WO2021047222A1 - 广角成像镜头 - Google Patents

广角成像镜头 Download PDF

Info

Publication number
WO2021047222A1
WO2021047222A1 PCT/CN2020/095123 CN2020095123W WO2021047222A1 WO 2021047222 A1 WO2021047222 A1 WO 2021047222A1 CN 2020095123 W CN2020095123 W CN 2020095123W WO 2021047222 A1 WO2021047222 A1 WO 2021047222A1
Authority
WO
WIPO (PCT)
Prior art keywords
lens
wide
angle imaging
object side
convex
Prior art date
Application number
PCT/CN2020/095123
Other languages
English (en)
French (fr)
Inventor
刘绪明
魏文哲
曾吉勇
Original Assignee
江西联创电子有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 江西联创电子有限公司 filed Critical 江西联创电子有限公司
Publication of WO2021047222A1 publication Critical patent/WO2021047222A1/zh

Links

Images

Classifications

    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B1/00Optical elements characterised by the material of which they are made; Optical coatings for optical elements
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B13/00Optical objectives specially designed for the purposes specified below
    • G02B13/001Miniaturised objectives for electronic devices, e.g. portable telephones, webcams, PDAs, small digital cameras
    • G02B13/0015Miniaturised objectives for electronic devices, e.g. portable telephones, webcams, PDAs, small digital cameras characterised by the lens design
    • G02B13/002Miniaturised objectives for electronic devices, e.g. portable telephones, webcams, PDAs, small digital cameras characterised by the lens design having at least one aspherical surface
    • G02B13/0045Miniaturised objectives for electronic devices, e.g. portable telephones, webcams, PDAs, small digital cameras characterised by the lens design having at least one aspherical surface having five or more lenses
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B13/00Optical objectives specially designed for the purposes specified below
    • G02B13/06Panoramic objectives; So-called "sky lenses" including panoramic objectives having reflecting surfaces

Definitions

  • the invention relates to a lens imaging system, in particular to a wide-angle imaging lens.
  • a lens with high pixels, large field of view, stable performance, and strong imaging capabilities is required to meet the requirements of harsh environments such as high and low temperature, long-term exposure, severe vibration, etc. Under the circumstances, they can have stable imaging capabilities, and require clear resolution in all fields of view within a large wide-angle.
  • Existing lenses cannot maintain stable imaging capabilities in harsh environments and cannot achieve ideal pixels.
  • the purpose of the present invention is to provide a wide-angle imaging lens suitable for sports cameras to provide more stable imaging capabilities in harsh environments.
  • the present invention provides a wide-angle imaging lens, which sequentially includes from the object side to the imaging surface:
  • a first lens with negative refractive power wherein the object side surface of the first lens is a convex surface, and the image side surface is a concave surface;
  • a second lens with negative refractive power, the image side surface of the second lens is concave;
  • a fourth lens with positive refractive power, the object side of the fourth lens is convex
  • a fifth lens with positive refractive power, the object side and the image side of the fifth lens are both convex;
  • a sixth lens with negative refractive power, the object side and the image side of the sixth lens are both concave, and the fifth lens and the sixth lens form a cemented body;
  • a seventh lens with positive refractive power, the object side and the image side of the seventh lens are both convex;
  • the first lens, the second lens, the third lens, the fourth lens, the fifth lens, the sixth lens, and the seventh lens are all glass lenses.
  • the wide-angle imaging lens satisfies the conditional formula:
  • represents the half angle of view of the wide-angle imaging lens
  • IH represents the image height of the wide-angle imaging lens at the half angle of view ⁇ .
  • the wide-angle imaging lens satisfies the conditional formula:
  • f L2 represents the focal length of the second lens
  • f L3 represents the focal length of the third lens
  • the wide-angle imaging lens satisfies the conditional formula:
  • f L5 represents the focal length of the fifth lens
  • f L7 represents the focal length of the seventh lens
  • (dn/dT) 5 represents the temperature coefficient of refractive index of the fifth lens
  • (dn/dT) 7 represents the focal length of the fifth lens.
  • the wide-angle imaging lens satisfies the conditional formula:
  • f 11 represents the focal length of the image side surface of the sixth lens
  • f 12 represents the focal length of the object side surface of the seventh lens
  • r 11 represents the radius of curvature of the image side surface of the sixth lens
  • r 12 represents the seventh lens The radius of curvature of the object side.
  • the wide-angle imaging lens satisfies the conditional formula:
  • D represents the maximum image circle of the wide-angle imaging lens
  • EFL represents the effective focal length of the wide-angle imaging lens
  • the wide-angle imaging lens satisfies the conditional formula:
  • represents the incident angle of the chief ray at the maximum image height on the object side of the first lens
  • r 1 represents the curvature of the object side of the first lens
  • the second lens, the third lens and the seventh lens are all glass aspheric lenses.
  • the object side surface of the second lens is a concave surface
  • the object side surface of the third lens is a convex surface
  • the image side surface of the third lens is a concave surface
  • the image side surface of the fourth lens is a convex surface.
  • the object side surface of the second lens is convex
  • the object side surface of the third lens is convex
  • the image side surface of the third lens is convex
  • the image side surface of the fourth lens is concave.
  • the object side surface of the second lens is convex
  • the object side surface of the third lens is concave
  • the image side surface of the third lens is convex
  • the image side surface of the fourth lens is convex
  • the second lens of the present invention is a glass aspheric lens, which is mainly used to correct distortion.
  • the f- ⁇ distortion of a wide-angle lens becomes a negative value
  • the f- ⁇ distortion of the wide-angle lens provided by the present invention is in the edge view.
  • a field greater than +5% can make the edge field of view contain more pixels, improve the edge resolution, and the image of the edge field of view will be clearer after the captured image is expanded.
  • the second lens and the third lens are thin lenses with negative refractive power and positive refractive power respectively, which can effectively correct curvature of field; the fourth lens is used for aberration correction; the fifth positive lens and the sixth negative lens are composed of a viscous lens.
  • the difference in Abbe number Vd of the positive and negative lenses in the combination is greater than 30, which can effectively correct chromatic aberration; the seventh lens plays a role in eliminating aberrations and controlling the exit angle of the chief ray.
  • the fifth lens and the seventh lens both have positive refractive power and use glass materials with a negative refractive index temperature coefficient, which can make the effective focal length of the entire wide-angle imaging lens larger at high temperatures and shorter at low temperatures, which effectively compensates for the mechanical
  • the thermal expansion of the structure ensures the stability of the lens at high and low temperatures, and ensures that the lens has a good imaging capability within the temperature difference range of -40°C to 85°C.
  • each lens is a glass lens, which enables the wide-angle imaging lens to have better thermal stability and mechanical strength, which is conducive to working in extreme environments.
  • FIG. 1 is a schematic diagram of the structure of a wide-angle imaging lens in the first embodiment of the present invention
  • FIG. 2 is a field curvature diagram of the wide-angle imaging lens in the first embodiment of the present invention.
  • FIG. 3 is a f- ⁇ distortion diagram of the wide-angle imaging lens in the first embodiment of the present invention.
  • FIG. 4 is a diagram of axial chromatic aberration of the wide-angle imaging lens in the first embodiment of the present invention.
  • Fig. 5 is a vertical axis chromatic aberration diagram of the wide-angle imaging lens in the first embodiment of the present invention
  • FIG. 6 is a schematic structural diagram of a wide-angle imaging lens in a second embodiment of the present invention.
  • Fig. 7 is a field curvature diagram of a wide-angle imaging lens in a second embodiment of the present invention.
  • FIG. 8 is an f- ⁇ distortion diagram of the wide-angle imaging lens in the second embodiment of the present invention.
  • FIG. 9 is a diagram of axial chromatic aberration of the wide-angle imaging lens in the second embodiment of the present invention.
  • Fig. 10 is a vertical axis chromatic aberration diagram of the wide-angle imaging lens in the second embodiment of the present invention.
  • FIG. 11 is a schematic diagram of the structure of the wide-angle imaging lens in the third embodiment of the present invention.
  • Fig. 12 is a field curvature diagram of a wide-angle imaging lens in a third embodiment of the present invention.
  • FIG. 13 is an f- ⁇ distortion diagram of the wide-angle imaging lens in the third embodiment of the present invention.
  • FIG. 14 is a diagram of axial chromatic aberration of the wide-angle imaging lens in the third embodiment of the present invention.
  • Fig. 15 is a vertical axis chromatic aberration diagram of the wide-angle imaging lens in the third embodiment of the present invention.
  • the present invention provides a wide-angle imaging lens, which sequentially includes from the object side to the imaging surface:
  • the object side of the first lens is convex and the image side is concave;
  • a second lens with negative refractive power, and the image side surface of the second lens is concave;
  • a fourth lens with positive refractive power, and the object side of the fourth lens is convex;
  • both the object side and the image side of the fifth lens are convex;
  • a sixth lens with negative refractive power, the object side and image side of the sixth lens are both concave, and the fifth lens and the sixth lens form a cemented body;
  • both the object side and the image side of the seventh lens are convex;
  • the first lens, the second lens, the third lens, the fourth lens, the fifth lens, the sixth lens and the seventh lens are all glass lenses. All lenses are glass lenses, which can make the lens have good stability. Under severe conditions, such as high and low temperature, long time exposure, severe collision, it can ensure that the lens resolution will not change greatly.
  • the wide-angle imaging lens in order to control the f- ⁇ distortion of the lens to be greater than +5%, to better increase the number of pixels in the edge field of view, and to improve the edge resolution, the wide-angle imaging lens satisfies the conditional formula:
  • represents the half angle of view of the wide-angle imaging lens
  • IH represents the image height of the wide-angle imaging lens at the half angle of view ⁇ .
  • the wide-angle imaging lens in order to effectively correct the curvature of field of the lens, satisfies the conditional formula:
  • f L2 represents the focal length of the second lens
  • f L3 represents the focal length of the third lens
  • the wide-angle imaging lens satisfies the conditional formula:
  • f L5 represents the focal length of the fifth lens
  • f L7 represents the focal length of the seventh lens
  • (dn/dT) 5 represents the refractive index temperature coefficient of the fifth lens
  • (dn/dT) 7 represents the refractive index temperature of the seventh lens coefficient.
  • a relatively big challenge is to achieve athermalization within a large temperature span, that is, to ensure that the position of the imaging surface of the lens is basically unchanged at different temperatures.
  • the temperature coefficient of refractive index dn/dT of most optical glass is positive, that is, the refractive index of optical glass increases with temperature, which causes the optical back focus of the system to become shorter when the temperature rises under normal conditions.
  • the expansion of the mechanical back focus will increase with the increase of temperature, which will cause the focus drift to be very serious under high and low temperature conditions, and the image quality will drop sharply.
  • the fifth lens with positive refractive power and the seventh lens with positive refractive power are selected from glass materials with negative refractive index temperature coefficient dn/dT, which can make the entire wide-angle imaging lens
  • the effective focal length becomes larger at high temperature, and the effective focal length becomes shorter at low temperature, which effectively compensates for the thermal expansion of mechanical structures (such as lens barrel, lens holder, etc.), ensures the stability of the lens at high and low temperatures, and ensures that the lens is at -40°C ⁇ 85°C It has good imaging ability within the range of temperature difference.
  • the wide-angle imaging lens satisfies the conditional formula:
  • f 11 represents the focal length of the image side surface of the sixth lens
  • f 12 represents the focal length of the object side surface of the seventh lens
  • r 11 represents the radius of curvature of the image side surface of the sixth lens
  • r 12 represents the radius of curvature of the object side surface of the seventh lens.
  • Satisfying the above conditions can avoid the secondary reflection of light between the image side surface of the sixth lens and the object side surface of the seventh lens to form obvious ghost images on the imaging surface, avoid the interference of ghost images in the captured image, and improve The imaging quality of the image.
  • the wide-angle imaging lens satisfies the conditional formula:
  • D represents the maximum image circle of the wide-angle imaging lens
  • EFL represents the effective focal length of the wide-angle imaging lens
  • Satisfying the above conditions can ensure that the wide-angle imaging lens system has a sufficiently large imaging range, effectively increasing the number of pixels of the lens, thereby meeting the imaging requirements of 12 million high pixels, and effectively improving the imaging quality during shooting.
  • the wide-angle imaging lens satisfies the conditional formula:
  • represents the incident angle of the chief ray at the maximum image height on the object side of the first lens
  • r 1 represents the curvature halfway of the object side of the first lens
  • the edge contrast can be effectively improved on the premise that the first lens can be processed. If the value of ⁇ /r 1 exceeds the lower limit, the edge contrast will significantly decrease, resulting in shadows on the edges of the captured image. If the value of ⁇ /r 1 exceeds the upper limit, it will cause difficulties in processing the first lens.
  • the object side surface of the second lens is concave
  • the object side surface of the third lens is convex
  • the image side surface of the third lens is concave
  • the image side surface of the fourth lens is convex
  • the object side of the second lens is convex
  • the object side of the third lens is convex
  • the image side of the third lens is convex
  • the image side of the fourth lens is concave
  • the object side surface of the second lens is convex
  • the object side surface of the third lens is concave
  • the image side surface of the third lens is convex
  • the image side surface of the fourth lens is convex
  • the second lens, the third lens, and the seventh lens are all aspherical lenses.
  • the use of aspheric lenses can effectively correct aberrations such as spherical aberration, coma, distortion, etc., while reducing the number of lenses, reducing the size and weight of the lens.
  • the fifth lens and the sixth lens constitute a cemented body.
  • the cemented lens can better eliminate aberrations such as spherical aberration and chromatic aberration.
  • the wide-angle imaging lens has high pixels and a large wide angle, and at the same time, the f- ⁇ distortion is greater than +5%, so that the lens has more pixels in the edge field of view, thereby improving the edge of the wide-angle imaging lens.
  • the resolution capability enables this wide-angle imaging lens to have a good imaging capability while reaching 12 million pixels.
  • z represents the distance of the surface from the surface vertex in the direction of the optical axis
  • c represents the curvature of the surface vertex
  • K represents the quadric surface coefficient
  • h represents the distance from the optical axis to the surface
  • B, C, D, E, and F represent four Order, sixth, eighth, tenth and twelfth-order surface coefficients.
  • the thickness, radius of curvature, and material selection of each lens in the wide-angle imaging lens are different.
  • the parameter table of each embodiment please refer to the parameter table of each embodiment.
  • a wide-angle imaging lens 100 provided by the first embodiment of the present invention includes a first lens L1, a second lens L2, a third lens L3, a stop ST, and a fourth lens in order from the object side to the imaging surface.
  • Lens L4 fifth lens L5, sixth lens L6, seventh lens L7, filter G1.
  • the first lens L1 has a negative refractive power
  • the object side surface S1 is a convex surface
  • the image side surface S2 is a concave surface
  • the first lens L1 is a glass spherical lens.
  • the second lens L2 has negative refractive power, the object sides S3 and S4 are both concave, and the second lens L2 is a glass aspheric lens.
  • the third lens L3 has a positive refractive power
  • the object side surface S5 is a convex surface
  • the image side surface S6 is a concave surface
  • the third lens L3 is a glass aspheric lens.
  • the fourth lens L4 has a positive refractive power, the object side surface S7 and the image side surface S8 are both convex surfaces, and the fourth lens L4 is a glass spherical lens. In other embodiments of the present invention, the fourth lens L4 may also be a glass aspheric lens.
  • the fifth lens L5 has a positive refractive power, the object side surface S9 and the image side surface are both convex surfaces, and the fifth lens L5 is a glass spherical lens.
  • the sixth lens L6 has negative refractive power, the object side surface and the image side surface S11 are both concave, and the fifth lens L5 and the sixth lens L6 form a cemented body and both are glass spherical lenses. Specifically, the image side surface of the fifth lens L5 and the object side surface of the sixth lens L6 are bonded together, that is, the image side surface of the fifth lens L5 and the object side surface of the sixth lens L6 are seamlessly bonded, and the bonding surface is S10.
  • the seventh lens L7 has a positive refractive power, the object side surface S12 and the image side surface S13 are both convex surfaces, and the seventh lens L7 is a glass aspheric lens.
  • the stop ST is provided between the third lens L3 and the fourth lens L4, and the filter G1 is provided between the seventh lens L7 and the imaging surface S16.
  • the curvature of field, f- ⁇ distortion, axial chromatic aberration, and vertical chromatic aberration are shown in Figure 2, Figure 3, Figure 4, and Figure 5, respectively.
  • the field curvature of the wide-angle imaging lens 100 provided in this embodiment does not exceed 0.09 mm, and the field curvature difference between the meridian direction and the sagittal direction of the same wavelength does not exceed 0.05 mm, indicating that the field curvature is obtained A very good correction.
  • the f- ⁇ distortion of the wide-angle imaging lens 100 provided in this embodiment is greater than +5% at the edge field of view, indicating that the edge field of view contains more pixels, and the edge view of the captured image is expanded.
  • the image of the field is clearer, so as to ensure that the lens can have a clear resolution in the entire field of view.
  • the axial chromatic aberration of the wide-angle imaging lens 100 provided by this embodiment is within ⁇ 0.03 mm within the aperture range of 0 to 1.
  • the wide-angle imaging provided by this embodiment The vertical axis chromatic aberration of the lens 100 is less than 6 um in the full field of view, and the difference between the wavelengths is small, indicating that the chromatic aberration of the lens is well corrected.
  • FIG. 6 shows a structural diagram of a wide-angle imaging lens 200 provided by this embodiment.
  • the wide-angle imaging lens 200 in this embodiment is substantially the same as the wide-angle imaging lens 100 in the first embodiment.
  • the difference is that the object side surface S3 of the second lens L2 of the wide-angle imaging lens 200 in this embodiment is convex.
  • the image side surface S6 of the triple lens L3 is convex
  • the fourth lens L4 is aspherical lens
  • the image side surface S8 is concave
  • the radius of curvature and material selection of each lens are different. For specific related parameters of each lens, see Table 2-1.
  • the curvature of field, f- ⁇ distortion, axial chromatic aberration, and vertical chromatic aberration are shown in Figs. 7, 8, 9, and 10, respectively. It can be seen from FIGS. 7 to 10 that the curvature of field, f- ⁇ distortion, and chromatic aberration can all be well corrected in this embodiment.
  • FIG. 11 shows a structural diagram of a wide-angle imaging lens 300 provided by this embodiment.
  • the wide-angle imaging lens 300 in this embodiment is substantially the same as the wide-angle imaging lens 100 in the first embodiment.
  • the difference is that the object side surface S3 of the second lens L2 of the wide-angle imaging lens 300 in this embodiment is convex.
  • the object side surface S5 of the three lens L3 is a concave surface, the image side surface S6 is a convex surface, and the radius of curvature and material selection of each lens are different.
  • Table 3-1 For specific related parameters of each lens, see Table 3-1.
  • the aspheric parameters of the aspheric lens of this embodiment are shown in Table 3-2.
  • the curvature of field, f- ⁇ distortion, axial chromatic aberration, and vertical chromatic aberration are shown in Figs. 12, 13, 14 and 15 respectively. It can be seen from FIG. 12 to FIG. 15 that the field curvature, f- ⁇ distortion, and chromatic aberration can all be well corrected in this embodiment.
  • Table 4 shows the above three embodiments and their corresponding optical characteristics, including the system focal length f, the number of apertures F#, the half field angle ⁇ , and the total optical length TTL, as well as the values corresponding to each of the preceding conditional expressions.
  • the following optical indicators are achieved: (1) Field of view: 2 ⁇ >155°; (2) Total optical length: TTL ⁇ 19.5mm. According to the optical index, the lens has a large wide-angle performance and its total length is small.
  • the first lens L1 and the second lens L2 are used for light collection to reduce the incident angle of incident light, which is beneficial to reduce the lens volume and facilitate the subsequent correction of aberrations by the imaging system;
  • second Lens L2 is a glass aspheric lens, used to correct distortion, and cooperate with the third lens L3 to eliminate curvature of field;
  • the fourth lens L4 is used to correct aberrations;
  • the fifth lens L5 and the sixth lens L6 are cemented
  • the difference in the Abbe number Vd of the positive and negative lenses is greater than 30, which can effectively correct chromatic aberration;
  • the seventh lens L7 plays the role of eliminating aberrations and controlling the exit angle of the chief ray.
  • Each lens is a glass lens, so that the wide-angle imaging lens of the present invention has better thermal stability and mechanical strength, which is beneficial to work in extreme environments.

Landscapes

  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Optics & Photonics (AREA)
  • Lenses (AREA)

Abstract

一种广角成像镜头,从物侧到成像面依次包括:具有负光焦度的第一透镜(L1),第一透镜的物侧面(S1)为凸面,像侧面(S2)为凹面;具有负光焦度的第二透镜(L2),第二透镜(L2)的像侧面(S4)为凹面;具有正光焦度的第三透镜(L3);光阑(ST);具有正光焦度的第四透镜(L4),第四透镜(L4)的物侧面(S7)为凸面;具有正光焦度的第五透镜(L5),第五透镜(L5)的物侧面(S9)和像侧面(S10)均为凸面;具有负光焦度的第六透镜(L6),第六透镜(L6)的物侧面(S10)和像侧面(S11)均为凹面,且第五透镜(L5)和第六透镜(L6)组成粘合体;具有正光焦度的第七透镜(L7),第七透镜(L7)的物侧面(S11)和像侧面(S12)均为凸面;及滤光片(G1),设于第七透镜(L7)与成像面(S16)之间;这种广角成像镜头通过七片玻璃球面与非球面镜片的合理搭配以及光焦度的合理组合,实现在大广角的全部视场内都有清晰的解像力。

Description

广角成像镜头
相关申请的交叉引用
本申请要求于2019年09月12日提交中国专利局的申请号为CN201910864753.X、名称为“广角成像镜头”的中国专利申请的优先权,其全部内容通过引用结合在本申请中。
技术领域
本发明涉及一种透镜成像系统,特别涉及一种广角成像镜头。
背景技术
目前,随着便携式电子设备(如智能手机、相机)的普及,加上社交、视频、直播类软件的流行,人们对于摄影的喜爱程度越来越高,摄像镜头已经成为了电子设备的标配。
对于极限运动、视频监控以及车载镜头的应用,需要一款高像素、大视场角、性能稳定、成像能力强的镜头,以满足在恶劣环境下,如高低温、长时间暴晒、剧烈震动等情况下,都能有稳定的成像能力,并且要求在大广角内全部视场都能有清晰的解像力。现有的镜头在恶劣环境下无法保持稳定的成像能力,无法达到理想的像素。
发明内容
基于此,本发明的目的是提供一种广角成像镜头,适用于运动相机上,以在恶劣环境中提供更稳定的成像能力。
本发明提供一种广角成像镜头,从物侧到成像面依次包括:
具有负光焦度的第一透镜,所述第一透镜的物侧面为凸面,像侧面为凹面;
具有负光焦度的第二透镜,所述第二透镜的像侧面为凹面;
具有正光焦度的第三透镜;
光阑;
具有正光焦度的第四透镜,所述第四透镜的物侧面为凸面;
具有正光焦度的第五透镜,所述第五透镜的物侧面和像侧面均为凸面;
具有负光焦度的第六透镜,所述第六透镜的物侧面和像侧面均为凹面,且所述第五透镜和所述第六透镜组成粘合体;
具有正光焦度的第七透镜,所述第七透镜的物侧面和像侧面均为凸面;
及滤光片,设于所述第七透镜与成像面之间;
其中,所述第一透镜、所述第二透镜、所述第三透镜、所述第四透镜、所述第五透镜、所述第六透镜和所述第七透镜均为玻璃透镜。
进一步地,所述广角成像镜头满足条件式:
0<IH 2/θ<0.5;
其中,θ表示所述广角成像镜头的半视场角,IH表示在半视场角θ时所述广角成像镜头的像高。
进一步地,所述广角成像镜头满足条件式:
|1/(f L2+f L3)|>0.5;
其中,f L2表示所述第二透镜的焦距,f L3表示所述第三透镜的焦距。
进一步地,所述广角成像镜头满足条件式:
-5×10 6<f L5/(dn/dT) 5+f L7/(dn/dT) 7<0;
其中,f L5表示所述第五透镜的焦距,f L7表示所述第七透镜的焦距,(dn/dT) 5表示所述第五透镜的折射率温度系数,(dn/dT) 7表示所述第七透镜的折射率温度系数。
进一步地,所述广角成像镜头满足条件式:
-0.5<r 11/f 11+r 12/f 12<0;
其中,f 11表示所述第六透镜像侧面的焦距,f 12表示所述第七透镜物侧面的焦距,r 11表示所述第六透镜像侧面的曲率半径,r 12表示所述第七透镜物侧面的曲率半径。
进一步地,所述广角成像镜头满足条件式:
D/EFL>2.9;
其中,D表示所述广角成像镜头的最大像圆,EFL表示所述广角成像镜头的有效焦距。
进一步地,所述广角成像镜头满足条件式:
3<Ф/r 1<10;
其中,Ф表示所述第一透镜物侧面最大像高处的主光线入射角度,r 1表示所述第一透镜物侧面的曲率半经。
进一步地,所述第二透镜、所述第三透镜和所述第七透镜均为玻璃非球面透镜。
进一步地,所述第二透镜的物侧面为凹面,所述第三透镜的物侧面为凸面,所述第三透镜的像侧面为凹面,所述第四透镜的像侧面为凸面。
进一步地,所述第二透镜的物侧面为凸面,所述第三透镜的物侧面为凸面,所述第三透镜的像侧面为凸面,所述第四透镜的像侧面为凹面。
进一步地,所述第二透镜的物侧面为凸面,所述第三透镜的物侧面为凹面,所述第三透镜的像侧面为凸面,所述第四透镜的像侧面为凸面。
相较现有技术,本发明中的第二透镜为玻璃非球面透镜,主要用于矫正畸变,一般广角镜头的f-θ畸变为负值,而本发明提供的广角镜头的f-θ畸变在边缘视场大于+5%,可以使边缘视场包含更多的像素数,提高边缘解像,在拍摄的图像展开后边缘视场的图像更清晰。
第二透镜、第三透镜分别为具有负光焦度和正光焦度的薄透镜,可以有效矫正场曲;第四透镜用于像差的矫正;第五正透镜和第六负透镜组成的粘合体中的正、负透镜阿贝数Vd差值大于30,可以有效矫正色差;第七透镜起到消除像差和控制主光线的出射角度的作用。
第五透镜和第七透镜均具有正光焦度且使用折射率温度系数为负的玻璃材料,可以使整个广角成像镜头在高温时有效焦距变大、低温时有效焦距变短,有效的补偿了机械结构(如镜筒、镜座等)的热膨胀,保证镜头高低温的稳定性,确保镜头在-40℃~85℃的温差范围内都有良好的成像能力。同时各个透镜均为玻璃镜片可以使得所述广角成像镜头具有较好的热稳定性能以及机械强度,有利于在极端环境下工作。
附图说明
图1为本发明第一实施例中广角成像镜头的结构示意图;
图2为本发明第一实施例中广角成像镜头的场曲图;
图3为本发明第一实施例中广角成像镜头的f-θ畸变图;
图4为本发明第一实施例中广角成像镜头的轴向色差图;
图5为本发明第一实施例中广角成像镜头的垂轴色差图;
图6为本发明第二实施例中广角成像镜头的结构示意图;
图7为本发明第二实施例中广角成像镜头的场曲图;
图8为本发明第二实施例中广角成像镜头的f-θ畸变图;
图9为本发明第二实施例中广角成像镜头的轴向色差图;
图10为本发明第二实施例中广角成像镜头的垂轴色差图;
图11为本发明第三实施例中广角成像镜头的结构示意图;
图12为本发明第三实施例中广角成像镜头的场曲图;
图13为本发明第三实施例中广角成像镜头的f-θ畸变图;
图14为本发明第三实施例中广角成像镜头的轴向色差图;
图15为本发明第三实施例中广角成像镜头的垂轴色差图。
主要元件符号说明:
Figure PCTCN2020095123-appb-000001
如下具体实施方式将结合上述附图进一步说明本发明。
具体实施方式
为了便于理解本发明,下面将参照相关附图对本发明进行更全面的描述。附图中给出了本发明的若干实施例。但是,本发明可以以许多不同的形式来实现,并不限于本文所描述的实施例。相反地,提供这些实施例的目的是使对本发明的公开内容更加透彻全面。
除非另有定义,本文所使用的所有的技术和科学术语与属于本发明的技术领域的技术人员通常理解的含义相同。本文中在本发明的说明书中所使用的术语只是为了描述具体的实施例的目的,不是旨在于限制本发明。本文所使用的术语“及/或”包括一个或多个相关的所列项目的任意的和所有的组合。
本发明提供一种广角成像镜头,从物侧到成像面依次包括:
具有负光焦度的第一透镜,第一透镜的物侧面为凸面,像侧面为凹面;
具有负光焦度的第二透镜,第二透镜的像侧面为凹面;
具有正光焦度的第三透镜;
光阑;
具有正光焦度的第四透镜,第四透镜的物侧面为凸面;
具有正光焦度的第五透镜,第五透镜的物侧面和像侧面均为凸面;
具有负光焦度的第六透镜,第六透镜的物侧面和像侧面均为凹面,且第五透镜和第六透镜组成粘合体;
具有正光焦度的第七透镜,第七透镜的物侧面和像侧面均为凸面;
及滤光片,设于第七透镜与成像面之间;
其中,第一透镜、第二透镜、第三透镜、第四透镜、第五透镜、第六透镜和第七透镜均为玻璃透镜。所有透镜均为玻璃透镜,可以使镜头有良好的稳定性,在恶劣条件下,如高低温、长时间暴晒、剧烈碰撞时,能保证镜头解像力不会有大的变化。
在一些实施方式中,为了控制镜头的f-θ畸变达到大于+5%,更好地增加边缘视场像素点个数,提高边缘解像力,所述广角成像镜头满足条件式:
0<IH 2/θ<0.5;
其中,θ表示广角成像镜头的半视场角,IH表示在半视场角θ时广角成像镜头的像高。
在一些实施方式中,为了有效矫正镜头的场曲,所述广角成像镜头满足条件式:
|1/(f L2+f L3)|>0.5;
其中,f L2表示第二透镜的焦距,f L3表示第三透镜的焦距。
在一些实施方式中,所述广角成像镜头满足条件式:
-5×10 6<f L5/(dn/dT) 5+f L7/(dn/dT) 7<0;
其中,f L5表示第五透镜的焦距,f L7表示第七透镜的焦距,(dn/dT) 5表示第五透镜的折射率温度系数,(dn/dT) 7表示第七透镜的折射率温度系数。
在镜头设计方面,一个比较大的挑战是在大温度跨度范围内实现消热差,即要保证在不同温度时镜头的成像面位置基本不变。由于多数光学玻璃的折射率温度系数dn/dT为正,即光学玻璃的折射率随温度变化增大,导致正常情况下温度升高时系统的光学后焦会变短,而由于镜筒镜座的膨胀,机械后焦会随温度升高而变长,从而导致焦点漂移在高低温情况下非常严重,成像质量急剧下降。通过多次设计测试发现,在光学镜头的温差补偿方面,如果采用dn/dT为负的玻璃材料,尤其是镜头里具有正光焦度的透镜,可以有效实现光学后焦和机械后焦变化的补偿。因此在本发明实施例中,满足上述条件,将具有正光焦度的第五透镜和具有正光焦度的第七透镜选用折射率温度系数dn/dT为负的玻璃材料,可以使整个广角成像镜头在高温时有效焦距变大、低温时有效焦距变短,有效的补偿了机械结构(如镜筒、镜座等)的热膨胀,保证镜头高低温的稳定性,确保镜头在-40℃~85℃的温差范围内都有良好的成像能力。
在一些实施方式中,所述广角成像镜头满足条件式:
-0.5<r 11/f 11+r 12/f 12<0;
其中,f 11表示第六透镜像侧面的焦距,f 12表示第七透镜物侧面的焦距,r 11表示第六透镜像侧面的曲率半径,r 12表示第七透镜物侧面的曲率半径。
满足上述条件,可以避免光线在第六透镜像侧面和第七透镜物侧面之间的二次反射的光线聚焦在成像面上形成明显的鬼影,避免拍摄出的图像受到鬼影的干扰,提高图像的成像质量。
在一些实施方式中,所述广角成像镜头满足条件式:
D/EFL>2.9;
其中,D表示广角成像镜头的最大像圆,EFL表示广角成像镜头的有效焦距。
满足上述条件,能够保证广角成像镜头系统具有足够大的成像范围,有效增加镜头的像素数目,从而满足1200万高像素的成像要求,有效提高拍摄时的成像质量。
在一些实施方式中,所述广角成像镜头满足条件式:
3<Ф/r 1<10;
其中,Ф表示第一透镜物侧面最大像高处的主光线入射角度,r 1表示第一透镜物侧面的曲率半经。
满足上述条件,可以保证在第一透镜可加工的前提下,有效提高边缘相对照度。若Ф/r 1的值超过下限时,则边缘相对照度会有明显下降,导致拍摄的图像边缘出现阴影现象,若Ф/r 1的值超过上限时,则会导致第一透镜加工困难。
在一些实施方式中,第二透镜的物侧面为凹面,第三透镜的物侧面为凸面,第三透镜的像侧面为凹面,第四透镜的像侧面为凸面。
在一些实施方式中,第二透镜的物侧面为凸面,第三透镜的物侧面为凸面,第三透镜的像侧面为凸面,第四透镜的像侧面为凹面。
在一些实施方式中,第二透镜的物侧面为凸面,第三透镜的物侧面为凹面,第三透镜的像侧面为凸面,第四透镜的像侧面为凸面。
在一些实施方式中,第二透镜、第三透镜、和第七透镜均为非球面透镜。使用非球面透镜可以有效矫正球差、慧差、畸变等像差,同时可以减少镜片数量,减小镜头体积和重量。
在一些实施方式中,第五透镜和第六透镜组成粘合体。胶合透镜能够更好的消除球差、色差等像差。
满足上述配置有利于保证所述广角成像镜头具有高像素、大广角,同时f-θ畸变达到大于+5%,使得镜头在边缘视场拥有更多像素,从而提高了所述广角成像镜头边缘的解像能力,使此广角成像镜头在像素达到1200万的同时,拥有良好的成像能力。
本发明各个实施例中非球面镜头的表面形状均满足下列方程:
Figure PCTCN2020095123-appb-000002
其中,z表示曲面离开曲面顶点在光轴方向的距离,c表示曲面顶点的曲率,K表示二次曲面系数,h表示光轴到曲面的距离,B、C、D、E和F分别表示四阶、六阶、八阶、十阶和十二阶曲面系数。
在以下各个实施例中,广角成像镜头中的各个透镜的厚度、曲率半径、材料选择部分有所不同,具体不同可参见各实施例的参数表。
第一实施例
请参阅图1,本发明第一实施例提供的一种广角成像镜头100,从物侧到成像面依次包括:第一透镜L1、第二透镜L2、第三透镜L3、光阑ST、第四透镜L4、第五透镜L5、第六透镜L6、第七透镜L7、滤光片G1。
第一透镜L1具有负光焦度,其物侧面S1为凸面、像侧面S2为凹面,第一透镜L1是玻璃球面透 镜。
第二透镜L2具有负光焦度,其物侧面S3和S4均为凹面,第二透镜L2是玻璃非球面透镜。
第三透镜L3具有正光焦度,其物侧面S5为凸面、像侧面S6为凹面,第三透镜L3是玻璃非球面透镜。
第四透镜L4具有正光焦度,其物侧面S7和像侧面S8均为凸面,第四透镜L4是玻璃球面透镜。在本发明的其它实施例中,第四透镜L4还可以是玻璃非球面透镜。
第五透镜L5具有正光焦度,其物侧面S9和像侧面均为凸面,第五透镜L5是玻璃球面透镜。
第六透镜L6具有负光焦度,其物侧面和像侧面S11均为凹面,且第五透镜L5和第六透镜L6组成粘合体并且均为玻璃球面透镜。具体地,第五透镜L5的像侧面和第六透镜L6的物侧面粘合于一体,也即第五透镜L5的像侧面和第六透镜L6的物侧面无缝粘合,其粘合面为S10。
第七透镜L7具有正光焦度,其物侧面S12和像侧面S13均为凸面,第七透镜L7是玻璃非球面透镜。
光阑ST设于第三透镜L3与第四透镜L4之间,滤光片G1设于第七透镜L7与成像面S16之间。
本发明第一实施例中提供的广角成像镜头100中各个镜片的相关参数如表1-1所示。
表1-1
表面序号 表面类型 曲率半径 厚度 折射率 阿贝数
  物面 无穷 无穷    
S1 球面 6.741818 0.605800 2.001 25.44
S2 球面 2.337576 2.110760    
S3 非球面 -5.076609 0.494982 1.497 81.52
S4 非球面 4.886134 0.279999    
S5 非球面 4.486878 1.572195 1.822 24.04
S6 非球面 127.842325 0.278800    
ST 光阑 无穷 0.784932    
S7 球面 14.567524 2.228094 1.593 68.53
S8 球面 -3.616892 0.479181    
S9 球面 10.141750 2.261888 1.593 68.53
S10 球面 -3.085040 0.480039 1.741 27.76
S11 球面 6.743850 0.198999    
S12 非球面 5.629715 2.467815 1.554 71.72
S13 非球面 -8.352149 0.300000    
S14 球面 无穷 0.500000 1.517 64.21
S15 球面 无穷 2.956451    
S16 像面 无穷 ——    
本实施例的各透镜非球面的参数如表1-2所示。
表1-2
Figure PCTCN2020095123-appb-000003
在本实施例中,其场曲、f-θ畸变、轴向色差和垂轴色差分别如图2、图3、图4和图5所示。由图2可以看出,本实施例提供的广角成像镜头100的场曲均不超过0.09mm,且同一波长的子午方向和弧矢方向的场曲差值均不超过0.05mm,说明场曲得到了很好的矫正。由图3可以看出,本实施例提供的广角成像镜头100的f-θ畸变在边缘视场大于+5%,说明在边缘视场包含更多的像素数,在拍摄的图像展开后边缘视场的图像更清晰,从而保证镜头在全部视场内都能有清晰的解像力。由图4可以看出,本实施例提供的广角成像镜头100的轴向色差在孔径为0~1的范围内均在±0.03mm以内;由图5可以看出,本实施例提供的广角成像镜头100的垂轴色差在全视场范围内均小于6um,且各波长之间的差值很小,说明该镜头的色差得到了很好的矫正。
第二实施例
请参阅图6,所示为本实施例提供的一种广角成像镜头200的结构图。本实施例当中的广角成像镜 头200与第一实施例当中的广角成像镜头100大抵相同,不同之处在于,本实施例当中的广角成像镜头200的第二透镜L2的物侧面S3为凸面,第三透镜L3的像侧面S6为凸面,第四透镜L4为非球面透镜且像侧面S8为凹面,以及各透镜的曲率半径、材料选择不同,具体各个透镜的相关参数参见表2-1所示。
表2-1
表面序号 表面类型 曲率半径 厚度 折射率 阿贝数
  物面 无穷 无穷    
S1 球面 10.176458 1.208244 1.835 42.73
S2 球面 2.698737 2.001130    
S3 非球面 7.286530 0.631545 1.583 59.46
S4 非球面 2.476671 1.743058    
S5 非球面 28.654618 1.999785 1.851 40.10
S6 非球面 -4.982961 0.331126    
ST 光阑 无穷 0.189976    
S7 非球面 46.659348 1.298463 1.497 81.52
S8 非球面 -372.496339 0.109994    
S9 球面 6.000544 3.134590 1.593 68.53
S10 球面 -2.227934 0.469998 1.699 30.05
S11 球面 8.426485 0.329835    
S12 非球面 5.599644 2.453843 1.497 81.52
S13 非球面 -5.446331 0.953293    
S14 球面 无穷 0.500000 1.517 64.21
S15 球面 无穷 1.996704    
S16 像面 无穷 ——    
本实施例的各透镜非球面的参数如表2-2所示。
表2-2
表面 K B C D E F
序号            
S3 -0.853524 -4.993593E-04 -1.412864E-04 -9.178590E-05 5.482403E-06 0.000000E+00
S4 0.028336 -1.256454E-03 -1.162999E-03 1.817100E-04 -1.065357E-04 0.000000E+00
S5 3.496074 -1.118700E-03 8.821133E-04 1.795741E-05 -3.754655E-05 0.000000E+00
S6 -0.164763 9.646277E-03 -1.976884E-04 -2.559079E-04 1.785966E-05 0.000000E+00
S7 50.314084 3.509330E-02 -1.927767E-03 -2.029666E-04 4.933906E-05 0.000000E+00
S8 -50.033982 1.531443E-02 7.627209E-04 1.192544E-04 9.848392E-06 0.000000E+00
S12 0.212658 -3.742389E-03 1.515900E-04 -2.195520E-05 1.655965E-06 -4.525359E-08
S13 -1.749442 1.136431E-03 -6.784529E-05 -7.682253E-07 -7.881075E-07 4.005873E-08
在本实施例中,其场曲、f-θ畸变、轴向色差和垂轴色差分别如图7、图8、图9和图10所示。由图7至图10可以看出,本实施例中场曲、f-θ畸变、色差都能被很好的校正。
第三实施例
请参阅图11,所示为本实施例提供的一种广角成像镜头300的结构图。本实施例当中的广角成像镜头300与第一实施例当中的广角成像镜头100大抵相同,不同之处在于,本实施例当中的广角成像镜头300的第二透镜L2的物侧面S3为凸面,第三透镜L3的物侧面S5为凹面、像侧面S6为凸面,以及各透镜的曲率半径、材料选择不同,具体各个透镜的相关参数参见表3-1所示。
表3-1
表面序号 表面类型 曲率半径 厚度 折射率 阿贝数
  物面 无穷 无穷    
S1 球面 10.135009 0.688440 1.743 49.24
S2 球面 2.864791 1.102462    
S3 非球面 6.002024 0.441605 1.693 53.20
S4 非球面 2.970411 1.776685    
S5 非球面 -7.765989 1.978635 1.851 40.10
S6 非球面 -4.736482 0.565928    
ST 光阑 无穷 0.890177    
S7 球面 189.426650 1.119139 1.623 56.95
S8 球面 -3.925036 0.639048    
S9 球面 19.314930 2.013138 1.618 63.41
S10 球面 -3.030842 0.379179 1.740 28.29
S11 球面 6.760104 0.290275    
S12 非球面 5.342065 2.470597 1.497 81.56
S13 非球面 -6.772606 0.953293    
S14 球面 无穷 0.500000 1.517 64.21
S15 球面 无穷 2.198215    
S16 像面 无穷 ——    
本实施例的非球面透镜的非球面参数如表3-2所示。
表3-1
Figure PCTCN2020095123-appb-000004
在本实施例中,其场曲、f-θ畸变、轴向色差和垂轴色差分别如图12、图13、图14和图15所示。由图12至图15可以看出,本实施例中场曲、f-θ畸变、色差都能被很好的校正。
表4是上述3个实施例及其对应的光学特性,包括系统焦距f、光圈数F#、半视场角θ和光学总长TTL,以及与前面每个条件式对应的数值。
表4
Figure PCTCN2020095123-appb-000005
Figure PCTCN2020095123-appb-000006
综合上述实施例,均达到了以下的光学指标:(1)视场角:2θ>155°;(2)光学总长:TTL<19.5mm。根据该光学指标可知,该镜头具有大广角性能,且其总长度较小。
本发明提供的广角成像镜头中,第一透镜L1、第二透镜L2用于光线收集,减小入射光线的入射角,有利于减小镜头体积和便于成像系统后续对像差的矫正;第二透镜L2为玻璃非球面透镜,用于矫正畸变,并且和第三透镜L3配合用于消除场曲;第四透镜L4用于像差的矫正;第五透镜L5和第六透镜L6组成的粘合体正负透镜阿贝数Vd差值大于30,可以有效矫正色差;第七透镜L7起到消除像差和控制主光线的出射角度的作用。各个透镜均为玻璃镜片可以使得本发明的广角成像镜头具有较好的热稳定性能以及机械强度,有利于在极端环境下工作。
以上所述实施例仅表达了本发明的几种实施方式,其描述较为具体和详细,但并不能因此而理解为对本发明专利范围的限制。应当指出的是,对于本领域的普通技术人员来说,在不脱离本发明构思的前提下,还可以做出若干变形和改进,这些都属于本发明的保护范围。因此,本发明专利的保护范围应以所附权利要求为准。

Claims (11)

  1. 一种广角成像镜头,其特征在于,从物侧到成像面依次包括:
    具有负光焦度的第一透镜,所述第一透镜的物侧面为凸面,像侧面为凹面;
    具有负光焦度的第二透镜,所述第二透镜的像侧面为凹面;
    具有正光焦度的第三透镜;
    光阑;
    具有正光焦度的第四透镜,所述第四透镜的物侧面为凸面;
    具有正光焦度的第五透镜,所述第五透镜的物侧面和像侧面均为凸面;
    具有负光焦度的第六透镜,所述第六透镜的物侧面和像侧面均为凹面,且所述第五透镜和所述第六透镜组成粘合体;
    具有正光焦度的第七透镜,所述第七透镜的物侧面和像侧面均为凸面;
    及滤光片,设于所述第七透镜与成像面之间;
    其中,所述第一透镜、所述第二透镜、所述第三透镜、所述第四透镜、所述第五透镜、所述第六透镜和所述第七透镜均为玻璃透镜。
  2. 根据权利要求1所述的广角成像镜头,其特征在于,所述广角成像镜头满足条件式:
    0<IH 2/θ<0.5;
    其中,θ表示所述广角成像镜头的半视场角,IH表示在半视场角θ时所述广角成像镜头的像高。
  3. 根据权利要求1所述的广角成像镜头,其特征在于,所述广角成像镜头满足条件式:
    |1/(f L2+f L3)|>0.5;
    其中,f L2表示所述第二透镜的焦距,f L3表示所述第三透镜的焦距。
  4. 根据权利要求1所述的广角成像镜头,其特征在于,所述广角成像镜头满足条件式:
    -5×10 6<f L5/(dn/dT) 5+f L7/(dn/dT) 7<0;
    其中,f L5表示所述第五透镜的焦距,f L7表示所述第七透镜的焦距,(dn/dT) 5表示所述第五透镜的折射率温度系数,(dn/dT) 7表示所述第七透镜的折射率温度系数。
  5. 根据权利要求1所述的广角成像镜头,其特征在于,所述广角成像镜头满足条件式:
    -0.5<r 11/f 11+r 12/f 12<0;
    其中,f 11表示所述第六透镜像侧面的焦距,f 12表示所述第七透镜物侧面的焦距,r 11表示所述第六透镜像侧面的曲率半径,r 12表示所述第七透镜物侧面的曲率半径。
  6. 根据权利要求1所述的广角成像镜头,其特征在于,所述广角成像镜头满足条件式:
    D/EFL>2.9;
    其中,D表示所述广角成像镜头的最大像圆,EFL表示所述广角成像镜头的有效焦距。
  7. 根据权利要求1所述的广角成像镜头,其特征在于,所述广角成像镜头满足条件式:
    3<Ф/r 1<10;
    其中,Ф表示所述第一透镜的物侧面最大像高处的主光线入射角度,r 1表示所述第一透镜的物侧面的曲率半经。
  8. 根据权利要求1所述的广角成像镜头,其特征在于,所述第二透镜、所述第三透镜和所述第七透镜均为非球面透镜。
  9. 根据权利要求1所述的广角成像镜头,其特征在于,所述第二透镜的物侧面为凹面,所述第三透镜的物侧面为凸面,所述第三透镜的像侧面为凹面,所述第四透镜的像侧面为凸面。
  10. 根据权利要求1所述的广角成像镜头,其特征在于,所述第二透镜的物侧面为凸面,所述第三透镜的物侧面为凸面,所述第三透镜的像侧面为凸面,所述第四透镜的像侧面为凹面。
  11. 根据权利要求1所述的广角成像镜头,其特征在于,所述第二透镜的物侧面为凸面,所述第三透镜的物侧面为凹面,所述第三透镜的像侧面为凸面,所述第四透镜的像侧面为凸面。
PCT/CN2020/095123 2019-09-12 2020-06-09 广角成像镜头 WO2021047222A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201910864753.XA CN110632744B (zh) 2019-09-12 2019-09-12 广角成像镜头
CN201910864753.X 2019-09-12

Publications (1)

Publication Number Publication Date
WO2021047222A1 true WO2021047222A1 (zh) 2021-03-18

Family

ID=68971006

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2020/095123 WO2021047222A1 (zh) 2019-09-12 2020-06-09 广角成像镜头

Country Status (2)

Country Link
CN (1) CN110632744B (zh)
WO (1) WO2021047222A1 (zh)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN114002826A (zh) * 2022-01-04 2022-02-01 极限人工智能有限公司 一种光学镜头、内窥镜成像系统及内窥镜
CN114509863A (zh) * 2022-04-20 2022-05-17 江西联创电子有限公司 广角镜头及成像设备

Families Citing this family (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110632744B (zh) * 2019-09-12 2021-09-28 江西联创电子有限公司 广角成像镜头
CN114384665A (zh) * 2020-10-19 2022-04-22 宁波舜宇车载光学技术有限公司 光学镜头及电子设备
WO2022126533A1 (zh) * 2020-12-17 2022-06-23 欧菲光集团股份有限公司 光学镜头、摄像头模组、电子装置和车辆
CN113031212B (zh) * 2020-12-29 2024-01-12 福建福光天瞳光学有限公司 一种4k像素行车记录仪光学系统及其成像方法
CN112630938B (zh) * 2020-12-29 2022-03-04 江西联创电子有限公司 日夜两用成像镜头
CN113376802B (zh) * 2021-06-16 2022-10-14 嘉兴中润光学科技股份有限公司 一种dv镜头和图像拾取装置
CN113625422A (zh) * 2021-06-29 2021-11-09 南京信息工程大学 一种超大像面广角镜头
CN113777751B (zh) * 2021-09-10 2023-12-15 江西欧菲光学有限公司 光学镜头、摄像模组及电子设备
CN114114634B (zh) * 2021-12-10 2023-07-04 江西晶超光学有限公司 光学系统、摄像模组和汽车
CN114002825B (zh) * 2021-12-24 2022-05-31 江西联创电子有限公司 鱼眼镜头

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2014102291A (ja) * 2012-11-16 2014-06-05 Ricoh Co Ltd 広角レンズ、撮像レンズユニット、撮像装置および情報装置
CN108469667A (zh) * 2018-05-31 2018-08-31 江西联创电子有限公司 广角镜头
CN209028284U (zh) * 2018-09-10 2019-06-25 湖北华鑫光电有限公司 一种百万超广角镜头
CN109960020A (zh) * 2017-12-22 2019-07-02 宁波舜宇车载光学技术有限公司 光学镜头
CN209356747U (zh) * 2019-03-07 2019-09-06 南阳市海科光电有限责任公司 一种大靶面广角镜头光学系统
CN110632744A (zh) * 2019-09-12 2019-12-31 江西联创电子有限公司 广角成像镜头

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102360114B (zh) * 2011-10-12 2013-11-20 舜宇光学(中山)有限公司 监控镜头
CN107219613B (zh) * 2017-07-31 2022-10-28 浙江舜宇光学有限公司 光学成像镜头

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2014102291A (ja) * 2012-11-16 2014-06-05 Ricoh Co Ltd 広角レンズ、撮像レンズユニット、撮像装置および情報装置
CN109960020A (zh) * 2017-12-22 2019-07-02 宁波舜宇车载光学技术有限公司 光学镜头
CN108469667A (zh) * 2018-05-31 2018-08-31 江西联创电子有限公司 广角镜头
CN209028284U (zh) * 2018-09-10 2019-06-25 湖北华鑫光电有限公司 一种百万超广角镜头
CN209356747U (zh) * 2019-03-07 2019-09-06 南阳市海科光电有限责任公司 一种大靶面广角镜头光学系统
CN110632744A (zh) * 2019-09-12 2019-12-31 江西联创电子有限公司 广角成像镜头

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN114002826A (zh) * 2022-01-04 2022-02-01 极限人工智能有限公司 一种光学镜头、内窥镜成像系统及内窥镜
CN114509863A (zh) * 2022-04-20 2022-05-17 江西联创电子有限公司 广角镜头及成像设备
CN114509863B (zh) * 2022-04-20 2022-09-09 江西联创电子有限公司 广角镜头及成像设备

Also Published As

Publication number Publication date
CN110632744A (zh) 2019-12-31
CN110632744B (zh) 2021-09-28

Similar Documents

Publication Publication Date Title
WO2021047222A1 (zh) 广角成像镜头
US11846757B2 (en) Optical imaging lens assembly
WO2020082814A1 (zh) 成像镜头
WO2019228064A1 (zh) 成像镜头
WO2021031585A1 (zh) 光学成像镜头及成像设备
WO2021238648A1 (zh) 光学成像镜头及成像设备
WO2021031580A1 (zh) 高像素广角镜头及成像设备
WO2022205690A1 (zh) 光学成像镜头
KR101412627B1 (ko) 왜곡이 보정된 광각 촬영 렌즈 시스템
US11709349B2 (en) Optical imaging lens assembly
CN114415354B (zh) 光学镜头
KR20150033321A (ko) 왜곡이 보정된 광각 촬영 렌즈 시스템
WO2021042954A1 (zh) 摄像镜头组
WO2020140788A1 (zh) 长焦镜头及移动终端
WO2020088024A1 (zh) 光学成像镜头
CN115185071B (zh) 光学镜头
CN115327756B (zh) 变焦镜头
WO2020238577A1 (zh) 组合式变焦双摄镜头
CN112630939A (zh) 广角镜头及成像设备
CN112505902B (zh) 广角镜头及成像设备
CN112051660A (zh) 一种潜望式镜头
CN114326060B (zh) 光学镜头
CN112630943B (zh) 光学成像镜头及成像设备
CN212276082U (zh) 一种潜望式镜头
CN111897104A (zh) 光学成像镜头

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 20862042

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 20862042

Country of ref document: EP

Kind code of ref document: A1

122 Ep: pct application non-entry in european phase

Ref document number: 20862042

Country of ref document: EP

Kind code of ref document: A1