WO2021238648A1 - 光学成像镜头及成像设备 - Google Patents

光学成像镜头及成像设备 Download PDF

Info

Publication number
WO2021238648A1
WO2021238648A1 PCT/CN2021/093200 CN2021093200W WO2021238648A1 WO 2021238648 A1 WO2021238648 A1 WO 2021238648A1 CN 2021093200 W CN2021093200 W CN 2021093200W WO 2021238648 A1 WO2021238648 A1 WO 2021238648A1
Authority
WO
WIPO (PCT)
Prior art keywords
lens
optical imaging
object side
imaging lens
curvature
Prior art date
Application number
PCT/CN2021/093200
Other languages
English (en)
French (fr)
Inventor
魏文哲
曾吉勇
Original Assignee
江西联创电子有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 江西联创电子有限公司 filed Critical 江西联创电子有限公司
Publication of WO2021238648A1 publication Critical patent/WO2021238648A1/zh

Links

Images

Classifications

    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B13/00Optical objectives specially designed for the purposes specified below
    • G02B13/001Miniaturised objectives for electronic devices, e.g. portable telephones, webcams, PDAs, small digital cameras
    • G02B13/0015Miniaturised objectives for electronic devices, e.g. portable telephones, webcams, PDAs, small digital cameras characterised by the lens design
    • G02B13/002Miniaturised objectives for electronic devices, e.g. portable telephones, webcams, PDAs, small digital cameras characterised by the lens design having at least one aspherical surface
    • G02B13/0045Miniaturised objectives for electronic devices, e.g. portable telephones, webcams, PDAs, small digital cameras characterised by the lens design having at least one aspherical surface having five or more lenses
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B13/00Optical objectives specially designed for the purposes specified below
    • G02B13/18Optical objectives specially designed for the purposes specified below with lenses having one or more non-spherical faces, e.g. for reducing geometrical aberration

Definitions

  • the invention relates to the field of lens imaging, in particular to an optical imaging lens and imaging equipment.
  • the individual pixel size of the chip is getting smaller and smaller, and the overall size of the chip (ie the area of the photosensitive device) is getting larger and larger, which means that the number of pixels that the chip can contain is increasing, so optical imaging is required
  • the performance of the lens is getting higher and higher.
  • a smaller pixel size means a higher MTF requirement and a smaller chromatic aberration
  • a larger chip size means a larger image height and when correcting aberrations.
  • the difficulty increases.
  • the resolution requirements of the lens are getting higher and higher, and the edge aberration of the lens is difficult to correct.
  • the action camera is sensitive to the chip and converts the light signal into an electrical signal, and the short-wave sensitivity range of the chip is larger than that of the human eye, a better correction is needed for the secondary chromatic aberration.
  • the object of the present invention is to provide an optical imaging lens and imaging device that can effectively correct secondary chromatic aberration, and at the same time can correct aberrations in the edge field of view, and provide higher-quality imaging effects.
  • the present invention provides an optical imaging lens that includes, from the object side to the imaging surface, a first lens with negative refractive power and a convex surface on the object side surface and a concave surface on the image side surface.
  • the first lens, the third lens, the fourth lens, the fifth lens, the sixth lens, and the seventh lens are all glass spherical lenses, and the second lens and the eighth lens are all glass aspheric lenses.
  • the present invention also provides an imaging device, including the optical imaging lens and imaging element provided in the first aspect, and the imaging element is used to convert an optical image formed by the optical imaging lens into an electrical signal.
  • the first lens and the second lens of the present invention are used for light collection, which is beneficial to reduce the volume of the lens and facilitate the subsequent correction of aberrations of the imaging system;
  • the second lens is a glass aspheric lens, which is mainly used for Correct distortion;
  • the second lens and the third lens, the fourth lens and the fifth lens, the sixth lens and the seventh lens all adopt the structure of alternating positive and negative lenses, which can achieve the effect of mutual cooperation and effectively eliminate curvature of field;
  • the adjustment of the optical power and surface shape of the fourth lens and the fifth lens can effectively control the exit angle of the light, ensure that the follow-up lens corrects aberrations, and prevent the follow-up lens tolerance sensitivity from being too high due to the excessive light incident angle;
  • the combination of the four lens, fifth lens, sixth lens and seventh lens through the selection of specific materials is beneficial to correct the secondary spectrum, so that the imaging system has a good imaging effect in a wide range of visible light, and avoids purple fringing Phenomenon.
  • Each lens is a
  • FIG. 1 is a schematic diagram of the structure of an optical imaging lens in the first embodiment of the present invention
  • FIG. 2 is a field curvature diagram of the optical imaging lens in the first embodiment of the present invention.
  • FIG. 3 is an optical distortion diagram of the optical imaging lens in the first embodiment of the present invention.
  • FIG. 5 is a schematic diagram of the structure of the optical imaging lens in the second embodiment of the present invention.
  • Fig. 6 is a field curvature diagram of an optical imaging lens in a second embodiment of the present invention.
  • FIG. 7 is an optical distortion diagram of the optical imaging lens in the second embodiment of the present invention.
  • FIG. 8 is a diagram of axial chromatic aberration of the optical imaging lens in the second embodiment of the present invention.
  • FIG. 9 is a schematic diagram of the structure of an optical imaging lens in the third embodiment of the present invention.
  • FIG. 10 is a field curvature diagram of the optical imaging lens in the third embodiment of the present invention.
  • FIG 11 is an optical distortion diagram of the optical imaging lens in the third embodiment of the present invention.
  • FIG. 12 is a diagram of axial chromatic aberration of the optical imaging lens in the third embodiment of the present invention.
  • FIG. 13 is a schematic diagram of the structure of an optical imaging lens in the fourth embodiment of the present invention.
  • 15 is an optical distortion diagram of the optical imaging lens in the fourth embodiment of the present invention.
  • 16 is a diagram of axial chromatic aberration of the optical imaging lens in the fourth embodiment of the present invention.
  • FIG. 17 is a schematic structural diagram of an imaging device provided by a fifth embodiment of the present invention.
  • the present invention provides an optical imaging lens, which sequentially includes from the object side to the imaging surface: a first lens with negative refractive power and convex object side surface and concave image side surface, negative refractive power and convex object side surface, A second lens with a concave image side surface, a third lens with a positive refractive power and a convex object side surface, a diaphragm, a fourth lens with a negative refractive power and a concave object side surface, a positive refractive power and a third lens with the object side surface and the image
  • a fifth lens with convex sides, a sixth lens with positive refractive power and both the object and image sides are convex, a seventh lens with negative refractive power and a concave object side, with positive refractive power and a convex object side
  • the concave surface and the image side surface of the eighth lens are convex surfaces, and the filter arranged between the eighth lens and the imaging surface, wherein the sixth lens and the
  • a general eight-element optical lens will place the diaphragm between the fourth lens and the fifth lens, while the optical imaging lens provided by the present invention places the diaphragm before the third lens and the fourth lens, which is beneficial on the one hand Reduce the aperture of the front lens, especially the diameter of the first lens, which can effectively reduce the overall volume of the lens; on the other hand, advance the position of the diaphragm, which can increase the diversity and complexity of the structure of the rear lens (more The number and structure of the lens), which is conducive to the optimization of various aberrations and MTF.
  • the first lens and the second lens are used for light collection, which is beneficial to reduce the volume of the lens and facilitate the subsequent correction of aberrations of the imaging system;
  • the second lens is a glass aspheric lens, which is mainly used to correct distortion;
  • the second lens and the third lens, the fourth lens and the fifth lens, the sixth lens and the seventh lens all adopt the structure of alternating positive and negative lenses, which can cooperate with each other to effectively eliminate curvature of field;
  • the adjustment of the optical power and surface shape of the five lenses can effectively control the exit angle of the light, ensure that the subsequent lens corrects aberrations, and prevent the subsequent lens from being too sensitive due to the excessive light incident angle;
  • the fourth lens, the first lens The combination of the five lens, the sixth lens and the seventh lens through the selection of specific materials is beneficial to correct the secondary spectrum, so that the imaging system has a good imaging effect in a wider visible light range, and avoids the phenomenon of purple fringing; each lens All glass lenses can make the lens have better thermal stability and mechanical strength, which is conducive
  • the optical imaging lens satisfies the following conditional formula:
  • P g, f 4, P g, f 5, P g, f 6, P g, f 7 respectively represent the relative partial dispersion of the fourth lens, the fifth lens, the sixth lens, and the seventh lens.
  • the secondary chromatic aberration of the optical system can be well corrected, so that the lens can be compared It has good imaging effects in a wide visible light range and avoids purple fringing.
  • the optical imaging lens satisfies the following conditional formula:
  • f represents the focal length of the optical imaging lens
  • represents the half angle of view of the optical imaging lens
  • IH rea represents the true image height of the optical imaging lens at the half angle of view ⁇
  • IH ref represents the optical imaging lens at the half angle of view The theoretical image height under ⁇ .
  • the optical system can have smaller optical distortion and larger (greater than 15%) positive f- ⁇ distortion, which indicates that the lens has a larger image height in the edge field of view , That is, the edge field of view can contain more pixels, so after the captured picture is stretched, the edge of the image is clearer, that is, the edge field of view has a better imaging effect.
  • the optical imaging lens satisfies the following conditional formula:
  • f 2 represents the focal length of the second lens
  • D 45 represents the separation distance between the image side surface of the second lens and the object side surface of the third lens on the optical axis.
  • the optical imaging lens satisfies the following conditional formula:
  • ⁇ 7 represents the incident angle of the edge ray on the object side of the fourth lens
  • ⁇ 14 represents the incident angle of the edge ray on the object side of the eighth lens
  • r 7 represents the radius of curvature of the object side of the fourth lens
  • r 14 represents the eighth lens.
  • the lens close to the diaphragm is more sensitive, satisfying the above conditional formula (6) can reduce the light incident angle of the light on the fourth lens and the eighth lens, and effectively reduce the tolerance sensitivity of the fourth lens and the eighth lens Spend.
  • the optical imaging lens satisfies the following conditional formula:
  • r 4 represents the radius of curvature of the image side surface of the second lens
  • r 8 represents the radius of curvature of the image side surface of the fourth lens.
  • the second lens and the fourth lens are meniscus lenses with opposite structures, they reflect each other and are easier to produce ghost images. If the above conditional formula (7) is satisfied, the image side of the second lens and the fourth lens can be adjusted.
  • the curvature radius of the image side surface of the lens effectively reduces the ghost energy formed by light reflection between the image side surface of the second lens and the image side surface of the fourth lens, reduces the adverse effects of ghost images on the image during shooting, and significantly improves the optical system Image quality.
  • the optical imaging lens satisfies the following conditional formula:
  • r 11 represents the radius of curvature of the object side surface of the sixth lens
  • r 12 represents the radius of curvature of the image side surface of the sixth lens
  • the optical imaging lens satisfies the following conditional formula:
  • r 15 represents the radius of curvature of the image side surface of the eighth lens
  • f 8 represents the focal length of the eighth lens
  • Satisfying the above conditional formula (9) can effectively control the chief ray incident angle of the imaging surface, and avoid the reduction of the relative illuminance of the imaging system due to the excessively large chief ray incident angle.
  • the optical imaging lens satisfies the following conditional formula:
  • f 2 , f 3 , f 4 , f 5 , f 6 , and f 7 respectively indicate the focal lengths of the second lens, the third lens, the fourth lens, the fifth lens, the sixth lens, and the seventh lens.
  • the second lens and the third lens, the fourth lens and the fifth lens, the sixth lens and the seventh lens especially adopt the structure of alternating positive and negative lenses, and the focal length of each lens meets the above conditional expressions (10) and (11),
  • the refractive powers of the positive and negative lenses can be matched with each other, thereby effectively correcting the curvature of field.
  • the optical imaging lens satisfies the following conditional formula:
  • f 1 represents the focal length of the first lens
  • f 2 represents the focal length of the second lens
  • r 2 represents the radius of curvature of the image side surface of the first lens
  • r 4 represents the radius of curvature of the image side surface of the second lens.
  • Satisfying the above conditional formula (12) can improve the ability of the first lens and the second lens to condense light, effectively reduce the incident angle of the light, facilitate the system's subsequent lenses to effectively correct aberrations, and help reduce the rear end of the lens Volume, reduce the size of the equipment mounted.
  • the absolute value of the Abbe number difference between the sixth lens and the seventh lens is greater than 30.
  • a cemented body composed of the sixth lens and the seventh lens, and the absolute value of the Abbe number difference between the sixth lens and the seventh lens is greater than 30, which can effectively correct aberrations.
  • z represents the distance of the surface from the surface vertex in the direction of the optical axis
  • c represents the curvature of the surface vertex
  • K represents the quadric surface coefficient
  • h represents the distance from the optical axis to the surface
  • B, C, D, E and F respectively represent in turn Fourth, sixth, eighth, tenth and twelfth-order surface coefficients.
  • the thickness, radius of curvature, and material selection of each lens in the optical imaging lens are different.
  • the parameter table of each embodiment please refer to the parameter table of each embodiment.
  • FIG. 1 is a structural diagram of an optical imaging lens 100 provided by a first embodiment of the present invention. From the object side to the imaging surface, it includes: a first lens L1, a second lens L2, a third lens L3, a stop ST, The fourth lens L4, the fifth lens L5, the sixth lens L6, the seventh lens L7, the eighth lens L8, and the filter G1.
  • the first lens L1 has a negative refractive power
  • the object side surface S1 is a convex surface
  • the image side surface S2 is a concave surface
  • the first lens L1 is a glass spherical lens.
  • the second lens L2 has negative refractive power, the object side surface S3 is a convex surface, the image side surface S4 is a concave surface, and the second lens L2 is a glass aspheric lens.
  • the third lens L3 has positive refractive power and both the object side surface S5 and the image side surface S6 are convex surfaces, and the third lens L3 is a glass spherical lens.
  • the fourth lens L4 has negative refractive power and both the object side surface S7 and the image side surface S8 are concave surfaces, and the fourth lens L4 is a glass spherical lens.
  • the fifth lens L5 has positive refractive power and both the object side surface S9 and the image side surface S10 are convex surfaces, and the fifth lens L5 is a glass spherical lens.
  • the sixth lens L6 has positive refractive power and both the object side surface S11 and the image side surface S12-1 are convex surfaces.
  • the seventh lens L7 has negative refractive power and the object side S12-2 and the image side S13 are both concave, and the sixth lens L6 and the seventh lens L7 form a cemented body and are both glass spherical lenses, and the image of the sixth lens
  • the side surface S12-1 and the object side surface S12-2 of the seventh lens form a bonding surface S12.
  • the eighth lens L8 has a positive refractive power, the object side surface S14 is a concave surface, the image side surface S15 is a convex surface, and the eighth lens L8 is a glass aspherical lens.
  • the field curvature, optical distortion and axial chromatic aberration curves of the optical imaging lens 100 are shown in FIG. 2, FIG. 3, and FIG. 4, respectively.
  • the meridian and sagittal field curvatures of the optical imaging lens 100 provided in this embodiment are within the range of ⁇ 0.04 mm within the 0.95 field of view, and the meridian and sagittal field curvatures within the full field of view are all within the range of ⁇ 0.04 mm.
  • the difference between the meridian and sagittal field curvatures of the same wavelength is less than 0.05 mm, it indicates that the field curvature of this embodiment is well corrected.
  • 0.430um-Tan represents the T (meridian) line with a wavelength of 430 nanometers
  • 0.430um-Sag represents the S (sagittal) line with a wavelength of 430 nanometers
  • Figure 6, Figure 10, Figure 14 and Figure 2 are similar ).
  • FIG. 5 shows a structural diagram of the optical imaging lens 200 provided by this embodiment.
  • the optical imaging lens 200 in this embodiment is substantially the same as the optical imaging lens 100 in the first embodiment.
  • the difference is that the image side surface S8 of the fourth lens of the optical imaging lens 200 in this embodiment is convex, and the seventh The image side surface S13 of the lens is convex, and the radius of curvature and material selection of each lens are different.
  • Table 3 for specific related parameters of each lens.
  • the field curvature, optical distortion and axial chromatic aberration curves of the optical imaging lens 200 are shown in FIG. 6, FIG. 7, and FIG. 8, respectively.
  • the meridian and sagittal field curvatures of the optical imaging lens 200 provided in this embodiment within the 0.95 field of view are all within ⁇ 0.05 mm
  • the meridian and sagittal field curvatures within the full field of view are both within the range of ⁇ 0.05 mm.
  • Within the range of ⁇ 0.1mm, and the meridian and sagittal field curvature difference of the same wavelength is less than 0.05mm, which proves that the field curvature of this embodiment is well corrected. It can be seen from FIG.
  • the optical distortion of the optical imaging lens 200 provided in this embodiment is less than -5% in the full field of view, indicating that the optical distortion correction of this embodiment is relatively good.
  • the axial chromatic aberration of each wavelength of the optical imaging lens 200 provided in this embodiment is within ⁇ 0.02 mm within the full field of view, and the difference between each wavelength in the same field of view is less than 0.015 mm. It proves that the chromatic aberration and secondary chromatic aberration of this embodiment are well corrected.
  • FIG. 9 shows a structural diagram of the optical imaging lens 300 provided by this embodiment.
  • the optical imaging lens 300 in this embodiment is substantially the same as the optical imaging lens 100 in the first embodiment, except that the image side surface S6 of the third lens of the optical imaging lens 300 in this embodiment is concave, and the fourth The image side surface S8 of the lens is a convex surface, and the image side surface S13 of the seventh lens is a convex surface, and the radius of curvature and material selection of each lens are different.
  • Table 5 For specific related parameters of each lens, see Table 5.
  • the field curvature, optical distortion, and axial chromatic aberration curves of the optical imaging lens 300 are shown in FIG. 10, FIG. 11, and FIG. 12, respectively.
  • the meridian and sagittal field curvatures of the optical imaging lens 300 provided by this embodiment within the full field of view are both within ⁇ 0.05 mm, and the difference between the meridian and sagittal field curvatures of the same wavelength is less than 0.07mm, which proves that the curvature of field of this embodiment is well corrected.
  • the optical distortion of the optical imaging lens 300 provided in this embodiment is less than -5% in the full field of view, indicating that the optical distortion correction of this embodiment is relatively good.
  • FIG. 13 shows a structural diagram of an optical imaging lens 400 provided by this embodiment.
  • the optical imaging lens 400 in this embodiment is substantially the same as the optical imaging lens 100 in the first embodiment.
  • the difference is that the image side surface S8 of the fourth lens of the optical imaging lens 400 in this embodiment is convex, and each The curvature radius of the lens and the choice of material are different, and the specific parameters of each lens are shown in Table 7.
  • the field curvature, optical distortion and axial chromatic aberration curves of the optical imaging lens 400 are shown in FIG. 14, FIG. 15, and FIG. 16, respectively.
  • the meridian and sagittal field curvatures of the optical imaging lens 400 provided in this embodiment within the 0.95 field of view are all within ⁇ 0.05 mm
  • the meridian and sagittal field curvatures within the full field of view are all within the range of ⁇ 0.05 mm.
  • the optical distortion of the optical imaging lens 400 provided in this embodiment is less than -5.5% in the full field of view, which indicates that the optical distortion correction of this embodiment is relatively good.
  • the axial chromatic aberration of each wavelength of the optical imaging lens 400 provided in this embodiment is within ⁇ 0.03mm within the full field of view, and the difference between each wavelength in the same field of view is less than 0.02mm. It proves that the chromatic aberration and secondary chromatic aberration of this embodiment are well corrected.
  • Table 9 shows the corresponding optical characteristics of the above four embodiments, including the number of apertures F#, the angle of view 2 ⁇ , and the total optical length TTL, as well as the numerical values corresponding to each of the foregoing conditional expressions.
  • the first lens L1 and the second lens L2 are used for light collection, which is beneficial to reduce the volume of the lens and facilitate the subsequent correction of aberrations of the imaging system;
  • the second lens L2 is a glass aspheric lens, Mainly used to correct distortion;
  • the second lens L2 and the third lens L3, the fourth lens L4 and the fifth lens L5, the sixth lens L6 and the seventh lens L7 all adopt a positive and negative lens alternate structure, which can achieve mutual cooperation and effectively eliminate the field The effect of curvature; by reasonably distributing the power and shape of the fourth lens L4 and the fifth lens L5, the exit angle of the light can be effectively controlled to ensure that the subsequent lens corrects aberrations while preventing the incidence of light from being too large.
  • the fourth lens L4, the fifth lens L5, the sixth lens L6 and the seventh lens L7 select a combination of specific materials, which is beneficial to correct the secondary spectrum, so that the imaging system can be in a wider visible light range It has a good imaging effect and avoids purple fringing.
  • Each lens is a glass lens, which can make the lens have better thermal stability and mechanical strength, which is conducive to working in extreme environments.
  • FIG. 17 shows a schematic structural diagram of an imaging device 500 provided in this embodiment, which includes the optical imaging lens (for example, the optical imaging lens 100) and the imaging element 510 in any of the above embodiments.
  • the imaging element 510 may be a CMOS (Complementary Metal Oxide Semiconductor) image sensor, or a CCD (Charge Coupled Device, charge coupled device) image sensor.
  • the imaging device 500 may be a camera, a mobile terminal, a wearable device, or any other electronic device loaded with an optical imaging lens.
  • the mobile terminal may be a terminal device such as a smart phone, a smart tablet, or a smart reader.
  • the imaging device 500 provided in this embodiment includes an optical imaging lens. Since the optical imaging lens has the advantages of being able to effectively correct secondary chromatic aberration, and at the same time can correct aberrations in the peripheral field of view, and provide higher-quality imaging effects, the imaging device 500 has the advantages of It can effectively correct the secondary chromatic aberration, and at the same time can correct the aberration of the edge field of view, providing higher quality imaging effects and other advantages.

Landscapes

  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Optics & Photonics (AREA)
  • Lenses (AREA)

Abstract

本发明提供一种光学成像镜头及成像设备,从物侧到成像面依次包括:具有负光焦度的第一透镜、具有负光焦度的第二透镜、具有正光焦度的第三透镜、光阑、具有负光焦度的第四透镜、具有正光焦度的第五透镜、具有正光焦度的第六透镜、具有负光焦度的第七透镜,且第六透镜和第七透镜组成粘合体;具有正光焦度的第八透镜;以及设于第八透镜与成像面之间的滤光片,其中,第一透镜、第三透镜、第四透镜、第五透镜、第六透镜、第七透镜均为玻璃球面透镜,第二透镜、第八透镜均为玻璃非球面透镜。本发明提供的光学成像镜头不仅可以有效校正二级色差,同时能够校正边缘视场的像差,成像质量更高,且热稳定性能以及机械强度较好,利于在极端环境下工作。

Description

光学成像镜头及成像设备
交叉引用
本申请要求2020年5月28日递交的发明名称为“光学成像镜头及成像设备”的申请号202010464720.9的在先申请优先权,上述在先申请的内容以引入的方式并入本文本中。
技术领域
本发明涉及透镜成像领域,特别涉及一种光学成像镜头及成像设备。
背景技术
随着芯片行业的发展,芯片的单个像素尺寸越来越小,而芯片整体尺寸(即感光器件面积)越来越大,意味着芯片所能包含的像素数越来越多,因此要求光学成像镜头的性能越来越高,例如更小的像素尺寸意味着更高的MTF要求,同时意味着更小的色差;而更大的芯片尺寸则意味着更大的像高以及在校正像差时难度增加,在这种情况下,对镜头的分辨率要求越来越高,且镜头的边缘像差很难校正。同时由于运动相机是由芯片感光并将光信号转化为电信号,而芯片在短波的感光范围比人眼更大,因此对于二级色差需要更好的校正。
发明内容
基于此,本发明的目的是提供一种可以有效校正二级色差的光学成像镜头及成像设备,同时能够校正边缘视场的像差,提供更高质量的成像效果。
为实现上述目的,本发明的技术方案如下:
第一方面,本发明提供一种光学成像镜头,从物侧到成像面依次包括具有负光焦度且物侧面为凸面、像侧面为凹面的第一透镜,具有负光焦度且物侧面为凸面、像侧面为凹面的第二透镜,具有正光焦度且物侧面为凸面的第三透镜,光阑,具有负光焦度且物侧面为凹面的第四透镜,具有正光焦度且物侧面和像侧面均为凸面的第五透镜,具有正光焦度且物侧面和像侧面均为凸面的第六透镜,具有负光焦度且物侧面为凹面的第七透镜,具有正光焦度且物侧面为凹面、像侧面为凸面的第八透镜,及设于第八透镜与成像面之间的滤光片,其中第六透镜、第七透镜组成粘合体。第一透镜、第三透镜、第四透镜、第五透镜、第六透镜、第七透镜均为玻璃球面透镜,第二透镜、第八透镜均为玻璃非球面透镜。
第二方面,本发明还提供一种成像设备,包括第一方面提供的光学成像镜头及成像元件,成像元件用于将光学成像镜头形成的光学图像转换为电信号。
相较现有技术,本发明中第一透镜、第二透镜用于光线收集,有利于减小镜头体积和便于成像系统后续对像差的校正;第二透镜为玻璃非球面透镜,主要用于校正畸变;第二透镜与第三透镜、第四透镜与第五透镜、第六透镜与第七透镜均采用正负透镜交替的结构,可以达到相互配合有效消除场曲的效果;通过合理分配第四透镜、第五透镜的光焦度及面型的调整可以有效控制光线的出射角度,保证后续镜片校正像差的同时,防止因光线入射角过大造成的后续镜片公差敏感度过高;第四透镜、第五透镜、第六透镜和第七透镜通过选用特定材料的组合,有利于校正二级光谱,使成像系统在较宽的可见光范围内都有良好的成像效果,并且避免产生紫边现象。各个透镜均为玻璃镜片可以使得镜头具有较好的热稳定性能以及机械强度,利于在极端环境下工作。
附图说明
图1为本发明第一实施例中光学成像镜头的结构示意图;
图2为本发明第一实施例中光学成像镜头的场曲图;
图3为本发明第一实施例中光学成像镜头的光学畸变图;
图4为本发明第一实施例中光学成像镜头的轴向色差图;
图5为本发明第二实施例中光学成像镜头的结构示意图;
图6为本发明第二实施例中光学成像镜头的场曲图;
图7为本发明第二实施例中光学成像镜头的光学畸变图;
图8为本发明第二实施例中光学成像镜头的轴向色差图;
图9为本发明第三实施例中光学成像镜头的结构示意图;
图10为本发明第三实施例中光学成像镜头的场曲图;
图11为本发明第三实施例中光学成像镜头的光学畸变图;
图12为本发明第三实施例中光学成像镜头的轴向色差图;
图13为本发明第四实施例中光学成像镜头的结构示意图;
图14为本发明第四实施例中光学成像镜头的场曲图;
图15为本发明第四实施例中光学成像镜头的光学畸变图;
图16为本发明第四实施例中光学成像镜头的轴向色差图;
图17为本发明第五实施例提供的成像设备的结构示意图;
主要元件符号说明:
Figure PCTCN2021093200-appb-000001
如下具体实施方式将结合上述附图进一步说明本发明。
具体实施方式
为了便于理解本发明,下面将参照相关附图对本发明进行更全面的描述。附图中给出了本发明的若干实施例。但是,本发明可以以许多不同的形式来实现,并不限于本文所描述的实施例。相反地,提供这些实施例的目的是使对本发明的公开内容更加透彻全面。
本发明提供了一种光学成像镜头,从物侧到成像面依次包括:具有负光焦度且物侧面为凸面、像侧面为凹面的第一透镜,具有负光焦度且物侧面为凸面、像侧面为凹面的第二透镜,具有正光焦度且物侧面为凸面的第三透镜,光阑,具有负光焦度且物侧面为凹面的第四透镜,具有正光焦度且物侧面和像侧面均为凸面的第五透镜,具有正光焦度且物侧面和像侧面均为凸面的第六透镜,具有负光焦度且物侧面为凹面的第七透镜,具有正光焦度且物侧面为凹面、像侧面为凸面的第八透镜,及设于第八透镜与成像面之间的滤光片,其中第六透镜、第七透 镜组成粘合体。第一透镜、第三透镜、第四透镜、第五透镜、第六透镜、第七透镜均为玻璃球面透镜,第二透镜、第八透镜均为玻璃非球面透镜。
一般的八片式光学镜头会把光阑放置于第四透镜和第五透镜中间,而本发明提供的光学成像镜头将光阑前置于第三透镜和第四透镜之间,一方面有利于减小前端镜片的口径,尤其是第一镜片的口径,从而可以有效减小镜头整体的体积;另一方面,光阑位置提前,可以增加后端镜片结构的多样性与复杂性(更多的镜片数量和结构形式),有利于对各种像差和MTF的优化。
本发明实施例中第一透镜、第二透镜用于光线收集,有利于减小镜头体积和便于成像系统后续对像差的校正;第二透镜为玻璃非球面透镜,主要用于校正畸变;第二透镜与第三透镜、第四透镜与第五透镜、第六透镜与第七透镜均采用正负透镜交替的结构,可以达到相互配合有效消除场曲的效果;通过合理分配第四透镜、第五透镜的光焦度及面型的调整可以有效控制光线的出射角度,保证后续镜片校正像差的同时,防止因光线入射角过大造成的后续镜片公差敏感度过高;第四透镜、第五透镜、第六透镜和第七透镜通过选用特定材料的组合,有利于校正二级光谱,使成像系统在较宽的可见光范围内都有良好的成像效果,并且避免产生紫边现象;各个透镜均为玻璃镜片可以使得镜头具有较好的热稳定性能以及机械强度,利于在极端环境下工作。
在一些实施方式中,光学成像镜头满足以下条件式:
1.5<P g,f4/P g,f5+P g,f6/P g,f7<2.5;        (1)
0<P g,f4/P g,f5-P g,f6/P g,f7<0.2;         (2)
其中,P g,f4、P g,f5、P g,f6、P g,f7分别依次表示第四透镜、第五透镜、第六透镜和第七透镜的相对部分色散。
满足上述条件式(1)和(2),通过第四透镜、第五透镜、第六透镜和第七透镜的材料的合理搭配,能够很好的校正光学系统的二级色差,使镜头在较宽的可见光范围内都有良好的成像效果,并且避免产生紫边现象。
在一些实施方式中,光学成像镜头满足以下条件式:
(IH rea-IH ref)/θ>0.01;         (3)
0.9<IH rea/(tanθ*f)<1;          (4)
其中,f表示光学成像镜头的焦距,θ表示光学成像镜头的半视场角,IH rea表示光学成像镜头在半视场角θ下的真实像高,IH ref表示光学成像镜头在半视场角θ下的理论像高。
满足上述条件式(3)和(4),可以使光学系统拥有较小的光学畸变和较大的(大于15%)正f-θ畸变,这表明镜头在边缘视场拥有更大的像高,也即边缘视场可以包含更多的像素数目,因此在拍摄的图片被拉伸后,图像边缘更清晰,也即边缘视场具有更好的成像效果。
在一些实施方式中,光学成像镜头满足以下条件式:
-5<f 2/D 45<-2;         (5)
其中,f 2表示第二透镜的焦距,D 45表示第二透镜的像侧面和第三透镜的物侧面在光轴上的间隔距离。
由于靠近光阑的镜片敏感度较高,因此满足上述条件式(5),可以有效控制第二透镜和第三透镜的镜片间距,减小光线与光轴的夹角,从而降低第三透镜的公差敏感度。
在一些实施方式中,光学成像镜头满足以下条件式:
-1.5<θ 7/r 714/r 14<0;           (6)
其中,θ 7表示第四透镜的物侧面的边缘光线入射角,θ 14表示第八透镜的物侧面的边缘光线入射角,r 7表示第四透镜的物侧面的曲率半径,r 14表示第八透镜的物侧面的曲率半径。
由于靠近光阑的镜片敏感度较高,因此满足上述条件式(6),可以减小光线在第四透镜和第八透镜上的光线入射角,有效降低第四透镜和第八透镜的公差敏感度。
在一些实施方式中,光学成像镜头满足以下条件式:
0<|r 4/r 8|<0.5;          (7)
其中,r 4表示第二透镜的像侧面的曲率半径,r 8表示第四透镜的像侧面的曲率半径。
由于第二透镜和第四透镜是结构相对的弯月形镜片,二者之间相互反射,比较容易产生鬼影,满足上述条件式(7),可以通过调整第二透镜的像侧面和第四透镜的像侧面的曲率半径,有效降低第二透镜的像侧面和第四透镜的像侧面之间光线反射形成的鬼影能量,减弱鬼影在拍摄时对画面的不良影响,显著提高光学系统的成像质量。
在一些实施方式中,光学成像镜头满足以下条件式:
0.2<1/r 11-1/r 12<0.5;          (8)
其中,r 11表示第六透镜的物侧面的曲率半径,r 12表示第六透镜的像侧面的曲率半径。
满足上述条件式(8),有效消除光线在第六透镜的物侧面反射的鬼影,避免鬼影在拍摄时对画面的不良影响,显著提高光学系统的成像质量,同时保证第六透镜的物侧面和像侧面的曲率半径在加工能力范围内,便于成型加工。
在一些实施方式中,光学成像镜头满足以下条件式:
-8<f 8/r 15<-1;          (9)
其中,r 15表示第八透镜的像侧面的曲率半径,f 8表示第八透镜的焦距。
满足上述条件式(9),可以有效控制成像面的主光线入射角,避免因主光线入射角过大造成成像系统的相对照度降低。
在一些实施方式中,光学成像镜头满足以下条件式:
-6<f 2/f 3+f 4/f 5+f 6/f 7<-1;        (10)
-0.5<f 2/f 3-f 4/f 5-f 6/f 7<0;        (11)
其中,f 2、f 3、f 4、f 5、f 6、f 7分别依次表示第二透镜、第三透镜、第四透镜、第五透镜、第六透镜和第七透镜的焦距。
第二透镜与第三透镜、第四透镜与第五透镜、第六透镜与第七透镜特别采用正负透镜交替的结构,并使各透镜的焦距满足上述条件式(10)和(11),可以使各正负透镜的光焦度相互配合,从而有效校正场曲。
在一些实施方式中,光学成像镜头满足以下条件式:
-7<f 1/r 2+f 2/r 4<-5;          (12)
其中,f 1表示第一透镜的焦距,f 2表示第二透镜的焦距,r 2表示第一透镜的像侧面的曲率半径,r 4表示第二透镜的像侧面的曲率半径。
满足上述条件式(12),可以提高第一透镜、第二透镜收束光线的能力,有效地减小光线的入射角度,便于系统后续镜片有效地校正像差,并且有利于减小镜头后端的体积,缩小所搭载设备的尺寸。
在一些实施方式中,第六透镜和第七透镜的阿贝数差值的绝对值大于30。第六透镜和第七透镜组成的粘合体,且第六透镜和第七透镜的阿贝数差值的绝对值大于30,可以有效校正像差。
本发明中光学成像镜头的非球面的表面形状均满足下列方程:
Figure PCTCN2021093200-appb-000002
其中,z表示曲面离开曲面顶点在光轴方向的距离,c表示曲面顶点的曲率,K表示二次曲面系数,h表示光轴到曲面的距离,B、C、D、E和F分别依次表示四阶、六阶、八阶、十阶和十二阶曲面系数。
在以下各个实施例中,光学成像镜头中的各个透镜的厚度、曲率半径、材料选择部分有所不同,具体不同可参见各实施例的参数表。
第一实施例
请参阅图1,为本发明第一实施例提供的光学成像镜头100的结构图,从物侧到成像面依次包括:第一透镜L1、第二透镜L2、第三透镜L3、光阑ST、第四透镜L4、第五透镜L5、 第六透镜L6、第七透镜L7、第八透镜L8以及滤光片G1。
第一透镜L1具有负光焦度且物侧面S1为凸面、像侧面S2为凹面,第一透镜L1是玻璃球面透镜。
第二透镜L2具有负光焦度且物侧面S3为凸面、像侧面S4为凹面,第二透镜L2是玻璃非球面透镜。
第三透镜L3具有正光焦度且物侧面S5和像侧面S6均为凸面,第三透镜L3是玻璃球面透镜。
第四透镜L4具有负光焦度且物侧面S7和像侧面S8均为凹面,第四透镜L4是玻璃球面透镜。
第五透镜L5具有正光焦度且物侧面S9和像侧面S10均为凸面,第五透镜L5是玻璃球面透镜。
第六透镜L6具有正光焦度且物侧面S11和像侧面S12-1均为凸面。
第七透镜L7具有负光焦度且物侧面S12-2和像侧面S13均为凹面,且第六透镜L6和第七透镜L7组成粘合体并且均为玻璃球面透镜,且第六透镜的像侧面S12-1与第七透镜的物侧面S12-2组成胶合面S12。
第八透镜L8具有正光焦度且物侧面S14为凹面、像侧面S15为凸面,第八透镜L8是玻璃非球面透镜。
本发明第一实施例中提供的光学成像镜头100中各个镜片的相关参数如表1所示。
表1
表面序号 表面类型 曲率半径(mm) 厚度(mm) 折射率 阿贝数
物面 球面 无穷 无穷    
S1 球面 23.259 1.540 1.517 52.19
S2 球面 4.319 2.288    
S3 非球面 8.376 0.879 1.587 59.59
S4 非球面 3.969 3.110    
S5 球面 12.863 3.114 1.788 47.52
S6 球面 -13.692 3.008    
ST 光阑 无穷 1.122    
S7 球面 -6.813 0.898 1.603 38.01
S8 球面 47.112 0.107    
S9 球面 9.657 2.039 1.593 68.53
S10 球面 -7.631 0.369    
S11 球面 7.855 3.109 1.593 68.53
S12 球面 -5.062 0.591 1.801 34.97
S13 球面 50.995 0.681    
S14 非球面 -33.473 1.119 1.589 61.25
S15 非球面 -14.188 1.135    
S16 球面 无穷 0.500 1.517 64.21
S17 球面 无穷 3.917    
S18 像面 无穷 ——    
本实施例的各透镜非球面的参数如表2所示。
表2
Figure PCTCN2021093200-appb-000003
在本实施例中,光学成像镜头100的场曲、光学畸变和轴向色差曲线图分别如图2、图3、图4所示。由图2可以看出,本实施例提供的光学成像镜头100在0.95视场以内的子午、弧矢场曲均在±0.04mm范围内,在全视场以内的子午、弧矢场曲均在±0.08mm范围内,且同一波长的子午、弧矢场曲的差值小于0.05mm,表明本实施例的场曲得到很好的校正。图2中0.430um-Tan表示430纳米波长的T(子午)线,0.430um-Sag表示430纳米波长的S(弧矢)线,以此类推(图6、图10、图14和图2相似)。由图3可以看出,本实施例提供的光学成像镜头100的光学畸变在全视场均小于-5%,表明本实施例的光学畸变校正得比较好。由图4可以看出,本实施例提供的光学成像镜头100在全视场以内各波长的轴向色差均在±0.02mm以内,且在同一视场各波长之间的差值均小于0.015mm,表明本实施例的色差与二级色差得到很好的校正。
第二实施例
请参阅图5,所示为本实施例提供的光学成像镜头200的结构图。本实施例当中的光学成像镜头200与第一实施例当中的光学成像镜头100大抵相同,不同之处在于,本实施例当中的光学成像镜头200的第四透镜的像侧面S8为凸面,第七透镜的像侧面S13为凸面,以及各透镜的曲率半径、材料选择不同,具体各个透镜的相关参数参见表3所示。
表3
表面序号 表面类型 曲率半径(mm) 厚度(mm) 折射率 阿贝数
物面 球面 无穷 无穷    
S1 球面 19.544 1.398 1.517 52.19
S2 球面 4.447 2.511    
S3 非球面 9.411 0.893 1.587 59.59
S4 非球面 3.906 3.104    
S5 球面 11.017 3.109 1.788 47.52
S6 球面 -16.309 3.001    
ST 光阑 无穷 1.066    
S7 球面 -5.303 0.890 1.603 38.01
S8 球面 -37.924 0.107    
S9 球面 9.149 2.075 1.593 68.53
S10 球面 -7.544 0.355    
S11 球面 9.772 3.108 1.593 68.53
S12 球面 -4.203 0.592 1.801 34.97
S13 球面 -46.995 0.693    
S14 非球面 -27.097 0.993 1.589 61.25
S15 非球面 -20.724 1.135    
S16 球面 无穷 0.500 1.517 64.21
S17 球面 无穷 4.047    
S18 像面 无穷 ——    
本实施例的各透镜非球面的参数如表4所示。
表4
Figure PCTCN2021093200-appb-000004
在本实施例中,光学成像镜头200的场曲、光学畸变和轴向色差曲线图分别如图6、图7、图8所示。由图6可以看出,本实施例提供的光学成像镜头200在0.95视场以内的子午、弧矢场曲均在±0.05mm范围内,在全视场以内的子午、弧矢场曲均在±0.1mm范围内,且同一波长的子午、弧矢场曲的差值小于0.05mm,证明本实施例的场曲得到很好的校正。由图7可以看出,本实施例提供的光学成像镜头200的光学畸变在全视场均小于-5%,表明本实施例的光学畸变校正的比较好。由图8可以看出,本实施例提供的光学成像镜头200在全视场以内各波长的轴向色差均在±0.02mm以内,且在同一视场各波长之间的差值均小于0.015mm,证明本实施例的色差与二级色差得到很好的校正。
第三实施例
请参阅图9,所示为本实施例提供的光学成像镜头300的结构图。本实施例当中的光学成像镜头300与第一实施例当中的光学成像镜头100大抵相同,不同之处在于,本实施例当中的光学成像镜头300的第三透镜的像侧面S6为凹面,第四透镜的像侧面S8为凸面,第七透镜的像侧面S13为凸面,以及各透镜的曲率半径、材料选择不同,具体各个透镜的相关参数参见表5所示。
表5
表面序号 表面类型 曲率半径(mm) 厚度(mm) 折射率 阿贝数
物面 球面 无穷 无穷    
S1 球面 17.020 1.416 1.517 52.19
S2 球面 4.373 2.578    
S3 非球面 9.352 0.904 1.587 59.59
S4 非球面 3.775 3.153    
S5 球面 6.088 3.102 1.788 47.52
S6 球面 52.131 2.159    
ST 光阑 无穷 0.947    
S7 球面 -3.577 0.869 1.603 38.01
S8 球面 -8.920 0.082    
S9 球面 8.814 2.084 1.593 68.53
S10 球面 -7.907 0.108    
S11 球面 9.325 3.104 1.593 68.53
S12 球面 -3.892 0.546 1.801 34.97
S13 球面 -42.971 0.543    
S14 非球面 -33.899 1.031 1.589 61.25
S15 非球面 -18.420 1.135    
S16 球面 无穷 0.500 1.517 64.21
S17 球面 无穷 4.286    
S18 像面 无穷 ——    
本实施例的各透镜非球面的参数如表6所示。
表6
Figure PCTCN2021093200-appb-000005
在本实施例中,光学成像镜头300的场曲、光学畸变和轴向色差曲线图分别如图10、图11、图12所示。由图10可以看出,本实施例提供的光学成像镜头300在全视场以内的子午、弧矢场曲均在±0.05mm范围内,且同一波长的子午、弧矢场曲的差值小于0.07mm,证明本实施例的场曲得到很好的校正。由图11可以看出,本实施例提供的光学成像镜头300的光学 畸变在全视场均小于-5%,表明本实施例的光学畸变校正的比较好。由图12可以看出,本实施例提供的光学成像镜头300在全视场以内各波长的轴向色差均在±0.025mm以内,且在同一视场各波长之间的差值均小于0.025mm,证明本实施例的色差与二级色差得到很好的校正。
第四实施例
请参阅图13,所示为本实施例提供的光学成像镜头400的结构图。本实施例当中的光学成像镜头400与第一实施例当中的光学成像镜头100大抵相同,不同之处在于,本实施例当中的光学成像镜头400的第四透镜的像侧面S8为凸面,以及各透镜的曲率半径、材料选择不同,具体各个透镜的相关参数参见表7所示。
表7
表面序号 表面类型 曲率半径(mm) 厚度(mm) 折射率 阿贝数
物面 球面 无穷 无穷    
S1 球面 13.265 2.039 1.567 42.81
S2 球面 4.203 2.205    
S3 非球面 5.889 0.788 1.583 59.46
S4 非球面 2.837 4.021    
S5 球面 8.260 4.014 1.788 47.52
S6 球面 -18.368 1.336    
ST 光阑 无穷 0.632    
S7 球面 -5.396 0.890 1.620 36.35
S8 球面 -14.993 0.105    
S9 球面 18.832 2.134 1.593 68.53
S10 球面 -7.454 0.287    
S11 球面 8.523 3.510 1.593 68.53
S12 球面 -4.430 0.930 1.904 31.32
S13 球面 24.387 0.703    
S14 非球面 -171.419 1.572 1.589 61.25
S15 非球面 -9.574 1.135    
S16 球面 无穷 0.500 1.517 64.21
S17 球面 无穷 3.201    
S18 像面 无穷 ——    
本实施例的各透镜非球面的参数如表8所示。
表8
Figure PCTCN2021093200-appb-000006
Figure PCTCN2021093200-appb-000007
在本实施例中,光学成像镜头400的场曲、光学畸变和轴向色差曲线图分别如图14、图15、图16所示。由图14可以看出,本实施例提供的光学成像镜头400在0.95视场以内的子午、弧矢场曲均在±0.05mm范围内,在全视场以内的子午、弧矢场曲均在±0.1mm范围内,且同一波长的子午、弧矢场曲的差值小于0.05mm,证明本实施例的场曲得到很好的校正。由图15可以看出,本实施例提供的光学成像镜头400的光学畸变在全视场均小于-5.5%,表明本实施例的光学畸变校正得比较好。由图16可以看出,本实施例提供的光学成像镜头400在全视场以内各波长的轴向色差均在±0.03mm以内,且在同一视场各波长之间的差值均小于0.02mm,证明本实施例的色差与二级色差得到很好的校正。
表9是上述4个实施例对应的光学特性,包括光圈数F#、视场角2θ和光学总长TTL,以及与前面每个条件式对应的数值。
表9
条件式 实施例1 实施例2 实施例3 实施例4 备注
2θ(°) 86 89 82 90  
F# 2.8 2.8 2.8 2.8  
TTL(mm) 29.5 29.6 28.5 30.0  
P g,f4/P g,f5+P g,f6/P g,f7 1.997 1.997 1.997 1.994 条件式(1)
P g,f4/P g,f5-P g,f6/P g,f7 0.140 0.140 0.140 0.156 条件式(2)
(IH rea-IH ref)/θ 0.016 0.018 0.014 0.018 条件式(3)
IH/(tanθ*f) 0.959 0.962 0.950 0.948 条件式(4)
f 2/D 45 -4.433 -3.874 -3.616 -2.564 条件式(5)
θ 7/r 714/r 14 -0.617 -0.407 -1.042 -0.235 条件式(6)
|r 4/r 8| 0.084 0.103 0.423 0.189 条件式(7)
1/r 11-1/r 12 0.325 0.340 0.364 0.343 条件式(8)
f 8/r 15 -2.865 -6.777 -3.604 -1.780 条件式(9)
f 2/f 3+f 4/f 5+f 6/f 7 -3.866 -3.722 -3.727 -4.200 条件式(10)
f 2/f 3-f 4/f 5-f 6/f 7 -0.294 -0.467 -0.474 -0.162 条件式(11)
f 1/r 2+f 2/r 4 -5.896 -5.642 -5.704 -6.418 条件式(12)
本发明提供的光学成像镜头中,第一透镜L1、第二透镜L2用于光线收集,有利于减小镜头体积和便于成像系统后续对像差的校正;第二透镜L2为玻璃非球面透镜,主要用于校正畸变;第二透镜L2与第三透镜L3、第四透镜L4与第五透镜L5、第六透镜L6与第七透镜L7均采用正负透镜交替结构,可以达到相互配合有效消除场曲的效果;通过合理分配第四透镜L4、第五透镜L5的光焦度及形状的调整可以有效控制光线的出射角度,保证后续镜片校正像差的同时,防止因光线入射角过大造成的后续镜片公差敏感度过高;第四透镜L4、第五 透镜L5、第六透镜L6和第七透镜L7通过选用特定材料的组合,有利于校正二级光谱,使成像系统可以在较宽可见光范围内都有良好的成像效果,并且避免产生紫边现象各个透镜均为玻璃镜片可以使得镜头具有较好的热稳定性能以及机械强度,利于在极端环境下工作。
第五实施例
请参阅图17,所示为本实施例提供的成像设备500的结构示意图,包括上述任一实施例中的光学成像镜头(例如光学成像镜头100)及成像元件510。成像元件510可以是CMOS(Complementary Metal Oxide Semiconductor,互补性金属氧化物半导体)图像传感器,还可以是CCD(Charge Coupled Device,电荷耦合器件)图像传感器。成像设备500可以是相机、移动终端、穿戴设备以及其他任意一种形态的装载了光学成像镜头的电子设备,移动终端可以是智能手机、智能平板、智能阅读器等终端设备。
本实施例提供的成像设备500包括光学成像镜头,由于光学成像镜头具有可以有效校正二级色差,同时能够校正边缘视场的像差,提供更高质量的成像效果等优点,因此成像设备500具有可以有效校正二级色差,同时能够校正边缘视场的像差,提供更高质量的成像效果等优点。
以上实施例仅表达了本发明的几种实施方式,其描述较为具体和详细,但并不能因此而理解为对本发明专利范围的限制。应当指出的是,对于本领域的普通技术人员来说,在不脱离本发明构思的前提下,还可以做出若干变形和改进,这些都属于本发明的保护范围。因此,本发明专利的保护范围应以所附权利要求为准。

Claims (12)

  1. 一种光学成像镜头,其特征在于,从物侧到成像面依次包括:
    具有负光焦度的第一透镜,所述第一透镜的物侧面为凸面,所述第一透镜的像侧面为凹面;
    具有负光焦度的第二透镜,所述第二透镜的物侧面为凸面,所述第二透镜的像侧面为凹面;
    具有正光焦度的第三透镜,所述第三透镜的物侧面为凸面;
    光阑;
    具有负光焦度的第四透镜,所述第四透镜的物侧面为凹面;
    具有正光焦度的第五透镜,所述第五透镜的物侧面和像侧面均为凸面;
    具有正光焦度的第六透镜,所述第六透镜的物侧面和像侧面均为凸面;
    具有负光焦度的第七透镜,所述第七透镜的物侧面为凹面,且所述第六透镜和所述第七透镜组成粘合体;
    具有正光焦度的第八透镜,所述第八透镜的物侧面为凹面,所述第八透镜的像侧面为凸面;以及滤光片,所述滤光片设于所述第八透镜与所述成像面之间;
    其中,所述第一透镜、所述第三透镜、所述第四透镜、所述第五透镜、所述第六透镜、所述第七透镜均为玻璃球面透镜,所述第二透镜、所述第八透镜均为玻璃非球面透镜。
  2. 根据权利要求1所述的光学成像镜头,其特征在于,所述光学成像镜头满足以下条件式:
    1.5<P g,f4/P g,f5+P g,f6/P g,f7<2.5;
    0<P g,f4/P g,f5-P g,f6/P g,f7<0.2;
    其中,P g,f4、P g,f5、P g,f6、P g,f7分别依次表示所述第四透镜、所述第五透镜、所述第六透镜和所述第七透镜的相对部分色散。
  3. 根据权利要求1所述的光学成像镜头,其特征在于,所述光学成像镜头满足以下条件式:
    (IH rea-IH ref)/θ>0.01;
    0.9<IH rea/(tanθ*f)<1;
    其中,f表示所述光学成像镜头的焦距,θ表示所述光学成像镜头的半视场角,IH rea表示所述光学成像镜头在所述半视场角θ下的真实像高,IH ref表示所述光学成像镜头在所述半视场角θ下的理论像高。
  4. 根据权利要求1所述的光学成像镜头,其特征在于,所述光学成像镜头满足以下条件式:
    -5<f 2/D 45<-2;
    其中,f 2表示所述第二透镜的焦距,D 45表示所述第二透镜的像侧面和所述第三透镜的物侧面在光轴上的间隔距离。
  5. 根据权利要求1所述的光学成像镜头,其特征在于,所述光学成像镜头满足以下条件式:
    -1.5<θ 7/r 714/r 14<0;
    其中,θ 7表示所述第四透镜的物侧面的边缘光线入射角,θ 14表示所述第八透镜的物侧面的边缘光线入射角,r 7表示所述第四透镜的物侧面的曲率半径,r 14表示所述第八透镜的物侧面的曲率半径。
  6. 根据权利要求1所述的光学成像镜头,其特征在于,所述光学成像镜头满足以下条件式:
    0<|r 4/r 8|<0.5;
    其中,r 4表示所述第二透镜的像侧面的曲率半径,r 8表示所述第四透镜的像侧面的曲率半径。
  7. 根据权利要求1所述的光学成像镜头,其特征在于,所述第六透镜满足以下条件式:
    0.2<1/r 11-1/r 12<0.5;
    其中,r 11表示所述第六透镜的物侧面的曲率半径,r 12表示所述第六透镜的像侧面的曲率半径。
  8. 根据权利要求1所述的光学成像镜头,其特征在于,所述光学成像镜头满足以下条件式:
    -8<f 8/r 15<-1;
    其中,r 15表示所述第八透镜的像侧面的曲率半径,f 8表示所述第八透镜的焦距。
  9. 根据权利要求1所述的光学成像镜头,其特征在于,所述光学成像镜头满足以下条件式:
    -6<f 2/f 3+f 4/f 5+f 6/f 7<-1;
    -0.5<f 2/f 3-f 4/f 5-f 6/f 7<0;
    其中,f 2、f 3、f 4、f 5、f 6、f 7分别依次表示所述第二透镜、所述第三透镜、所述第四透镜、所述第五透镜、所述第六透镜和所述第七透镜的焦距。
  10. 根据权利要求1所述的光学成像镜头,其特征在于,所述光学成像镜头满足以下条件式:
    -7<f 1/r 2+f 2/r 4<-5;
    其中,f 1表示所述第一透镜的焦距,f 2表示所述第二透镜的焦距,r 2表示所述第一透镜的像侧面的曲率半径,r 4表示所述第二透镜的像侧面的曲率半径。
  11. 根据权利要求1所述的光学成像镜头,其特征在于,所述第六透镜和所述第七透镜的阿贝数差值的绝对值大于30。
  12. 一种成像设备,其特征在于,包括如权利要求1-11任一项所述的光学成像镜头及成像元件,所述成像元件用于将所述光学成像镜头形成的光学图像转换为电信号。
PCT/CN2021/093200 2020-05-28 2021-05-12 光学成像镜头及成像设备 WO2021238648A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN202010464720.9A CN111367061B (zh) 2020-05-28 2020-05-28 光学成像镜头及成像设备
CN202010464720.9 2020-05-28

Publications (1)

Publication Number Publication Date
WO2021238648A1 true WO2021238648A1 (zh) 2021-12-02

Family

ID=71209685

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2021/093200 WO2021238648A1 (zh) 2020-05-28 2021-05-12 光学成像镜头及成像设备

Country Status (2)

Country Link
CN (1) CN111367061B (zh)
WO (1) WO2021238648A1 (zh)

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN114268719A (zh) * 2021-12-20 2022-04-01 浙江大立科技股份有限公司 一种宽光谱微光成像装置
CN114675404A (zh) * 2022-05-27 2022-06-28 江西联创电子有限公司 光学镜头
CN114839743A (zh) * 2022-04-19 2022-08-02 拾斛科技(南京)有限公司 内窥镜
CN115047605A (zh) * 2022-07-05 2022-09-13 陈明君 成像镜头
CN115047602A (zh) * 2022-08-05 2022-09-13 江西联创电子有限公司 光学镜头
CN117970612A (zh) * 2024-03-29 2024-05-03 协益电子(苏州)有限公司 一种环视镜头、摄像装置及具有其的驾驶工具

Families Citing this family (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN111367061B (zh) * 2020-05-28 2020-09-04 江西联创电子有限公司 光学成像镜头及成像设备
TWI751842B (zh) * 2020-12-17 2022-01-01 紘立光電股份有限公司 光學取像透鏡組、成像裝置及電子裝置
CN113433659B (zh) * 2021-06-29 2023-03-24 天津欧菲光电有限公司 光学镜头、摄像模组、电子设备及汽车
CN114609752B (zh) * 2022-03-04 2023-06-27 广东烨嘉光电科技股份有限公司 一种六片式的光学镜头
CN114578523B (zh) * 2022-05-07 2022-09-23 江西联益光学有限公司 光学镜头

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH08320435A (ja) * 1995-05-25 1996-12-03 Matsushita Electric Ind Co Ltd 広角ズームレンズ
CN104145201A (zh) * 2012-10-02 2014-11-12 奥林巴斯医疗株式会社 内窥镜物镜光学系统
CN107132643A (zh) * 2016-02-26 2017-09-05 亚太精密工业(深圳)有限公司 广角镜头
CN110221401A (zh) * 2019-05-08 2019-09-10 中山联合光电科技股份有限公司 一种红外共焦广角镜头
CN110568594A (zh) * 2019-10-16 2019-12-13 厦门力鼎光电股份有限公司 一种光学成像镜头
CN110596860A (zh) * 2019-08-20 2019-12-20 江西联创电子有限公司 高像素广角镜头及成像设备
CN111367061A (zh) * 2020-05-28 2020-07-03 江西联创电子有限公司 光学成像镜头及成像设备

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN209640588U (zh) * 2019-05-08 2019-11-15 中山联合光电科技股份有限公司 一种红外共焦广角镜头装置
CN110007447B (zh) * 2019-05-24 2023-12-05 东莞市宇瞳光学科技股份有限公司 一种定焦镜头
CN210626769U (zh) * 2019-10-16 2020-05-26 厦门力鼎光电股份有限公司 一种光学成像镜头

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH08320435A (ja) * 1995-05-25 1996-12-03 Matsushita Electric Ind Co Ltd 広角ズームレンズ
CN104145201A (zh) * 2012-10-02 2014-11-12 奥林巴斯医疗株式会社 内窥镜物镜光学系统
CN107132643A (zh) * 2016-02-26 2017-09-05 亚太精密工业(深圳)有限公司 广角镜头
CN110221401A (zh) * 2019-05-08 2019-09-10 中山联合光电科技股份有限公司 一种红外共焦广角镜头
CN110596860A (zh) * 2019-08-20 2019-12-20 江西联创电子有限公司 高像素广角镜头及成像设备
CN110568594A (zh) * 2019-10-16 2019-12-13 厦门力鼎光电股份有限公司 一种光学成像镜头
CN111367061A (zh) * 2020-05-28 2020-07-03 江西联创电子有限公司 光学成像镜头及成像设备

Cited By (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN114268719A (zh) * 2021-12-20 2022-04-01 浙江大立科技股份有限公司 一种宽光谱微光成像装置
CN114268719B (zh) * 2021-12-20 2023-06-09 浙江大立科技股份有限公司 一种宽光谱微光成像装置
CN114839743A (zh) * 2022-04-19 2022-08-02 拾斛科技(南京)有限公司 内窥镜
CN114839743B (zh) * 2022-04-19 2023-10-10 拾斛科技(南京)有限公司 内窥镜
CN114675404A (zh) * 2022-05-27 2022-06-28 江西联创电子有限公司 光学镜头
CN115047605A (zh) * 2022-07-05 2022-09-13 陈明君 成像镜头
CN115047605B (zh) * 2022-07-05 2024-01-19 湖北准视光电科技有限公司 成像镜头
CN115047602A (zh) * 2022-08-05 2022-09-13 江西联创电子有限公司 光学镜头
CN115047602B (zh) * 2022-08-05 2022-10-28 江西联创电子有限公司 光学镜头
CN117970612A (zh) * 2024-03-29 2024-05-03 协益电子(苏州)有限公司 一种环视镜头、摄像装置及具有其的驾驶工具

Also Published As

Publication number Publication date
CN111367061B (zh) 2020-09-04
CN111367061A (zh) 2020-07-03

Similar Documents

Publication Publication Date Title
WO2021238648A1 (zh) 光学成像镜头及成像设备
CN108594407B (zh) 摄像镜头
CN114114656B (zh) 光学成像镜头
CN107219610B (zh) 成像镜头
CN111650731B (zh) 广角镜头及成像设备
WO2018192126A1 (zh) 摄像镜头
CN110426819B (zh) 光学成像镜头
WO2020088024A1 (zh) 光学成像镜头
WO2018214349A1 (zh) 摄像镜头
CN110412747B (zh) 摄像镜头组
WO2020140604A1 (zh) 光学成像镜头及成像设备
WO2019169856A1 (zh) 摄像镜头组
CN110456485B (zh) 摄像镜头组
WO2019019626A1 (zh) 成像镜头
CN112859291B (zh) 摄像镜头
CN116880043B (zh) 光学镜头
WO2019037420A1 (zh) 摄像透镜组
WO2019024490A1 (zh) 光学成像镜头
CN113608336A (zh) 一种光学成像镜头
CN112987256B (zh) 光学系统、摄像模组及电子设备
CN113156612B (zh) 光学系统、取像模组及电子设备
CN214623165U (zh) 光学成像镜头
CN112799211B (zh) 光学系统、取像模组及电子设备
TWI724919B (zh) 六片式廣角鏡片組
CN210894832U (zh) 摄像镜头组

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 21812679

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 21812679

Country of ref document: EP

Kind code of ref document: A1