WO2019144382A1 - 广角镜头、成像装置和无人机 - Google Patents

广角镜头、成像装置和无人机 Download PDF

Info

Publication number
WO2019144382A1
WO2019144382A1 PCT/CN2018/074334 CN2018074334W WO2019144382A1 WO 2019144382 A1 WO2019144382 A1 WO 2019144382A1 CN 2018074334 W CN2018074334 W CN 2018074334W WO 2019144382 A1 WO2019144382 A1 WO 2019144382A1
Authority
WO
WIPO (PCT)
Prior art keywords
lens
wide
angle
angle lens
object side
Prior art date
Application number
PCT/CN2018/074334
Other languages
English (en)
French (fr)
Inventor
陈媛
Original Assignee
深圳市大疆创新科技有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 深圳市大疆创新科技有限公司 filed Critical 深圳市大疆创新科技有限公司
Priority to EP18901814.6A priority Critical patent/EP3598192B1/en
Priority to PCT/CN2018/074334 priority patent/WO2019144382A1/zh
Priority to CN201880006483.2A priority patent/CN110291436B/zh
Priority to JP2019542370A priority patent/JP6818981B2/ja
Publication of WO2019144382A1 publication Critical patent/WO2019144382A1/zh
Priority to US16/535,492 priority patent/US10634882B2/en

Links

Images

Classifications

    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B13/00Optical objectives specially designed for the purposes specified below
    • G02B13/06Panoramic objectives; So-called "sky lenses" including panoramic objectives having reflecting surfaces
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B13/00Optical objectives specially designed for the purposes specified below
    • G02B13/0095Relay lenses or rod lenses
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B64AIRCRAFT; AVIATION; COSMONAUTICS
    • B64CAEROPLANES; HELICOPTERS
    • B64C39/00Aircraft not otherwise provided for
    • B64C39/02Aircraft not otherwise provided for characterised by special use
    • B64C39/024Aircraft not otherwise provided for characterised by special use of the remote controlled vehicle type, i.e. RPV
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B64AIRCRAFT; AVIATION; COSMONAUTICS
    • B64DEQUIPMENT FOR FITTING IN OR TO AIRCRAFT; FLIGHT SUITS; PARACHUTES; ARRANGEMENT OR MOUNTING OF POWER PLANTS OR PROPULSION TRANSMISSIONS IN AIRCRAFT
    • B64D47/00Equipment not otherwise provided for
    • B64D47/08Arrangements of cameras
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B13/00Optical objectives specially designed for the purposes specified below
    • G02B13/18Optical objectives specially designed for the purposes specified below with lenses having one or more non-spherical faces, e.g. for reducing geometrical aberration
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B27/00Optical systems or apparatus not provided for by any of the groups G02B1/00 - G02B26/00, G02B30/00
    • G02B27/0018Optical systems or apparatus not provided for by any of the groups G02B1/00 - G02B26/00, G02B30/00 with means for preventing ghost images
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B27/00Optical systems or apparatus not provided for by any of the groups G02B1/00 - G02B26/00, G02B30/00
    • G02B27/64Imaging systems using optical elements for stabilisation of the lateral and angular position of the image
    • G02B27/644Imaging systems using optical elements for stabilisation of the lateral and angular position of the image compensating for large deviations, e.g. maintaining a fixed line of sight while a vehicle on which the system is mounted changes course
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B9/00Optical objectives characterised both by the number of the components and their arrangements according to their sign, i.e. + or -
    • G02B9/62Optical objectives characterised both by the number of the components and their arrangements according to their sign, i.e. + or - having six components only
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B9/00Optical objectives characterised both by the number of the components and their arrangements according to their sign, i.e. + or -
    • G02B9/64Optical objectives characterised both by the number of the components and their arrangements according to their sign, i.e. + or - having more than six components
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04NPICTORIAL COMMUNICATION, e.g. TELEVISION
    • H04N23/00Cameras or camera modules comprising electronic image sensors; Control thereof
    • H04N23/50Constructional details
    • H04N23/55Optical parts specially adapted for electronic image sensors; Mounting thereof
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B64AIRCRAFT; AVIATION; COSMONAUTICS
    • B64UUNMANNED AERIAL VEHICLES [UAV]; EQUIPMENT THEREFOR
    • B64U10/00Type of UAV
    • B64U10/10Rotorcrafts
    • B64U10/13Flying platforms
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B64AIRCRAFT; AVIATION; COSMONAUTICS
    • B64UUNMANNED AERIAL VEHICLES [UAV]; EQUIPMENT THEREFOR
    • B64U2101/00UAVs specially adapted for particular uses or applications
    • B64U2101/30UAVs specially adapted for particular uses or applications for imaging, photography or videography
    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03BAPPARATUS OR ARRANGEMENTS FOR TAKING PHOTOGRAPHS OR FOR PROJECTING OR VIEWING THEM; APPARATUS OR ARRANGEMENTS EMPLOYING ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ACCESSORIES THEREFOR
    • G03B15/00Special procedures for taking photographs; Apparatus therefor
    • G03B15/006Apparatus mounted on flying objects

Definitions

  • the present invention relates to the field of optical imaging technologies, and in particular, to a wide-angle lens, an imaging device, and a drone.
  • the wide-angle lens has a wide field of view and a long depth of field, which can be used for general shadow and ordinary landscape photography, and is more popular with people.
  • the incident light will bring a lot of stray light reflection, which causes the wide-angle lens to perform poorly.
  • the stability of the wide-angle lens is poor.
  • Embodiments of the present invention provide a wide-angle lens, an imaging device, and a drone.
  • a wide-angle lens includes, in order from the object side to the image side, a first lens group and a second lens group, and the first lens group includes, in order from the object side to the image side, in order:
  • a first lens having a negative refractive power the object side of the first lens being convex and the image side being concave;
  • a second lens having a negative refractive power, the object side of the second lens being convex and the image side being concave;
  • a third lens having a positive refractive power, the object side and the image side of the third lens being convex;
  • the second lens group includes, in order from the object side to the image side, in order:
  • a fourth lens having a positive refractive power, the object side of the fourth lens being a flat surface and the image side being a convex surface;
  • a fifth lens having a positive refractive power, wherein the object side surface and the image side surface of the fifth lens are convex surfaces;
  • a sixth lens having a negative refractive power, wherein the object side surface and the image side surface of the sixth lens are concave surfaces;
  • a seventh lens having a positive refractive power, wherein the object side surface and the image side surface of the seventh lens are convex surfaces;
  • the wide-angle lens satisfies the following relationship:
  • H2 / G2R2 ⁇ 1.8 wherein H2 is the aperture of the image side of the first lens; and G2R2 is the radius of curvature of the image side of the first lens.
  • the wide-angle lens according to the embodiment of the present invention satisfies the above relationship, and is advantageous for reducing stray light reflection caused by incident light in a strong light environment, improving the sharpness of the wide-angle lens, and at the same time, improving the uniform coating of the image side of the first lens. Sexual problems, which help to improve the stability of the wide-angle lens.
  • An image forming apparatus includes an image sensor and a wide-angle lens according to the above embodiment, the image sensor being disposed on an image side of the wide-angle lens.
  • the wide-angle lens satisfies the relational expression H2/G2R2 ⁇ 1.8, which is advantageous for reducing stray light reflection caused by incident light and improving the definition of the wide-angle lens in a strong light environment; and at the same time, improving the first lens
  • the uniformity of the coating on the side is beneficial to improve the stability of the wide-angle lens.
  • a drone according to an embodiment of the present invention includes the image forming apparatus and the body according to the above embodiment, and the image forming apparatus is mounted on the body.
  • the wide-angle lens of the imaging device satisfies the relationship H2/G2R2 ⁇ 1.8, which is advantageous for reducing stray light reflection caused by incident light and improving the definition of the wide-angle lens in a strong light environment;
  • the problem of uniformity of the coating on the image side of the first lens is improved, thereby contributing to the improvement of the stability of the wide-angle lens.
  • FIG. 1 is a schematic structural view of a wide-angle lens according to an embodiment of the present invention.
  • FIG. 2 is a diagram showing an axial aberration distribution of a wide-angle lens according to an embodiment of the present invention
  • FIG. 3 is a field curvature diagram of a wide-angle lens according to an embodiment of the present invention.
  • FIG. 4 is a distortion diagram of a wide-angle lens according to an embodiment of the present invention.
  • FIG. 5 is a relative illuminance distribution diagram of a wide-angle lens according to an embodiment of the present invention.
  • FIG. 6 is a magnification chromatic aberration distribution diagram of a wide-angle lens according to an embodiment of the present invention.
  • FIG. 7 is a diagram showing a defocusing MTF representation of a wide-angle lens according to an embodiment of the present invention at a temperature of 25 ° C;
  • FIG. 8 is a diagram showing a defocused MTF representation of a wide-angle lens according to an embodiment of the present invention at a temperature of -40 ° C;
  • FIG. 9 is a diagram showing the defocusing MTF of a wide-angle lens according to an embodiment of the present invention at a temperature of 85 ° C;
  • FIG. 10 is a schematic structural view of an image forming apparatus according to an embodiment of the present invention.
  • Fig. 11 is a schematic structural view of a drone according to an embodiment of the present invention.
  • first and second are used for descriptive purposes only and are not to be construed as indicating or implying a relative importance or implicitly indicating the number of technical features indicated.
  • features defining “first” or “second” may include one or more of the described features either explicitly or implicitly.
  • the meaning of "a plurality” is two or more unless specifically and specifically defined otherwise.
  • connection In the description of the present invention, it should be noted that the terms “installation”, “connected”, and “connected” are to be understood broadly, and may be fixed or detachable, for example, unless otherwise explicitly defined and defined. Connected, or connected in one piece. It can be a mechanical connection or an electrical connection. It can be directly connected or indirectly connected through an intermediate medium, which can be the internal communication of two elements or the interaction of two elements. For those skilled in the art, the specific meanings of the above terms in the present invention can be understood on a case-by-case basis.
  • a wide-angle lens 10 includes a first lens group 12 and a second lens group 14 in order from the object side to the image side.
  • the first lens group 12 includes, in order from the object side to the image side, in order:
  • a first lens L2 having a negative refractive power, the object side surface S3 of the first lens L2 being convex and the image side surface S4 being concave;
  • a second lens L3 having a negative refractive power, the object side surface S5 of the second lens L3 being convex and the image side surface S6 being concave;
  • the second lens group 14 includes, in order from the object side to the image side, in order:
  • a fourth lens L5 having a positive refractive power, the object side surface S10 of the fourth lens L5 being a flat surface and the image side surface S11 being a convex surface;
  • a seventh lens L8 having a positive refractive power, and an object side surface S16 and an image side surface S17 of the seventh lens L8 are both convex surfaces;
  • the wide-angle lens 10 satisfies the following relationship:
  • the wide-angle lens 10 of the embodiment of the present invention satisfies the above relationship, and is advantageous for reducing stray light reflection caused by incident light in a strong light environment, improving the sharpness of the wide-angle lens 10, and at the same time, improving the image side of the first lens L2.
  • the coating uniformity problem of S4 is beneficial to improve the stability of the wide-angle lens 10.
  • the wide-angle lens 10 includes a stop STO that is disposed between the first lens group 12 and the second lens group 14. It will be appreciated that the stop STO is used to adjust the intensity of the beam passing through the lens.
  • the stop STO is adhered to the object side S10 of the fourth lens L5.
  • the object side surface S10 of the fourth lens L5 is a flat surface, and the light-shielding STO is made to be adhered to the object side surface S10 of the fourth lens L5, thereby preventing the pupil STO from being reflected and causing ghosting to occur.
  • the wide-angle lens 10 satisfies the following relationship: 0.02 ⁇ ⁇ 1 + ⁇ 2 ⁇ - 0.02; wherein ⁇ 1 is the power of the first lens group 12; ⁇ 2 is the power of the second lens group 14.
  • ⁇ 1 + ⁇ 2 may be any value in the range of [-0.02, 0.02], for example, the value may be any value between -0.02, 0.02 or -0.02 to 0.02.
  • the wide-angle lens 10 satisfying the above relationship is advantageous in reducing the influence of high temperature or low temperature on the offset of the focus of the wide-angle lens 10.
  • the first lens group 12 includes a protective lens L1 disposed on the object side of the first lens L2.
  • the protective lens L1 is wear-resistant and scratch-resistant, and is used for protecting the lens, and can prevent dust from eroding the lens, thereby avoiding affecting the imaging effect.
  • the protective lens L1 may be a glass lens.
  • the lenses L2 to L8 may be plastic lenses.
  • the wide-angle lens 10 further includes an image sensor using glass L9.
  • the object side S1 and the image side S2 of the protective lens L1 are both planar. In this way, the influence of the protective lens L1 on the imaging of the wide-angle lens 10 is reduced.
  • the wide-angle lens 10 satisfies the following relationship: H1 ⁇ 23 mm; wherein H1 is the aperture of the object side S1 of the protective lens L1.
  • H1 is the aperture of the object side S1 of the protective lens L1.
  • the wide-angle lens 10 that satisfies the above relationship is advantageous for miniaturization of the appearance.
  • the wide-angle lens 10 further includes a filter.
  • the filter is disposed on the image side of the seventh lens L8.
  • the third lens L4, the fourth lens L5, the fifth lens L6, the sixth lens L7, the seventh lens L8, and the filter are finally concentrated on the imaging surface.
  • the wide-angle lens 10 satisfies the following relationship: G2R1 ⁇ 45 and 10 ⁇ G2R1/G2R2 ⁇ 7; wherein G2R1 is the radius of curvature of the object side S3 of the first lens L2; G2R2 is the image of the first lens L2 The radius of curvature of the side S4.
  • G2R1 may have a value of 45, 46, 50, 52, 55, 60, 70 or other values
  • G2R1/G2R2 may have any value between 7, 10, or 7 to 10.
  • the wide-angle lens 10 satisfying the above relationship is advantageous in reducing the intensity of ghost energy caused by the plane reflection of the object side surface S3 of the first lens L2 and the protective lens L1 when the large-angle light is incident.
  • f/2y may take values of -0.66, -0.38, 0.12, 0.26, 0.35, or other values.
  • the wide-angle lens 10 satisfying the above relationship makes the compression ratio of the scene around the stereoscopic projection smaller, and the proportion of the peripheral field of view information increases.
  • the loss of the pixel is small, which is advantageous for improving the image quality.
  • the wide-angle lens 10 satisfies the following relationship: 1.5 ⁇ G2R2 / G3R1 ⁇ 1.0; wherein G2R2 is the radius of curvature of the image side S4 of the first lens L2; G3R1 is the curvature of the object side S5 of the second lens L3 radius.
  • G2R2/G3R1 can be any value between 1.0, 1.5, or 1.0 to 1.5.
  • the wide-angle lens 10 satisfying the above relationship is advantageous for reducing the intensity of stray light under backlight conditions.
  • the fifth lens L6 and the sixth lens L7 are glued lenses.
  • the object side surface S5 and the image side surface S6 of the second lens L3 are aspherical surfaces
  • the object side surface S7 and the image side surface S8 of the third lens L4 are aspherical surfaces.
  • the object side surface S16 and the image side surface S17 of the seventh lens L8 are aspherical.
  • the aspherical shape is determined by the following formula:
  • h is the height from any point on the aspheric surface to the optical axis
  • c is the curvature of the vertex
  • k is the cone constant
  • Ai is the correction coefficient of the i-th order of the aspheric surface.
  • the wide-angle lens 10 satisfies the conditions of the following table:
  • R is the radius of curvature
  • D is the on-axis distance
  • N is the refractive index
  • V is the Abbe number.
  • S9 denotes the face of the pupil STO
  • S18 and S19 denote faces of the image sensor using glass
  • S20 denotes an image plane.
  • Temperature change EFFL (mm) H(°) V(°) D(°) Normal temperature 25 ° C 2.6500 114.28 101.28 145.00 Low temperature -40 ° C 2.6470 114.40 101.38 145.30 High temperature 85 ° C 2.6540 114.20 101.16 144.80
  • EFFL represents the effective focal length of the wide-angle lens 10
  • H represents a horizontal viewing angle
  • V represents a vertical viewing angle
  • D represents a diagonal viewing angle
  • FIG. 7 to FIG. 9 are offset amounts of the lens focus of the wide-angle lens according to the embodiment of the present invention at high and low temperatures.
  • Fig. 7 shows the back focus displacement performance of the wide-angle lens 10 at a temperature of 25 °C.
  • FIG. 8 it can be seen that the change in the back focus shift of the wide-angle lens 10 is 0.005 mm at a temperature of -40 ° C.
  • FIG. 9 it is understood that the change in the back focus shift of the wide-angle lens 10 is -0.005 at a temperature of 85 ° C. Millimeter.
  • the abscissa indicates focus shift in millimeters, and the ordinate indicates the modulus of the optical transfer function (Modulus of the OTF).
  • the wide-angle lens 10 of the embodiment of the present invention has better image quality at high and low temperatures.
  • an image forming apparatus 100 includes an image sensor 20 and a wide-angle lens 10 of any of the above embodiments.
  • the image sensor 20 is disposed on the image side of the wide-angle lens 10.
  • the wide-angle lens 10 satisfies the relationship H2/G2R2 ⁇ 1.8, which is advantageous for reducing stray light reflection caused by incident light in a strong light environment, and improving the sharpness of the wide-angle lens 10;
  • the coating uniformity problem of the image side surface S4 of the first lens L2 is advantageous for improving the stability of the wide-angle lens 10.
  • the imaging device 100 further includes a lens barrel 30, a lens holder 40, and a circuit board 50.
  • the image sensor 20 is disposed on the circuit board 50 and electrically connected to the circuit board 50.
  • the lens holder 40 is disposed on the circuit board.
  • the plate 50, the lens barrel 30 is connected to the lens holder 40, and the wide-angle lens 10 is disposed in the lens barrel 30.
  • a drone 1000 according to an embodiment of the present invention includes an image forming apparatus 100 and a body 200 of the above-described embodiment, and an image forming apparatus 100 is mounted on a body 200.
  • the wide-angle lens 10 of the imaging device satisfies the relationship H2/G2R2 ⁇ 1.8, which is advantageous for reducing stray light reflection caused by incident light and improving the definition of the wide-angle lens 10 in a strong light environment; It is advantageous to improve the uniformity of the coating film on the image side surface S4 of the first lens L2, thereby contributing to the improvement of the stability of the wide-angle lens 10.
  • the drone 1000 includes a gimbal 300.
  • the pan/tilt head 300 is mounted on the body 200, and the image forming apparatus 100 is mounted on the pan/tilt head 300.
  • the pan/tilt head 300 may be a three-axis stabilization gimbal, and the imaging device is mounted on the pan/tilt head 300, ensuring that the imaging device 100 can take a more stable picture while the drone 1000 is flying.
  • the first feature "on” or “under” the second feature may include direct contact of the first and second features, and may also include first and second features, unless otherwise specifically defined and defined. It is not in direct contact but through additional features between them.
  • the first feature "above”, “above” and “above” the second feature includes the first feature directly above and above the second feature, or merely indicating that the first feature level is higher than the second feature.
  • the first feature “below”, “below” and “below” the second feature includes the first feature directly below and below the second feature, or merely the first feature level being less than the second feature.

Landscapes

  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Optics & Photonics (AREA)
  • Engineering & Computer Science (AREA)
  • Aviation & Aerospace Engineering (AREA)
  • Multimedia (AREA)
  • Signal Processing (AREA)
  • Lenses (AREA)
  • Lens Barrels (AREA)

Abstract

一种广角镜头(10)及一种成像装置(100)和一种无人机(1000),广角镜头(10)沿着物侧至像侧依次包括第一透镜组(12)和第二透镜组(14)。第一透镜组(12)沿着物侧至像侧依次包括:具有负屈折力的第一透镜(L2)、具有负屈折力的第二透镜(L3)和具有正屈折力的第三透镜(L4)。第二透镜组(14)沿着物侧至像侧依次包括:具有正屈折力的第四透镜(L5)、具有正屈折力的第五透镜(L6)、具有负屈折力的第六透镜(L7)和具有正屈折力的第七透镜(L8)。广角镜头(10)满足下列关系式:H2/G2R2<1.8;其中,H2为第一透镜(L2)的像侧面的口径;G2R2为第一透镜(L2)的像侧面的曲率半径。

Description

广角镜头、成像装置和无人机 技术领域
本发明涉及光学成像技术领域,特别涉及一种广角镜头、成像装置和无人机。
背景技术
随着科技的发展,人们对拍照的要求越来越高。广角镜头视野宽阔,景深长,可用于一般的随影和普通风景摄影,受到人们更多的青睐。但是在强光环境下,入射光会带来大量的杂光反射,这造成广角镜头清晰度表现不佳。另外,由于外侧透镜的像侧面的周边和中心存在镀膜均匀性问题,导致广角镜头的稳定性不佳。
发明内容
本发明的实施方式提供一种广角镜头、成像装置和无人机。
本发明实施方式的广角镜头,沿着物侧至像侧依次包括第一透镜组和第二透镜组,所述第一透镜组沿着物侧至像侧依次包括:
具有负屈折力的第一透镜,所述第一透镜的物侧面为凸面且像侧面为凹面;
具有负屈折力的第二透镜,所述第二透镜的物侧面为凸面且像侧面为凹面;
具有正屈折力的第三透镜,所述第三透镜的物侧面及像侧面均为凸面;
所述第二透镜组沿着物侧至像侧依次包括:
具有正屈折力的第四透镜,所述第四透镜的物侧面为平面且像侧面为凸面;
具有正屈折力的第五透镜,所述第五透镜的物侧面及像侧面均为凸面;
具有负屈折力的第六透镜,所述第六透镜的物侧面及像侧面均为凹面;
具有正屈折力的第七透镜,所述第七透镜的物侧面及像侧面均为凸面;
所述广角镜头满足下列关系式:
H2/G2R2<1.8;其中,H2为所述第一透镜的像侧面的口径;G2R2为所述第一透镜的像侧面的曲率半径。
本发明实施方式的广角镜头,满足上述关系式,有利于在强光环境下,减少入射光带来的杂光反射,提高广角镜头的清晰度;同时,有利于改善第一透镜的像侧面的镀膜均匀性问题,从而有利于提高广角镜头的稳定性。
本发明实施方式的成像装置,包括图像传感器和上述实施方式所述的广角镜头,所述图像传感器设置在所述广角镜头的像侧。
本发明实施方式的成像装置,广角镜头满足关系式H2/G2R2<1.8,有利于在强光环境 下,减少入射光带来的杂光反射,提高广角镜头的清晰度;同时,有利于改善第一透镜的像侧面的镀膜均匀性问题,从而有利于提高广角镜头的稳定性。
本发明实施方式的无人机,包括上述实施方式所述的成像装置和机身,所述成像装置安装在所述机身。
本发明实施方式的无人机,成像装置的广角镜头满足关系式H2/G2R2<1.8,有利于在强光环境下,减少入射光带来的杂光反射,提高广角镜头的清晰度;同时,有利于改善第一透镜的像侧面的镀膜均匀性问题,从而有利于提高广角镜头的稳定性。
本发明的附加方面和优点将在下面的描述中部分给出,部分将从下面的描述中变得明显,或通过本发明的实践了解到。
附图说明
本发明的上述和/或附加的方面和优点从结合下面附图对实施方式的描述中将变得明显和容易理解,其中:
图1是本发明实施方式的广角镜头的结构示意图;
图2是本发明实施方式的广角镜头的轴向像差分布图;
图3是本发明实施方式的广角镜头的场曲图;
图4是本发明实施方式的广角镜头的畸变图;
图5是本发明实施方式的广角镜头的相对照度分布图;
图6是本发明实施方式的广角镜头的倍率色差分布图;
图7是本发明实施方式的广角镜头在温度为25℃时的离焦MTF表现图;
图8是本发明实施方式的广角镜头在温度为-40℃时的离焦MTF表现图;
图9是本发明实施方式的广角镜头在温度为85℃时的离焦MTF表现图;
图10是本发明实施方式的成像装置的结构示意图;
图11是本发明实施方式的无人机的结构示意图。
具体实施方式
下面详细描述本发明的实施方式,所述实施方式的示例在附图中示出,其中自始至终相同或类似的标号表示相同或类似的元件或具有相同或类似功能的元件。下面通过参考附图描述的实施方式是示例性的,仅用于解释本发明,而不能理解为对本发明的限制。
在本发明的描述中,需要理解的是,术语“中心”、“纵向”、“横向”、“长度”、“宽度”、“厚度”、“上”、“下”、“前”、“后”、“左”、“右”、 “竖直”、“水平”、“顶”、“底”、“内”、“外”、“顺时针”、“逆时针”等指示的方位或位置关系为基于附图所示的方位或位置关系,仅是为了便于描述本发明和简化描述,而不是指示或暗示所指的装置或元件必须具有特定的方位、以特定的方位构造和操作,因此不能理解为对本发明的限制。此外,术语“第一”、“第二”仅用于描述目的,而不能理解为指示或暗示相对重要性或者隐含指明所指示的技术特征的数量。由此,限定有“第一”、“第二”的特征可以明示或者隐含地包括一个或者更多个所述特征。在本发明的描述中,“多个”的含义是两个或两个以上,除非另有明确具体的限定。
在本发明的描述中,需要说明的是,除非另有明确的规定和限定,术语“安装”、“相连”、“连接”应做广义理解,例如,可以是固定连接,也可以是可拆卸连接,或一体地连接。可以是机械连接,也可以是电连接。可以是直接相连,也可以通过中间媒介间接相连,可以是两个元件内部的连通或两个元件的相互作用关系。对于本领域的普通技术人员而言,可以根据具体情况理解上述术语在本发明中的具体含义。
请参阅图1,本发明实施方式的广角镜头10,沿着物侧至像侧依次包括第一透镜组12和第二透镜组14。第一透镜组12沿着物侧至像侧依次包括:
具有负屈折力的第一透镜L2,第一透镜L2的物侧面S3为凸面且像侧面S4为凹面;
具有负屈折力的第二透镜L3,第二透镜L3的物侧面S5为凸面且像侧面S6为凹面;
具有正屈折力的第三透镜L4,第三透镜L4的物侧面S7及像侧面S8均为凸面;
第二透镜组14沿着物侧至像侧依次包括:
具有正屈折力的第四透镜L5,第四透镜L5的物侧面S10为平面且像侧面S11为凸面;
具有正屈折力的第五透镜L6,第五透镜L6的物侧面S12及像侧面S13均为凸面;
具有负屈折力的第六透镜L7,第六透镜L7的物侧面S14及像侧面S15均为凹面;
具有正屈折力的第七透镜L8,第七透镜L8的物侧面S16及像侧面S17均为凸面;
广角镜头10满足下列关系式:
H2/G2R2<1.8;其中,H2为第一透镜L2的像侧面S4的口径;G2R2为第一透镜L2的像侧面S4的曲率半径。
本发明实施方式的广角镜头10,满足上述关系式,有利于在强光环境下,减少入射光带来的杂光反射,提高广角镜头10的清晰度;同时,有利于改善第一透镜L2的像侧面S4的镀膜均匀性问题,从而有利于提高广角镜头10的稳定性。
在某些实施方式中,广角镜头10包括光阑STO,光阑STO设置在第一透镜组12和第二透镜组14之间。可以理解,光阑STO用于调节通过透镜的光束的强弱。
在某些实施方式中,光阑STO粘着在第四透镜L5的物侧面S10。
可以理解,第四透镜L5的物侧面S10为平面,方便光阑STO做成遮光纸粘着在第四透镜L5的物侧面S10,从而防止光阑STO反光而导致鬼影发生。
在某些实施方式中,广角镜头10满足下列关系式:0.02≥Φ1+Φ2≥-0.02;其中,Φ1为第一透镜组12的光焦度;Φ2为第二透镜组14的光焦度。
也即是说,Φ1+Φ2可以为[-0.02,0.02]范围内的任意取值,例如该取值可以为-0.02、0.02或-0.02至0.02之间的任意数值。
满足上述关系式的广角镜头10,有利于减少高温或低温对广角镜头10焦点的偏移量的影响。
在某些实施方式中,第一透镜组12包括保护透镜L1,保护透镜L1设置在第一透镜L2的物侧。
可以理解,保护透镜L1耐磨、耐划,用于保护镜头,可以防止灰尘侵蚀镜头,从而避免影响成像效果。保护透镜L1可为玻璃镜片。透镜L2至L8可为塑料镜片。在图1所示的实施方式中,广角镜头10还包括图像传感器使用玻璃L9。
在某些实施方式中,保护透镜L1的物侧面S1和像侧面S2均为平面。如此,减少保护透镜L1对广角镜头10成像的影响。
在某些实施方式中,广角镜头10满足下列关系式:H1<23mm;其中,H1为保护透镜L1的物侧面S1的口径。满足上述关系式的广角镜头10,有利于外观小型化。
在某些实施方式中,广角镜头10还包括滤光片。滤光片设置在第七透镜L8的像侧。在图1的实施方式中,当广角镜头10用于成像时,被摄物体OBJ发出或者反射的光线从物侧方向进入广角镜头10,并依次穿过保护透镜L1、第一透镜L2、第二透镜L3、第三透镜L4、第四透镜L5、第五透镜L6、第六透镜L7、第七透镜L8以及滤光片,最终汇聚到成像面上。
在某些实施方式中,广角镜头10满足下列关系式:G2R1≥45和10≥G2R1/G2R2≥7;其中,G2R1为第一透镜L2的物侧面S3的曲率半径;G2R2为第一透镜L2的像侧面S4的曲率半径。
具体地,在一些例子中,G2R1取值可以为45、46、50、52、55、60、70或其它数值,G2R1/G2R2可以7、10、或7至10之间的任意数值。
满足上述关系式的广角镜头10,有利于在大角度光线入射时,减小第一透镜L2的物侧面S3与保护透镜L1的平面反射造成鬼影能量的强度。
在某些实施方式中,广角镜头10满足下列关系式:y=2×f×tan(θ/2)以及f/2y≤0.35;其中,f为广角镜头10的焦距;θ为广角镜头10的入射角度;y为广角镜头10的像高。
具体地,在一些例子中,f/2y取值可以为-0.66、-0.38、0.12、0.26、0.35或其它数 值。
满足上述关系式的广角镜头10,使得立体射影周边的景物的压缩比更小,周边视场信息量比例增大。如此,在矫正图像周边畸变时,像素的损失较少,有利于提高成像质量。
在某些实施方式中,广角镜头10满足下列关系式:1.5≥G2R2/G3R1≥1.0;其中,G2R2为第一透镜L2的像侧面S4的曲率半径;G3R1为第二透镜L3的物侧面S5的曲率半径。
也即是说,G2R2/G3R1取值可以为1.0、1.5、或1.0至1.5之间的任意数值。
满足上述关系式的广角镜头10,有利于在逆光条件下,减小杂光的强度。
在某些实施方式中,第五透镜L6和第六透镜L7为胶合镜片。
可以理解,第五透镜L6的像侧面S13和第六透镜L7的物侧面S14胶合在一起。
在某些实施方式中,第二透镜L3的物侧面S5及像侧面S6均为非球面,第三透镜L4的物侧面S7及像侧面S8均为非球面。
如此,有利于改善轴外像差和降低立体射影畸变。
在某些实施方式中,第七透镜L8的物侧面S16及像侧面S17均为非球面。
如此,有利于改善轴外像差和减小光束的出射角度,同时使得广角镜头10更好地匹配图像传感器。
非球面的面形由以下公式决定:
Figure PCTCN2018074334-appb-000001
其中,h是非球面上任一点到光轴的高度,c是顶点曲率,k是锥形常数,Ai是非球面第i-th阶的修正系数。
请结合图1-图9,在本发明实施方式中,广角镜头10满足下面表格的条件:
表1
Figure PCTCN2018074334-appb-000002
Figure PCTCN2018074334-appb-000003
其中,R表示曲率半径,D表示轴上距离,N表示折射率,V表示阿贝数。S9表示光阑STO的面,S18和S19表示图像传感器使用玻璃的面,S20表示成像面。
表2
透镜 焦距(mm) 屈光度
第一透镜 -10.30 -0.0971
第二透镜 -6.96 -0.1437
第三透镜 7.35 0.1361
第四透镜 14.00 0.0714
第五透镜 12.88 0.0776
第六透镜 -5.90 -0.1695
第七透镜 7.00 0.1419
表3
面号 K A2 A4 A6 A8 A10 A12 A14 A16
S5 -0.55 0.0000E+00 2.0000E-03 -2.0000E-04 2.3700E-06 -1.3800E-08 0.0000E+00 0.0000E+00 0.0000E+00
S6 -0.932 0.0000E+00 6.0000E-03 -2.5000E-03 -2.4600E-05 8.4700E-07 0.0000E+00 0.0000E+00 0.0000E+00
S7 -51.35 0.0000E+00 6.7000E-04 -1.0700E-04 5.3100E-06 -2.8100E-07 0.0000E+00 0.0000E+00 0.0000E+00
S8 -2.1 0.0000E+00 -4.0000E-04 -7.7000E-06 -1.3000E-06 6.0200E-08 0.0000E+00 0.0000E+00 0.0000E+00
S16 -1.9 0.0000E+00 1.1000E-04 1.3800E-05 -2.0600E-06 -3.2400E-08 0.0000E+00 0.0000E+00 0.0000E+00
S17 -8.5 0.0000E+00 -1.0000E-03 3.2300E-05 -3.8900E-06 -9.4800E-08 0.0000E+00 0.0000E+00 0.0000E+00
表4
温变 EFFL(mm) H(°) V(°) D(°)
常温25℃ 2.6500 114.28 101.28 145.00
低温-40℃ 2.6470 114.40 101.38 145.30
高温85℃ 2.6540 114.20 101.16 144.80
其中,EFFL表示广角镜头10的有效焦距,H表示水平视角,V表示垂直视角,D表示对角线视角。
请参阅图7至图9,是本发明实施方式的广角镜头在高低温情况下镜头焦点的偏移量。
图7为在温度为25℃时,广角镜头10的后焦位移表现。在图8中,可知在温度为-40℃时,广角镜头10的后焦位移变化量为0.005毫米;在图9中,可知在温度为85℃时,广角镜头10的后焦位移变化量为-0.005毫米。在图7-图9中,横坐标表示焦移/毫米(Focus shift in millmeters),纵坐标表示光学传递函数的模值(Modulus of the OTF)。
由图7至图9可知,本发明实施方式的广角镜头10在高低温下的成像质量较佳。
请参阅图10,本发明实施方式的成像装置100包括图像传感器20和上述任一实施方 式的广角镜头10。图像传感器20设置在广角镜头10的像侧。
本发明实施方式的成像装置100,广角镜头10满足关系式H2/G2R2<1.8,有利于在强光环境下,减少入射光带来的杂光反射,提高广角镜头10的清晰度;同时,有利于改善第一透镜L2的像侧面S4的镀膜均匀性问题,从而有利于提高广角镜头10的稳定性。
具体地,在图10的实施方式中,成像装置100还包括镜筒30、镜座40和电路板50,图像传感器20设置在电路板50并与电路板50电连接,镜座40设置在电路板50,镜筒30连接镜座40,广角镜头10设置在镜筒30内。
请参阅图11,本发明实施方式的无人机1000包括上述实施方式的成像装置100和机身200,成像装置100安装在机身200。
本发明实施方式的无人机1000,成像装置的广角镜头10满足关系式H2/G2R2<1.8,有利于在强光环境下,减少入射光带来的杂光反射,提高广角镜头10的清晰度;同时,有利于改善第一透镜L2的像侧面S4的镀膜均匀性问题,从而有利于提高广角镜头10的稳定性。
在某些实施方式中,无人机1000包括云台300。云台300安装在机身200,成像装置100安装在云台300。
在一个例子中,云台300可为三轴增稳云台,成像装置安装在云台300,保证在无人机1000飞行的状态下,成像装置100可以拍摄出更稳定的画面。
在本发明中,除非另有明确的规定和限定,第一特征在第二特征之“上”或之“下”可以包括第一和第二特征直接接触,也可以包括第一和第二特征不是直接接触而是通过它们之间的另外的特征接触。而且,第一特征在第二特征“之上”、“上方”和“上面”包括第一特征在第二特征正上方和斜上方,或仅仅表示第一特征水平高度高于第二特征。第一特征在第二特征“之下”、“下方”和“下面”包括第一特征在第二特征正下方和斜下方,或仅仅表示第一特征水平高度小于第二特征。
上文的公开提供了许多不同的实施方式或例子用来实现本发明的不同结构。为了简化本发明的公开,上文中对特定例子的部件和设置进行描述。当然,它们仅仅为示例,并且目的不在于限制本发明。此外,本发明可以在不同例子中重复参考数字和/或参考字母,这种重复是为了简化和清楚的目的,其本身不指示所讨论各种实施方式和/或设置之间的关系。此外,本发明提供了的各种特定的工艺和材料的例子,但是本领域普通技术人员可以意识到其他工艺的应用和/或其他材料的使用。
在本说明书的描述中,参考术语“一个实施方式”、“一些实施方式”、“示意性实施方式”、“示例”、“具体示例”、或“一些示例”等的描述意指结合实施方式或示例描述的具体特征、结构、材料或者特点包含于本发明的至少一个实施方式或示例中。在本说明书中,对上述术语的示意性表述不一定指的是相同的实施方式或示 例。而且,描述的具体特征、结构、材料或者特点可以在任何的一个或多个实施方式或示例中以合适的方式结合。
尽管已经示出和描述了本发明的实施方式,本领域的普通技术人员可以理解:在不脱离本发明的原理和宗旨的情况下可以对这些实施方式进行多种变化、修改、替换和变型,本发明的范围由权利要求及其等同物限定。

Claims (16)

  1. 一种广角镜头,其特征在于,沿着物侧至像侧依次包括第一透镜组和第二透镜组,所述第一透镜组沿着物侧至像侧依次包括:
    具有负屈折力的第一透镜,所述第一透镜的物侧面为凸面且像侧面为凹面;
    具有负屈折力的第二透镜,所述第二透镜的物侧面为凸面且像侧面为凹面;
    具有正屈折力的第三透镜,所述第三透镜的物侧面及像侧面均为凸面;
    所述第二透镜组沿着物侧至像侧依次包括:
    具有正屈折力的第四透镜,所述第四透镜的物侧面为平面且像侧面为凸面;
    具有正屈折力的第五透镜,所述第五透镜的物侧面及像侧面均为凸面;
    具有负屈折力的第六透镜,所述第六透镜的物侧面及像侧面均为凹面;
    具有正屈折力的第七透镜,所述第七透镜的物侧面及像侧面均为凸面;
    所述广角镜头满足下列关系式:
    H2/G2R2<1.8;其中,H2为所述第一透镜的像侧面的口径;G2R2为所述第一透镜的像侧面的曲率半径。
  2. 如权利要求1所述的广角镜头,其特征在于,所述广角镜头包括光阑,所述光阑设置在所述第一透镜组和所述第二透镜组之间。
  3. 如权利要求2所述的广角镜头,其特征在于,所述光阑粘着在所述第四透镜的物侧面。
  4. 如权利要求1所述的广角镜头,其特征在于,所述广角镜头满足下列关系式:
    0.02≥Φ1+Φ2≥-0.02;其中,Φ1为所述第一透镜组的光焦度;Φ2为所述第二透镜组的光焦度。
  5. 如权利要求1所述的广角镜头,其特征在于,所述第一透镜组包括保护透镜,所述保护透镜设置在所述第一透镜的物侧。
  6. 如权利要求5所述的广角镜头,其特征在于,所述保护透镜的物侧面和像侧面均为平面。
  7. 如权利要求5所述的广角镜头,其特征在于,所述广角镜头满足下列关系式:
    H1<23mm;其中,H1为所述保护透镜的物侧面的口径。
  8. 如权利要求5所述的广角镜头,其特征在于,所述广角镜头满足下列关系式:
    G2R1≥45和10≥G2R1/G2R2≥7;其中,G2R1为所述第一透镜的物侧面的曲率半径;G2R2为所述第一透镜的像侧面的曲率半径。
  9. 如权利要求1所述的广角镜头,其特征在于,所述广角镜头满足下列关系式:
    y=2×f×tan(θ/2)以及f/2y≤0.35;其中,f为所述广角镜头的焦距;θ为所述广角镜头的入射角度;y为所述广角镜头的像高。
  10. 如权利要求1所述的广角镜头,其特征在于,所述广角镜头满足下列关系式:
    1.5≥G2R2/G3R1≥1.0;其中,G2R2为所述第一透镜的像侧面的曲率半径;G3R1为所述第二透镜的物侧面的曲率半径。
  11. 如权利要求1所述的广角镜头,其特征在于,所述第五透镜和所述第六透镜为胶合镜片。
  12. 如权利要求1所述的广角镜头,其特征在于,所述第二透镜和所述第三透镜的物侧面及像侧面均为非球面。
  13. 如权利要求1所述的广角镜头,其特征在于,所述第七透镜的物侧面及像侧面均为非球面。
  14. 一种成像装置,其特征在于,包括图像传感器和权利要求1-13任意一项所述的广角镜头,所述图像传感器设置在所述广角镜头的像侧。
  15. 一种无人机,其特征在于,包括权利要求14所述的成像装置和机身,所述成像装置安装在所述机身。
  16. 如权利要求15所述的无人机,其特征在于,所述无人机包括云台,所述云台安装在所述机身,所述成像装置安装在所述云台。
PCT/CN2018/074334 2018-01-26 2018-01-26 广角镜头、成像装置和无人机 WO2019144382A1 (zh)

Priority Applications (5)

Application Number Priority Date Filing Date Title
EP18901814.6A EP3598192B1 (en) 2018-01-26 2018-01-26 Wide-angle lens, imaging device, and unmanned aerial vehicle
PCT/CN2018/074334 WO2019144382A1 (zh) 2018-01-26 2018-01-26 广角镜头、成像装置和无人机
CN201880006483.2A CN110291436B (zh) 2018-01-26 2018-01-26 广角镜头、成像装置和无人机
JP2019542370A JP6818981B2 (ja) 2018-01-26 2018-01-26 広角レンズ、撮像装置及び無人機
US16/535,492 US10634882B2 (en) 2018-01-26 2019-08-08 Wide angle lens, imaging device, and unmanned aerial vehicle

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/CN2018/074334 WO2019144382A1 (zh) 2018-01-26 2018-01-26 广角镜头、成像装置和无人机

Related Child Applications (1)

Application Number Title Priority Date Filing Date
US16/535,492 Continuation US10634882B2 (en) 2018-01-26 2019-08-08 Wide angle lens, imaging device, and unmanned aerial vehicle

Publications (1)

Publication Number Publication Date
WO2019144382A1 true WO2019144382A1 (zh) 2019-08-01

Family

ID=67395228

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2018/074334 WO2019144382A1 (zh) 2018-01-26 2018-01-26 广角镜头、成像装置和无人机

Country Status (5)

Country Link
US (1) US10634882B2 (zh)
EP (1) EP3598192B1 (zh)
JP (1) JP6818981B2 (zh)
CN (1) CN110291436B (zh)
WO (1) WO2019144382A1 (zh)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2021134707A1 (zh) * 2019-12-31 2021-07-08 深圳市大疆创新科技有限公司 光学取景器和相机

Families Citing this family (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2021128131A1 (zh) * 2019-12-26 2021-07-01 诚瑞光学(常州)股份有限公司 摄像光学镜头
WO2021128148A1 (zh) * 2019-12-26 2021-07-01 诚瑞光学(常州)股份有限公司 摄像光学镜头
WO2021195884A1 (zh) * 2020-03-30 2021-10-07 深圳市大疆创新科技有限公司 光学系统、拍摄装置及可移动平台
CN113589486B (zh) * 2021-08-13 2023-05-09 天津欧菲光电有限公司 光学成像系统、取像模组以及电子设备
CN115248494B (zh) * 2022-07-14 2024-02-27 广东弘景光电科技股份有限公司 一种高像素日夜两用型光学系统及其应用的摄像模组

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN104423016A (zh) * 2013-08-29 2015-03-18 协益电子(苏州)有限公司 广角镜头
CN204855918U (zh) * 2015-06-25 2015-12-09 厦门云之拓科技有限公司 一种小型鱼眼镜头
CN105372789A (zh) * 2015-11-11 2016-03-02 苏州莱能士光电科技有限公司 一种无畸变高分辨率大视角无人机镜头光学系统
CN105607234A (zh) * 2016-01-07 2016-05-25 东莞市宇瞳光学科技股份有限公司 一种超高清鱼眼镜头
CN106443990A (zh) * 2016-10-18 2017-02-22 中山联合光电科技股份有限公司 一种大光圈小体积低成本变焦光学系统
CN106772941A (zh) * 2016-12-27 2017-05-31 东莞市宇瞳光学科技股份有限公司 2.8mm大通光小型广角镜头

Family Cites Families (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3180411B2 (ja) * 1992-03-06 2001-06-25 株式会社ニコン 標準ズームレンズ
US7633688B2 (en) * 2005-06-01 2009-12-15 Olympus Imaging Corp. Image forming optical system
CN102713718B (zh) * 2010-05-28 2013-07-17 奥林巴斯医疗株式会社 成像光学系统和摄像装置
EP2648026B1 (en) * 2011-06-23 2017-09-27 Olympus Corporation Endoscope objective optical system
US8873167B2 (en) * 2012-11-07 2014-10-28 Alex Ning Wide-angle lenses with reduced ghost reflections
JP6037221B2 (ja) * 2012-11-16 2016-12-07 株式会社リコー 広角レンズ、撮像レンズユニット、撮像装置および情報装置
US9638889B2 (en) * 2014-03-24 2017-05-02 Sintai Optical (Shenzhen) Co., Ltd. Lens assembly
WO2016019487A1 (zh) * 2014-08-04 2016-02-11 深圳市大族激光科技股份有限公司 光学镜头
CN106291886B (zh) * 2015-05-12 2019-01-01 亚太精密工业(深圳)有限公司 广角镜头
US10495860B2 (en) * 2015-06-17 2019-12-03 Zhejiang Dahua Technology Co., Ltd. Zoom lens system
KR20180069466A (ko) * 2016-12-15 2018-06-25 삼성전자주식회사 옵티칼 렌즈 어셈블리 및 이를 포함한 전자 장치

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN104423016A (zh) * 2013-08-29 2015-03-18 协益电子(苏州)有限公司 广角镜头
CN204855918U (zh) * 2015-06-25 2015-12-09 厦门云之拓科技有限公司 一种小型鱼眼镜头
CN105372789A (zh) * 2015-11-11 2016-03-02 苏州莱能士光电科技有限公司 一种无畸变高分辨率大视角无人机镜头光学系统
CN105607234A (zh) * 2016-01-07 2016-05-25 东莞市宇瞳光学科技股份有限公司 一种超高清鱼眼镜头
CN106443990A (zh) * 2016-10-18 2017-02-22 中山联合光电科技股份有限公司 一种大光圈小体积低成本变焦光学系统
CN106772941A (zh) * 2016-12-27 2017-05-31 东莞市宇瞳光学科技股份有限公司 2.8mm大通光小型广角镜头

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP3598192A4 *

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2021134707A1 (zh) * 2019-12-31 2021-07-08 深圳市大疆创新科技有限公司 光学取景器和相机

Also Published As

Publication number Publication date
US10634882B2 (en) 2020-04-28
EP3598192A4 (en) 2020-06-03
EP3598192A1 (en) 2020-01-22
US20190361206A1 (en) 2019-11-28
EP3598192B1 (en) 2021-11-17
CN110291436B (zh) 2022-04-05
JP6818981B2 (ja) 2021-01-27
CN110291436A (zh) 2019-09-27
JP2020508481A (ja) 2020-03-19

Similar Documents

Publication Publication Date Title
WO2019144382A1 (zh) 广角镜头、成像装置和无人机
WO2020221138A1 (zh) 定焦镜头及车载摄像系统
WO2021047222A1 (zh) 广角成像镜头
US7403344B2 (en) Lens Assembly
US20180314039A1 (en) Wide angle lens
WO2018010246A1 (zh) 摄像镜头
WO2017148020A1 (zh) 摄远镜头
WO2020107759A1 (zh) 光学镜头及成像设备
WO2020140604A1 (zh) 光学成像镜头及成像设备
WO2022048650A1 (zh) 一种摄像镜头及无人机
WO2020098328A1 (zh) 摄像镜头
WO2021042954A1 (zh) 摄像镜头组
WO2017161661A1 (zh) 摄远镜头
WO2017113557A9 (zh) 摄像镜头
CN117471655A (zh) 光学成像系统
TWI742307B (zh) 取像鏡頭及其製造方法
CN112649943A (zh) 光学成像系统、模组和电子设备
WO2021087669A1 (zh) 光学系统、取像装置及电子装置
US20210072501A1 (en) Optical Image Capturing Module
CN108061960B (zh) 一种车载流媒体摄像头的镜头
CN116107068A (zh) 鱼眼镜头
CN213986994U (zh) 光学成像系统、模组和电子设备
WO2022109820A1 (zh) 光学系统、摄像模组及电子设备
WO2022160119A1 (zh) 光学系统、摄像模组及电子设备
WO2022032433A1 (zh) 光学成像系统、取像模组、电子装置和载具

Legal Events

Date Code Title Description
ENP Entry into the national phase

Ref document number: 2019542370

Country of ref document: JP

Kind code of ref document: A

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 18901814

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2018901814

Country of ref document: EP

Effective date: 20191015

NENP Non-entry into the national phase

Ref country code: DE