源装置(溶接用電源装置)に関する。
 例えば、アーク溶接装置は、マニピュレータに取り付けられた溶接トーチと、溶接トーチに設けられたワイヤ送給部から送られる消耗電極(ワイヤ)と、溶接トーチを介してアーク溶接に適した電圧を被加工物とワイヤの間に印加する電源装置とを備えている。
 この電源装置は、概略、入力側整流回路、インバータ回路、変圧回路、および出力側整流回路を備える。入力側整流回路は、商用電源から供給される200Vの三相交流電圧を直流電圧に整流し、インバータ回路は、入力側整流回路で整流された直流電圧を所定周波数の交流電圧に変換し、変圧回路は、インバータ回路から一次コイルに出力された交流電圧を変圧して得た電圧を、二次コイルから負荷(ワイヤの両端)に出力するように構成されている。
 このようなアーク溶接装置では、溶接中の電源装置の負荷の変動および/または上述の構成回路に加わるノイズなどの影響を受けて、インバータ回路を構成する一対のスイッチング素子のそれぞれから出力される電圧に不均衡が生じ、変圧回路の磁束が一方の極性に偏ってしまう(バイアスされてしまう:偏磁現象)場合がある。スイッチング素子として、例えばIGBTやMOSFETが好適に用いられている。偏磁現象が発生すると、一対のスイッチング素子のいずれかに過電流が流れて異常発熱し、やがて破損する虞がある。通常、このような偏磁現象を抑制するために、電源装置には補償抵抗または補償コンデンサが回路に組み込まれるが、これらの部品が劣化すると同様に偏磁現象が起こる。
 特許文献1には、スイッチング素子のスイッチング動作により電力変換を行うスイッチング電源回路と、これを制御する制御回路とを備えた電源装置であって、偏磁現象などに起因するスイッチング素子の異常発熱状態を適切に検出することを目的とした電源装置が開示されている。
 特許文献1に記載の電源装置は、スイッチング素子の周囲に設置され素子の実測温度を検出する第1温度センサと、電源装置内の所定箇所に設置されて周囲温度を検出する第2温度センサとを備え、制御回路は、電源装置の使用電力および使用率を取得し、これら使用電力および使用率と第2温度センサから得られる周囲温度とを含む使用環境情報からスイッチング素子の推定温度を算出し、算出したスイッチング素子の推定温度と第1温度センサから得られるスイッチング素子の実測温度との比較に基づいて、スイッチング素子が異常発熱状態か否かを判定する機能を備えている。
特開2015-119610号公報
 しかし、特許文献1に記載の異常判別機能を備えた電源装置によれば、スイッチング素子の実測温度と推定温度との差が所定の閾値を超えるまでは、異常発熱状態を検出することができない。すなわち特許文献1に記載の電源装置では、異常が検出されるまでに流れる過電流でスイッチング素子以外の部品が異常発熱して破損する可能性があり、瞬間的な過電流でスイッチング素子が破損する虞もある。
 そこで、インバータ回路を構成するスイッチング素子に流れる電流を監視する電流検出器(電流トランス)を用いて、異常な過電流を直接検出することにより、スイッチング素子の破損を防ぐことが考えられる。このように電流トランスを採用すれば、スイッチング素子以外の部品の異常発熱による破損スイッチング素子の瞬間的な過電流による破損を防止することができる。
 ただし、スイッチング素子に流れる高周波電流を検出する電流トランスは、サーミスタなどの温度検出素子よりも高価であり、電源装置の製造コストの増大を招く。
 また、アーク溶接装置の電源装置として、負荷に対する出力電流の増大を図るため、複数のインバータ回路および変圧回路を並列に接続した場合、個々のインバータ回路に電流トランスを配置する必要があり、電源装置の製造コストをさらに増大させるという課題がある。
 同様の課題は、アーク溶接装置に用いられる電源装置以外に、スイッチング素子を用いたインバータ回路を備えた任意のDC/DCコンバータを含むスイッチング電源回路を備えた電源装置にも生じていた。
 本発明の一態様は、上述の課題に鑑み、インバータ回路を構成するスイッチング素子に過電流が流れたか否か、またはインバータ回路に異常が生じたか否かを判定できる、簡便で安価な電源装置および溶接装置のための電源装置を提供することを目的とする。
 本発明の態様に係る電源装置は、並列接続された少なくとも一対のインバータ回路と、前記各インバータ回路の出力電圧を変圧する少なくとも一対の変圧回路と、磁性体コアに検出電線を巻回した中空コイルに、前記各インバータ回路のいずれか一方の被検出電線がそれぞれ挿通された電流トランスと、前記電流トランスに挿通された前記各被検出電線に流れる前記各インバータ回路からのインバータ電流の位相が反転するように、前記各インバータ回路を構成する複数のスイッチング素子を制御するインバータ制御部と、前記電流トランスの前記検出電線に流れる誘導電流に基づいて、一方の前記インバータ回路に異常があったか否かを判定する異常判定部と、を備える。
 本発明の一態様によれば、インバータ回路を構成するスイッチング素子に過電流が流れたか否か、またはインバータ回路に異常が生じたか否かを判定できる、簡便で安価な電源装置および溶接装置のための電源装置を提供することができる。
本発明の実施の形態を示す電源装置の回路図である。 (a)は電源装置に組み込まれたインバータ回路の回路図であり、(b)はインバータ回路に加わる第1相の駆動電圧のタイミングチャートである。 (a)は電源装置に組み込まれたインバータ回路の回路図であり、(b)はインバータ回路に加わる第2相の駆動電圧のタイミングチャートである。 (a)および(b)は互いに同相で同期制御される一対のインバータ回路の出力電流(インバータ電流)のタイミングチャートであり、(c)および(d)は各インバータ回路の一方の出力側の電線が挿通された電流トランスの概略斜視図である。 (a)および(b)は互いに逆相で同期制御される一対のインバータ回路の出力電流(インバータ電流)のタイミングチャートであり、(c)および(d)は各インバータ回路の一方の出力側の電線が挿通された電流トランスの概略斜視図である。 (a)は、実施形態1に係る電源装置(短絡移行溶接)のインバータ回路が正常に動作しているときのインバータ電流等の波形を示すタイミングチャートであり、(b)および(c)は、一方のインバータ回路に異常が生じたときのインバータ電流等の波形を示すタイミングチャートであって、(b)は一方のインバータ電流に過電流が生じたことを示し、(c)は一方のインバータ電流が停止したことを示す。 (a)は、実施形態2に係る電源装置(パルス溶接)のインバータ回路が正常に動作しているときのインバータ電流等の波形を示すタイミングチャートであり、(b)および(c)は、一方のインバータ回路に異常が生じたときのインバータ電流等の波形を示すタイミングチャートであって、(b)は一方のインバータ電流に過電流が生じたことを示し、(c)は一方のインバータ電流が停止したことを示す。 (a)および(b)は、溶接電流および溶接電圧のタイミングチャートであり、パルス溶接の周波数が同じであっても、溶接電流値が高いピーク期間および溶接電流値が低いベース期間の割合が異なることを示す。
 図面を参照しながら、アーク溶接装置のための電源装置として本発明を適用した電源装置の実施形態を以下説明する。
 図1は、アーク溶接装置に用いられる電源装置1の回路図である。アーク溶接装置は、マニピュレータに取付けられた溶接トーチTHと、溶接トーチTHに設けられワイヤ送給部から送られるワイヤW(消耗電極)を備え、本発明に係る電源装置1は、被加工物MとワイヤWの間に溶接トーチTHを介して、アーク溶接に適した溶接電圧を印加するために用いられる。
 電源装置1は、図1に示すように、概略、入力側整流回路10と、インバータ回路20と、変圧回路30と、出力側整流回路40と、制御装置50を備える。入力側整流回路10は、商用電源100から供給される200Vの三相交流電圧を約280Vの直流電圧に整流する。インバータ回路20は、整流された直流電圧を20kHz~50kHzの間の所定周波数を有する交流電圧に変換する。図1のインバータ回路20は、フルブリッジ式のものであるが、ハーフブリッジ式のものであってもよい。変圧回路30は、インバータ回路20から一次コイルに出力された交流電圧を降圧して、二次コイルから負荷(ワイヤWの両端)に出力する。出力側整流回路40(40A,40B,DCL)は、降圧された電圧を10~60Vの間の所定の直流電圧に整流する。
 本実施形態では、最大で700A程度の大容量の溶接電流が供給できるように、入力側整流回路10(10A,10B)、インバータ回路20(20A,20B)および変圧回路30(30A,30B)、出力側整流回路40(40A,40B)がそれぞれ一対並列に接続されている。
 入力側整流回路10(10A,10B)は、全波整流用のダイオードブリッジ回路で構成され、全波整流された脈流がコンデンサC1,C2で平滑化される。
 図2(a)および(b)、図3(a)および(b)に示すように、インバータ回路20(20A,20B)は、一対のスイッチング素子S1,S2またはS3,S4が直列接続された2本のスイッチングアームSA1,SA2を備えたフルブリッジ回路である。
 スイッチング素子S1,S4を同時に導通させるとともに(オン制御信号を供給し)、スイッチング素子S3,S2を導通させない(オフ制御信号を供給する)ことにより、端子T1からスイッチング素子S1、ノードN1、変圧回路30の一次側コイル、ノードN2、およびスイッチング素子S4の経路で電流が流れる(図2(a),(b)参照)。同様に、スイッチング素子S3,S2を同時に導通させるとともに(オン制御信号を供給し)、スイッチング素子S1,S4を導通させない(オフ制御信号を供給する)ことにより、端子T1からスイッチング素子S3、ノードN2、変圧回路30の一次側コイル、ノードN1、スイッチング素子S2の経路で電流が流れる(図3(a),(b)参照)。
 スイッチング素子S1,S4およびスイッチング素子S3,S2を、双方が共にオフとなるデットタイムを挟んで交互に導通(オン)させることにより、ノードN1,N2と接続される変圧回路30の一次側コイルに交流電圧が印加され、交流電流が流れる。好適には、各スイッチング素子としてIGBTまたはMOSFETが用いられる。
 インバータ回路20は、スイッチング周波数が20kHzから50kHzの間の所定周波数で駆動され、所望の出力電圧(溶接電圧)を得るために、各スイッチング素子S1,S4およびS3,S2の点弧時期(各スイッチング素子への制御信号の出力周期)が調整される。
 図1に戻り、変圧回路30(30A,30B)により変圧(降圧)され、二次側コイルから出力された交流電圧は、それぞれ出力側整流回路40(40A,40B)で10~60Vの間の所定の直流電圧に整流され、直流リアクトルDCLで平滑された後に端子OTから溶接トーチTHに印加される。本実施形態では変圧回路30の1次側/2次側のコイルの巻数比が7:3に設定され、降圧トランスとして機能するが、巻数比に特段の制約はなく昇圧変圧回路とすることもできる。
 なお、出力側整流回路40(40A,40B)では、変圧回路30(30A,30B)の二次側コイルの中点を基準にしてダイオードにより全波整流される。
 電源装置1の制御装置50は、インバータ回路20を制御して(適当な制御信号を各イスイッチング素子S1~S4に出力して)端子OTから所望の直流電力を供給するインバータ制御部50Aとして機能するとともに、電源装置1(とりわけインバータ回路20)の異常を検出する異常判定部50Bとして機能する。
 制御装置50は、例えばマイクロコンピュータおよび入出力用の周辺回路で構成され、マイクロコンピュータの内蔵メモリに格納された制御プログラムをCPUで実行することにより、インバータ制御部50Aおよび異常判定部50Bとしての機能が具現化される。
 インバータ制御部50Aは、出力側整流回路40(40A,40B)の後段に配置された電流トランスCT1で検出された電流Ioが、設定回路ISで設定された所定の電流値Isと一致するように、インバータ回路20の各イスイッチング素子の点弧角を制御する。
 詳述すると、制御装置50は、電流トランスCT1により検出された電流値Ioが設定回路ISで設定された電流値Isに収束するように、両値の差分値、微分値、もしくは積分値のいずれか、またはこれらの組合せによりPID制御演算を行って制御値を決定し、得られた制御値をPWM制御回路SD1,SD2に入力して、インバータ回路20の点弧角(各スイッチング素子への制御信号の出力位相)を制御する。
 スイッチング素子S1,S4またはS3,S2のオン時間(導通時間)が短くなれば電流トランスCT1により検出される電流Ioが低下し、逆にオン時間が長くなれば電流トランスCT1により検出される電流Ioが上昇する。図1に示すPWM制御回路SD1,SD2は、インバータ制御部50Aから出力された制御値に基づいてスイッチング素子S1,S4およびS3,S2への制御信号(ゲート信号)を制御する。
 なお、電流トランスCT1は、磁性体コアに検出電線を巻回した中空コイルで構成され、中空コイルに挿通された電線(被検出電線)に流れたインバータ電流に起因して検出電線に流れる誘導電流を検出することにより、インバータ電流を検出するように構成されている。後述の電流トランスCT2も同様である。
 ところで、溶接中の電源装置1の負荷の変動および/または上記構成回路に加わるノイズなどの影響を受けて、インバータ回路20を構成する一対のスイッチング素子S1~S4のそれぞれから出力される電圧に不均衡が生じ、変圧回路30の磁束が一方の極性に偏ってしまう(偏磁現象が生じる)場合がある。偏磁現象が発生すると、一対のスイッチング素子(例えばS1,S4)の一方のスイッチング素子(例えばS4)に過電流が流れて異常発熱して、破損する虞がある。
 そこで電源装置1は、各インバータ回路20A,20Bのいずれか一方の電線(被検出電線)がそれぞれ挿通された電流トランスCT2を備え、異常判定部50Bが電流トランスCT2により検出されたインバータ電流に基づいて各インバータ回路20A,20Bの異常の有無を判定するように構成されている。
[第1の実施形態]
 まず、短絡移行溶接(ショートアーク溶接)を行なう場合の異常判定について以下詳述する。
 インバータ制御部50Aは、上述のように電流トランスCT1からの電流Ioに基づいて各インバータ回路20A,20Bを制御するとともに、電流トランスCT2の中空コイルに挿通された各被検出電線に流れるインバータ電流の位相が反転するように各インバータ回路20A,20Bを制御する。
 (実施例1)
 図4(a)および図4(b)に示すように、インバータ制御部50Aは、各インバータ回路20A,20Bのインバータ電流(本願では、以下便宜上、変圧回路30A,30Bに対する「出力電流」または「1次側電流」ともいう。)が同位相を有するように(同相で)各スイッチング素子S1~S4を同期制御する。
 インバータ回路20A,20Bはそれぞれ、出力部に接続された一対の電線L1,L2;L3,L4を有し(図1参照)、これらの電線のうち、実施例1ではインバータ電流が逆向きに流れる一対の電線L2,L3が電流トランスCT2の中空コイルに挿通される(図4(c)参照)。すなわち一対の電線L2,L3に流れるインバータ電流は同極性で同期するが、一対の電線L2,L3のインバータ電流が逆向きとなるように電線L2,L3を配置して、電流トランスCT2の中空コイルに挿通される。
 より具体的には、インバータ回路20Aからのインバータ電流は、電線L1、変圧回路30Aの1次側コイル、電線L2を経てインバータ回路20Aに戻り、インバータ回路20Bからのインバータ電流は、電線L3、変圧回路30Bの1次側コイル、電線L4を経てインバータ回路20Bに戻り(図1参照)、電線L2,L3が電流トランスCT2に挿通される(図4(c)参照)。
 図6(a)は、偏磁現象が生じていない正常時の電線L2,L3に流れるインバータ電流等の波形を示すタイミングチャートである。また図6(b)は、偏磁現象が生じた異常時の電線L2,L3に流れるインバータ電流等の波形を示すタイミングチャートであり、一方のインバータ回路20に過電流が流れていることを示す。さらに図6(c)は、ノイズなどに起因して一方のインバータ電流が停止した異常時の電線L2,L3に流れるインバータ電流等の波形を示すタイミングチャートである。なお、図6(a)~図6(c)に示す波形は、理論上のものである。
 図6(a)に示すように、正常時の電線L2,L3に流れるインバータ電流は、互いに逆位相の波形を有するので、磁性体コアに生じる磁場が相殺されて、電流トランスCT2の磁性体コアに巻回された検出電線の両端L5,L6に誘導される誘導電流は殆ど零になる。
 しかし、一方の変圧回路30に偏磁現象が生じて変圧回路30のコア材が磁気飽和を起こすと、変圧回路30のインダクタンスの値が著しく低下するため、対応するインバータ回路20に過電流が流れるようになる。
 図6(b)は、電流トランスCT2の検出電線の両端L5,L6に誘導された誘導電流(CT2出力)を示し、この誘導電流が所定の閾値を超えるパルス状の波形を有することから、変圧回路30Bに対応するインバータ回路20Bに過電流が流れたことを示す。
 同様に、図6(c)は、電流トランスCT2の誘導電流(CT2出力)を示し、この誘導電流が所定の閾値を超え、一方のインバータ電流に対応する波形を有することから、他方のインバータ電流が停止したことを示す。
 図1に示すように、異常判定部50Bは、電流トランスCT2で検出された誘導電流の値が、閾値設定部ITCで設定された閾値(以下、「誘導電流閾値」ともいう。)を超えたとき、例えば偏磁現象によってインバータ回路20に異常が生じたと判定することができる。なお、閾値設定部ITCは、誘導電流閾値を絶対値として入力し、異常判定部50Bは、誘導電流の絶対値が(プラスマイナスによらず)誘導電流閾値の絶対値を超えたとき、インバータ回路20に異常が生じたと判定する。
 実際に計測された電流トランスCT2の誘導電流(CT2出力)は、電線L2,L3に流れる電流の方向が切り替わるタイミングでグランドレベルを中心に大きなスパイク状のノイズを含むが、異常判定部50Bは、フィルタリング処理でノイズを除去した後のCT2出力信号に基づいて判定することが好ましい。
 (実施例2)
 図4(a)および図4(b)に示すように、インバータ制御部50Aは、各インバータ回路20A,20Bのインバータ電流が同位相を有するように(同相で)各スイッチング素子S1~S4を制御する。
 インバータ回路20A,20Bはそれぞれ、出力部に接続された一対の電線L1,L2;L3,L4を有し(図1参照)、これらの電線のうち、実施例2ではインバータ電流が逆向きに流れるように配置された一対の電線L1,L3が電流トランスCT2の中空コイルに挿通される(図4(d)参照)。
 一対の電線L1,L3に流れるインバータ電流は同極性で同期するが、一対の電線L1,L3のインバータ電流が逆向きとなるように電線L1,L3を配置して、電流トランスCT2の中空コイルに挿通される。こうして実施例2の異常判定部50Bは、実施例1と同様に、例えば偏磁現象によりインバータ回路20に異常が生じたと判定することができる。
 (実施例3)
 図5(a)および図5(b)に示すように、インバータ制御部50Aは、各インバータ回路20A,20Bのインバータ電流が逆位相を有するように(逆相で、あるいは180度の位相差を有するように)各スイッチング素子S1~S4を制御する。
 インバータ回路20A,20Bはそれぞれ、出力部に接続された一対の電線L1,L2;L3,L4を有し(図1参照)、これらの電線のうち、実施例3ではインバータ電流が同じ向きに流れるように配置された一対の電線L1,L3が電流トランスCT2の中空コイルに挿通される(図5(c)参照)。こうして実施例3の異常判定部50Bは、実施例1および実施例2と同様に、例えば偏磁現象によりインバータ回路20に異常が生じたと判定することができる。
 (実施例4)
 図5(a)および図5(b)に示すように、インバータ制御部50Aは、各インバータ回路20A,20Bのインバータ電流が逆位相を有するように(逆相で、あるいは180度の位相差を有するように)各スイッチング素子S1~S4を制御する。
 インバータ回路20A,20Bはそれぞれ、出力部に接続された一対の電線L1,L2;L3,L4を有し(図1参照)、これらの電線のうち、実施例4ではインバータ電流が同じ向きに流れるように配置された一対の電線L2,L3が電流トランスCT2の中空コイルに挿通される(図5(d)参照)。こうして実施例4の異常判定部50Bは、実施例1~実施例3と同様に、例えば偏磁現象によりインバータ回路20に異常が生じたと判定することができる。
[第2の実施形態]
 第1の実施形態では、短絡移行溶接(ショートアーク溶接)を行なう場合の異常判定について説明したが、第2の実施形態では、溶接中の溶融金属の飛散を実質的に低減または回避するためにパルス溶接を行なう場合の異常判定について以下説明する。第2の実施形態に係る電源装置1の回路構成は、第1の実施形態と同様であるので、重複する内容については説明を省略する。また第2の実施形態では、上記実施例1で説明したように、各インバータ回路20A,20Bからのインバータ電流が逆向きに流れるように配置された一対の電線L2,L3が電流トランスCT2に挿通されて、異常判定部50Bがインバータ回路20の異常を検出するように構成されている。
 パルス溶接を行う場合、図7(a)に示すように、被加工物MとワイヤWの間に加える溶接電圧および溶接電流は、所定周期で増減するように制御される。すなわちインバータ制御部50Aは、変圧回路30A,30Bに入力される一次電流(各インバータ回路20A,20Bからのインバータ電流)が当該周期で増減するように各インバータ回路20A,20Bを制御する。偏磁現象が生じていない場合には、電流トランスCT2に挿通した一対の電線L2,L3に流れるインバータ電流が相殺されるため、電流トランスCT2の磁性体コアに巻回された検出電線の両端L5,L6に誘導される誘導電流は零に維持される。
 しかし、図7(b)に示すように、一方の変圧回路30に偏磁現象が生じて変圧回路30のコア材が磁気飽和を起こすと、変圧回路30のインダクタンスの値が著しく低下するため、対応するインバータ回路20に過電流が流れ(インバータの電流が増大し)、電流トランスCT2に挿通した一対の電線L2,L3に流れるインバータ電流の差分値に応じて誘導電流が検出電線の両端L5,L6から出力される。
 図7(c)は、ノイズなどに起因して一方のインバータ電流が停止した異常時の電線L2,L3に流れるインバータ電流等の波形を示す。一方のインバータ電流が減少または停止すると、同様に、電流トランスCT2に挿通した一対の電線L2,L3に流れるインバータ電流の差分値に応じて誘導電流が検出電線の両端L5,L6から出力される。この場合、パルス溶接の1周期のうち、溶接電流および溶接電圧が低い期間において、電流トランスCT2からの誘導電流は、所定の誘導電流閾値を超えず、溶接電流および溶接電圧が高い期間においてのみ、所定の誘導電流閾値を超えることはない。
 そこで、異常判定部50Bは、パルス溶接の1周期よりも十分に長い判定時間Tsの中で、電流トランスCT2の誘導電流が誘導電流閾値を超えた累積時間Ttを計時し、その比率(Tt/Ts)が所定値(異常判定閾値)以上となる場合に偏磁現象が発生していると判定するように構成されている。なお、図7(a),(b),(c)では、簡略化のためにインバータ電流のスイッチング周期がパルス溶接の周波数の約半分(すなわちスイッチング周波数がパルス溶接の周波数の約2倍)であるように図示されているが、実際のスイッチング周波数を20kHz~50kHzに変動させたとき、パルス溶接の周波数を50Hz~300Hz程度に制御することができる。
 偏磁現象が発生していると異常判定部50Bが判定するときの比率(Tt/Ts)の異常判定閾値は、パルス溶接のピーク期間をTp、ベース期間をTbとして、Tp/(Tb+Tp)よりも小さい値に設定される。例えば、正常時のTp/(Tb+Tp)の値が0.2であれば、比率(Tt/Ts)の異常判定閾値は、0.1~0.15程度に設定してもよく、溶接条件に応じて、比率(Tt/Ts)の異常判定閾値をより小さく設定することにより異常の検出精度を高めてもよい。
 本願では、図8(a)および図8(b)に示すように、溶接電流値が高い期間をピーク期間Tpといい、溶接電流値が低い期間をベース期間Tbという。上述のように、電流トランスCT2からの誘導電流は、ピーク期間中に誘導電流閾値を超えるが、ベース期間中には誘導電流閾値を超えない。なお、ピーク期間Tpとベース期間Tbの割合は、作業者が設定する溶接条件(設定電流値、設定電圧値、および使用するワイヤなど)によって、パルス溶接を最適化するように調整されるため、パルス溶接の周波数が同じでもピーク期間Tpとベース期間Tbの割合が異なる場合がある(図8(a)および図8(b)参照)。
 以上説明したように、本発明の一態様による電源装置は、並列接続された少なくとも一対のインバータ回路20A,20Bと、各インバータ回路20A,20Bの出力電圧を変圧する少なくとも一対の変圧回路30A,30Bと、磁性体コアに検出電線を巻回した中空コイルに、各インバータ回路20A,20Bのいずれか一方の被検出電線がそれぞれ挿通された電流トランスCT2と、電流トランスCT2に挿通された各被検出電線L1~L4に流れる各インバータ回路20A,20Bからのインバータ電流の位相が反転するように、各インバータ回路20A,20Bを構成する複数のスイッチング素子S1~S4を制御するインバータ制御部50Aと、電流トランスCT2の検出電線に流れる誘導電流に基づいて、一方のインバータ回路20A,20Bに異常があったか否かを判定する異常判定部50Bと、を備える。
 異常判定部50Bは、判定時間Tsのうち、電流トランスCT2により検出された誘導電流が予め設定された誘導電流閾値を超えた累積時間Ttの比率に基づいて異常の有無を判定するものであり、具体的には、比率(Tt/Ts)が異常判定閾値以上となるとき異常ありと判定するように構成されている。
 [第3の実施形態]
 電源装置1は、各インバータ回路20を構成するスイッチングアームSA1,SA2に設けた各スイッチング素子の温度を検知する測温素子を備え、異常判定部50Bにより異常と判定されたときの各測温素子の温度差に基づいてスイッチング素子が故障しているか否かを判定する故障判定部を備えていることが好ましい。
 例えば、図2(a)に示すスイッチングアームSA1を構成するスイッチング素子S1,S2にサーミスタなどの測温素子を設けると、適性に動作しているスイッチング素子は発熱するが、破損したスイッチング素子は周辺の雰囲気温度と同等の値になる。そこで故障判定部は、両方の測温素子で検出される温度の差を求め、その値が予め設定された閾値より大きくなると、低温側のスイッチング素子が破損していると判断することができる。
 故障判定部は、判定結果を出力する出力部を有することが好ましく、メンテナンス時に故障個所を速やかに特定でき、迅速な修理が可能になる。
 以上、変圧回路30から出力された交流電圧を直流電圧に変換する出力側整流回路40を備え、出力側整流回路40の出力電圧が溶接トーチに印加可能に構成されている溶接装置のための電源装置について説明したが、本発明の適用対象は溶接装置のための電源装置に限定されることはなく、複数対のインバータ回路を備えているDC/DCコンバータなどの任意の電力変換回路を備えた電源装置全般に適用できる。
 例えば、上述した溶接用電源装置に一対以上の複数対のインバータ回路を並列接続したような回路構成を採用した場合に、上述した実施例1~4のいずれかの態様で、各インバータ回路の出力端子に接続された電線を単一の電流トランスCT2に挿通し、電流トランスCT2からの誘導電流と所定の誘導電流閾値とを比較することにより異常判定することができる。なお、一対のインバータ回路ごとに1つの電流トランスCT2を設けて異常判定してもよい。
 上述した実施形態は本発明の一例に過ぎず、電源装置の各構成部品の具体的な構成は上述したものに限定されるものではなく、本発明の作用効果が奏される範囲で適宜、変更または変形できることはいうまでもない。
 本発明によれば、偏磁現象などに起因してインバータ回路に生じる過電流を安価かつ迅速に検出可能な電源装置を実現できる。
1:電源装置(溶接用電源装置)
10,10A,10B:入力側整流回路
20,20A,20B:インバータ回路
30,30A,30B:変圧回路
40,40A,40B:出力側整流回路
50:制御装置
50A:インバータ制御部
50B:異常判定部
100:商用電源
C1,C2:平滑コンデンサ
CT1,CT2:電流トランス
DCL:平滑コイル
L1,L2,L3,L4:電線
M:被加工物
TH:溶接トーチ
W:ワイヤ

Claims (6)

  1.  並列接続された少なくとも一対のインバータ回路と、
     前記各インバータ回路の出力電圧を変圧する少なくとも一対の変圧回路と、
     磁性体コアに検出電線を巻回した中空コイルに、前記各インバータ回路のいずれか一方の被検出電線がそれぞれ挿通された電流トランスと、
     前記電流トランスに挿通された前記各被検出電線に流れる前記各インバータ回路からのインバータ電流の位相が反転するように、前記各インバータ回路を構成する複数のスイッチング素子を制御するインバータ制御部と、
     前記電流トランスの前記検出電線に流れる誘導電流に基づいて、一方の前記インバータ回路に異常があったか否かを判定する異常判定部と、
    を備えた、電源装置。
  2.  前記インバータ制御部は、前記各インバータ回路からのインバータ電流が同相で同期するように前記各スイッチング素子を制御し、
     前記電流トランスに挿通された前記各被検出電線は、インバータ電流が逆向きに流れるように配置された、請求項1記載の電源装置。
  3.  前記インバータ制御部は、前記各インバータ回路からのインバータ電流が逆相で同期するように前記各スイッチング素子を制御し、
     前記電流トランスに挿通された前記各被検出電線は、インバータ電流が同じ向きに流れるように配置された、請求項1記載の電源装置。
  4.  前記異常判定部は、所定時間(Ts)中で、前記電流トランスの前記検出電線に流れる誘導電流が所定の電流閾値を超えた累積時間(Tt)の比率(Tt/Ts)に基づいて、一方の前記インバータ回路に異常があったか否かを判定する、請求項1~3のいずれか1項に記載の電源装置。
  5.  前記各インバータ回路を構成する前記各スイッチング素子の温度を検知する複数の測温素子と、
     前記異常判定部が一方の前記インバータ回路に異常があったと判定したとき、前記各測温素子の温度差に基づいて、前記各スイッチング素子が故障しているか否かを判定する故障判定部と、
    をさらに備えている、請求項1~4のいずれか1項に記載の電源装置。
  6.  請求項1~5のいずれか1項に記載の前記変圧回路から出力された交流電圧を直流電圧に変換する整流回路を備え、前記整流回路から出力された直流電圧が溶接トーチに印加される、溶接用電源装置。
PCT/JP2018/043795 2018-01-23 2018-11-28 電源装置および溶接用電源装置 WO2019146247A1 (ja)

Priority Applications (2)

Application Number Priority Date Filing Date Title
JP2019567879A JP7065464B2 (ja) 2018-01-23 2018-11-28 電源装置および溶接用電源装置
CN201880087451.XA CN111630764B (zh) 2018-01-23 2018-11-28 电源装置以及焊接用电源装置

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2018-008529 2018-01-23
JP2018008529 2018-01-23

Publications (1)

Publication Number Publication Date
WO2019146247A1 true WO2019146247A1 (ja) 2019-08-01

Family

ID=67395615

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2018/043795 WO2019146247A1 (ja) 2018-01-23 2018-11-28 電源装置および溶接用電源装置

Country Status (3)

Country Link
JP (1) JP7065464B2 (ja)
CN (1) CN111630764B (ja)
WO (1) WO2019146247A1 (ja)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2023249057A1 (ja) * 2022-06-24 2023-12-28 パナソニックIpマネジメント株式会社 溶接用電源装置及びその制御方法

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH01270769A (ja) * 1988-04-20 1989-10-30 Sanyo Denki Co Ltd コンバータ装置
JPH09149661A (ja) * 1995-11-21 1997-06-06 Jeol Ltd 並列インバータシステムおよび電流バランサー
JP2010190604A (ja) * 2009-02-16 2010-09-02 Toyota Motor Corp 端子開放検出装置及び半導体装置
JP2013242225A (ja) * 2012-05-21 2013-12-05 Denso Corp 温度センサの異常判別装置および異常判別方法、電力変換装置
JP2014103732A (ja) * 2012-11-19 2014-06-05 Tdk Corp 電源装置、および電源装置の故障検出方法

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5618850B2 (ja) * 2011-01-27 2014-11-05 株式会社ダイヘン 溶接用電源装置及び溶接機
JP5882691B2 (ja) * 2011-11-21 2016-03-09 サンデンホールディングス株式会社 インバータシステムの故障検知装置
TWM450049U (zh) * 2012-11-20 2013-04-01 Ableprint Technology Co Ltd 具有延伸連通腔道結構之半導體封裝載熱裝置

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH01270769A (ja) * 1988-04-20 1989-10-30 Sanyo Denki Co Ltd コンバータ装置
JPH09149661A (ja) * 1995-11-21 1997-06-06 Jeol Ltd 並列インバータシステムおよび電流バランサー
JP2010190604A (ja) * 2009-02-16 2010-09-02 Toyota Motor Corp 端子開放検出装置及び半導体装置
JP2013242225A (ja) * 2012-05-21 2013-12-05 Denso Corp 温度センサの異常判別装置および異常判別方法、電力変換装置
JP2014103732A (ja) * 2012-11-19 2014-06-05 Tdk Corp 電源装置、および電源装置の故障検出方法

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2023249057A1 (ja) * 2022-06-24 2023-12-28 パナソニックIpマネジメント株式会社 溶接用電源装置及びその制御方法

Also Published As

Publication number Publication date
JP7065464B2 (ja) 2022-05-12
CN111630764A (zh) 2020-09-04
JPWO2019146247A1 (ja) 2021-01-28
CN111630764B (zh) 2023-08-08

Similar Documents

Publication Publication Date Title
KR101510181B1 (ko) 전원공급회로
WO2015136592A1 (ja) 電流検出器及び電力変換装置
EP2444191B1 (en) Welding power supply with DC reactor having two inductance conditions
WO2010098084A1 (en) Power factor correction circuit with overcurrent protection
KR19990082792A (ko) 저항용접제어장치
JP6057087B2 (ja) 直流電源装置
WO2019146247A1 (ja) 電源装置および溶接用電源装置
JP2015223056A (ja) 励磁電流検出回路、励磁電流検出方法、インバータ回路の制御回路、および、電源装置
JP6843094B2 (ja) スイッチング電源装置
JP6178676B2 (ja) インバータ回路の制御回路、この制御回路を備えたインバータ装置、このインバータ装置を備えた誘導加熱装置、および、制御方法
US11478872B2 (en) Constant current control systems and methods
JP4513456B2 (ja) 直流−直流変換装置の変圧器偏磁検出装置
JP2009146869A (ja) 誘導加熱調理器
WO2018220933A1 (ja) アーク加工用電源装置およびアーク加工用電源装置の制御方法
JP5987980B2 (ja) 位相制御型dc−dcコンバータおよびその制御方法
JP2008243546A (ja) 誘導加熱装置
JP6054184B2 (ja) アーク溶接用電源装置及びアーク溶接用電源装置の出力電圧監視方法
JP4473052B2 (ja) 直流電源装置
JP5892842B2 (ja) 誘導加熱調理器
KR20170004664A (ko) 역률 보상 장치 및 이의 동작 방법
JP2000042751A (ja) 抵抗溶接機の制御装置
JP6911253B2 (ja) 溶接電源装置
WO2020095501A1 (ja) インバータ電源装置
KR102076588B1 (ko) 히터 온도를 제어하기 위한 다채널 인버터형 전력 변환 장치
JP2023088147A (ja) 電力変換装置および電力変換装置の制御方法

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 18901966

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2019567879

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 18901966

Country of ref document: EP

Kind code of ref document: A1