WO2021134707A1 - 光学取景器和相机 - Google Patents

光学取景器和相机 Download PDF

Info

Publication number
WO2021134707A1
WO2021134707A1 PCT/CN2019/130956 CN2019130956W WO2021134707A1 WO 2021134707 A1 WO2021134707 A1 WO 2021134707A1 CN 2019130956 W CN2019130956 W CN 2019130956W WO 2021134707 A1 WO2021134707 A1 WO 2021134707A1
Authority
WO
WIPO (PCT)
Prior art keywords
lens
optical viewfinder
human eye
marking member
optical
Prior art date
Application number
PCT/CN2019/130956
Other languages
English (en)
French (fr)
Inventor
陈媛
毛庆
Original Assignee
深圳市大疆创新科技有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 深圳市大疆创新科技有限公司 filed Critical 深圳市大疆创新科技有限公司
Priority to PCT/CN2019/130956 priority Critical patent/WO2021134707A1/zh
Priority to CN201980094954.4A priority patent/CN113646684A/zh
Publication of WO2021134707A1 publication Critical patent/WO2021134707A1/zh

Links

Images

Classifications

    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B13/00Optical objectives specially designed for the purposes specified below
    • G02B13/06Panoramic objectives; So-called "sky lenses" including panoramic objectives having reflecting surfaces

Definitions

  • This application relates to the technical field of viewfinders, in particular to an optical viewfinder and a camera.
  • the purpose of the present application is to provide an optical viewfinder and camera that can solve the above-mentioned problems.
  • an embodiment of the present application provides an optical viewfinder, which includes in order from the object side to the human eye side along the optical axis direction: a first lens having a negative refractive power, and the human eye side surface of the first lens is concave;
  • the second lens has refractive power, and the side surface of the human eye of the second lens is concave;
  • the third lens has refractive power; and the fourth lens has positive refractive power.
  • an embodiment of the present application provides an optical viewfinder, which includes in order from the object side to the human eye side along the optical axis direction: a first lens with negative refractive power; a second lens with negative refractive power; and a third lens , Has a positive refractive power.
  • an embodiment of the present application provides a camera, including the optical viewfinder according to any one of the various embodiments of the first aspect and the second aspect.
  • the structure of the four-lens lens in the embodiment of the present application has a compact overall structure, which facilitates miniaturization, and at the same time, the reasonable combination of refractive power and surface shape can meet the needs of wide-angle viewfinders.
  • FIG. 1 is a schematic structural diagram of a camera according to an embodiment
  • FIG. 2 is a schematic diagram of the structure of an optical viewfinder according to an embodiment
  • Fig. 3 is a schematic diagram of the structure of a marking member of an embodiment
  • FIG. 4 is a graph of longitudinal spherical aberration in a clear imaging state of an infinity scene of an optical viewfinder according to an embodiment
  • Fig. 5 is an astigmatism curve and a distortion curve of an embodiment of the optical viewfinder in a clear imaging state of an infinite scene.
  • a component when referred to as being "fixed to” another component, it can be directly on the other component or a centered component may also exist. When a component is considered to be “connected” to another component, it can be directly connected to the other component or there may be a centered component at the same time.
  • an embodiment of the present application provides a camera 10.
  • the camera 10 includes a housing 11, a shutter 13, a lens 14 and an optical viewfinder 15 provided in the embodiment of the present application.
  • the camera 10 in some embodiments may further include a display screen 12.
  • the display screen 12, the shutter 13 and the lens 14 are all arranged in the housing 11.
  • the optical viewfinder 15 can be arranged on the top and sides of the housing 11 or integrated in the housing 11.
  • the housing 11 is provided with an optical sensor and a processor.
  • the optical sensor is used to receive light entering from the lens 14 and form an electrical signal of the light on the photosensitive surface of the optical sensor.
  • the processor processes the electrical signal to obtain a digital photo. .
  • the display screen 12 is used to display the digital photo.
  • the display screen 12 can also be used for viewfinder, that is, the real-time image of the light entering from the lens 14 is fed back to the display screen 12 for display.
  • the shutter 13 is used to control the time during which light illuminates the optical sensor, that is, the effective exposure time of the optical sensor.
  • the lens 14 is used to receive optics, bend and refract the light to a certain extent, change the path of the light, and can meet the use of multiple focal lengths such as wide-angle, standard, and telephoto.
  • the lens 14 may be a structure that is built in the housing 11, or it may be an external structure and a structure that is detachably connected to the housing 11.
  • the optical viewfinder 15 is a structure of the camera 10 to monitor an image through an eyepiece.
  • the optical viewfinder 15 in the embodiment of the present application may be an ordinary optical viewfinder through which the light does not pass through the lens 14. It is widely used in household digital cameras, such as a card-type digital camera; the optical viewfinder 15 may also be a light passing through the lens. 14
  • the complex optical viewfinder that passes through is usually equipped with a mirror, a pentaprism and other structures in the housing 11. The light entering the lens enters the optical viewfinder through reflection, refraction, etc., which is mainly used in professional digital cameras, such as SLR digital cameras. .
  • the optical viewfinder 15 in the embodiment of the present application can also be applied to a mechanical camera, and is not limited to an electronic digital camera.
  • optical viewfinders are usually only used in lenses with a focal length greater than 25mm.
  • the focal length is shorter and less than 25mm, there are fewer optical viewfinders suitable for focal lengths below 25mm, and optical viewfinders larger than 25mm are used for viewing.
  • the resulting image is distorted and cannot meet the requirements.
  • the optical viewfinder 15 provided by the embodiment of the present application can satisfy a wide-angle viewfinder. When used with a wide-angle lens, the effect is better.
  • optical viewfinder provided by the embodiment of the present application.
  • the optical viewfinder includes a first lens L1, a second lens L2, a third lens L3, and a first lens L1, a second lens L2, a third lens L3, and a first lens L1, a second lens L2, a third lens, and a second lens.
  • the first lens L1 has negative refractive power, the human eye side S2 of the first lens L1 is concave; the second lens L2 has negative refractive power, and the human eye side S4 of the second lens L2 is concave; the third lens L3 has refractive power; The fourth lens L4 has a positive refractive power.
  • the structure of the four-lens lens in the embodiment of the present application has a compact overall structure, which facilitates miniaturization, and at the same time, the reasonable combination of refractive power and surface shape can meet the needs of wide-angle viewfinders.
  • the second lens L2 may also have a positive refractive power
  • the third lens L3 may have a positive or negative refractive power
  • the object side S1 of the first lens L1 is convex; the object side S3 of the second lens L2 is convex; the object side S5 of the third lens L3 is convex, and the human eye side S6 is concave; the fourth lens L4 The side S8 of the human eye is convex.
  • the surface shapes of the object side and the human eye side of each lens are respectively: the first lens L1 is convex and concave, the second lens L2 is convex and concave, and the third lens L3 is convex and concave.
  • the side surface of the human eye of the fourth lens L4 is convex.
  • the lens group composed of the first lens L1 to the third lens L3 can maximize the field of view to meet the requirements of wide angle, while the fourth lens L4 can refract the light to meet the viewing angle of the human eye, refer to Figure 2
  • the path of the light ray 100 (solid line) of the object in the middle passes through the action of the first lens L1 to the fourth lens L4, and the light ray 100 of the object is refracted and converges in the human eye.
  • each of the above-mentioned surfaces is spherical, and compared with aspherical surfaces, the structure is simple, the processing is easy, and the cost is low.
  • the object side surface S7 of the fourth lens L4 may be a flat surface, a convex surface, or a concave surface.
  • the object side surface S7 is a flat surface.
  • the optical viewfinder 15 further includes an aperture STO, and the aperture STO is used to control the amount of light entering.
  • the stop STO can be set at any position in the optical viewfinder 15, such as on the object side S1 side of the first lens L1, or a position between the four lenses, or the human eye of the fourth lens L4. Side S8 side.
  • the stop STO is arranged on the side S8 of the human eye side of the fourth lens L4 and approximately coincides with the pupil position of the human eye (this position can be regarded as the outermost side of the camera 10 close to the human eye).
  • the first lens L1 to the fourth lens L4 can be assembled by edge contact (for example, adhesive bonding), or there can be a gap between two adjacent lenses without direct contact, and each lens can be mounted on the mirror. Assemble on a supporting structure such as a tube.
  • the material of the first lens L1 to the fourth lens L4 may be glass or plastic.
  • the material of the first lens L1 and the fourth lens L4 is glass. Since the first lens L1 and the fourth lens L4 are located on the outermost side of the lens group, there is a possibility that bumps will occur, and glass is harder than plastic, which can reduce scratches caused by bumps.
  • the light transmittance of glass is higher than that of plastic, and the use of glass can effectively suppress the yellowing of the image observed by the human eye.
  • the cost of glass material is higher than that of plastic material due to the difference in raw materials and processing difficulty of glass and plastic. Therefore, it is also possible to set only the first lens L1 or the first lens that is most likely to be bumped.
  • One of the four lenses L4 is made of glass, and the other lenses are made of plastic.
  • any one of the first lens L1 to the fourth lens L4 is provided with a marking member 300, and the marking member 300 is provided on the side of the object or the side of the human eye.
  • the marking member 300 may be arranged at any position on the object side or the human eye side, and the arbitrary position may be a partial circular area, a rectangular area, a ring area, etc. on the object side or the human eye side.
  • the marking member 300 is provided on a surface with a larger radius of curvature among the side surface of the object and the side surface of the human eye.
  • a marker 300 is provided on the surface with a larger radius of curvature, which is convenient for processing.
  • the specific processing technology may adopt processing methods such as coating, screen printing, etching, laser engraving, etc., to attach the marking member 300 to the surface of a certain lens.
  • the color and material of the marking piece 300 are not limited.
  • the curvature radius of each lens may be: the curvature radius of the object side surface S1 of the first lens L1 is greater than the curvature radius of the human eye side S2, and the curvature radius of the object side S3 of the second lens L2 is greater than that of the human eye side S4
  • the curvature radius of the object side surface S5 of the third lens L3 is greater than the curvature radius of the human eye side S6, and the curvature radius of the object side S7 of the fourth lens L4 is greater than the curvature radius of the human eye side S8.
  • the marker 300 may be disposed on any surface of the object side surface S1 of the first lens L1, the object side surface S3 of the second lens L2, the object side surface S5 of the third lens L3, and the object side surface S7 of the fourth lens L4.
  • the marking member 300 is disposed on the object side surface S7 of the fourth lens L4, and the object side surface S7 has a larger radius of curvature than other lenses, that is, the object side surface S7 of the fourth lens L4 is flatter, which is convenient for processing.
  • the fourth lens L4 is relatively close to the human eye, and it is not easy to be directly imaged by the human eye, causing obstruction.
  • the marking member 300 includes one or more of the following: a single field of view wire frame, multiple field of view wire frames, a focus prompt line, a center focus frame, a center cross line, wire frame supplementary information, enterprise Sign.
  • the field of view wire frame may be a rectangular wire frame (as shown by reference numeral 302 in FIG. 3), a circular wire frame, etc., which are used for image composition.
  • Multiple field-of-view wireframes can be a sequentially nested structure of multiple rectangular wireframes, with an interval between adjacent rectangular wireframes, or multiple field-of-view wireframes are a sequence of multiple circular wireframes.
  • adjacent circular wire frames have a separation distance
  • multiple field-of-view wire frames are a mixed circular and rectangular structure
  • adjacent field wire frames have a separation distance. The spacing distance between two adjacent field-of-view wireframes in the multiple field-of-view wireframes may be equal.
  • the focus prompt line can be a plurality of lines arranged at intervals, for example, a plurality of horizontal and vertical lines arranged to divide the field of view into a plurality of block regions, and the position where the horizontal and vertical lines intersect is used to assist focus and composition.
  • the center focus frame may be a rectangle with a small area in the center, which is used to assist focusing.
  • the central cross line (shown by reference numeral 301 in FIG. 3) has a cross shape and is used for composition.
  • the supplementary description information of the wire frame (as shown by reference numeral 303 in FIG. 3) may be specific size parameters of the wire frame and the like.
  • the corporate logo is, for example, a corporate logo, which can be set anywhere in the field of view.
  • the type of the marking member 300 described above can be set in a single setting, for example, a single field of view line frame set in the edge field of view; the type of the marking member 300 is preferably set in multiple combinations, for example, as shown in FIG. 301.
  • the single field of view wireframe can only be adapted to a single focal length and has a small application range. Compared with a single field of view wire frame, when the marker 300 is in multiple combinations, it can be adapted to multiple different focal lengths, and the application range is larger.
  • the marker 300 is provided on any one of the second lens L2 to the fourth lens L4, and any one of the first lens L1 to the third lens L3 closer to the object side than the marker 300 has a reflection function.
  • the image of the marker 300 After being reflected by any one of the first lens L1 to the third lens L3, it enters the human eye.
  • the marking member 300 is disposed on the object side S3 or the human eye side S4 of the second lens L2, and the object side S1 or the human eye side S2 of the first lens L1 has a reflection function; the marking member 300 is disposed on the third lens L3
  • the object side S5 or the human eye side S6 of the first lens L1, the object side S1 or the human eye side S2 of the first lens L1, and the object side S3 or the human eye side S4 of the second lens L2 have a reflective function;
  • the marking member 300 Set on the object side S7 or the eye side S8 of the fourth lens L4, the object side S1 or the eye side S2 of the first lens L1, the object side S3 or the eye side S4 of the second lens L2, and the third lens Either one of the object side surface S5 or the human eye side surface S6 of L3 has a reflection function.
  • the marking member 300 is disposed on the object side surface S7 of the fourth lens L4, and the object side surface S5 of the third lens L3 has a reflection function.
  • the light path indicated by the number 200 in FIG. 2 shown by the dashed line
  • the light from the marking member 300 on the object side S7 of the fourth lens L4 is reflected by the object side S5 of the third lens L3, and then enters the fourth lens Shot into the human eye after L4.
  • the light of the marking member 300 is designed to enter the human eye after reflection, instead of directly entering the human eye after being transmitted.
  • the position of the marking member 300 set here should correspond to the aforementioned marking member 300 set on a surface with a larger radius of curvature without conflict.
  • the reflection function on the surface of the lens can be achieved by a variety of solutions.
  • the lens in order to increase the light transmittance, the lens is usually coated with an anti-reflection coating, while the reflection function can be achieved by reducing the light transmittance, that is, without the anti-reflection coating.
  • a spectroscopic film is plated on the lens to allow part of the light to pass through while reflecting part of the light, which can also achieve the reflection function of the lens.
  • the reflectance can be adjusted according to the needs, and the controllability is higher.
  • the spectroscopic film covers at least a part of the optical path coverage of the marker 300 on any one of the first lens L3 to the third lens L3.
  • the surface of the lens where the spectroscopic film is located has a central area and an edge area.
  • the spectroscopy The film should be at least partially disposed in the central area, so that the light of the marker 300 is at least partially reflected.
  • the spectroscopic film can also be provided on the entire central area and the entire surface of the lens. The same applies to the absence of anti-reflection coating.
  • Part of the surface area of the lens with reflection function may not be coated with anti-reflection coating, or the entire surface may not be coated with anti-reflection coating.
  • the function is to ensure that the surface has a certain reflectivity, so that the marking member 300 can be imaged through this surface.
  • the spectroscopic coating or non-antireflection coating area partially covers the range of the light path of the marker 300, the reflectivity of the spectroscopic or non-antireflection coating area is higher, and it can be seen more clearly.
  • the area without spectroscopic coating or anti-reflection coating has a lower reflectivity, but it is not completely non-reflective. The light in this area is slightly darker, but it can be seen.
  • the optical viewfinder 15 satisfies the conditional formula: TTL ⁇ 30mm; where TTL is the object side S1 of the first lens L1 to the human eye side S8 of the fourth lens L4 in the light
  • TTL is the total length of the lens group of the first lens L1 to the fourth lens L4.
  • the optical viewfinder 15 satisfies the conditional formula: TAN(A i ) ⁇ 0.85; where A i is half of the diagonal viewing angle of the optical viewfinder 15, TAN (a i) a i tangent to a field of view of the optical finder 15.
  • a i is half of the diagonal viewing angle of the optical viewfinder 15, TAN (a i) a i tangent to a field of view of the optical finder 15.
  • the angle between the maximum angle ray 101 that can be imaged by the object through the optical viewfinder 15 and the optical axis is A i , which satisfies the above formula, and can realize the wide-angle view of the optical viewfinder 15.
  • the optical viewfinder 15 satisfies the conditional formula: Wherein, c 1 is the surface curvature of the object side S1 of the first lens L1, and c 2 is the surface curvature of the human eye side S2 of the first lens L1.
  • the surface curvature is directional. In different directions, the surface curvature can be positive or negative, and the difference between c 1 -c 2 is proportional to the focal power of the lens; when the object side S1 of the first lens L1 and the human When the surface curvature of the side surface S2 of the eye is the same but the direction is opposite, the above conditional expression is equal to zero. Satisfying the above formula enables the aberration of the lens group to be in a controllable range when the large angle of light incidence is satisfied.
  • the optical viewfinder 15 satisfies the conditional formula: 28 ⁇ V 2 ⁇ 97; where V 2 is the dispersion coefficient of the second lens L2.
  • V 2 is the dispersion coefficient of the second lens L2.
  • the optical viewfinder 15 satisfies the conditional formula: 0.0184*V 4 +N 4 ⁇ 2.5; where V 4 is the dispersion coefficient of the fourth lens L4, and N 4 is the fourth lens.
  • the refractive index of lens L4. When 0.0184*V 4 +N 4 >2.5, the chromatic aberration correction capability of the fourth lens L4 is poor, and the material of the lens with negative refractive power in the optical viewfinder 15 is greatly restricted. If the above formula is satisfied, the chromatic aberration correction capability of the fourth lens L4 is better, and the material of the lens with negative refractive power in the optical viewfinder 15 is less restricted.
  • Table 1 is the overall parameter information of the optical viewfinder of an embodiment.
  • Table 2 is the data information of each surface of the optical viewfinder of an embodiment.
  • R represents the radius of curvature
  • D represents the on-axis distance
  • N represents the refractive index
  • V represents the Abbe number.
  • the aperture STO coincides with the position of the pupil of the human eye.
  • the spherical aberration occurs about C-line, d-line and F-line.
  • the wavelength of C-line is 656.3nm
  • the wavelength of d-line is 587.6nm
  • the wavelength of F-line is 486.1nm.
  • the spherical phase difference is within a controllable range.
  • the solid line is the aberration relative to the sagittal image plane
  • the dashed line is the aberration relative to the meridional image plane. It can be seen that both astigmatism and distortion are within the controllable range.
  • the optical viewfinder of the embodiment of the present application has good optical quality.
  • the embodiments of the present application also provide another optical viewfinder.
  • the optical axis direction from the object side to the human eye side includes: a first lens with negative refractive power; a second lens with negative refractive power. Lens; a third lens with positive refractive power.
  • This embodiment adopts three lenses, which can also achieve a compact structure, a miniaturization of the structure, and can meet the needs of a wide-angle viewfinder.
  • any one of the first lens to the third lens is provided with a marking member, and the marking member is provided on the side of the object or the side of the human eye, and may be located at any position.
  • the marking member is provided on a surface with a larger radius of curvature on the side of the object or the side of the human eye. This part is limited by referring to the description in the foregoing embodiment, and it can be appropriately transferred to the structure of the three lenses, and the details are not repeated here.
  • the marking member is attached to the side surface of the object or the side surface of the human eye by any processing method of coating, silk printing, etching or laser engraving.
  • the marking member includes one or more of the following: a single field of view wire frame, multiple field of view wire frames, a focus prompt line, a center focus frame, a center cross line, supplementary description information of the wire frame, and a corporate logo . Refer to the foregoing content and will not repeat it.
  • the field of view wire frame is rectangular, and when the marker is a plurality of field of view wire frames, the plurality of field of view wire frames are in a sequentially nested structure.
  • the marking element is provided on the second lens or the third lens, and the first lens or the second lens closer to the object side than the marking element has a reflection function, and the image of the marking element is on the first lens or the second lens It enters the human eye after being reflected.
  • the object side or the human eye side of the first lens or the second lens that is closer to the object side than the marker is not coated with an antireflection coating or a spectroscopic coating with a preset reflectivity.
  • the marking member is provided on the third lens, and the object side surface of the second lens has a reflection function.
  • the area of the spectroscopic film is greater than or equal to the area covered by the optical path of the first lens or the second lens of the marker.
  • the material of the first lens and/or the third lens is glass.
  • the optical viewfinder satisfies the conditional formula: TTL ⁇ 30; where TTL is the distance on the optical axis from the object side of the first lens to the human eye side of the fourth lens.
  • the optical viewfinder satisfies the conditional formula: TAN(A i ) ⁇ 0.85; where A i is half of the diagonal field of view of the optical viewfinder, and TAN(A i ) is the view of the optical viewfinder. field of the tangent of the angle a i.
  • the optical viewfinder satisfies the conditional formula: Wherein, c 1 is the surface curvature of the object side of the first lens, and c 2 is the surface curvature of the human eye side of the first lens.

Landscapes

  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Optics & Photonics (AREA)
  • Lenses (AREA)

Abstract

一种相机(10)及光学取景器(15),光学取景器(15)沿光轴方向从物侧至人眼侧依次包含:第一透镜(L1),具有负屈折力,第一透镜(L1)的人眼侧面(S2)为凹面;第二透镜(L2),具有屈折力,第二透镜(L2)的人眼侧面(S4)为凹面;第三透镜(L3),具有屈折力;第四透镜(L4),具有正屈折力,四片透镜的结构,整体结构紧凑,便于实现小型化,同时,合理的屈折力和面型的搭配,可满足大广角的取景需求。

Description

光学取景器和相机 技术领域
本申请涉及取景器技术领域,具体涉及一种光学取景器和相机。
背景技术
现有的取景器多为电子取景器,在使用过程中消耗机身电量,缩短机身使用时间,部分显示屏存在颜色噪点问题,影响使用感受。为克服电子取景器的不足,出现了光学取景器,然而,而现有的光学取景器多用于适配25mm及以上焦距镜头,适配广角镜头用取景器较少。
发明内容
本申请的目的是提供一种能够解决上述的问题的光学取景器和相机。
为实现本申请的目的,本申请提供了如下的技术方案:
第一方面,本申请实施例提供一种光学取景器,沿光轴方向从物侧至人眼侧依次包含:第一透镜,具有负屈折力,所述第一透镜的人眼侧面为凹面;第二透镜,具有屈折力,所述第二透镜的人眼侧面为凹面;第三透镜,具有屈折力;第四透镜,具有正屈折力。
第二方面,本申请实施例提供一种光学取景器,沿光轴方向从物侧至人眼侧依次包含:第一透镜,具有负屈折力;第二透镜,具有负曲折力;第三透镜,具有正屈折力。
第三方面,本申请实施例提供一种相机,包括第一方面和第二方面各种实施例中任一项所述的光学取景器。
本申请实施例的四片透镜的结构,整体结构紧凑,便于实现小型化,同时,合理的屈折力和面型的搭配,可满足大广角的取景需求。
附图说明
图1是一种实施例的相机的结构示意图;
图2是一种实施例的光学取景器的结构示意图;
图3是一种实施例的标记件的结构示意图;
图4是一种实施例的光学取景器无穷远场景清晰成像状态下的纵向球面像差曲线图;
图5是一种实施例的光学取景器无穷远场景清晰成像状态下的像散曲线以及畸变曲线。
具体实施例
下面将结合本申请实施例中的附图,对本申请实施例中的技术方案进行清楚地描述,显然,所描述的实施例仅仅是本申请一部分实施例,而不是全部的实施例。基于本申请中的实施例,本领域普通技术人员在没有做出创造性劳动前提下所获得的所有其他实施例,都属于本申请保护的范围。
需要说明的是,当组件被称为“固定于”另一个组件,它可以直接在另一个组件上或者也可以存在居中的组件。当一个组件被认为是“连接”另一个组件,它可以是直接连接 到另一个组件或者可能同时存在居中组件。
除非另有定义,本文所使用的所有的技术和科学术语与属于本申请的技术领域的技术人员通常理解的含义相同。本文中在本申请的说明书中所使用的术语只是为了描述具体的实施例的目的,不是旨在于限制本申请。本文所使用的术语“及/或”包括一个或多个相关的所列项目的任意的和所有的组合。
下面结合附图,对本申请的一些实施方式作详细说明。在不冲突的情况下,下述的实施例及实施例中的特征可以相互组合。
请参考图1,本申请实施例提供一种相机10,相机10包括壳体11、快门13、镜头14和本申请实施例提供的光学取景器15。一些实施例中的相机10还可包括显示屏12。显示屏12、快门13、镜头14均设置于壳体11。光学取景器15可设置在壳体11的顶部和侧面,也可以集成在壳体11内。壳体11内设有光学传感器和处理器,光学传感器用于接收自镜头14进入的光线,并在光学传感器的感光面上形成光线的电信号,处理器对该电信号进行处理而得到数码相片。显示屏12用于显示该数码相片,在某些实施例中,显示屏12还可以用于取景,即自镜头14进入的光线的实时图像反馈到显示屏12上进行显示。快门13用于控制光线照射光学传感器的时间,即光学传感器的有效曝光时间。镜头14用于接收光学,并对光线进行一定的弯曲、折射等,改变光线的路径,能满足广角、标准和长焦等多个焦段的使用。镜头14可以为内置在壳体11的结构,也可以外置而与壳体11为可拆卸连接的结构。光学取景器15是相机10上通过目镜来监视图像的结构。本申请实施例中的光学取景器15,可以是光线不从镜头14经过的普通的光学取景器,广泛应用于家用的数码相机,例如卡片式数码相机;光学取景器15也可以是光线从镜头14经过的复杂的光学取景器,通常在壳体11内设反射镜、五棱镜等结构,镜头进入的光线经反射、折射等进入光学取景器,主要应用于专业的数码相机,例如单反数码相机。可以理解的是,本申请实施例中的光学取景器15在机械式相机中也可以应用,不仅限于电子式的数码相机。
目前,常规的光学取景器通常仅满足在焦距大于25mm以上的镜头中使用,当焦距更短而小于25mm时,适配25mm以下焦段的光学取景器较少,而采用大于25mm的光学取景器看到的图像失真,不能满足要求。而本申请实施例提供的光学取景器15,能满足大广角的取景。搭配到大广角的镜头使用时,效果更佳。
下面介绍本申请实施例提供的光学取景器。
请参考图2,本申请实施例提供一种光学取景器,该光学取景器沿光轴方向从物侧至人眼侧依次包含:第一透镜L1、第二透镜L2、第三透镜L3和第四透镜L4。
第一透镜L1具有负屈折力,第一透镜L1的人眼侧面S2为凹面;第二透镜L2具有负屈折力,第二透镜L2的人眼侧面S4为凹面;第三透镜L3具有屈折力;第四透镜L4具有正屈折力。
本申请实施例的四片透镜的结构,整体结构紧凑,便于实现小型化,同时,合理的屈折力和面型的搭配,可满足大广角的取景需求。
本实施例中,第二透镜L2还可以为正屈折力,第三透镜L3可以为正或负屈折力。
一种实施例中,第一透镜L1的物侧面S1为凸面;第二透镜L2的物侧面S3为凸面;第三透镜L3的物侧面S5为凸面,人眼侧面S6为凹面;第四透镜L4的人眼侧面S8为凸面。
换而言之,沿光轴物侧至人眼侧,各个透镜的物侧面和人眼侧面的面型分别为:第一透镜L1为凸凹,第二透镜L2为凸凹,第三透镜L3为凸凹,第四透镜L4的人眼侧面为凸面。即第一透镜L1至第三透镜L3构成的透镜组可以最大化的将视场角扩大,满足大广角的要求,而第四透镜L4可将光线折射到满足人眼观察的视角,参考图2中的物的光线100(实线)的路径,经过第一透镜L1至第四透镜L4的作用,物的光线100发生折射而汇聚在人眼。可选的,上述各个面均为球面,相比于非球面,结构简单,加工制作容易,成本低。
本实施例中,第四透镜L4的物侧面S7可为平面、凸面或凹面,示例性的,物侧面S7为平面。
一种实施例中,请参考图1和图2,光学取景器15还包括光阑STO,光阑STO用于控制进光量。一般而言,光阑STO可设置在光学取景器15中的任意位置,例如设置在第一透镜L1的物侧面S1一侧,或四个透镜之间的位置,或第四透镜L4的人眼侧面S8一侧。示例性的,光阑STO设置在第四透镜L4的人眼侧面S8一侧,并大约与人眼的瞳孔位置(该位置可视为在相机10的贴近人眼的最外侧)重合。
第一透镜L1至第四透镜L4可以采用边缘接触(例如采用粘胶粘接)的方式装配,也可以是相邻的两个透镜之间具有间隙而不直接接触,各个透镜分别通过安装在镜筒等支撑结构上进行装配。
第一透镜L1至第四透镜L4的材质可以为玻璃或塑料。示例性的,第一透镜L1和第四透镜L4的材质为玻璃。由于第一透镜L1和第四透镜L4位于透镜组的最外侧,有几率会产生磕碰,而玻璃比塑料的硬度更高,可降低磕碰等产生的划伤缺陷。此外,在人眼感知的光波长范围内,玻璃的光线透过率比塑料更高,采用玻璃可有效抑制人眼观察的图像的发黄程度。在考虑成本因素的情况下,由于玻璃和塑料在原材料、加工难度等方面的差异,玻璃材质的成本比塑料材质的成本更高,因此,也可以只设最易磕碰的第一透镜L1或第四透镜L4的其中一个的材质为玻璃,其余透镜的材质均为塑料。
一种实施例中,请参考图2和图3,第一透镜L1至第四透镜L4中的任意一个设有标记件300,标记件300设于物侧面或人眼侧面。并且,标记件300可设置在物侧面或人眼侧面上的任意位置,该任意位置可以为物侧面或人眼侧面上的部分圆形区域、矩形区域、环形区域等。示例性的,标记件300设于物侧面和人眼侧面中曲率半径更大的表面。在曲率半径更大的表面设标记件300,便于加工。具体的加工工艺可采用镀膜、丝印、蚀刻,镭雕等加工方式将标记件300附着在某个透镜的表面。标记件300的颜色、材质不限。
本实施例中,各个透镜的曲率半径可以是:第一透镜L1的物侧面S1的曲率半径大于人眼侧面S2的曲率半径,第二透镜L2的物侧面S3的曲率半径大于人眼侧面S4的曲率半径,第三透镜L3的物侧面S5的曲率半径大于人眼侧面S6的曲率半径,第四透镜L4的物侧面S7的曲率半径大于人眼侧面S8的曲率半径。因此,标记件300可以设置在第一透镜L1的物侧面S1、第二透镜L2的物侧面S3,第三透镜L3的物侧面S5和第四透镜L4的物侧面S7的任一表面。示例性的,标记件300设置在第四透镜L4的物侧面S7,物侧面S7比其他的透镜的曲率半径都要更大,即第四透镜L4的物侧面S7更平坦,方便加工,此外,第四透镜L4距离人眼较近,不容易被人眼直接成像,造成遮挡。
一种实施例中,标记件300包括以下的一种或多种:单个视场线框、多个视场线框、对焦提示线、中心对焦框、中心十字线、线框补充说明信息、企业标志。
其中,视场线框可以为矩形线框(如图3中附图标记302所示)、圆形线框等,用于构图。多个视场线框则可为多个矩形线框的依次嵌套的结构,相邻的矩形线框之间具有间隔距离,或者,多个视场线框为多个圆形线框的依次嵌套的结构,相邻的圆形线框之间具有间隔距离,或者,多个视场线框为圆形与矩形混合的结构,相邻的视场线框之间具有间隔距离。多个视场线框中相邻的两个视场线框之间的间隔距离可以相等。
对焦提示线可以为多个间隔排列的线条,例如多个横向和纵向排列的直线,将视场分隔为多个块状区域,横向和纵向直线相交的位置用于辅助对焦和构图。中心对焦框可以是中心的面积较小的矩形,用于辅助对焦。中心十字线(如图3中附图标记301所示)呈十字形,用于构图。线框补充说明信息(如图3中附图标记303所示)可以是线框的具体尺寸参数等。企业标志例如为企业logo,可设置在视场的任意位置。
上述的标记件300的类型可以单一设置,例如设置在边缘视场的单一视场线框;标记件300的类型优选为多种组合设置,例如图3所示的,标记件300包括中心十字线301、多个视场线框302和线框补充说明信息303。单一视场线框存在只能适配单一焦距,应用范围小的问题。相较于单一视场线框,标记件300为多种组合的情况下时,能够适配多个不同的焦距,应用范围更大。
标记件300设于第二透镜L2至第四透镜L4中的任意一个,较标记件300更靠近物侧的第一透镜L1至第三透镜L3中的任意一个具有反射功能,标记件300的图像在第一透镜L1至第三透镜L3中的任意一个反射后进入人眼。
具体而言,标记件300设置于第二透镜L2的物侧面S3或人眼侧面S4,则第一透镜L1的物侧面S1或人眼侧面S2具有反射功能;标记件300设置于第三透镜L3的物侧面S5或人眼侧面S6,则第一透镜L1的物侧面S1或人眼侧面S2,以及第二透镜L2的物侧面S3或人眼侧面S4的任意一个面具有反射功能;标记件300设置于第四透镜L4的物侧面S7或人眼侧面S8,则第一透镜L1的物侧面S1或人眼侧面S2,以及第二透镜L2的物侧面S3或人眼侧面S4,以及第三透镜L3的物侧面S5或人眼侧面S6的任意一个面具有反射功能。一种示例性的实施例中,如图2所示,标记件300设置在第四透镜L4的物侧面S7,第三透镜L3的物侧面S5具有反射功能。如此设置,请参考图2中标号200所示光路(虚线所示),第四透镜L4的物侧面S7上的标记件300的光线经过第三透镜L3的物侧面S5反射,再进第四透镜L4后射入人眼。将标记件300的光线设计为反射后进入人眼,而不是直接透射后进入人眼,是考虑到为了在人眼成清晰的像,需有合适的焦距,而无论在哪个透镜上设置标记件300,都存在距离人眼过近,直接透射的方式无法在人眼聚焦。因此,设置反射标记件300的光路,延长了标记件300与人眼的距离(即光路的路径长度被延长),可以在人眼上成像,人可看到清晰的标记件300的像。
应当理解的是,此处设置的标记件300的位置,应当与前述的标记件300设置在曲率半径更大的表面对应而不冲突。
透镜的表面具有反射功能可采用多种方案实现,例如,通常透镜为了增加透光率,会镀增透膜,而具有反射功能可采用减小透光率实现,即不镀增透膜。或者,在透镜上镀制 分光膜,在允许部分光线通过的同时,会反射部分光线,也可达到使得透镜具有反射功能。相较于不镀增透膜,镀制分光膜的方案,可根据需要调整反射率,可控性更高。
当采用镀制分光膜的方案时,分光膜至少覆盖标记件300在第一透镜L3至第三透镜L3中的任意一个上的光路覆盖范围的一部分。换而言之,分光膜所在的透镜的表面具有中心区域和边缘区域,标记件300的光线射入到分光膜所在的透镜时,光路会覆盖中心区域,而不会覆盖边缘区域,因此,分光膜至少应当部分设置在中心区域,使得标记件300的光线至少部分被反射。当然,也可以在该透镜的整个中心区域、整个表面都设分光膜。不镀增透膜同理,可以是具有反射功能的透镜的表面部分区域不镀增透膜,也可以整个表面都不镀增透膜。作用是保证这个表面有一定的反射率,可以使标记件300通过这个表面进行成像。镀分光膜或不镀增透膜的区域部分覆盖标记件300的光路穿过的范围时,在镀分光膜或不镀增透膜的区域的反射率更高,能看到的更清楚,在没有镀有分光膜或镀有增透膜的区域的反射率低一些,但也不是完全不能反射,此区域的光线稍暗,但也能看到。
一种实施例中,请参考图1和图2,光学取景器15满足条件式:TTL≤30mm;其中,TTL为第一透镜L1的物侧面S1至第四透镜L4的人眼侧面S8在光轴上的距离,即TTL为第一透镜L1至第四透镜L4的透镜组的总长度。满足上式,可实现光学取景器15的结构小型化。
一种实施例中,请参考图1至图2,光学取景器15满足条件式:TAN(A i)≥0.85;其中,A i是光学取景器15的对角线视场角的一半,TAN(A i)为光学取景器15的视场角A i的正切值。图2中,物方能通过光学取景器15成像的最大角度光线101与光轴之间的夹角为A i,满足上式,可实现光学取景器15的视角广角化。
一种实施例中,请参考图1和图2,光学取景器15满足条件式:
Figure PCTCN2019130956-appb-000001
其中,c 1为第一透镜L1的物侧面S1的表面曲率,c 2为第一透镜L1的人眼侧面S2的表面曲率。在光学领域,表面曲率具有方向性,不同的方向,表面曲率可正可负,而c 1-c 2的差值和镜头的光焦度呈正比;当第一透镜L1的物侧面S1和人眼侧面S2的表面曲率相同但方向相反时,上述条件式等于0。满足上式,能使得在满足光线入射的大角度的情况下,透镜组的像差在可控范围。
一种实施例中,请参考图1和图2,光学取景器15满足条件式:28≤V 2≤97;其中,V 2为第二透镜L2的色散系数。当V 2<28时,色差较大,增加整个透镜组的色差校正的压力,特别是对具有正屈折力的透镜的要求更高,限制材料的选择。当V 2>97时,会大幅增加材料的成本。因此,满足上式,色差在合适范围,同时材料成本较低。
一种实施例中,请参考图1和图2,光学取景器15满足条件式:0.0184*V 4+N 4≤2.5;其中,V 4为第四透镜L4的色散系数,N 4为第四透镜L4的折射率。当0.0184*V 4+N 4>2.5时,第四透镜L4的色差校正能力较差,对光学取景器15中具有负屈折力的透镜的材料的限制较大。满足上式,则第四透镜L4的色差校正能力较好,对光学取景器15中具有负屈折力的透镜的材料的限制小。
表1是一种实施例的光学取景器的整体参数信息。
表1
物方对角线视场角(°) ±49.5
人眼感知视场角(°) ±21.54
放大倍率 0.34
表2是一种实施例的光学取景器的各个表面的数据信息。
表2
面号 R D N V
物面 无限 无限    
S1 24.510 1.200 1.75 52.30
S2 10.185 3.675    
S3 27.884 1.000 1.62 63.40
S4 11.610 3.428    
S5 23.170 1.000 1.80 40.00
S6 13.587 8.644    
S7 无限 7.000 1.75 35.00
S8 -17.378 15.000    
STO 无限 -    
表2中,R表示曲率半径,单位是mm,D表示轴上距离,单位是mm,N表示折射率,V表示阿贝数。光阑STO与人眼瞳孔位置重合。
请参考图4的纵向球面像差曲线图,球面像差关于C线,d线和F线发生,C线的波长为656.3nm,d线的波长为587.6nm,F线的波长为486.1nm,球面相差在可控范围。
请参考图5的像散曲线和畸变曲线,在像散曲线中,实线是相对于弧矢像平面的像差,虚线时相对子午像平面的像差。可见,像散和畸变均在可控范围。
综合图4和图5可知,本申请实施例的光学取景器具有良好的光学素质。
在相同的发明构思下,本申请实施例还提供了另一种光学取景器,光轴方向从物侧至人眼侧依次包含:具有负屈折力的第一透镜;具有负曲折力的第二透镜;具有正屈折力的第三透镜。与前述实施例不同的是,本实施例是采用三片透镜,同样能实现结构紧凑,结构小型化,并且能满足大广角的取景需求。
一种实施例中,第一透镜至第三透镜中的任意一个设有标记件,标记件设于物侧面或人眼侧面,并可位于任意位置。示例性的,标记件设于物侧面或人眼侧面中曲率半径更大的表面。此部分限定参考前述实施例中的描述,并适当的转用到三片透镜的结构中即可,不再赘述。
一种实施例中,所述标记件通过镀膜、丝印、蚀刻或者镭雕任一加工方式附着在所述物侧面或所述人眼侧面。
一种实施例中,标记件包括以下的一种或多种:单个视场线框、多个视场线框、对焦提示线、中心对焦框、中心十字线、线框补充说明信息、企业标志。参考前述内容,不再赘述。
一种实施例中,视场线框呈矩形,当标记件为多个视场线框时,多个视场线框呈依次嵌套的结构。
一种实施例中,标记件设于第二透镜或第三透镜,较标记件更靠近物侧的第一透镜或 第二透镜中具有反射功能,标记件的图像在第一透镜或第二透镜中反射后进入人眼。
一种实施例中,较标记件更靠近物侧的第一透镜或第二透镜的具有反射功能的物侧面或人眼侧面不镀增透膜或镀预设反射率的分光膜。
一种实施例中,所述标记件设于所述第三透镜上,所述第二透镜的物侧面具有反射功能。
一种实施例中,分光膜的面积大于等于标记件在第一透镜或第二透镜的光路覆盖范围的面积。
一种实施例中,第一透镜和/或第三透镜的材质为玻璃。
一种实施例中,光学取景器满足条件式:TTL≤30;其中,TTL为第一透镜的物侧面至第四透镜的人眼侧面在光轴上的距离。
一种实施例中,光学取景器满足条件式:TAN(A i)≥0.85;其中,A i是光学取景器的对角线视场角的一半,TAN(A i)为光学取景器的视场角A i的正切值。
一种实施例中,光学取景器满足条件式:
Figure PCTCN2019130956-appb-000002
其中,c 1为第一透镜的物侧面的表面曲率,c 2为第一透镜的人眼侧面的表面曲率。
以上对本申请进行了详细介绍,本文中应用了具体个例对本申请的原理及实施例进行了阐述,以上实施例的说明只是用于帮助理解本申请的方法及其核心思想;同时,对于本领域的一般技术人员,依据本申请的思想,在具体实施例及应用范围上均会有改变之处,综上所述,本说明书内容不应理解为对本申请的限制。

Claims (37)

  1. 一种光学取景器,其特征在于,沿光轴方向从物侧至人眼侧依次包含:
    第一透镜,具有负屈折力,所述第一透镜的人眼侧面为凹面;
    第二透镜,具有屈折力,所述第二透镜的人眼侧面为凹面;
    第三透镜,具有屈折力;
    第四透镜,具有正屈折力。
  2. 如权利要求1所述的光学取景器,其特征在于,所述第二透镜具有负屈折力。
  3. 如权利要求2所述的光学取景器,其特征在于,
    所述第一透镜的物侧面为凸面;
    所述第二透镜的物侧面为凸面;
    所述第三透镜的物侧面为凸面,人眼侧面为凹面;
    所述第四透镜的人眼侧面为凸面。
  4. 如权利要求1至3任一项所述的光学取景器,其特征在于,所述第一透镜至所述第四透镜中的任意一个设有标记件,所述标记件设于物侧面或人眼侧面。
  5. 如权利要求4所述的光学取景器,其特征在于,所述标记件设于所述物侧面和所述人眼侧面中曲率半径更大的表面。
  6. 如权利要求4或5所述的光学取景器,其特征在于,所述标记件设置在所述第四透镜上。
  7. 如权利要求4至6任一项所述的光学取景器,其特征在于,所述标记件设置在所述物侧面或所述人眼侧面上的任意位置。
  8. 如权利要求4所述的光学取景器,其特征在于,所述标记件通过镀膜、丝印、蚀刻或者镭雕任一加工方式附着在所述物侧面或所述人眼侧面。
  9. 如权利要求4所述的光学取景器,其特征在于,所述标记件包括以下的一种或多种:单个视场线框、多个视场线框、对焦提示线、中心对焦框、中心十字线、线框补充说明信息、企业标志。
  10. 如权利要求9所述的光学取景器,其特征在于,所述视场线框呈矩形,当所述标记件为多个视场线框时,多个视场线框呈依次嵌套的结构。
  11. 如权利要求4所述的光学取景器,其特征在于,所述标记件设于所述第二透镜至 所述第四透镜中的任意一个,较所述标记件更靠近物侧的所述第一透镜至所述第三透镜中的任意一个具有反射功能,所述标记件的图像在所述第一透镜至所述第三透镜中的任意一个反射后进入人眼。
  12. 如权利要求11所述的光学取景器,其特征在于,较所述标记件更靠近物侧的所述第一透镜至所述第三透镜中的任意一个具有反射功能的物侧面或人眼侧面不镀增透膜或镀预设反射率的分光膜。
  13. 如权利要求12所述的光学取景器,其特征在于,所述标记件设于所述第四透镜上,所述第三透镜的物侧面具有反射功能。
  14. 如权利要求12所述的光学取景器,其特征在于,所述分光膜的面积大于等于所述标记件在所述第一透镜至所述第三透镜中的任意一个上的光路覆盖范围的面积。
  15. 如权利要求1所述的光学取景器,其特征在于,所述第一透镜和/或所述第四透镜的材质为玻璃。
  16. 如权利要求1至15任一项所述的光学取景器,其特征在于,所述光学取景器满足条件式:
    TTL≤30mm
    其中,TTL为所述第一透镜的物侧面至所述第四透镜的人眼侧面在光轴上的距离。
  17. 如权利要求1至15任一项所述的光学取景器,其特征在于,所述光学取景器满足条件式:
    TAN(A i)≥0.85
    其中,A i是所述光学取景器的对角线视场角的一半,TAN(A i)为光学取景器的视场角A i的正切值。
  18. 如权利要求1至15任一项所述的光学取景器,其特征在于,所述光学取景器满足条件式:
    Figure PCTCN2019130956-appb-100001
    其中,c 1为所述第一透镜的物侧面的表面曲率,c 2为所述第一透镜的人眼侧面的表面曲率。
  19. 如权利要求1至15任一项所述的光学取景器,其特征在于,所述光学取景器满足条件式:
    28≤V 2≤97
    其中,V 2为所述第二透镜的色散系数。
  20. 如权利要求1至15任一项所述的光学取景器,其特征在于,所述光学取景器满足条件式:
    0.0184*V 4+N 4≤2.5
    其中,V 4为所述第四透镜的色散系数,N 4为所述第四透镜的折射率。
  21. 一种光学取景器,其特征在于,沿光轴方向从物侧至人眼侧依次包含:
    第一透镜,具有负屈折力;
    第二透镜,具有负曲折力;
    第三透镜,具有正屈折力。
  22. 如权利要求21所述的光学取景器,其特征在于,所述第一透镜至所述第三透镜中的任意一个设有标记件,所述标记件设于物侧面或人眼侧面。
  23. 如权利要求22所述的光学取景器,其特征在于,所述标记件设于所述物侧面和所述人眼侧面中曲率半径更大的表面。
  24. 如权利要求22或23所述的光学取景器,其特征在于,所述标记件设置在所述第三透镜上。
  25. 如权利要求22至24任一项所述的光学取景器,其特征在于,所述标记件设置在所述物侧面或所述人眼侧面上的任意位置。
  26. 如权利要求22所述的光学取景器,其特征在于,所述标记件通过镀膜、丝印、蚀刻或者镭雕任一加工方式附着在所述物侧面或所述人眼侧面。
  27. 如权利要求22所述的光学取景器,其特征在于,所述标记件包括以下的一种或多种:单个视场线框、多个视场线框、对焦提示线、中心对焦框、中心十字线、线框补充说明信息、企业标志。
  28. 如权利要求27所述的光学取景器,其特征在于,所述视场线框呈矩形,当所述标记件为多个视场线框时,多个视场线框呈依次嵌套的结构。
  29. 如权利要求22所述的光学取景器,其特征在于,所述标记件设于所述第二透镜或所述第三透镜,较所述标记件更靠近物侧的所述第一透镜或所述第二透镜中具有反射功能,所述标记件的图像在所述第一透镜或所述第二透镜中反射后进入人眼。
  30. 如权利要求29所述的光学取景器,其特征在于,较所述标记件更靠近物侧的所述 第一透镜或所述第二透镜的具有反射功能的物侧面或人眼侧面不镀增透膜或镀预设反射率的分光膜。
  31. 如权利要求30所述的光学取景器,其特征在于,所述标记件设于所述第三透镜上,所述第二透镜的物侧面具有反射功能。
  32. 如权利要求30所述的光学取景器,其特征在于,所述分光膜的面积大于等于所述标记件在所述第一透镜或所述第二透镜的光路覆盖范围的面积。
  33. 如权利要求21所述的光学取景器,其特征在于,所述第一透镜和/或第三透镜的材质为玻璃。
  34. 如权利要求21至33任一项所述的光学取景器,其特征在于,所述光学取景器满足条件式:
    TTL≤30
    其中,TTL为所述第一透镜的物侧面至所述第四透镜的人眼侧面在光轴上的距离。
  35. 如权利要求21至33任一项所述的光学取景器,其特征在于,所述光学取景器满足条件式:
    TAN(A i)≥0.85
    其中,A i是所述光学取景器的对角线视场角的一半,TAN(A i)为光学取景器的视场角A i的正切值。
  36. 如权利要求21至33任一项所述的光学取景器,其特征在于,所述光学取景器满足条件式:
    Figure PCTCN2019130956-appb-100002
    其中,c 1为所述第一透镜的物侧面的表面曲率,c 2为所述第一透镜的人眼侧面的表面曲率。
  37. 一种相机,其特征在于,包括如权利要求1至36任一项所述的光学取景器。
PCT/CN2019/130956 2019-12-31 2019-12-31 光学取景器和相机 WO2021134707A1 (zh)

Priority Applications (2)

Application Number Priority Date Filing Date Title
PCT/CN2019/130956 WO2021134707A1 (zh) 2019-12-31 2019-12-31 光学取景器和相机
CN201980094954.4A CN113646684A (zh) 2019-12-31 2019-12-31 光学取景器和相机

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/CN2019/130956 WO2021134707A1 (zh) 2019-12-31 2019-12-31 光学取景器和相机

Publications (1)

Publication Number Publication Date
WO2021134707A1 true WO2021134707A1 (zh) 2021-07-08

Family

ID=76686246

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2019/130956 WO2021134707A1 (zh) 2019-12-31 2019-12-31 光学取景器和相机

Country Status (2)

Country Link
CN (1) CN113646684A (zh)
WO (1) WO2021134707A1 (zh)

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6825993B2 (en) * 2002-03-14 2004-11-30 Fuji Photo Optical Co., Ltd. Wide-angle lens having aspheric surface
CN105572839A (zh) * 2014-10-09 2016-05-11 信泰光学(深圳)有限公司 成像镜头
CN106199918A (zh) * 2016-08-31 2016-12-07 浙江舜宇光学有限公司 摄像镜头
CN106405794A (zh) * 2016-08-31 2017-02-15 浙江舜宇光学有限公司 光学成像系统
CN107783260A (zh) * 2017-12-11 2018-03-09 浙江舜宇光学有限公司 成像镜头
WO2019144382A1 (zh) * 2018-01-26 2019-08-01 深圳市大疆创新科技有限公司 广角镜头、成像装置和无人机

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
TWI351529B (en) * 2007-06-15 2011-11-01 Largan Precision Co Ltd Wide lens
CN103513398B (zh) * 2012-06-26 2016-01-20 深圳市比亚迪电子部品件有限公司 一种光学成像镜头
CN107121762B (zh) * 2017-06-30 2023-09-08 中山市众盈光学有限公司 一种车载镜头光学系统
CN208506351U (zh) * 2018-07-23 2019-02-15 辽宁中蓝电子科技有限公司 四片式成像透镜组

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6825993B2 (en) * 2002-03-14 2004-11-30 Fuji Photo Optical Co., Ltd. Wide-angle lens having aspheric surface
CN105572839A (zh) * 2014-10-09 2016-05-11 信泰光学(深圳)有限公司 成像镜头
CN106199918A (zh) * 2016-08-31 2016-12-07 浙江舜宇光学有限公司 摄像镜头
CN106405794A (zh) * 2016-08-31 2017-02-15 浙江舜宇光学有限公司 光学成像系统
CN107783260A (zh) * 2017-12-11 2018-03-09 浙江舜宇光学有限公司 成像镜头
WO2019144382A1 (zh) * 2018-01-26 2019-08-01 深圳市大疆创新科技有限公司 广角镜头、成像装置和无人机

Also Published As

Publication number Publication date
CN113646684A (zh) 2021-11-12

Similar Documents

Publication Publication Date Title
US11231565B2 (en) Optical lens comprising eight lenses of −−++−++− refractive powers
TWI637207B (zh) 成像透鏡組、取像裝置及電子裝置
TWI674433B (zh) 光學鏡頭
TWI626487B (zh) 光學影像鏡頭系統組、取像裝置及電子裝置
US7046458B2 (en) Fisheye lens and imaging device using it
TWI710793B (zh) 光學攝影系統及電子裝置
US20130057971A1 (en) Panoramic imaging lens and panoramic imaging system using the same
TWI475245B (zh) 攝像用光學透鏡組及其攝像裝置
TWI748795B (zh) 光學影像鏡頭組及電子裝置
WO2020140604A1 (zh) 光学成像镜头及成像设备
TWI674431B (zh) 電子裝置
TWI607234B (zh) 光學成像鏡頭
WO2020140788A1 (zh) 长焦镜头及移动终端
CN113721345B (zh) 光学系统、镜头模组以及电子设备
TWI771811B (zh) 電子裝置
TW201207462A (en) Optical photographing lens assembly
CN115437128B (zh) 一种光学镜头、摄像头模组及电子设备
CN109164557B (zh) 广角镜头及全景摄像系统
CN110794556A (zh) 广角镜头及全景摄像系统
TW201527792A (zh) 光學成像鏡頭及應用此鏡頭之電子裝置
TWI807478B (zh) 光學成像系統、取像裝置及電子設備
CN113484997B (zh) 光学镜头、摄像模组及电子设备
WO2021134707A1 (zh) 光学取景器和相机
WO2022088651A1 (zh) 潜望式光学成像系统、摄像模组和电子装置
CN114859511A (zh) 光学镜头、摄像模组及电子设备

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 19958250

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 19958250

Country of ref document: EP

Kind code of ref document: A1