CN114859511A - 光学镜头、摄像模组及电子设备 - Google Patents

光学镜头、摄像模组及电子设备 Download PDF

Info

Publication number
CN114859511A
CN114859511A CN202210511417.9A CN202210511417A CN114859511A CN 114859511 A CN114859511 A CN 114859511A CN 202210511417 A CN202210511417 A CN 202210511417A CN 114859511 A CN114859511 A CN 114859511A
Authority
CN
China
Prior art keywords
lens
optical lens
optical
area
optical axis
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Withdrawn
Application number
CN202210511417.9A
Other languages
English (en)
Inventor
文逸春
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Jiangxi Jinghao Optical Co Ltd
Original Assignee
Jiangxi Jinghao Optical Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Jiangxi Jinghao Optical Co Ltd filed Critical Jiangxi Jinghao Optical Co Ltd
Priority to CN202210511417.9A priority Critical patent/CN114859511A/zh
Publication of CN114859511A publication Critical patent/CN114859511A/zh
Withdrawn legal-status Critical Current

Links

Images

Classifications

    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B13/00Optical objectives specially designed for the purposes specified below
    • G02B13/001Miniaturised objectives for electronic devices, e.g. portable telephones, webcams, PDAs, small digital cameras
    • G02B13/0015Miniaturised objectives for electronic devices, e.g. portable telephones, webcams, PDAs, small digital cameras characterised by the lens design
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B13/00Optical objectives specially designed for the purposes specified below
    • G02B13/001Miniaturised objectives for electronic devices, e.g. portable telephones, webcams, PDAs, small digital cameras
    • G02B13/0015Miniaturised objectives for electronic devices, e.g. portable telephones, webcams, PDAs, small digital cameras characterised by the lens design
    • G02B13/002Miniaturised objectives for electronic devices, e.g. portable telephones, webcams, PDAs, small digital cameras characterised by the lens design having at least one aspherical surface
    • G02B13/0035Miniaturised objectives for electronic devices, e.g. portable telephones, webcams, PDAs, small digital cameras characterised by the lens design having at least one aspherical surface having three lenses
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B13/00Optical objectives specially designed for the purposes specified below
    • G02B13/001Miniaturised objectives for electronic devices, e.g. portable telephones, webcams, PDAs, small digital cameras
    • G02B13/0055Miniaturised objectives for electronic devices, e.g. portable telephones, webcams, PDAs, small digital cameras employing a special optical element
    • G02B13/0065Miniaturised objectives for electronic devices, e.g. portable telephones, webcams, PDAs, small digital cameras employing a special optical element having a beam-folding prism or mirror
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B13/00Optical objectives specially designed for the purposes specified below
    • G02B13/18Optical objectives specially designed for the purposes specified below with lenses having one or more non-spherical faces, e.g. for reducing geometrical aberration

Landscapes

  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Optics & Photonics (AREA)
  • Lenses (AREA)

Abstract

本发明公开的光学镜头、摄像模组及电子设备,光学镜头包括沿光轴从物侧至像侧依次设置的第一透镜、第二透镜和第三透镜;第一透镜具有正屈折力,第一透镜的像侧面包括位于近光轴处的出射区和远离光轴的第一反射区,第一透镜的物侧面包括远离光轴的入射区和位于近光轴处的第二反射区,第二透镜具有负屈折力,其物侧面和像侧面于近光轴处分别为凸面和凹面,第三透镜具有负屈折力,其物侧面和像侧面于近光轴处分别为凹面和凸面,光学镜头满足以下关系式:5<|L1R4|/|L1R3|<25,L1R4为出射区于光轴处的曲率半径,L1R3为第二反射区于光轴处的曲率半径。采用本技术方案,能够在实现光学镜头的小型化设计的同时,提高光学镜头的分辨率和成像清晰度,实现清晰成像。

Description

光学镜头、摄像模组及电子设备
技术领域
本发明涉及光学成像技术领域,尤其涉及一种光学镜头、摄像模组及电子设备。
背景技术
目前,随着手机、平板电脑、无人机、计算机等电子设备在生活中的广泛应用,人们对光学镜头的成像品质的要求越来越高,不仅要求光学镜头更加轻薄小型化,同时还要达到更高的成像质量。为了满足光学镜头的小型化设计,通常会增设棱镜以将光学镜头设置为潜望式镜头,但是棱镜会对光学镜头的成像造成鬼影和杂光,降低画面清晰度和质量。也即是,在满足光学镜头轻薄小型化的设计趋势下,光学镜头难以清晰成像,画质感较差、分辨率较低,难以满足人们对光学镜头的高清成像要求。
发明内容
本发明实施例公开了一种光学镜头、摄像模组及电子设备,能够在实现光学镜头的轻薄、小型化设计的同时,提高光学镜头的分辨率和成像清晰度,提升光学镜头的拍摄质量,实现清晰成像。
为了实现上述目的,第一方面,本发明公开了一种光学镜头,所述光学镜头共有具有屈折力的三片透镜,所述三片透镜光轴从物侧至像侧依次为第一透镜、第二透镜和第三透镜;
所述第一透镜具有正屈折力,所述第一透镜的像侧面包括位于近光轴处的出射区和远离光轴的第一反射区,所述第一透镜的物侧面包括远离光轴的入射区和位于近光轴处的第二反射区,入射光线经所述入射区进入所述第一透镜,依次经所述第一反射区和所述第二反射区反射并由所述出射区射出所述第一透镜;
所述第二透镜具有负屈折力,所述第二透镜的物侧面于近光轴处为凸面,所述第二透镜的像侧面于近光轴处为凹面;
所述第三透镜具有负屈折力,所述第三透镜的物侧面于近光轴处为凹面,所述第三透镜的像侧面于近光轴处为凸面;
所述光学镜头满足以下关系式:
5<|L1R4|/|L1R3|<25;
其中,L1R4为所述出射区于光轴处的曲率半径,L1R3为所述第二反射区于光轴处的曲率半径。
在本申请提供的光学镜头中,第一透镜具有入射区、第一反射区、第二反射区以及出射区,从而可以利用第一反射区和第二反射区使得入射光线能够在第一透镜进行反射,进而有利于在增加光学镜头的总光路长度的同时,压缩光学镜头的光学总长,而无需再额外架设反射元件以提供小型化配置,同时减少元件数量、降低成本,并且减少组装误差。第一透镜提供的正屈折力,以及第一反射区可朝向光学镜头的物侧设置,第二反射区可朝向光学镜头的像侧设置,可以在不增加光学镜头的厚度的前提下,达到焦距长、小视场角的配置,物体细节更清晰,识别效果更好;配合第二透镜提供的负屈折力以及物侧面和像侧面于近光轴处的凸凹面面型设计,可确保光线的入射角度,避免产生过多像差;同时还配合第三透镜提供的负屈折力,有利于校正边缘像差,提升成像解析力,同时第三透镜的物侧面于近光轴处的凹面面型设计,有利于会聚周边光线,避免入射角度过大从而导致杂散光出现,以及第三透镜的像侧面于近光轴处的凸面面型设计,有利于平衡像差,并有利于压缩光学镜头的光学总长。
其中,光学镜头的总光路长度为入射光线经所述入射区进入至所述第一反射区在平行于光轴的方向上的光路路径、入射光线经所述第一反射区反射至所述第二反射区在平行于光轴的方向上的光路路径、入射光线经所述第二反射区反射至所述出射区在平行于光轴的方向上的光路路径和入射光线经所述出射区进入至所述光学镜头的成像面在平行于光轴的方向上的光路路径之和;光学镜头的光学总长为所述第二反射区至所述光学镜头的成像面于光轴上的距离。
本申请的光学镜头通过选取合适数量的透镜并合理配置各个透镜的屈折力、面型,以及第一透镜具有入射区、第一反射区、第二反射区和出射区,能够在不改变光学镜头的总光路长度的前提下,压缩光学镜头的光学总长,以实现光学镜头的轻薄、小型化设计,同时还能满足长焦镜头的要求,提高光学性能,提高光学镜头的分辨率和成像清晰度,以使光学镜头具有更好的成像效果,满足人们对光学镜头的高清成像要求;并且还使光学镜头满足以下关系式:5<|L1R4|/|L1R3|<25,由于第一透镜的形状影响着光学镜头的光学总长的长短,因此,当满足上述关系式的限定时,可以避免光学镜头的光学总长过长,从而有利于使光学镜头符合小型化设计,还有利于减小光线入射第二透镜的入射角,有利于抑制中心视场光线的出射角度,确保光线平滑过渡到第二透镜,以确保成像质量。而当低于上述关系式的下限时,出射区于光轴处的曲率半径的绝对值与第二反射区于光轴处的曲率半径的绝对值的比值变小,这意味着出射区于光轴处的曲率半径的绝对值变小或是第二反射区于光轴处的曲率半径的绝对值变大,出射区的出射角度过大,容易出现杂光;而当超过上述关系式的上限时,出射区于光轴处的曲率半径的绝对值与第二反射区于光轴处的曲率半径的绝对值的比值变大,这意味着出射区于光轴处的曲率半径的绝对值变大或是第二反射区于光轴处的曲率半径的绝对值变小,出射区的出射角度过小,无法满足长焦镜头的视场角设计要求。
作为一种可选的实施方式,在本发明第一方面的实施例中,所述光学镜头满足以下关系式:0.2<YI/EPD<0.5;YI为所述光学镜头的成像面上最大有效成像圆的半径,EPD为所述光学镜头的入瞳直径。
由于光学镜头的入瞳直径的大小与光学镜头的光圈数有关,而光学镜头的光圈数决定了光学镜头的拍摄画面的亮度。因此,当满足上述关系式的限定时,可以在维持光学镜头的长焦性能的前提下,实现光学镜头的大通光量设计,即,可以在使光学镜头处于长焦时具有较好的长焦性能的同时,使得光学镜头具有更大的通光量,不仅有利于使所述光学镜头的拍摄图像更加清晰,以达到较好的成像效果;还可以使光学镜头获取更多的场景内容,丰富所述光学镜头的成像信息。而且,当光学镜头在单位时间内的光通量较大时,即使在较暗的环境下进行拍摄,也能达到清晰的成像效果。而当低于上述关系式的下限时,光学镜头的像高过小,无法与高像素的感光芯片匹配而难以实现高像素成像,另外,光源难以充分到达光学镜头的成像面,导致光学镜头的拍摄画面的亮度较暗,从而影响光学镜头的光学性能;而当超过上述关系式的上限时,光学镜头的入瞳直径太小,会造成通光量不足,导致光线相对亮度不够,从而会造成画面感光度下降,导致光学镜头拍摄出来的影像变暗,影响拍摄质量。
作为一种可选的实施方式,在本发明第一方面的实施例中,所述光学镜头满足以下关系式:0.7<f/TTLc<1.2,其中,f为所述光学镜头的有效焦距,TTLc为所述光学镜头在平行于光轴的方向上的总光路长度,所述总光路长度是指入射光线经所述入射区进入至所述第一反射区在平行于光轴的方向上的光路路径、入射光线经所述第一反射区反射至所述第二反射区在平行于光轴的方向上的光路路径、入射光线经所述第二反射区反射至所述出射区在平行于光轴的方向上的光路路径和入射光线经所述出射区进入至所述光学镜头的成像面在平行于光轴的方向上的光路路径之和。
当满足上述关系式的限定时,能够在缩短光学镜头的光学总长的同时,使得光学镜头具有较长的总光路长度,以满足长焦镜头的要求,提高光学镜头的光学性能和解析力,提升光学镜头的拍摄质量,实现清晰成像。而当低于上述关系式的下限时,光学镜头的光学总长会变长,不利于光学镜头的小型化设计;而当超过上述关系式的上限时,光学镜头的光学总长会变短,难以满足长焦镜头的焦距设计要求。
作为一种可选的实施方式,在本发明第一方面的实施例中,所述光学镜头满足以下关系式:0.0<|L1R1Th-L1R3Th|/|L1R1Th+L1R2Th|<0.3;其中,L1R1Th为所述入射区到所述第一反射区于平行于光轴的方向上的最短距离,L1R2Th为所述第一反射区到所述第二反射区于平行于光轴的方向上的最短距离,L1R3Th为所述第二反射区到所述出射区于平行于光轴的方向上的最短距离。
当满足上述关系式的限定时,入射区和第一反射区之间的最短距离、第一反射区和第二反射区之间的最短距离,以及第二反射区和出射区之间的最短距离得到合理配置,能够在使光学镜头具有较长的总光路长度以满足长焦镜头的成像要求的同时,缩短光学镜头的光学总长,有利于实现光学镜头的小型化设计。而当低于上述关系式的下限时,第一反射区和第二反射区之间的最短距离,以及第二反射区到出射区之间的最短距离过大,导致光学镜头的光学总长会变长,不利于光学镜头的小型化设计,同时还会产生严重的内面反射,降低光学镜头的成像质量;而当超过上述关系式的上限时,第一反射区和第二反射区之间的最短距离,以及第二反射区和出射区区之间的最短距离过小,导致光学镜头的总光路长度过短,不利于实现光学镜头的长焦性能,而且光学镜头的畸变也会变大,影响光学镜头的成像品质。
作为一种可选的实施方式,在本发明第一方面的实施例中,所述光学镜头满足以下关系式:
Figure BDA0003637074200000041
其中,L2R1为所述第二透镜的物侧面于光轴处的曲率半径,L2R1YI为所述第二透镜的物侧面于光轴处的有效口径的一半。
当满足上述关系式的限定时,第二透镜的物侧面于光轴处的曲率半径和第二透镜的物侧面于光轴处的有效口径得到合理配置,可控制第二透镜的物侧面的形状,优化第二透镜的物侧面的角度,便于第二透镜的加工制造,以及有利于控制第二透镜的球差贡献量在合理的范围内,使得中心视场和边缘视场的成像质量不会因第二透镜的球差的贡献量变化而产生明显的退化,提高光学镜头的成像质量。
作为一种可选的实施方式,在本发明第一方面的实施例中,所述光学镜头满足以下关系式:
Figure BDA0003637074200000042
其中,L3R1为所述第三透镜的物侧面于光轴处的曲率半径,L3R1YI为所述第三透镜的物侧面于光轴处的有效口径的一半。
当满足上述关系式的限定时,第三透镜的物侧面于光轴处的曲率半径和第三透镜的物侧面于光轴处的有效口径得到合理配置,可控制第三透镜的物侧面的形状,优化第三透镜的物侧面的角度,便于第三透镜的加工制造,以及有利于控制第三透镜的球差贡献量在合理的范围内,使得中心视场和边缘视场的成像质量不会因第三透镜的球差的贡献量变化而产生明显的退化,提高光学镜头的成像质量。
作为一种可选的实施方式,在本发明第一方面的实施例中,所述光学镜头满足以下关系式:
Figure BDA0003637074200000051
其中,L3R2为所述第三透镜的像侧面于光轴处的曲率半径,L3R2YI为所述第三透镜的像侧面于光轴处的有效口径的一半。
当满足上述关系式的限定时,第三透镜的像侧面于光轴处的曲率半径和第三透镜的像侧面于光轴处的有效口径得到合理配置,可控制第三透镜的像侧面的形状,优化第三透镜的像侧面的角度,便于第三透镜的加工制造,以及有利于控制第三透镜的球差贡献量在合理的范围内,使得中心视场和边缘视场的成像质量不会因第三透镜的球差的贡献量变化而产生明显的退化,提高光学镜头的成像质量。
当光学镜头同时满足以下各条关系式:
Figure BDA0003637074200000052
Figure BDA0003637074200000053
Figure BDA0003637074200000054
时,可以降低产生鬼影的风险,以提升光学镜头的拍摄质量,实现清晰成像。
作为一种可选的实施方式,在本发明第一方面的实施例中,所述光学镜头满足以下关系式:18deg<FOV<19deg;其中,FOV为所述光学镜头的最大视场角。当满足上述关系式的限定时,可以使光学镜头具备大视角特性,从而能够获取更多的场景内容,丰富光学镜头的成像信息。而当低于上述关系式的上限时,光学镜头的视场角过大,造成外视场畸变过大,导致图像外围会出现扭曲现象,降低所述光学镜头的成像性能;而当超过上述关系式的下限时,光学镜头的视场角过小,降低光学镜头的视场范围,导致光学镜头的成像信息不全,影响光学镜头的拍摄质量。
作为一种可选的实施方式,在本发明第一方面的实施例中,所述光学镜头满足以下关系式:1.7<FNO<1.8;其中,FNO为所述光学镜头的光圈数。当满足上述关系式的限定时,可以提供足够的通光量,改善暗光拍摄条件,让拍摄出来的画面更加生动形象,满足高画质高清晰度的拍摄需求。而当超过上述关系式的上限时,光学镜头的光圈数过大,光圈过小,导致通光量不足产生暗角现象;当低于上述关系式的下限时,光学镜头的光圈较小,容易影响光学镜头捕捉图像的精准度,不利于光学镜头的高分辨率成像,像差修正难度加大,从而容易导致光学镜头的成像性能降低。
作为一种可选的实施方式,在本发明第一方面的实施例中,所述光学镜头满足以下关系式:25mm-1<RI/YI<35mm-1;其中,RI为所述光学镜头的成像面上最大视场角处的相对照度,所述相对照度指的是:光学镜头的中心照度与外围照度的比值。
当满足上述关系式的限定时,有利于满足光学镜头对相对照度的需求,有利于提高边缘视场照度,使得光学镜头的光亮度较高,从而增强光学镜头在暗光环境下的拍摄效果,提高光学镜头的深度识别精度。而当低于上述关系式的下限时,光学镜头的最大视场角对应的相对照度会变低,导致感光芯片接收到的周边光量很少,使得光学镜头的整个拍摄画面的亮度较暗,影响光学镜头的拍摄质量;而当超过上述关系式的上限时,为了确保光学镜头的最大视场角对应的相对照度足够大,需要减小感光芯片的尺寸,导致成像面较小,有可能造成成像信息不全的情况。
作为一种可选的实施方式,在本发明第一方面的实施例中,所述光学镜头满足以下关系式:0.31mm/deg<TTLs/FOV<0.33mm/deg;其中,TTLs为所述第二反射区至所述光学镜头的成像面于光轴上的距离,FOV为所述光学镜头的最大视场角。
通过限定第一透镜为具有入射区、第一反射区、第二反射区以及出射区的透镜结构,有利于使光学镜头在具有较小光学总长的同时具有较大视场角,以满足光学镜头对拍摄范围的需求。而当低于上述关系式的下限时,光学镜头的视场角过大,容易造成边缘视场畸变过大,图像边缘会出现扭曲现象,降低光学镜头的远摄成像品质。而当超过上述关系式的上限时,光学镜头的光学总长过大,容易导致边缘视场的光线难以成像在成像面的有效像素区域,容易导致成像信息不全,同时也使得整个光学镜头较大,无法应用在手机摄像头等需要小型产品中。
第二方面,本发明公开了一种摄像模组,所述摄像模组包括感光芯片和如上述第一方面所述的光学镜头,所述感光芯片设置于所述光学镜头的像侧。具有所述光学镜头的摄像模组能够在缩短光学镜头的光学总长以满足轻薄、小型化设计的同时,使得光学镜头具有满足其相应倍率的总光路长度,以满足长焦镜头的要求,提高光学镜头的光学性能和解析力,提升光学镜头的拍摄质量,实现清晰成像。
第三方面,本发明还公开了一种电子设备,所述电子设备包括壳体和如上述第二方面所述的摄像模组,所述摄像模组设于所述壳体。具有所述摄像模组的电子设备,能够在缩短光学镜头的光学总长以满足轻薄、小型化设计的同时,使得光学镜头具有满足其相应倍率的总光路长度,以满足长焦镜头的要求,提高光学镜头的光学性能和解析力,提升光学镜头的拍摄质量,实现清晰成像。
与现有技术相比,本发明的有益效果在于:
本发明实施例提供的光学镜头、摄像模组及电子设备,通过限定光学镜头的第一透镜具有入射区、第一反射区、第二反射区和出射区,能够在不改变光学镜头的总光路长度的前提下,压缩光学镜头的光学总长,以实现光学镜头的轻薄、小型化设计,同时还能满足长焦镜头的要求,提高光学性能,提高光学镜头的分辨率和成像清晰度,以使光学镜头具有更好的成像效果,满足人们对光学镜头的高清成像要求;并且还使光学镜头满足以下关系式:5<|L1R4|/|L1R3|<25,由于第一透镜的形状影响着光学镜头的光学总长的长短,因此,当满足上述关系式的限定时,可以避免光学镜头的光学总长过长,从而有利于使光学镜头符合小型化设计,还有利于减小光线入射第二透镜的入射角,有利于抑制中心视场光线的出射角度,确保光线平滑过渡到第二透镜,以确保成像质量。
附图说明
为了更清楚地说明本发明实施例中的技术方案,下面将对实施例中所需要使用的附图作简单地介绍,显而易见地,下面描述中的附图仅仅是本发明的一些实施例,对于本领域普通技术人员来讲,在不付出创造性劳动的前提下,还可以根据这些附图获得其他的附图。
图1是本申请实施例一公开的光学镜头的结构示意图;
图2是本申请实施例一公开的光学镜头的光线球差图(mm)、像散曲线图(mm)及畸变曲线图(%);
图3是本申请实施例二公开的光学镜头的结构示意图;
图4是本申请实施例二公开的光学镜头的光线球差图(mm)、像散曲线图(mm)和畸变曲线图(%);
图5是本申请实施例三公开的光学镜头的结构示意图;
图6是本申请实施例三公开的光学镜头的光线球差图(mm)、像散曲线图(mm)和畸变曲线图(%);
图7是本申请实施例四公开的光学镜头的结构示意图;
图8是本申请实施例四公开的光学镜头的光线球差图(mm)、像散曲线图(mm)和畸变曲线图(%);
图9是本申请实施例五公开的光学镜头的结构示意图;
图10是本申请实施例五公开的光学镜头的光线球差图(mm)、像散曲线图(mm)和畸变曲线图(%);
图11是本申请公开的摄像模组的结构示意图;
图12是本申请公开的电子设备的结构示意图。
具体实施方式
下面将结合本发明实施例中的附图,对本发明实施例中的技术方案进行清楚、完整地描述,显然,所描述的实施例仅是本发明一部分实施例,而不是全部的实施例。基于本发明中的实施例,本领域普通技术人员在没有做出创造性劳动前提下所获得的所有其他实施例,都属于本发明保护的范围。
在本发明中,术语“上”、“下”、“左”、“右”、“前”、“后”、“顶”、“底”、“内”、“外”、“中”、“竖直”、“水平”、“横向”、“纵向”等指示的方位或位置关系为基于附图所示的方位或位置关系。这些术语主要是为了更好地描述本发明及其实施例,并非用于限定所指示的装置、元件或组成部分必须具有特定方位,或以特定方位进行构造和操作。
并且,上述部分术语除了可以用于表示方位或位置关系以外,还可能用于表示其他含义,例如术语“上”在某些情况下也可能用于表示某种依附关系或连接关系。对于本领域普通技术人员而言,可以根据具体情况理解这些术语在本发明中的具体含义。
此外,术语“安装”、“设置”、“设有”、“连接”、“相连”应做广义理解。例如,可以是固定连接,可拆卸连接,或整体式构造;可以是机械连接,或电连接;可以是直接相连,或者是通过中间媒介间接相连,又或者是两个装置、元件或组成部分之间内部的连通。对于本领域普通技术人员而言,可以根据具体情况理解上述术语在本发明中的具体含义。
此外,术语“第一”、“第二”等主要是用于区分不同的装置、元件或组成部分(具体的种类和构造可能相同也可能不同),并非用于表明或暗示所指示装置、元件或组成部分的相对重要性和数量。除非另有说明,“多个”的含义为两个或两个以上。
下面将结合实施例和附图对本发明的技术方案作进一步的说明。
请参阅图1,根据本申请的第一方面,本申请公开了一种光学镜头,该光学镜头可为变焦光学镜头,其中,该光学镜头100可以包括沿光轴O从物侧至像侧依次设置的第一透镜L1、第二透镜L2和第三透镜L3,第一透镜L1的物侧面包括远离光轴的入射区S11和位于近光轴处的第二反射区S13,第一透镜L1的像侧面包括远离光轴的第一反射区S12和位于近光轴处的出射区S14,入射光线经入射区S11进入第一透镜L1,依次经第一反射区S12和第二反射区S13反射并由出射区S14射出第一透镜L1,即,成像时,光线从第一透镜L1的入射区S11进入至第一透镜L1的第一反射区S12,并经过第一透镜L1的第一反射区S12反射至第一透镜L1的第二反射区S13,然后经过第一透镜L1的第二反射区S13反射至第一透镜L1的出射区S14,并透过第一透镜的出射区S14依次进入第二透镜L2和第三透镜L3并最终成像于光学镜头100的成像面101上。其中,第一透镜L1具有正屈折力,第二透镜L2具有负屈折力,第三透镜L3具有负屈折力。
在本申请提供的光学镜头100中,第一透镜L1具有入射区S11、第一反射区S12、第二反射区S13以及出射区S14,从而可以利用第一反射区S12和第二反射区S13使得入射光线能够在第一透镜L1进行反射,进而有利于在增加光学镜头100的总光路长度的同时,压缩光学镜头100的光学总长,而无需再额外架设反射元件以提供小型化配置,同时减少元件数量、降低成本,并且减少组装误差。第一透镜L1提供的正屈折力,以及第一反射区S12可朝向光学镜头100的物侧设置,第二反射区S13可朝向光学镜头100的像侧设置,可以在不增加光学镜头100的厚度的前提下,达到焦距长、小视场角的配置,物体细节更清晰,识别效果更好;配合第二透镜L2提供的负屈折力以及物侧面S21和像侧面S22于近光轴处的凸凹面面型设计,可确保光线的入射角度,避免产生过多像差;同时还配合第三透镜L3提供的负屈折力,有利于校正边缘像差,提升成像解析力,同时第三透镜L3的物侧面S31于近光轴处的凹面面型设计,有利于会聚周边光线,避免入射角度过大从而导致杂散光出现,以及第三透镜L3的像侧面S32于近光轴处的凸面面型设计,有利于平衡像差,并有利于压缩光学镜头100的光学总长。
其中,光学镜头100的总光路长度为入射光线经入射区S11进入至第一反射区S12在平行于光轴O的方向上的光路路径、入射光线经第一反射区S12反射至第二反射区S13在平行于光轴O的方向上的光路路径、入射光线经第二反射区S13反射至出射区S14在平行于光轴O的方向上的光路路径和入射光线经出射区S14进入至光学镜头100的成像面101在平行于光轴O的方向上的光路路径之和;光学镜头100的光学总长为第二反射区S13至光学镜头100的成像面101于光轴O上的距离。
进一步地,第一透镜L1的入射区S11于近光轴处可为凹面或者是凸面,第一透镜L1的第一反射区S12于近光轴处可为凸面或者是凹面,第一透镜L1的第二反射区S13于近光轴处可为凹面或者是凸面,第一透镜L1的出射区S14于近光轴处可为凸面或者是凹面。第二透镜L2的物侧面S21于近光轴处可为凸面,第二透镜L2的像侧面S22于近光轴处可为凹面。第三透镜L3的物侧面S31于近光轴处可为凹面,第三透镜L3的像侧面S32于近光轴处可为凸面。
考虑到光学镜头100多应用于例如手机、平板电脑、智能手表等电子设备,第一透镜L1、第二透镜L2和第三透镜L3的材质均可为塑料,即,第一透镜L1、第二透镜L2和第三透镜L3均可为塑胶透镜,从而可以增加第一透镜L1、第二透镜L2以及第三透镜L3的形状设计的自由度,有利于各个透镜的制造与修正像差,同时还有利于减低制造成本。同时,前述的第一透镜L1、第二透镜L2和第三透镜L3均可为非球面透镜。
一些实施例中,光学镜头100还包括光阑,光阑可为孔径光阑或视场光阑,可用于减少杂散光,有助于提升影像品质。该光阑可设置在第一透镜L1的出射区S14和第二透镜L2的物侧面S21之间。可以理解的是,在其他实施例中,该光阑也可设置在光学镜头100的物侧与第一透镜L1的入射区S11之间,即该光阑的设置位置可以根据实际情况调整设置,本实施例对此不作具体限定。
一些实施例中,光学镜头100还包括滤光片L4,例如红外滤光片,红外滤光片设于第三透镜L3的像侧面S32与光学镜头100的成像面101之间,从而可滤除诸如可见光等其他波段的光线,而仅让红外光通过,因此,光学镜头100可作为红外光学镜头使用,即,光学镜头100能够在昏暗的环境及其他特殊的应用场景下也能成像并能获得较好的影像效果。可以理解的,该滤光片L4可以是光学玻璃镀膜制成的,也可以是有色玻璃制成的,或者其他材质的滤光片,可根据实际需要进行选择,在本实施例不作具体限定。
一些实施例中,光学镜头100满足以下关系式:5<|L1R4|/|L1R3|<25,其中,L1R4为出射区S14于光轴O处的曲率半径,L1R3为第二反射区S13于光轴O处的曲率半径。
由于第一透镜L1的形状影响着光学镜头100的光学总长的长短,因此,当满足上述关系式的限定时,可以避免光学镜头100的光学总长过长,从而有利于使光学镜头100符合小型化设计,还有利于减小光线入射第二透镜L2的入射角,有利于抑制中心视场光线的出射角度,确保光线平滑过渡到第二透镜L2,以确保成像质量。而当低于上述关系式的下限时,出射区S14于光轴O处的曲率半径的绝对值与第二反射区S13于光轴O处的曲率半径的绝对值的比值变小,这意味着出射区S14于光轴O处的曲率半径的绝对值变小或是第二反射区S13于光轴O处的曲率半径的绝对值变大,出射区S14的出射角度过大,容易出现杂光;而当超过上述关系式的上限时,出射区S14于光轴O处的曲率半径的绝对值与第二反射区S13于光轴O处的曲率半径的绝对值的比值变大,这意味着出射区S14于光轴O处的曲率半径的绝对值变大或是第二反射区S13于光轴O处的曲率半径的绝对值变小,出射区S14的出射角度过小,无法满足长焦镜头的视场角设计要求。
一些实施例中,光学镜头100满足以下关系式:0.2<YI/EPD<0.5;其中,YI为光学镜头100的成像面101上最大有效成像圆的半径,EPD为光学镜头100的入瞳直径。
由于光学镜头100的入瞳直径的大小与光学镜头100的光圈数有关,而光学镜头100的光圈数决定了光学镜头100的拍摄画面的亮度。因此,当满足上述关系式的限定时,可以在维持光学镜头100的长焦性能的前提下,实现光学镜头100的大通光量设计,即,可以在使光学镜头100处于长焦时具有较好的长焦性能的同时,使得光学镜头100具有更大的通光量,不仅有利于使光学镜头100的拍摄图像更加清晰,以达到较好的成像效果;还可以使光学镜头100获取更多的场景内容,丰富光学镜头100的成像信息。而且,当光学镜头100在单位时间内的光通量较大时,即使在较暗的环境下进行拍摄,也能达到清晰的成像效果。而当低于上述关系式的下限时,光学镜头100的像高过小,无法与高像素的感光芯片匹配而难以实现高像素成像,另外,光源难以充分到达光学镜头100的成像面,导致光学镜头100的拍摄画面的亮度较暗,从而影响光学镜头100的光学性能;而当超过上述关系式的上限时,光学镜头100的入瞳直径太小,会造成通光量不足,导致光线相对亮度不够,从而会造成画面感光度下降,导致光学镜头100拍摄出来的影像变暗,影响拍摄质量。
一些实施例中,光学镜头100满足以下关系式:0.7<f/TTLc<1.2,其中,f为光学镜头100的有效焦距,TTLc为光学镜头100在平行于光轴O的方向上的总光路长度,总光路长度是指入射光线经入射区S11进入至第一反射区S12在平行于光轴O的方向上的光路路径、入射光线经第一反射区S12反射至第二反射区S13在平行于光轴O的方向上的光路路径、入射光线经第二反射区S13反射至出射区S14在平行于光轴O的方向上的光路路径和入射光线经出射区S14进入至光学镜头100的成像面101在平行于光轴O的方向上的光路路径之和。
当满足上述关系式的限定时,能够在缩短光学镜头100的光学总长的同时,使得光学镜头100具有较长的总光路长度,以满足长焦镜头的要求,提高光学镜头100的光学性能和解析力,提升光学镜头100的拍摄质量,实现清晰成像。而当低于上述关系式的下限时,光学镜头100的光学总长会变长,不利于光学镜头100的小型化设计;而当超过上述关系式的上限时,光学镜头100的光学总长会变短,难以满足长焦镜头的焦距设计要求。
一些实施例中,光学镜头100满足以下关系式:
0.0<|L1R1Th-L1R3Th|/|L1R1Th+L1R2Th|<0.3;其中,L1R1Th为入射区S11到第一反射区S12于平行于光轴O的方向上的最短距离,L1R2Th为第一反射区S12到第二反射区S13于平行于光轴O的方向上的最短距离,L1R3Th为第二反射区S13到出射区S14于平行于光轴O的方向上的最短距离。
当满足上述关系式的限定时,入射区S11和第一反射区S12之间的最短距离、第一反射区S12和第二反射区S13之间的最短距离、以及第二反射区S13和出射区S14之间的最短距离得到合理配置,能够在使光学镜头100具有较长的总光路长度以满足长焦镜头的成像要求的同时,缩短光学镜头100的光学总长,有利于实现光学镜头100的小型化设计。而当低于上述关系式的下限时,第一反射区S12和第二反射区S13之间的最短距离,以及第二反射区S13到出射区S14之间的最短距离过大,导致光学镜头100的光学总长会变长,不利于光学镜头100的小型化设计,同时还会产生严重的内面反射,降低光学镜头的成像质量;而当超过上述关系式的上限时,第一反射区S12和第二反射区S13之间的最短距离,以及第二反射区S13到出射区S14于光轴O上的最短距离,过小,导致光学镜头100的总光路长度过短,不利于实现光学镜头100的长焦性能,而且光学镜头100的畸变也会变大,影响光学镜头100的成像品质。
一些实施例中,光学镜头100满足以下关系式:
Figure BDA0003637074200000121
其中,L2R1为第二透镜L2的物侧面S21于光轴O处的曲率半径,L2R1YI为第二透镜L2的物侧面S21的有效口径的一半。
当满足上述关系式的限定时,第二透镜L2的物侧面S21于光轴O处的曲率半径和第二透镜L2的物侧面S21于光轴O处的有效口径得到合理配置,可控制第二透镜L2的物侧面S21的形状,优化第二透镜L2的物侧面S21的角度,便于第二透镜L2的加工制造,以及有利于控制第二透镜L2的球差贡献量在合理的范围内,使得中心视场和边缘视场的成像质量不会因第二透镜L2的球差的贡献量变化而产生明显的退化,提高光学镜头100的成像质量。
一些实施例中,光学镜头100满足以下关系式:
Figure BDA0003637074200000122
其中,L3R1为第三透镜L3的物侧面S31于光轴O处的曲率半径,L3R1YI为第三透镜L3的物侧面S31于光轴O处的有效口径的一半。
当满足上述关系式的限定时,第三透镜L3的物侧面S31于光轴O处的曲率半径和第三透镜L3的物侧面S31于光轴O处的有效口径得到合理配置,可控制第三透镜L3的物侧面S31的形状,优化第三透镜L3的物侧面S31的角度,便于第三透镜L3的加工制造,以及有利于控制第三透镜L3的球差贡献量在合理的范围内,使得中心视场和边缘视场的成像质量不会因第三透镜L3的球差的贡献量变化而产生明显的退化,提高光学镜头100的成像质量。
一些实施例中,光学镜头100满足以下关系式:
Figure BDA0003637074200000123
其中,L3R2为第三透镜L3的像侧面S32于光轴O处的曲率半径,L3R2YI为第三透镜L3的像侧面S32于光轴O处的有效口径的一半。
当满足上述关系式的限定时,第三透镜L3的像侧面S32于光轴O处的曲率半径和第三透镜L3的像侧面S32于光轴O处的有效口径得到合理配置,可控制第三透镜L3的像侧面S32的形状,优化第三透镜L3的像侧面S32的角度,便于第三透镜L3的加工制造,以及有利于控制第三透镜L3的球差贡献量在合理的范围内,使得中心视场和边缘视场的成像质量不会因第三透镜L3的球差的贡献量变化而产生明显的退化,提高光学镜头100的成像质量。
当光学镜头100同时满足以下各条关系式:
Figure BDA0003637074200000131
Figure BDA0003637074200000132
时,可以降低产生鬼影的风险,以提升光学镜头100的拍摄质量,实现清晰成像。
一些实施例中,光学镜头100满足以下关系式:18°<FOV<19°;其中,FOV为光学镜头100的最大视场角。当满足上述关系式的限定时,可以使光学镜头100具备大视角特性,从而能够获取更多的场景内容,丰富光学镜头100的成像信息。而当低于上述关系式的上限时,光学镜头100的视场角过大,造成外视场畸变过大,导致图像外围会出现扭曲现象,降低光学镜头100的成像性能;而当超过上述关系式的下限时,光学镜头100的视场角过小,降低光学镜头100的视场范围,导致光学镜头100的成像信息不全,影响光学镜头100的拍摄质量。
一些实施例中,光学镜头100满足以下关系式:1.7<FNO<1.8;其中,FNO为光学镜头100的光圈数。当满足上述关系式的限定时,可以提供足够的通光量,改善暗光拍摄条件,让拍摄出来的画面更加生动形象,满足高画质高清晰度的拍摄需求。而当超过上述关系式的上限时,光学镜头100的光圈数过大,光圈过小,导致通光量不足产生暗角现象;当低于上述关系式的下限时,光学镜头100的光圈较小,容易影响光学镜头100捕捉图像的精准度,像差修正难度加大,不利于光学镜头100的高分辨率成像,从而容易导致光学镜头100的成像性能降低。
一些实施例中,光学镜头100满足以下关系式:25mm-1<RI/YI<35mm-1;其中,RI为光学镜头100的成像面101上最大视场角处的相对照度,相对照度指的是:光学镜头100的中心照度与外围照度的比值。
当满足上述关系式的限定时,有利于满足光学镜头100对相对照度的需求,有利于提高边缘视场照度,使得光学镜头100的光亮度较高,从而增强光学镜头100在暗光环境下的拍摄效果,提高光学镜头100的深度识别精度。而当低于上述关系式的下限时,光学镜头100的最大视场角对应的相对照度会变低,导致感光芯片接收到的周边光量很少,使得光学镜头100的整个拍摄画面的亮度较暗,影响光学镜头100的拍摄质量;而当超过上述关系式的上限时,为了确保光学镜头100的最大视场角对应的相对照度足够大,需要减小感光芯片的尺寸,导致成像面101较小,有可能造成成像信息不全的情况。
一些实施例中,光学镜头100满足以下关系式:
0.31mm/deg<TTLs/FOV<0.33mm/deg;其中,TTLs为第二反射区S13至光学镜头100的成像面101于光轴O上的距离,FOV为光学镜头100的最大视场角。
通过限定第一透镜L1为具有入射区S11、第一反射区S12、第二反射区S13以及出射区S14的透镜结构,有利于使光学镜头100在具有较小光学总长的同时具有较大视场角,以满足光学镜头100对拍摄范围的需求。而当低于上述关系式的下限时,光学镜头100的视场角过大,容易造成边缘视场畸变过大,图像边缘会出现扭曲现象,降低光学镜头100的远摄成像品质。而当超过上述关系式的上限时,光学镜头100的光学总长过大,容易导致边缘视场的光线难以成像在成像面101的有效像素区域,容易导致成像信息不全,同时也使得整个光学镜头100较大,无法应用在手机摄像头等需要小型产品中。
以下将结合具体参数对本实施例的光学镜头100进行详细说明。
实施例一
本申请的实施例一公开的光学镜头100的结构示意图,如图1所示,光学镜头100包括沿光轴O从物侧向像侧依次设置的第一透镜L1、第二透镜L2、第三透镜L3和滤光片L4。其中,第一透镜L1具有正屈折力,第二透镜L2具有负屈折力,第三透镜L3具有负屈折力。关于第一透镜L1、第二透镜L2和第三透镜L3的材料可参见上述具体实施方式所述,此处不再赘述。
进一步地,第一透镜L1的入射区S11于近光轴处为凹面,第一透镜L1的第一反射区S12于近光轴处为凸面,第一透镜L1的第二反射区S13于近光轴处为凹面,第一透镜L1的出射区S14于近光轴处为凸面;第二透镜L2的物侧面S5于近光轴处为凸面,第二透镜L2的像侧面S6于近光轴处为凹面,第三透镜L3的物侧面S7于近光轴处为凹面,第三透镜的像侧面S8于近光轴处为凸面。
具体地,以所述光学镜头100的有效焦距f=11.77mm、所述光学镜头100的视场角FOV=19.45deg、所述光学镜头100的光学总长TTLs=5.90mm、光圈大小FNO=1.7771为例,光学镜头100的其他参数由下表1给出。其中,沿光学镜头100的光轴O由物侧向像侧的各元件依次按照表1从上至下的各元件的顺序排列。在第一透镜L1中,入射区S11、第一反射区S12、第二反射区S13和出射区S14的面序号依次增大,以及对于第二透镜L2和第三透镜L3,在同一透镜中,面序号较小的表面为该透镜的物侧面,面序号较大的表面为该透镜的像侧面,如面序号5和6分别对应第二透镜L2的物侧面S21和像侧面S22。表1中的Y半径为相应面序号的物侧面或像侧面于近光轴O处的曲率半径。透镜的“厚度”参数列中的第一个数值为该透镜于光轴O上的厚度,第二个数值为该透镜的像侧面至后一表面于光轴O上的距离。光阑于“厚度”参数列中的数值为光阑至后一表面顶点(顶点指表面与光轴O的交点)于光轴O上的距离,默认第一透镜L1的入射区S11到最后一枚透镜像侧面的方向为光轴O的正方向,当该值为负时,表明光阑设置于后一表面顶点的右侧,若光阑厚度为正值时,光阑在后一表面顶点的左侧。可以理解的是,表1中的Y半径、厚度、有效焦距的单位均为mm。且表1中各个透镜的有效焦距的参考波长为555.0000nm,以及各个透镜的折射率、阿贝数的参考波长均为587.6nm。
表1
Figure BDA0003637074200000151
在实施例一中,第一透镜L1的入射区S11、第一反射区S12、第二反射区S13以及出射区S14,以及第二透镜L2和第三透镜L3的物侧面和像侧面均为非球面,各非球面透镜的面型x可利用但不限于以下非球面公式进行限定:
Figure BDA0003637074200000152
其中,x为非球面沿光轴方向在高度为h的位置时,距非球面顶点的距离矢高;c为非球面的近轴曲率,c=1/R(即,近轴曲率c为上表1中Y半径R的倒数);K为圆锥系数;Ai是非球面第i项高次项相对应的修正系数。表2给出了可用于实施例一中各个非球面镜面的高次项系数A4、A6、A8、A10和A12。
表2
Figure BDA0003637074200000153
Figure BDA0003637074200000161
请参阅图2中的(A),图2中的(A)示出了实施例一中的光学镜头100在波长为470.0000nm、510.0000nm、555.0000nm、610.0000nm以及663.7725nm下的光线球差曲线图。图2中的(A)中,沿X轴方向的横坐标表示焦点偏移,单位为mm,沿Y轴方向的纵坐标表示归一化视场。由图2中的(A)可以看出,实施例一中的光学镜头100的球差数值较佳,说明本实施例中的光学镜头100的成像质量较好。
请参阅图2中的(B),图2中的(B)为实施例一中的光学镜头100在波长为555.0000nm下的光线像散图。其中,沿X轴方向的横坐标表示焦点偏移,单位为mm,沿Y轴方向的纵坐标表示像高,单位为mm。像散曲线表示子午成像面弯曲T和弧矢成像面弯曲S,由图2中的(B)可以看出,在该波长555.0000nm下,光学镜头100的像散得到了较好的补偿。
请参阅图2中的(C),图2中的(C)为实施例一中的光学镜头100在波长为555.0000nm下的畸变曲线图。其中,沿X轴方向的横坐标表示畸变,沿Y轴方向的纵坐标表示像高,单位为mm。由图2中的(C)可以看出,在波长555.0000nm下,该光学镜头100的畸变得到了很好的校正。
实施例二
请参照图3,图3为本申请实施例二的光学镜头100的结构示意图。光学镜头100包括沿光轴O从物侧向像侧依次设置的第一透镜L1、第二透镜L2和第三透镜L3。关于第一透镜L1、第二透镜L2和第三透镜L3的材料可参见上述具体实施方式所述,以及各个透镜的面型、屈折力可参见上述实施例一所述,此处不再赘述。
在实施例二中,以光学镜头100的有效焦距f=11.77mm、光学镜头100的视场角的FOV=18.26deg、光学镜头100的光学总长TTLs=5.85mm、光圈大小FNO=1.772为例。
该实施例二中的其他各项参数由下列表3给出,且其中各参数的定义可由前述实施例的说明中得出,此处不加以赘述。可以理解的是,表3中的Y半径、厚度、有效焦距的单位均为mm。且表3中各个透镜的有效焦距的参考波长为555.0000nm,以及各个透镜的折射率、阿贝数的参考波长为587.6nm。
表3
Figure BDA0003637074200000162
Figure BDA0003637074200000171
在实施例二中,表4给出了可用于实施例二中各个非球面镜面的高次项系数,其中,各个非球面面型可由实施例一中给出的公式限定。
表4
Figure BDA0003637074200000172
请参阅图4,图4示出了实施例二的光学镜头100的纵向球差曲线、像散曲线和畸变曲线,具体定义请参阅实施例一所述,此处不再赘述。由图4中的(A)可以看出,实施例二中的光学镜头100的球差数值较佳,说明本实施例中的光学镜头100的成像质量较好。由图4中的(B)可以看出,在波长555.0000nm下,光学镜头100的像散得到了较好的补偿。由图4中的(C)可以看出,在波长555.0000nm下,该光学镜头100的畸变得到了很好的校正。
实施例三
请参照图5,图5示出了本申请实施例三的光学镜头100的结构示意图。光学镜头100包括沿光轴O从物侧向像侧依次设置的第一透镜L1、第二透镜L2和第三透镜L3。关于第一透镜L1、第二透镜L2和第三透镜L3的材料可参见上述具体实施方式所述,以及各个透镜的面型、屈折力可参见上述实施例一所述,此处不再赘述。
在实施例三中,以光学镜头100的有效焦距f=11.77mm、光学镜头100的视场角的FOV=18.24deg、光学镜头100的光学总长TTLs=5.83mm、光圈大小FNO=1.7771为例。
该实施例三中的其他各项参数由下列表5给出,且其中各参数的定义可由前述说明中得出,此处不加以赘述。可以理解的是,表5中的Y半径、厚度、有效焦距的单位均为mm。且表5中各个透镜的有效焦距的参考波长为555.0000nm,各个透镜的折射率、阿贝数的参考波长为587.6nm。
表5
Figure BDA0003637074200000181
在实施例三中,表6给出了可用于实施例三中各个非球面镜面的高次项系数,其中,各个非球面面型可由实施例一中给出的公式限定。
表6
Figure BDA0003637074200000182
请参阅图6,图6示出了实施例三的光学镜头100的纵向球差曲线、像散曲线和畸变曲线,具体定义请参阅实施例一所述,此处不再赘述。由图6中的(A)可以看出,实施例三中的光学镜头100的球差数值较佳,说明本实施例中的光学镜头100的成像质量较好。由图6中的(B)可以看出,在波长555.0000nm下,光学镜头100的像散得到了较好的补偿。由图6中的(C)可以看出,在波长555.0000nm下,该光学镜头100的畸变得到了很好的校正。
实施例四
请参阅图7,为本申请实施例四公开的光学镜头100的结构示意图。光学镜头100包括沿光轴O从物侧向像侧依次设置的第一透镜L1、第二透镜L2和第三透镜L3。关于第一透镜L1、第二透镜L2和第三透镜L3的材料可参见上述具体实施方式所述,以及各个透镜的面型、屈折力可参见上述实施例一所述,此处不再赘述。
在实施例四中,以光学镜头100的焦距f=11.77mm、光学镜头100的视场角的FOV=18.25deg、光学镜头100的光学总长TTLs=5.85mm、光圈大小FNO=1.7772为例。
该实施例四中的其他各项参数由下列表7给出,且其中各参数的定义可由前述说明中得出,此处不加以赘述。可以理解的是,表7中的Y半径、厚度、有效焦距的单位均为mm。且表7中各个透镜的有效焦距的参考波长为555.0000nm,各个透镜的折射率、阿贝数的参考波长为587.6nm。
表7
Figure BDA0003637074200000191
在实施例四中,表8给出了可用于实施例四中各个非球面镜面的高次项系数,其中,各个非球面面型可由实施例一中给出的公式限定。
表8
Figure BDA0003637074200000192
Figure BDA0003637074200000201
请参阅图8,图8示出了实施例四的光学镜头100的纵向球差曲线、像散曲线和畸变曲线,具体定义请参阅实施例一所述,此处不再赘述。由图8中的(A)可以看出,实施例四中的光学镜头100的球差数值较佳,说明本实施例中的光学镜头100的成像质量较好。由图8中的(B)可以看出,在波长555.0000nm下,光学镜头100的像散得到了较好的补偿。由图8中的(C)可以看出,在波长555.0000nm下,该光学镜头100的畸变得到了很好的校正。
实施例五
请参阅图9,为本申请实施例五公开的光学镜头100的结构示意图。光学镜头100包括沿光轴O从物侧向像侧依次设置的第一透镜L1、第二透镜L2和第三透镜L3。关于第一透镜L1、第二透镜L2和第三透镜L3的材料可参见上述具体实施方式所述,以及各个透镜的面型、屈折力可参见上述实施例一所述,此处不再赘述。
在实施例五中,以光学镜头100的焦距f=11.77mm、光学镜头100的视场角的FOV=18.27deg、光学镜头100的光学总长TTLs=5.83mm、光圈大小FNO=1.7773为例。
该实施例五中的其他各项参数由下列表9给出,且其中各参数的定义可由前述说明中得出,此处不加以赘述。可以理解的是,表9中的Y半径、厚度、有效焦距的单位均为mm。且表9中各个透镜的有效焦距的参考波长为555.0000nm,各个透镜的折射率、阿贝数的参考波长为587.6nm。
表9
Figure BDA0003637074200000202
Figure BDA0003637074200000211
在实施例五中,表10给出了可用于实施例五中各个非球面镜面的高次项系数,其中,各个非球面面型可由实施例一中给出的公式限定。
表10
Figure BDA0003637074200000212
请参阅图10,图10示出了实施例五的光学镜头100的纵向球差曲线、像散曲线和畸变曲线,具体定义请参阅实施例一所述,此处不再赘述。由图10中的(A)可以看出,实施例五中的光学镜头100的球差数值较佳,说明本实施例中的光学镜头100的成像质量较好。由图10中的(B)可以看出,在波长555.0000nm下,光学镜头100的像散得到了较好的补偿。由图10中的(C)可以看出,在波长555.0000nm下,该光学镜头100的畸变得到了很好的校正。
请参阅表11,表11为本申请实施例一至实施例五中各关系式的比值汇总。
表11
Figure BDA0003637074200000213
Figure BDA0003637074200000221
请参阅图11,本申请还公开了一种摄像模组,摄像模组200包括感光芯片201和如上述实施例一至实施例五中任一实施例所述的光学镜头100,所述感光芯片201设置于光学镜头100的像侧。光学镜头100可用于接收被摄物的光信号并投射到感光芯片201,感光芯片201可用于将对应于被摄物的光信号转换为图像信号。这里不做赘述。可以理解的,具有所述摄像模组200的电子设备,能够在缩短光学镜头100的光学总长以满足轻薄、小型化设计的同时,使得光学镜头100具有满足其相应倍率的总光路长度,以满足长焦镜头的要求,提高光学镜头100的光学性能和解析力,提升光学镜头100的拍摄质量,实现清晰成像。由于上述技术效果已在光学镜头100的实施例中做了详细介绍,此处就不再赘述。
请参阅图12,本申请还公开了一种电子设备,所述电子设备300包括壳体301和如上述的摄像模组200,摄像模组200设于壳体301以获取影像信息。其中,电子设备300可以但不限于手机、平板电脑、笔记本电脑、智能手表、监控器等。可以理解的,具有上述摄像模组200的电子设备300,也具有上述光学镜头100的全部技术效果。即,所述电子设备300能够在使得光学镜头100在缩短光学镜头100的光学总长以满足轻薄、小型化设计的同时,使得光学镜头100具有满足其相应倍率的总光路长度,以满足长焦镜头的要求,提高光学镜头100的光学性能和解析力,提升光学镜头100的拍摄质量,实现清晰成像。由于上述技术效果已在光学镜头100的实施例中做了详细介绍,此处就不再赘述。
以上对本发明实施例公开的一种光学镜头、摄像模组及电子设备进行了详细介绍,本文中应用了具体个例对本发明的原理及实施方式进行了阐述,以上实施例的说明只是用于帮助理解本发明的光学镜头、摄像模组及电子设备及其核心思想;同时,对于本领域的一般技术人员,依据本发明的思想,在具体实施方式及应用范围上均会有改变之处,综上,本说明书内容不应理解为对本发明的限制。

Claims (10)

1.一种光学镜头,其特征在于,所述光学镜头共有具有屈折力的三片透镜,所述三片透镜沿光轴从物侧至像侧依次为第一透镜、第二透镜和第三透镜;
所述第一透镜具有正屈折力,所述第一透镜的像侧面包括位于近光轴处的出射区和远离光轴的第一反射区,所述第一透镜的物侧面包括远离光轴的入射区和位于近光轴处的第二反射区,入射光线经所述入射区进入所述第一透镜,依次经所述第一反射区和所述第二反射区反射并由所述出射区射出所述第一透镜;
所述第二透镜具有负屈折力,所述第二透镜的物侧面于近光轴处为凸面,所述第二透镜的像侧面于近光轴处为凹面;
所述第三透镜具有负屈折力,所述第三透镜的物侧面于近光轴处为凹面,所述第三透镜的像侧面于近光轴处为凸面;
所述光学镜头满足以下关系式:
5<|L1R4|/|L1R3|<25;
其中,L1R4为所述出射区于光轴处的曲率半径,L1R3为所述第二反射区于光轴处的曲率半径。
2.根据权利要求1所述的光学镜头,其特征在于,所述光学镜头满足以下关系式:
Figure FDA0003637074190000011
其中,L2R1为所述第二透镜的物侧面于光轴处的曲率半径,L2R1YI为所述第二透镜的物侧面的有效口径的一半。
3.根据权利要求1所述的光学镜头,其特征在于,所述光学镜头满足以下关系式:
Figure FDA0003637074190000012
其中,L3R1为所述第三透镜的物侧面于光轴处的曲率半径,L3R1YI为所述第三透镜的物侧面的有效口径的一半。
4.根据权利要求1所述的光学镜头,其特征在于,所述光学镜头满足以下关系式:
Figure FDA0003637074190000013
其中,L3R2为所述第三透镜的像侧面于光轴处的曲率半径,L3R2YI为所述第三透镜的像侧面的有效口径的一半。
5.根据权利要求1所述的光学镜头,其特征在于,所述光学镜头满足以下关系式:
0.0<|L1R1Th-L1R3Th|/|L1R1Th+L1R2Th|<0.3;
其中,L1R1Th为所述入射区到所述第一反射区于平行于光轴的方向上的最短距离,L1R2Th为所述第一反射区到所述第二反射区于平行于光轴的方向上的最短距离,L1R3Th为所述第二反射区到所述出射区于平行于光轴的方向上的最短距离。
6.根据权利要求1所述的光学镜头,其特征在于,所述光学镜头满足以下关系式:
18deg<FOV<19deg,和/或,1.7<FNO<1.8;
其中,FOV为所述光学镜头的最大视场角,FNO为所述光学镜头的光圈数。
7.根据权利要求1所述的光学镜头,其特征在于,所述光学镜头满足以下关系式:
25mm-1<RI/YI<35mm-1
其中,RI为所述光学镜头的成像面上最大视场角处的相对照度。
8.根据权利要求1所述的光学镜头,其特征在于,
0.31mm/deg<TTLs/FOV<0.33mm/deg;
其中,TTLs为所述第二反射区至所述光学镜头的成像面于光轴上的距离,FOV为所述光学镜头的最大视场角。
9.一种摄像模组,其特征在于,所述摄像模组包括感光芯片和如权利要求1-8任一项所述的光学镜头,所述感光芯片设置于所述光学镜头的像侧。
10.一种电子设备,其特征在于,所述电子设备包括壳体和如权利要求9所述的摄像模组,所述摄像模组设于所述壳体。
CN202210511417.9A 2022-05-10 2022-05-10 光学镜头、摄像模组及电子设备 Withdrawn CN114859511A (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN202210511417.9A CN114859511A (zh) 2022-05-10 2022-05-10 光学镜头、摄像模组及电子设备

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN202210511417.9A CN114859511A (zh) 2022-05-10 2022-05-10 光学镜头、摄像模组及电子设备

Publications (1)

Publication Number Publication Date
CN114859511A true CN114859511A (zh) 2022-08-05

Family

ID=82638068

Family Applications (1)

Application Number Title Priority Date Filing Date
CN202210511417.9A Withdrawn CN114859511A (zh) 2022-05-10 2022-05-10 光学镜头、摄像模组及电子设备

Country Status (1)

Country Link
CN (1) CN114859511A (zh)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN115268009A (zh) * 2022-09-28 2022-11-01 南昌欧菲光电技术有限公司 光学系统及头戴式设备

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN115268009A (zh) * 2022-09-28 2022-11-01 南昌欧菲光电技术有限公司 光学系统及头戴式设备
CN115268009B (zh) * 2022-09-28 2023-02-21 南昌欧菲光电技术有限公司 光学系统及头戴式设备

Similar Documents

Publication Publication Date Title
US11391919B2 (en) Imaging lens assembly, image capturing unit and electronic device
CN113946038B (zh) 光学镜头、摄像模组及电子设备
CN113741006A (zh) 光学镜头、摄像模组及电子设备
CN115437128B (zh) 一种光学镜头、摄像头模组及电子设备
CN113391433A (zh) 光学镜头、摄像模组及电子设备
CN114114645B (zh) 光学镜头、摄像模组及电子设备
CN114167583A (zh) 光学镜头、摄像模组及电子设备
US11841550B2 (en) Imaging optical lens assembly, image capturing unit and electronic device
CN116027526B (zh) 光学系统、摄像模组及终端设备
CN114859511A (zh) 光学镜头、摄像模组及电子设备
CN115166949B (zh) 光学镜头、摄像模组及智能终端
CN114371547B (zh) 光学镜头、摄像模组及电子设备
CN113933966B (zh) 光学镜头、摄像模组及电子设备
CN113960759B (zh) 光学镜头、摄像模组及电子设备
CN114002814A (zh) 光学镜头、摄像模组及电子设备
CN113933969B (zh) 光学镜头、摄像模组及电子设备
CN113933967B (zh) 光学镜头、摄像模组及电子设备
CN113568142B (zh) 光学镜头、摄像模组及电子设备
CN214474193U (zh) 光学系统、摄像模组及电子设备
CN113484985A (zh) 光学镜头、摄像模组及电子设备
CN114002832A (zh) 光学系统、镜头模组和电子设备
CN113703132A (zh) 光学系统、镜头模组和电子设备
CN113917656A (zh) 光学镜头、摄像模组及电子设备
CN114594577B (zh) 光学系统、摄像模组及电子设备
CN115047604B (zh) 光学镜头、摄像模组及智能终端

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
WW01 Invention patent application withdrawn after publication
WW01 Invention patent application withdrawn after publication

Application publication date: 20220805