WO2022135103A1 - 光学镜头及电子设备 - Google Patents

光学镜头及电子设备 Download PDF

Info

Publication number
WO2022135103A1
WO2022135103A1 PCT/CN2021/135070 CN2021135070W WO2022135103A1 WO 2022135103 A1 WO2022135103 A1 WO 2022135103A1 CN 2021135070 W CN2021135070 W CN 2021135070W WO 2022135103 A1 WO2022135103 A1 WO 2022135103A1
Authority
WO
WIPO (PCT)
Prior art keywords
lens
optical
optical lens
convex
concave
Prior art date
Application number
PCT/CN2021/135070
Other languages
English (en)
French (fr)
Inventor
章鲁栋
姚烨
王东方
姚波
Original Assignee
宁波舜宇车载光学技术有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority claimed from CN202011560293.0A external-priority patent/CN114690368A/zh
Priority claimed from CN202110744979.3A external-priority patent/CN115561875A/zh
Application filed by 宁波舜宇车载光学技术有限公司 filed Critical 宁波舜宇车载光学技术有限公司
Publication of WO2022135103A1 publication Critical patent/WO2022135103A1/zh
Priority to US18/326,553 priority Critical patent/US20230367104A1/en

Links

Images

Classifications

    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B13/00Optical objectives specially designed for the purposes specified below
    • G02B13/001Miniaturised objectives for electronic devices, e.g. portable telephones, webcams, PDAs, small digital cameras
    • G02B13/0015Miniaturised objectives for electronic devices, e.g. portable telephones, webcams, PDAs, small digital cameras characterised by the lens design
    • G02B13/002Miniaturised objectives for electronic devices, e.g. portable telephones, webcams, PDAs, small digital cameras characterised by the lens design having at least one aspherical surface
    • G02B13/0045Miniaturised objectives for electronic devices, e.g. portable telephones, webcams, PDAs, small digital cameras characterised by the lens design having at least one aspherical surface having five or more lenses
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B13/00Optical objectives specially designed for the purposes specified below
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B13/00Optical objectives specially designed for the purposes specified below
    • G02B13/001Miniaturised objectives for electronic devices, e.g. portable telephones, webcams, PDAs, small digital cameras
    • G02B13/0055Miniaturised objectives for electronic devices, e.g. portable telephones, webcams, PDAs, small digital cameras employing a special optical element
    • G02B13/006Miniaturised objectives for electronic devices, e.g. portable telephones, webcams, PDAs, small digital cameras employing a special optical element at least one element being a compound optical element, e.g. cemented elements
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B13/00Optical objectives specially designed for the purposes specified below
    • G02B13/06Panoramic objectives; So-called "sky lenses" including panoramic objectives having reflecting surfaces
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B9/00Optical objectives characterised both by the number of the components and their arrangements according to their sign, i.e. + or -
    • G02B9/64Optical objectives characterised both by the number of the components and their arrangements according to their sign, i.e. + or - having more than six components

Definitions

  • the present application relates to the field of optical elements, and more particularly, to an optical lens and electronic equipment.
  • optical lenses have become more and more widely used in automobiles. play an irreplaceable role.
  • users have higher and higher requirements for the pixels of optical lenses.
  • lens manufacturers have begun to study how to improve the recognition of vehicle front-view lenses for traffic lights.
  • the optical lens used as the vehicle front-view lens also needs to have high imaging performance at the same time.
  • optical lenses are more and more widely used in automobiles, and the pixel requirements for automotive lenses are getting higher and higher.
  • more and more companies have begun to study front-view lenses with good traffic light recognition.
  • the optical lens applied to the front view also needs to have very high performance requirements, and the existing ordinary lenses have the following problems in use: for example, the reflection on the surface of the lens produces ghost images, which are easy to induce The on-board chip generates false alarm signals, which make the car assisted driving system respond incorrectly, which greatly affects driving safety; in addition, the low relative illumination and uneven imaging of ordinary lenses will make the light energy received by the edge area of the chip low, and it is cloudy and so on. Under the circumstance, when the light energy is lower than the trigger threshold of the chip, it is easy to have missed alarms, posing a threat to personal safety. Therefore, it is necessary to eliminate ghost images and improve the relative illumination of the optical lens. Furthermore, the use environment and placement position of the front-view lens require it to have both slightly conflicting performances of miniaturization and high resolution.
  • a first aspect of the present application provides an optical lens.
  • the optical lens sequentially includes from the object side to the image side along the optical axis: a first lens with negative refractive power, whose object side is concave, and whose image side is concave; a second lens with positive refractive power, whose object side is concave; is convex; the third lens with positive power has a convex object side and the image side is convex; the fourth lens with positive power has a convex object side; the fifth lens with negative power has an image
  • the side surface is concave; the sixth lens has positive refractive power, and its object side surface is convex; and the seventh lens has negative refractive power.
  • the image side surface of the second lens is concave.
  • the image side of the second lens is convex.
  • the image side surface of the fourth lens is concave.
  • the image side surface of the fourth lens is convex.
  • the object side of the fifth lens is convex.
  • the object side of the fifth lens is concave.
  • the image side surface of the sixth lens is concave.
  • the image side surface of the sixth lens is convex.
  • the object side of the seventh lens is concave, and the image side is convex.
  • the object side of the seventh lens is concave or convex, and the image side is concave.
  • the fourth lens and the fifth lens are cemented to form a cemented lens.
  • the second lens and the seventh lens have aspherical mirror surfaces.
  • the optical lens further includes a diaphragm disposed between the second lens and the third lens.
  • the optical lens further includes a diaphragm disposed between the first lens and the second lens.
  • the distance TTL from the center of the object side surface of the first lens to the imaging surface of the optical lens on the optical axis and the total effective focal length F of the optical lens may satisfy: TTL/F ⁇ 2.5.
  • the distance TTL from the center of the object side surface of the first lens to the imaging surface of the optical lens on the optical axis, the maximum angle of view FOV of the optical lens, and the image height H corresponding to the maximum angle of view of the optical lens can be determined. Satisfaction: TTL/H/FOV ⁇ 0.7.
  • the Abbe number VD3 of the third lens and the Abbe number VD4 of the fourth lens may satisfy: VD3+VD4 ⁇ 110.
  • the maximum field angle FOV of the optical lens, the total effective focal length F of the optical lens, and the image height H corresponding to the maximum field angle of the optical lens may satisfy: (FOV ⁇ F)/H ⁇ 50°.
  • the distance BFL from the center of the image side surface of the seventh lens to the imaging surface of the optical lens on the optical axis and the distance TTL from the center of the object side surface of the first lens to the imaging surface of the optical lens on the optical axis can be Satisfaction: BFL/TTL ⁇ 0.07.
  • the effective focal length F4 of the fourth lens and the effective focal length F5 of the fifth lens may satisfy: 1 ⁇
  • the effective focal length F3 of the third lens and the total effective focal length F of the optical lens may satisfy: 1 ⁇
  • the effective focal length F45 of the cemented lens formed by cementing the fourth lens and the fifth lens and the total effective focal length F of the optical lens may satisfy: 1 ⁇
  • the fourth lens and the fifth lens are cemented to form a cemented lens
  • the optical lens can satisfy: 1 ⁇ dn/dm ⁇ 2, where dn is the second lens, the third lens and the cemented lens with the largest central thickness and dm is the center thickness of the lens with the smallest center thickness among the second lens, the third lens, and the cemented lens.
  • the curvature radius R6 of the object side surface of the third lens and the curvature radius R7 of the image side surface of the third lens may satisfy: 0.5 ⁇
  • the curvature radius R1 of the object side of the first lens, the curvature radius R2 of the image side of the first lens, and the central thickness d1 of the first lens on the optical axis may satisfy: 0.1 ⁇
  • the total effective focal length F of the optical lens and the entrance pupil diameter ENPD of the optical lens may satisfy: F/ENPD ⁇ 2.
  • the maximum light-passing semi-aperture D41 of the object side of the fourth lens corresponding to the maximum field angle of the optical lens and the intersection of the object side and the optical axis of the fourth lens to the maximum light-passing point of the object side of the fourth lens
  • the distance SAG41 of the aperture on the optical axis can satisfy: arctan(SAG41/D41) ⁇ 30.
  • the total effective focal length F of the optical lens and the curvature radius R1 of the object side surface of the first lens may satisfy: 0.5 ⁇ R1/F ⁇ 2.
  • the center thickness d4 of the fourth lens on the optical axis, the center thickness d5 of the fifth lens on the optical axis, and the distance from the center of the object side surface of the first lens to the imaging surface of the optical lens on the optical axis TTL can satisfy: (d4+d5)/TTL ⁇ 0.3.
  • the maximum angle of view ⁇ of the optical lens in radians, the total effective focal length F of the optical lens, and the image height H corresponding to the maximum angle of view of the optical lens can satisfy:
  • a second aspect of the present application provides an optical lens.
  • the optical lens sequentially includes from the object side to the image side along the optical axis: a first lens with negative refractive power; a second lens with positive refractive power; a third lens with positive refractive power; a fourth lens; a fifth lens with negative power; a sixth lens with positive power; and a seventh lens with negative power.
  • the distance from the center of the image side of the seventh lens to the imaging surface of the optical lens on the optical axis BFL and the distance from the center of the object side of the first lens to the imaging surface of the optical lens on the optical axis TTL can satisfy: BFL/TTL ⁇ 0.07.
  • a third aspect of the present application provides an optical lens, the optical lens includes sequentially from a first side to a second side along an optical axis: a first lens with negative refractive power, a first side surface of which is concave, a second lens The side is concave; the second lens with positive refractive power, the first side is convex; the third lens with positive refractive power, the first side is convex, the second side is convex; the fourth lens with positive refractive power , its first side is convex; the fifth lens with negative refractive power, its second side is concave; the sixth lens with refractive power, its first side is convex, the second side is concave; For the seventh lens of optical power, the second side surface is concave.
  • the second side surface of the second lens is concave.
  • the second side surface of the second lens is convex.
  • the second side surface of the fourth lens is concave.
  • the second side surface of the fourth lens is convex.
  • the first side surface of the fifth lens is convex.
  • the first side surface of the fifth lens is concave.
  • the first side surface of the seventh lens is concave.
  • the first side surface of the seventh lens is convex.
  • the second lens has an aspherical mirror surface.
  • the seventh lens has an aspherical mirror surface.
  • the fourth lens, the fifth lens and the sixth lens are cemented to form a cemented lens.
  • the optical lens further includes a diaphragm disposed between the second lens and the third lens.
  • the seventh lens has at least one inflection point on the second side.
  • the distance TTL from the center of the first side surface of the first lens to the imaging surface of the optical lens on the optical axis and the total effective focal length F of the optical lens satisfy: TTL/F ⁇ 2.5.
  • the Abbe number Vd3 of the third lens and the Abbe number Vd4 of the fourth lens satisfy: Vd3+Vd4 ⁇ 100.
  • the sag SAG61 at the maximum clear aperture of the first side of the sixth lens, the maximum clear aperture D61 of the first side of the sixth lens, and the second The sag SAG62 at the maximum clear aperture of the side surface and the maximum clear aperture D62 of the second side surface of the sixth lens satisfy: 0.2 ⁇ (SAG61/D61)/(SAG62/D62) ⁇ 2.5.
  • the effective focal length F4 of the fourth lens and the effective focal length F5 of the fifth lens satisfy:
  • the center thickness d4 of the fourth lens on the optical axis, the center thickness d5 of the fifth lens on the optical axis, and the thickness of the sixth lens on the optical axis satisfy: 0.1 ⁇ (d4+d5+d6)/TTL ⁇ 0.8.
  • the distance BFL from the center of the second side surface of the seventh lens to the imaging surface of the optical lens on the optical axis and the center of the first side surface of the first lens to the optical axis satisfies: BFL/TTL ⁇ 0.05.
  • the curvature radius R6 of the first side surface of the third lens and the curvature radius R7 of the second side surface of the third lens satisfy:
  • the maximum angle of view FOV of the optical lens, the total effective focal length F of the optical lens, and the image height H corresponding to the maximum angle of view of the optical lens satisfy: (FOV ⁇ F)/H ⁇ 45.
  • the total effective focal length F of the optical lens and the entrance pupil diameter EPD of the optical lens satisfy: 1 ⁇ F/EPD ⁇ 2.
  • the maximum clear aperture D of the first side of the first lens corresponding to the maximum angle of view of the optical lens, the image height H corresponding to the maximum angle of view of the optical lens, and the The radian value ⁇ corresponding to the maximum angle of view of the optical lens satisfies: D/H/ ⁇ 5.
  • the combined focal length F45 of the fourth lens and the fifth lens and the total effective focal length F of the optical lens satisfy:
  • the combined focal length F456 of the fourth lens, the fifth lens and the sixth lens and the total effective focal length F of the optical lens satisfy:
  • the distance Ti10 from the center of the first side surface of the sixth lens to the imaging surface of the optical lens on the optical axis and the center of the first side surface of the first lens to the optical axis satisfies: 0.2 ⁇ Ti10/TTL ⁇ 0.6.
  • the center thickness d7 of the seventh lens on the optical axis and the distance TTL from the center of the first side surface of the first lens to the imaging surface of the optical lens on the optical axis Satisfaction: 0.05 ⁇ d7/TTL ⁇ 0.2.
  • the distance d46 between the center of the second side surface of the fourth lens and the center of the first side surface of the sixth lens on the optical axis is the same as the distance d46 of the first side surface of the first lens.
  • the distance TTL from the center to the imaging surface of the optical lens on the optical axis satisfies: d46/TTL ⁇ 0.05.
  • the radian value ⁇ 2 of the included angle between the outgoing light behind the sixth lens and the optical axis satisfies: ⁇ 2/ ⁇ 1 ⁇ 2.
  • the effective focal length F6 of the sixth lens and the total effective focal length F of the optical lens satisfy: 2.1 ⁇
  • the refractive index N4 of the fourth lens, the refractive index N5 of the fifth lens, and the refractive index N6 of the sixth lens satisfy: 1 ⁇ (N6-N4)/(N5-N4) ⁇ 2.
  • the center thickness d4 of the fourth lens on the optical axis, the center thickness d5 of the fifth lens on the optical axis, and the thickness of the sixth lens on the optical axis satisfy: T ⁇ 0.03+d4+d5+d6.
  • a fourth aspect of the present application provides an optical lens, the optical lens includes sequentially from a first side to a second side along an optical axis: a first lens having a negative refractive power; a second lens having a positive refractive power; a third lens with positive power; a fourth lens with positive power; a fifth lens with negative power; a sixth lens with negative power; and a seventh lens with negative power, wherein, The fourth lens, the fifth lens and the sixth lens are cemented to form a cemented lens.
  • a fifth aspect of the present application provides an electronic device.
  • the electronic device includes an optical lens provided according to the present application and an imaging element for converting an optical image formed by the optical lens into an electrical signal.
  • the optical lens has high resolution and miniaturization, high illumination, low cost, good chromatic aberration, and good temperature performance. At least one beneficial effect, such as focal length, small CRA, and good imaging quality, enables the optical lens to better meet the requirements of vehicle front-view applications.
  • FIG. 1 is a schematic structural diagram illustrating an optical lens according to Embodiment 1 of the present application.
  • FIG. 2 is a schematic structural diagram illustrating an optical lens according to Embodiment 2 of the present application.
  • FIG. 3 is a schematic structural diagram illustrating an optical lens according to Embodiment 3 of the present application.
  • FIG. 4 is a schematic structural diagram illustrating an optical lens according to Embodiment 4 of the present application.
  • FIG. 5 is a schematic structural diagram illustrating an optical lens according to Embodiment 5 of the present application.
  • FIG. 6 is a schematic structural diagram illustrating an optical lens according to Embodiment 6 of the present application.
  • FIG. 7 is a schematic structural diagram illustrating an optical lens according to Embodiment 7 of the present application.
  • FIG. 8 is a schematic structural diagram illustrating an optical lens according to Embodiment 8 of the present application.
  • FIG. 9 is a schematic structural diagram illustrating an optical lens according to Embodiment 9 of the present application.
  • FIG. 10 is a schematic structural diagram illustrating an optical lens according to Embodiment 10 of the present application.
  • FIG. 11 is a schematic structural diagram illustrating an optical lens according to Embodiment 11 of the present application.
  • FIG. 12 is a schematic structural diagram illustrating an optical lens according to Embodiment 12 of the present application.
  • FIG. 13 is a schematic structural diagram illustrating an optical lens according to Embodiment 13 of the present application.
  • FIG. 14 is a schematic structural diagram illustrating an optical lens according to Embodiment 14 of the present application.
  • FIG. 15 is a schematic structural diagram illustrating an optical lens according to Embodiment 15 of the present application.
  • FIG. 16 is a schematic structural diagram illustrating an optical lens according to Embodiment 16 of the present application.
  • FIG. 17 is a schematic structural diagram illustrating an optical lens according to Embodiment 17 of the present application.
  • Embodiment 18 is a schematic structural diagram illustrating an optical lens according to Embodiment 18 of the present application.
  • FIG. 19 is a schematic structural diagram illustrating an optical lens according to Embodiment 19 of the present application.
  • FIG. 20 shows the radian value ⁇ 1 of the angle between the incident ray and the optical axis before the chief ray at the center of the optical lens’s fringe field of view reaches the sixth lens and after the chief ray in the center of the optical lens’s fringe field of view reaches the sixth lens according to an embodiment of the present application
  • first, second, third etc. are only used to distinguish one feature from another feature and do not imply any limitation on the feature. Accordingly, the first lens discussed below may also be referred to as a second lens or a third lens without departing from the teachings of the present application.
  • the thickness, size and shape of the lenses have been slightly exaggerated for convenience of explanation.
  • the spherical or aspherical shapes shown in the figures are shown by way of example. That is, the shape of the spherical or aspherical surface is not limited to the shape of the spherical or aspherical surface shown in the drawings.
  • the drawings are examples only and are not drawn strictly to scale.
  • the paraxial region refers to the region near the optical axis. If the lens surface is convex and the convex position is not defined, it means that the lens surface is convex at least in the paraxial region; if the lens surface is concave and the concave position is not defined, it means that the lens surface is at least in the paraxial region. Concave.
  • the surface of each lens closest to the subject is called the object side of the lens, and the surface of each lens closest to the imaging side is called the image side of the lens.
  • the optical lens provided in this application can be used for both imaging and projection.
  • the "first side” referred to herein may refer to the object side, and the “second side” may refer to the image side;
  • the optical lens provided by the present application is used for a projection lens or
  • the “first side” referred to herein may refer to the imaging side, and the “second side” may refer to the image source side.
  • the optical lens includes, for example, seven lenses having optical powers, ie, a first lens, a second lens, a third lens, a fourth lens, a fifth lens, a sixth lens, and a seventh lens.
  • the seven lenses are arranged in sequence from the object side to the image side along the optical axis.
  • the optical lens may further include a photosensitive element disposed on the imaging surface.
  • the photosensitive element disposed on the imaging surface may be a photosensitive coupling element (CCD) or a complementary metal oxide semiconductor element (CMOS).
  • the first lens may have negative refractive power.
  • the first lens may have a biconcave type.
  • the setting of the optical power and surface shape of the first lens can not only make the light enter the rear optical system accurately and smoothly, improve the resolution quality, but also collect the light of a large field of view as much as possible, and increase the amount of light passing through.
  • the first lens may be a spherical lens.
  • the first lens is a spherical lens, and a waterproof film can be easily added to the first lens, and at the same time, the processing cost can be reduced.
  • the second lens may have positive refractive power.
  • the second lens may have a convex-concave type or a biconvex type.
  • the setting of the optical power and surface shape of the second lens is beneficial to light convergence, and is beneficial to reducing the diameter and length of the optical lens barrel, thereby realizing miniaturization.
  • the second lens may be an aspherical lens.
  • the third lens may have positive refractive power.
  • the third lens may have a biconvex type.
  • the configuration of the optical power and the surface shape of the third lens is beneficial to light convergence, and is beneficial to reducing the diameter and length of the optical lens barrel, thereby realizing miniaturization.
  • the fourth lens may have positive refractive power.
  • the fourth lens may have a convex-concave type or a convex-convex type. This kind of optical power and surface configuration of the fourth lens has a large dispersion coefficient, which is conducive to correcting system dispersion and balancing system aberrations. low caliber.
  • the fifth lens may have negative refractive power.
  • the fifth lens may have a convex-concave type or a concave-concave type.
  • the fifth lens can be made of a material with a higher refractive index, which can make the structure more compact.
  • the convex and concave lens is beneficial to the processability, and the lens with the convex first surface is easy to gather light and reduce the aperture.
  • the sixth lens may have positive refractive power.
  • the sixth lens may have a convex-concave type or a biconvex type.
  • the setting of the optical power and the surface shape of the sixth lens is favorable for light convergence, and is favorable for reducing the diameter and length of the optical lens barrel, thereby realizing miniaturization.
  • the sixth lens may have positive refractive power or negative refractive power.
  • the sixth lens may have a convex and concave type. The curvature radii of the two surfaces of the sixth lens are close, which is conducive to the smooth propagation of light, and helps to reduce the sensitivity of the system.
  • the seventh lens may have negative refractive power.
  • the seventh lens may have a concave-convex type, a convex-concave type, or a double-concave type.
  • the seventh lens has an aspherical mirror surface. The setting of the optical power and the surface shape of the seventh lens is conducive to smoothing the trend of light in the front and improving the resolution quality.
  • the seventh lens may have negative refractive power.
  • the seventh lens may have a concave-convex type or a convex-concave type.
  • the setting of the optical power and the surface shape of the seventh lens can balance the system aberration, which is conducive to smoothing the trend of the front light, which is conducive to the resolution, and the convex and concave lens is conducive to the processability.
  • the seventh lens may have an aspherical mirror surface, which can effectively correct aberrations, further improve the resolution, and make the illuminance of the image surface more uniform.
  • the optical lens according to the present application may satisfy: TTL/F ⁇ 2.5, where TTL is the distance from the center of the object side of the first lens to the imaging surface of the optical lens on the optical axis, and F is the optical axis
  • TTL and F may further satisfy: TTL/F ⁇ 2.2. Satisfying TTL/F ⁇ 2.5 can effectively limit the length of the lens, which is conducive to realizing the miniaturization of the lens.
  • the optical lens according to the present application may satisfy: TTL/H/FOV ⁇ 0.7, where TTL is the distance from the center of the object side of the first lens to the imaging surface of the optical lens on the optical axis, FOV is the maximum field of view of the optical lens, and H is the image height corresponding to the maximum field of view of the optical lens. More specifically, TTL, H and FOV may further satisfy: TTL/H/FOV ⁇ 0.55. Satisfying TTL/H/FOV ⁇ 0.7, it can effectively limit the length of the lens and realize the miniaturization of the lens without changing the imaging surface and image height of the lens.
  • the optical lens according to the present application may satisfy: VD3+VD4 ⁇ 110, wherein VD3 is the Abbe number of the third lens, and VD4 is the Abbe number of the fourth lens. More specifically, VD3 and VD4 can further satisfy: VD3+VD4 ⁇ 120. Satisfying VD3+VD4 ⁇ 110 helps to correct chromatic aberration and improve resolution.
  • the optical lens according to the present application may satisfy: 50 ⁇ VD3 ⁇ 120, where VD3 is the Abbe number of the third lens. More specifically, VD3 may further satisfy: 60 ⁇ VD3 ⁇ 100. Satisfying 50 ⁇ VD3 ⁇ 120 helps to correct chromatic aberration and improve resolution.
  • the optical lens according to the present application may satisfy: 40 ⁇ VD4 ⁇ 120, where VD4 is the Abbe number of the fourth lens. More specifically, VD4 may further satisfy: 45 ⁇ VD4 ⁇ 100. Satisfying 40 ⁇ VD4 ⁇ 120 helps to correct chromatic aberration and improve resolution.
  • the optical lens according to the present application may satisfy: (FOV ⁇ F)/H ⁇ 50°, where FOV is the maximum field angle of the optical lens, F is the total effective focal length of the optical lens, and H is the The image height corresponding to the maximum field of view of the optical lens. More specifically, FOV, F and H may further satisfy: (FOV ⁇ F)/H ⁇ 55°. Satisfying (FOV ⁇ F)/H ⁇ 50° is conducive to achieving large angular resolution, and is also conducive to satisfying characteristics such as telephoto and large field of view.
  • the optical lens according to the present application may satisfy: BFL/TTL ⁇ 0.07, where BFL is the distance from the center of the image side surface of the seventh lens to the imaging surface of the optical lens on the optical axis, and TTL is the first The distance from the center of the object side of a lens to the imaging plane of the optical lens on the optical axis. More specifically, BFL and TTL can further satisfy: BFL/TTL ⁇ 0.075.
  • Satisfying BFL/TTL ⁇ 0.07 not only helps to make the back focus longer on the basis of miniaturization, which is beneficial to the assembly of the module, but also helps to make the length of the lens group shorter, the structure of the lens group is compact, and the reduction of the lens Sensitivity to MTF, improve production yield and reduce production cost.
  • the optical lens according to the present application may satisfy: 1 ⁇
  • the optical lens according to the present application may satisfy: 1 ⁇
  • the optical lens according to the present application may satisfy: 1 ⁇
  • the optical lens according to the present application may satisfy: 1 ⁇ dn/dm ⁇ 2, wherein the fourth lens and the fifth lens are cemented to form a cemented lens, and dn is the second lens, the third lens and the cemented lens is the center thickness of the lens with the largest center thickness in dm, and dm is the center thickness of the lens with the smallest center thickness among the second, third, and cemented lenses. More specifically, dn and dm may further satisfy: 1.3 ⁇ dn/dm ⁇ 1.8. Satisfying 1 ⁇ dn/dm ⁇ 2 helps the overall light deflection change of the optical lens under high and low temperature to be small, and the temperature performance is better.
  • the optical lens according to the present application may satisfy: 0.5 ⁇
  • the optical lens according to the present application may satisfy: 0.1 ⁇
  • the optical lens according to the present application may satisfy: F/ENPD ⁇ 2, where F is the total effective focal length of the optical lens, and ENPD is the entrance pupil diameter of the optical lens. More specifically, F and ENPD may further satisfy: F/ENPD ⁇ 1.8. Satisfying F/ENPD ⁇ 2 helps to improve the relative illuminance.
  • the optical lens according to the present application may satisfy: arctan(SAG41/D41) ⁇ 30, where D41 is the maximum clear semi-diameter of the object side of the fourth lens corresponding to the maximum angle of view of the optical lens , SAG41 is the distance on the optical axis from the intersection of the object side of the fourth lens and the optical axis to the maximum clear aperture of the object side of the fourth lens. More specifically, SAG41 and D41 may further satisfy: arctan(SAG41/D41) ⁇ 24. Satisfying arctan(SAG41/D41) ⁇ 30 helps to reduce ghost images.
  • the optical lens according to the present application may satisfy: 0.5 ⁇ R1/F ⁇ 2, where F is the total effective focal length of the optical lens, and R1 is the curvature radius of the object side of the first lens. More specifically, R1 and F may further satisfy: 0.9 ⁇ R1/F ⁇ 1.5. Satisfying 0.5 ⁇ R1/F ⁇ 2 is beneficial to improve the relative illuminance of the lens.
  • the optical lens according to the present application may satisfy: (d4+d5)/TTL ⁇ 0.3, wherein d4 is the center thickness of the fourth lens on the optical axis, and d5 is the fifth lens on the optical axis
  • the center thickness, TTL is the distance from the center of the object side of the first lens to the imaging surface of the optical lens on the optical axis.
  • d4, d5 and TTL may further satisfy: (d4+d5)/TTL ⁇ 0.2. Satisfying (d4+d5)/TTL ⁇ 0.3 is beneficial to improve the relative illuminance.
  • the optical lens according to the present application may satisfy:
  • a diaphragm for limiting the light beam may be disposed between the second lens and the third lens or between the first lens and the second lens to further improve the imaging quality of the optical lens. Disposing the diaphragm between the second lens and the third lens or between the first lens and the second lens is beneficial to effectively converge the light entering the optical lens and reduce the diameter of the lens.
  • the diaphragm may be disposed near the image side of the first lens, or near the object side of the second lens, or near the image side of the second lens, or at the vicinity of the object side of the third lens.
  • the position of the diaphragm disclosed here is only an example and not a limitation; in alternative embodiments, the diaphragm can also be set at other positions according to actual needs.
  • the optical lens according to the present application may further include a filter and/or a protective glass disposed between the seventh lens and the imaging surface, so as to filter light with different wavelengths, and Prevent damage to image-side elements (eg, chips) of the optical lens.
  • a filter and/or a protective glass disposed between the seventh lens and the imaging surface, so as to filter light with different wavelengths, and Prevent damage to image-side elements (eg, chips) of the optical lens.
  • cemented lenses can be used to minimize or eliminate chromatic aberration.
  • Using a cemented lens in an optical lens can improve the image quality and reduce the reflection loss of light energy, thereby achieving high resolution and improving the clarity of lens imaging.
  • the use of cemented lenses simplifies assembly procedures in the lens manufacturing process.
  • the fourth lens and the fifth lens may be cemented to form a cemented lens.
  • a fourth lens with positive power and both object and image sides is convex, cemented with a fifth lens with negative power and both object and image sides are concave, or it has positive power and both object and image sides are convex and image sides
  • the fourth lens with the concave side is cemented with the fifth lens with negative refractive power, the object side is convex and the image side is concave.
  • the length is conducive to correcting various aberrations of the optical lens, improving the system resolution, optimizing the distortion and CRA and other optical performance under the premise of the compact structure of the optical lens.
  • the cementing method between the above-mentioned lenses has at least one of the following advantages: reducing self-chromatic aberration, reducing tolerance sensitivity, and balancing the overall chromatic aberration of the system through the residual partial chromatic aberration; reducing the separation distance between the two lenses, thereby reducing the size of the system Overall length; reduce assembly components between lenses, thereby reducing processes and costs; reducing lens units due to tolerance sensitivity issues such as tilt/decentration generated during assembly, improving production yields; reducing the amount of light caused by reflection between lenses Loss, improve illuminance; further reduce field curvature, effectively correct the off-axis point aberration of the optical lens.
  • Such a glued design shares the overall chromatic aberration correction of the system, effectively corrects aberrations to improve resolution, and makes the optical system as a whole compact to meet miniaturization requirements.
  • the first lens, the third lens, the fourth lens, the fifth lens and the sixth lens may be spherical lenses; the second lens and the seventh lens may be aspherical lenses.
  • the first lens, the second lens, the third lens, the fourth lens, the fifth lens, the sixth lens and the seventh lens may all be aspherical lenses.
  • the characteristic of aspherical lenses is that the curvature changes continuously from the center of the lens to the periphery. Unlike spherical lenses, which have a constant curvature from the center of the lens to the periphery, aspheric lenses have better curvature radius characteristics, and have the advantages of improving distortion and astigmatism. After the aspherical lens is used, the aberration that occurs during imaging can be eliminated as much as possible, thereby improving the imaging quality of the lens. Aspherical lens settings help correct system aberrations and improve resolution.
  • the optical lens according to the above-mentioned embodiments of the present application realizes the optical system with small chromatic aberration and high resolution (up to 8 million pixels or more) under the condition of using only 7 lenses through the reasonable setting of the shape and power of each lens. ), miniaturization, smaller front-end aperture, longer back focus, and good imaging quality.
  • the optical system also takes into account the low-cost requirements of small lens size, low sensitivity, and high production yield.
  • the optical lens also has a small CRA, which can not only avoid stray light from hitting the lens barrel when the rear end of the light exits, but also match the on-board chip well, so that the optical lens will not produce color cast and vignetting.
  • the optical lens has good temperature adaptability, little change in imaging effect under high and low temperature environments, and stable image quality, which is beneficial for the optical lens to be used in most environments.
  • the optical lens according to the above-mentioned embodiments of the present application is provided with a cemented lens to share the overall chromatic aberration correction of the system, which not only helps to correct the system aberration, improves the system resolution quality, reduces the problem of coordination sensitivity, but also helps to make the overall structure of the optical system compact. , to meet the miniaturization requirements.
  • the first to seventh lenses in the optical lens may all be made of glass.
  • the optical lens made of glass can suppress the shift of the optical lens back focus with temperature changes, so as to improve the system stability.
  • the use of glass material can avoid the blurring of the lens image caused by the high and low temperature temperature changes in the use environment, which affects the normal use of the lens.
  • the first to seventh lenses may all be glass aspherical lenses.
  • the first lens to the seventh lens in the optical lens can also be made of plastic. Using plastic to make the optical lens can effectively reduce the manufacturing cost.
  • the first lens to the seventh lens in the optical lens can also be made of plastic and glass.
  • the fourth lens, the fifth lens and the sixth lens may be cemented to form a cemented lens, so that the overall chromatic aberration correction of the system can be shared, aberrations can be corrected effectively to improve resolution, and the optical system can be made compact as a whole , which is beneficial to meet the miniaturization requirements.
  • gluing can reduce the influence of the tolerance of a single part and improve the overall performance. At the same time, gluing can eliminate the air cavity between the fifth lens and the sixth lens, and avoid the reflection of light back and forth between the air cavity, which can effectively reduce the Risk of ghost images.
  • the optical lens may further include a diaphragm disposed between the second lens and the third lens, and arranging the diaphragm after the second lens can help to increase the outgoing light, and is conducive to ensuring the passage of light. amount of light.
  • the diaphragm may be arranged near the second side of the second lens, or near the first side of the third lens, or at an intermediate position between the second lens and the third lens nearby.
  • the position of the diaphragm disclosed here is only an example and not a limitation; in alternative embodiments, the diaphragm can also be set at other positions according to actual needs.
  • the second side surface of the seventh lens may have at least one inflection point, which is beneficial to correct system aberration and improve the resolution capability of the system.
  • the optical lens according to the present application may satisfy: TTL/F ⁇ 2.5, where TTL is the total optical length of the optical lens, that is, the center of the first side of the first lens to the imaging surface of the optical lens is in the light On-axis distance, F is the total effective focal length of the optical lens. More specifically, TTL and F may further satisfy: TTL/F ⁇ 2.2. Satisfying TTL/F ⁇ 2.5 is beneficial to limit the volume of the lens and realize the miniaturization of the lens.
  • the optical lens according to the present application may satisfy: Vd3+Vd4 ⁇ 100, wherein Vd3 is the Abbe number of the third lens, and Vd4 is the Abbe number of the fourth lens. More specifically, Vd3 and Vd4 may further satisfy: Vd3+Vd4 ⁇ 120. Satisfying Vd3+Vd4 ⁇ 100 can help to further limit the deflection ability of the lens to emit light from a certain point, so as to correct the chromatic aberration of the imaging lens and make the image after the imaging lens more realistic.
  • the optical lens according to the present application may satisfy: 0.2 ⁇ (SAG61/D61)/(SAG62/D62) ⁇ 2.5, wherein SAG61 is at the maximum clear aperture of the first side of the sixth lens
  • SAG61 is at the maximum clear aperture of the first side of the sixth lens
  • D61 is the maximum clear aperture of the first side of the sixth lens
  • SAG62 is the sag at the maximum clear aperture of the second side of the sixth lens
  • D62 is the maximum clear aperture of the second side of the sixth lens.
  • SAG61, D61, SAG62, and D62 may further satisfy: 0.5 ⁇ (SAG61/D61)/(SAG62/D62) ⁇ 2.
  • the shapes of the first side and the second side of the sixth lens are close to each other, which is beneficial to the smooth transition of peripheral light and the reduction of lens sensitivity.
  • the optical lens according to the present application may satisfy:
  • the optical lens according to the present application may satisfy: 0.1 ⁇ (d4+d5+d6)/TTL ⁇ 0.8, wherein d4 is the center thickness of the fourth lens on the optical axis, and d5 is the fifth lens The central thickness on the optical axis, d6 is the central thickness of the sixth lens on the optical axis, and TTL is the distance from the center of the first side surface of the first lens to the imaging surface of the optical lens on the optical axis. More specifically, d4, d5, d6 and TTL may further satisfy: 0.2 ⁇ (d4+d5+d6)/TTL ⁇ 0.4. Satisfying 0.1 ⁇ (d4+d5+d6)/TTL ⁇ 0.8, the reasonable setting of the focal length of the glued lens will help more light enter smoothly and improve the illumination.
  • the optical lens according to the present application may satisfy: BFL/TTL ⁇ 0.05, where BFL is the distance from the center of the second side surface of the seventh lens to the imaging surface of the optical lens on the optical axis, and TTL is The distance on the optical axis from the center of the first side surface of the first lens to the imaging surface of the optical lens. More specifically, BFL and TTL can further satisfy: BFL/TTL ⁇ 0.1. Satisfying BFL/TTL ⁇ 0.05 can make the optical lens have the characteristics of back focal length, which is conducive to assembly.
  • the optical lens according to the present application may satisfy:
  • the optical lens according to the present application may satisfy: (FOV ⁇ F)/H ⁇ 45, where FOV is the maximum field angle of the optical lens, F is the total effective focal length of the optical lens, and H is the optical lens The image height corresponding to the maximum field of view of the lens. More specifically, FOV, F and H may further satisfy: (FOV ⁇ F)/H ⁇ 50. Satisfying (FOV ⁇ F)/H ⁇ 45 can be beneficial to achieve small distortion, and is beneficial to satisfy telephoto and large field of view at the same time.
  • the optical lens according to the present application may satisfy: 1 ⁇ F/EPD ⁇ 2, where F is the total effective focal length of the optical lens, and EPD is the entrance pupil diameter of the optical lens. More specifically, F and EPD may further satisfy: 1.5 ⁇ F/EPD ⁇ 1.8. Satisfying 1 ⁇ F/EPD ⁇ 2, the entrance pupil diameter is large, which can help to improve the relative illuminance.
  • the optical lens according to the present application may satisfy: D/H/ ⁇ 5, where D is the maximum clear aperture of the first side surface of the first lens corresponding to the maximum angle of view of the optical lens, H is the image height corresponding to the maximum field of view of the optical lens, and ⁇ is the radian value corresponding to the maximum field of view of the optical lens. More specifically, D, H, and ⁇ may further satisfy: D/H/ ⁇ 3. Satisfying D/H/ ⁇ 5, the front-end aperture of the lens can be small, which is beneficial to the miniaturization of the lens.
  • the optical lens according to the present application may satisfy:
  • the optical lens according to the present application may satisfy:
  • the optical lens according to the present application may satisfy: 0.2 ⁇ Ti10/TTL ⁇ 0.6, where Ti10 is the distance from the center of the first side surface of the sixth lens to the imaging surface of the optical lens on the optical axis, TTL is the distance on the optical axis from the center of the first side surface of the first lens to the imaging surface of the optical lens. More specifically, Ti10 and TTL can further satisfy: 0.3 ⁇ Ti10/TTL ⁇ 0.5. Satisfying 0.2 ⁇ Ti10/TTL ⁇ 0.6 can make the sixth lens farther away from the image plane, which can help to eliminate ghost images.
  • the optical lens according to the present application may satisfy: 0.05 ⁇ d7/TTL ⁇ 0.2, where d7 is the center thickness of the seventh lens on the optical axis, and TTL is the center of the first side surface of the first lens The distance on the optical axis to the imaging surface of the optical lens. More specifically, d7 and TTL may further satisfy: 0.07 ⁇ d7/TTL ⁇ 0.15. Satisfying 0.05 ⁇ d7/TTL ⁇ 0.2, the thicker last lens (ie, the seventh lens) can make the light deflection smooth, which is beneficial to improve the relative illuminance, and at the same time can share the turning pressure of the third lens and relieve the third lens. Sensitivity and weight, but also balance aberrations and improve resolution.
  • the optical lens according to the present application may satisfy: d46/TTL ⁇ 0.05, where d46 is the distance from the center of the second side of the fourth lens to the center of the first side of the sixth lens on the optical axis
  • the separation distance, TTL is the distance from the center of the first side surface of the first lens to the imaging surface of the optical lens on the optical axis.
  • d46 and TTL can further satisfy: d46/TTL ⁇ 0.04. Satisfying d46/TTL ⁇ 0.05, shortening the distance between the fourth lens and the sixth lens is beneficial to reduce the ghost image problem caused by the close curvature of the two surfaces, and at the same time, it can reduce the air gap and reduce the lens volume.
  • the optical lens according to the present application can satisfy: ⁇ 2/ ⁇ 1 ⁇ 2, where ⁇ 1 is the radian value of the angle between the incident ray and the optical axis before the chief ray at the center of the peripheral field of view of the optical lens reaches the sixth lens , ⁇ 2 is the radian value of the angle between the outgoing ray and the optical axis after the chief ray at the center of the peripheral field of view of the optical lens reaches the sixth lens.
  • A1 in FIG. 13 is the chief ray in the center of the peripheral field of view of the optical lens.
  • ⁇ 1 and ⁇ 2 may further satisfy: ⁇ 2/ ⁇ 1 ⁇ 1.5. Satisfying ⁇ 2/ ⁇ 1 ⁇ 2 can make the light trend smooth, which is conducive to the smooth transition of light, which is conducive to reducing the sensitive items of the lens and improving the illuminance.
  • the optical lens according to the present application may satisfy: 2.1 ⁇
  • the optical lens according to the present application may satisfy: 1 ⁇ (N6-N4)/(N5-N4) ⁇ 2, wherein N4 is the refractive index of the fourth lens, and N5 is the refractive index of the fifth lens rate, N6 is the refractive index of the sixth lens. More specifically, N4, N5 and N6 may further satisfy: 1 ⁇ (N6-N4)/(N5-N4) ⁇ 1.8. Satisfying 1 ⁇ (N6-N4)/(N5-N4) ⁇ 2, the refractive index of the fourth lens, the fifth lens and the sixth lens are similar, which can make the light trend smooth, reduce the refractive index sensitivity of the lens, and at the same time Helps to balance aberrations and improve resolution.
  • the optical lens according to the present application may satisfy: T ⁇ 0.03+d4+d5+d6, where d4 is the center thickness of the fourth lens on the optical axis, and d5 is the fifth lens on the optical axis , d6 is the central thickness of the sixth lens on the optical axis, T is the distance on the optical axis from the center of the first side of the fourth lens to the center of the second side of the sixth lens. More specifically, d4, d5, d6 and T may further satisfy: T ⁇ 0.02+d4+d5+d6.
  • the optical lens of the present application may further include a filter and/or a protective glass disposed between the seventh lens and the imaging surface, so as to filter light with different wavelengths and prevent Damage to the second side element (eg, chip) of the optical lens.
  • a filter and/or a protective glass disposed between the seventh lens and the imaging surface, so as to filter light with different wavelengths and prevent Damage to the second side element (eg, chip) of the optical lens.
  • the first lens may be a spherical lens
  • the second lens may be an aspherical lens
  • the third, fourth, fifth and sixth lenses may be spherical lenses
  • the seventh lens may be an aspherical lens spherical lens.
  • the present application does not specifically limit the specific numbers of spherical lenses and aspherical lenses. When focusing on the resolution quality, the number of aspherical lenses can be increased.
  • the first lens, the second lens, the third lens, the fourth lens, the fifth lens, the sixth lens and the seventh lens may all be aspherical lenses.
  • aspherical lenses The characteristic of aspherical lenses is that the curvature changes continuously from the center of the lens to the periphery. Unlike spherical lenses, which have a constant curvature from the center of the lens to the periphery, aspheric lenses have better curvature radius characteristics, and have the advantages of improving distortion and astigmatism. After the aspherical lens is used, the aberration that occurs during imaging can be eliminated as much as possible, thereby improving the imaging quality of the lens. Aspherical lens settings help correct system aberrations and improve resolution.
  • the first lens, the second lens, the third lens, the fourth lens, the fifth lens, the sixth lens and the seventh lens may all be glass lenses.
  • the optical lens made of glass can suppress the shift of the optical lens back focus with temperature changes, so as to improve the system stability.
  • the use of glass material can avoid the blurring of the lens image caused by the high and low temperature temperature changes in the use environment and the problems that affect the normal use of the lens.
  • the first to seventh lenses may all be glass aspherical lenses.
  • the first lens to the seventh lens in the optical lens may all be made of plastic. Using plastic to make the optical lens can effectively reduce the manufacturing cost.
  • the first lens to the seventh lens in the optical lens can also be made of plastic and glass.
  • the optical lens of the above-mentioned embodiments of the present application through the reasonable setting of the shape and refractive power of each lens, the optical lens has at least one beneficial effect, such as high resolution, miniaturization, low cost, good chromatic aberration, back focal length, and good imaging quality.
  • the optical lens can better meet the requirements of vehicle front-view applications.
  • the optical lens according to the above-mentioned embodiments of the present application eliminates additional ghost images caused by reflection on the surface of the lens by adopting the form of triplet lens, so as to ensure the accuracy of the signal received by the vehicle chip, and the form of triplet lens is easy to reduce the coordination sensitive items. .
  • the optical system uses only seven lenses to achieve both miniaturization and high resolution requirements.
  • the reasonable distribution of the optical power of the system can also achieve small changes in imaging effects at high and low temperatures, and stable image quality, which is suitable for most environments where vehicles are used. And the lower tolerance sensitivity can reduce the difficulty of processing and assembly, and reduce the cost of the lens.
  • the number of lenses constituting the lens can be changed to obtain the various results and advantages described in this specification without departing from the technical solutions claimed in the present application.
  • the optical lens is not limited to including seven lenses. If desired, the optical lens may also include other numbers of lenses.
  • FIG. 1 shows a schematic structural diagram of an optical lens according to Embodiment 1 of the present application.
  • the optical lens includes a first lens L1, a second lens L2, a third lens L3, a fourth lens L4, a fifth lens L5, and a sixth lens L6 in sequence from the object side to the image side along the optical axis and the seventh lens L7.
  • the first lens L1 is a biconcave lens with negative refractive power, the object side S1 is concave, and the image side S2 is concave.
  • the second lens L2 is a convex-concave lens with positive refractive power, the object side S3 is convex, and the image side S4 is concave.
  • the third lens L3 is a biconvex lens with positive refractive power, the object side S6 is convex, and the image side S7 is convex.
  • the fourth lens L4 is a biconvex lens with positive refractive power, the object side S8 is convex, and the image side S9 is convex.
  • the fifth lens L5 is a biconcave lens with negative refractive power, the object side S9 is concave, and the image side S10 is concave.
  • the sixth lens L6 is a convex-concave lens with positive refractive power, and its object side surface S11 is a convex surface, and its image side surface S12 is a concave surface.
  • the seventh lens L7 is a biconcave lens with negative refractive power, the object side S13 is concave, and the image side S14 is concave.
  • the fourth lens L4 and the fifth lens L5 may be cemented to form a cemented lens.
  • the optical lens may further include a diaphragm STO, and the diaphragm STO may be disposed between the second lens L2 and the third lens L3 to improve imaging quality.
  • the stop STO may be disposed between the second lens L2 and the third lens L3 at a position close to the object side surface S6 of the third lens L3.
  • the optical lens may further include a filter L8 and/or a protective glass L8' having an object side S15 and an image side S16, the filter L8 can be used to correct chromatic aberration and the protective glass L8' can be used to protect Image sensor chip IMA located at the imaging plane.
  • Light from the object sequentially passes through each of the surfaces S1 to S16 and is finally imaged on the imaging surface.
  • Table 1 shows the radius of curvature R and thickness/distance d of each lens of the optical lens of Example 1 (it should be understood that the thickness/distance d of the row where S1 is located is the center thickness d1 of the first lens L1, and the thickness of the row where S2 is located /The distance d is the separation distance d12 between the first lens L1 and the second lens L2, and so on), the refractive index ND, and the Abbe number VD.
  • the second lens L2 and the seventh lens L7 may be aspherical lenses, and the first lens L1, the third lens L3, the fourth lens L4, the fifth lens L5 and the sixth lens L6 may be spherical lenses.
  • the surface type x of each aspherical lens can be defined by, but not limited to, the following aspherical formula:
  • x is the distance vector height of the aspheric surface from the vertex of the aspheric surface when the height is h along the optical axis;
  • k is the conic coefficient;
  • Ai is the correction coefficient of the i-th order of the aspheric surface.
  • Table 2 shows the conic coefficient k and higher order coefficients A4, A6, A8, A10, A12, A14 and A16 that can be used for each of the aspheric mirror surfaces S3, S4, S13 and S14 in Example 1.
  • FIG. 2 shows a schematic structural diagram of an optical lens according to Embodiment 2 of the present application.
  • the optical lens includes a first lens L1, a second lens L2, a third lens L3, a fourth lens L4, a fifth lens L5, and a sixth lens L6 in sequence from the object side to the image side along the optical axis and the seventh lens L7.
  • the first lens L1 is a biconcave lens with negative refractive power, the object side S1 is concave, and the image side S2 is concave.
  • the second lens L2 is a convex-concave lens with positive refractive power, the object side S3 is convex, and the image side S4 is concave.
  • the third lens L3 is a biconvex lens with positive refractive power, the object side S6 is convex, and the image side S7 is convex.
  • the fourth lens L4 is a convex-concave lens with positive refractive power, the object side S8 is convex, and the image side S9 is concave.
  • the fifth lens L5 is a convex-concave lens with negative refractive power
  • the object side S9 is convex
  • the image side S10 is concave.
  • the sixth lens L6 is a convex-concave lens with positive refractive power
  • its object side surface S11 is a convex surface
  • its image side surface S12 is a concave surface.
  • the seventh lens L7 is a biconcave lens with negative refractive power
  • the object side S13 is concave
  • the image side S14 is concave.
  • the fourth lens L4 and the fifth lens L5 may be cemented to form a cemented lens.
  • the optical lens may further include a diaphragm STO, and the diaphragm STO may be disposed between the second lens L2 and the third lens L3 to improve imaging quality.
  • the stop STO may be disposed between the second lens L2 and the third lens L3 at a position close to the object side surface S6 of the third lens L3.
  • the optical lens may further include a filter L8 and/or a protective glass L8' having an object side S15 and an image side S16, the filter L8 can be used to correct chromatic aberration and the protective glass L8' can be used to protect Image sensor chip IMA located at the imaging plane.
  • Light from the object sequentially passes through each of the surfaces S1 to S16 and is finally imaged on the imaging surface.
  • Table 3 shows the curvature radius R, thickness/distance d, refractive index ND, and Abbe number VD of each lens of the optical lens of Example 2.
  • Table 4 shows the conic coefficients and higher-order coefficients that can be used for each aspherical mirror surface in Example 2, where each aspherical surface type can be defined by the formula (1) given in Example 1 above.
  • FIG. 3 shows a schematic structural diagram of an optical lens according to Embodiment 3 of the present application.
  • the optical lens includes a first lens L1, a second lens L2, a third lens L3, a fourth lens L4, a fifth lens L5, and a sixth lens L6 in sequence from the object side to the image side along the optical axis and the seventh lens L7.
  • the first lens L1 is a biconcave lens with negative refractive power, the object side S1 is concave, and the image side S2 is concave.
  • the second lens L2 is a biconvex lens with positive refractive power, the object side S3 is convex, and the image side S4 is convex.
  • the third lens L3 is a biconvex lens with positive refractive power, the object side S6 is convex, and the image side S7 is convex.
  • the fourth lens L4 is a convex-concave lens with positive refractive power, the object side S8 is convex, and the image side S9 is concave.
  • the fifth lens L5 is a convex-concave lens with negative refractive power
  • the object side S9 is convex
  • the image side S10 is concave.
  • the sixth lens L6 is a convex-concave lens with positive refractive power, and its object side S11 is convex, and its image side S12 is concave.
  • the seventh lens L7 is a biconcave lens with negative refractive power, the object side S13 is concave, and the image side S14 is concave.
  • the fourth lens L4 and the fifth lens L5 may be cemented to form a cemented lens.
  • the optical lens may further include a diaphragm STO, and the diaphragm STO may be disposed between the second lens L2 and the third lens L3 to improve imaging quality.
  • the stop STO may be disposed between the second lens L2 and the third lens L3 at a position close to the object side surface S6 of the third lens L3.
  • the optical lens may further include a filter L8 and/or a protective glass L8' having an object side S15 and an image side S16, the filter L8 can be used to correct color deviation and the protective glass L8' can be used to protect Image sensor chip IMA located at the imaging plane.
  • the light from the object sequentially passes through each of the surfaces S1 to S16 and is finally imaged on the imaging surface.
  • Table 5 shows the curvature radius R, thickness/distance d, refractive index ND, and Abbe number VD of each lens of the optical lens of Example 3.
  • Table 6 shows the conic coefficients and higher-order term coefficients that can be used for each aspherical mirror surface in Example 3, where each aspherical surface type can be defined by the formula (1) given in Example 1 above.
  • FIG. 4 shows a schematic structural diagram of an optical lens according to Embodiment 4 of the present application.
  • the optical lens includes a first lens L1, a second lens L2, a third lens L3, a fourth lens L4, a fifth lens L5, and a sixth lens L6 in sequence from the object side to the image side along the optical axis and the seventh lens L7.
  • the first lens L1 is a biconcave lens with negative refractive power, the object side S1 is concave, and the image side S2 is concave.
  • the second lens L2 is a biconvex lens with positive refractive power, the object side S3 is convex, and the image side S4 is convex.
  • the third lens L3 is a biconvex lens with positive refractive power, the object side S6 is convex, and the image side S7 is convex.
  • the fourth lens L4 is a biconvex lens with positive refractive power, the object side S8 is convex, and the image side S9 is convex.
  • the fifth lens L5 is a biconcave lens with negative refractive power, the object side S9 is concave, and the image side S10 is concave.
  • the sixth lens L6 is a convex-concave lens with positive refractive power, and its object side surface S11 is a convex surface, and its image side surface S12 is a concave surface.
  • the seventh lens L7 is a convex-concave lens with negative refractive power, and its object side S13 is convex and its image side S14 is concave.
  • the fourth lens L4 and the fifth lens L5 may be cemented to form a cemented lens.
  • the optical lens may further include a diaphragm STO, and the diaphragm STO may be disposed between the second lens L2 and the third lens L3 to improve imaging quality.
  • the stop STO may be disposed between the second lens L2 and the third lens L3 at a position close to the object side surface S6 of the third lens L3.
  • the optical lens may further include a filter L8 and/or a protective glass L8' having an object side S15 and an image side S16, the filter L8 can be used to correct color deviation and the protective glass L8' can be used to protect Image sensor chip IMA located at the imaging plane.
  • Light from the object sequentially passes through each of the surfaces S1 to S16 and is finally imaged on the imaging surface.
  • Table 7 shows the curvature radius R, thickness/distance d, refractive index ND, and Abbe number VD of each lens of the optical lens of Example 4.
  • Table 8 shows the conic coefficients and higher-order coefficients that can be used for each aspherical mirror surface in Example 4, where each aspherical surface type can be defined by the formula (1) given in Example 1 above.
  • FIG. 5 shows a schematic structural diagram of an optical lens according to Embodiment 5 of the present application.
  • the optical lens includes a first lens L1, a second lens L2, a third lens L3, a fourth lens L4, a fifth lens L5, and a sixth lens L6 in sequence from the object side to the image side along the optical axis and the seventh lens L7.
  • the first lens L1 is a biconcave lens with negative refractive power, the object side S1 is concave, and the image side S2 is concave.
  • the second lens L2 is a biconvex lens with positive refractive power, the object side S3 is convex, and the image side S4 is convex.
  • the third lens L3 is a biconvex lens with positive refractive power, the object side S6 is convex, and the image side S7 is convex.
  • the fourth lens L4 is a convex-concave lens with positive refractive power, the object side S8 is convex, and the image side S9 is concave.
  • the fifth lens L5 is a convex-concave lens with negative refractive power
  • the object side S9 is convex
  • the image side S10 is concave.
  • the sixth lens L6 is a convex-concave lens with positive refractive power, and its object side S11 is convex, and its image side S12 is concave.
  • the seventh lens L7 is a biconcave lens with negative refractive power, the object side S13 is concave, and the image side S14 is concave.
  • the fourth lens L4 and the fifth lens L5 may be cemented to form a cemented lens.
  • the optical lens may further include a diaphragm STO, and the diaphragm STO may be disposed between the second lens L2 and the third lens L3 to improve imaging quality.
  • the stop STO may be disposed between the second lens L2 and the third lens L3 at a position close to the object side surface S6 of the third lens L3.
  • the optical lens may further include a filter L8 and/or a protective glass L8' having an object side S15 and an image side S16, the filter L8 can be used to correct color deviation and the protective glass L8' can be used to protect Image sensor chip IMA located at the imaging plane.
  • the light from the object sequentially passes through each of the surfaces S1 to S16 and is finally imaged on the imaging surface.
  • Table 9 shows the curvature radius R, thickness/distance d, refractive index ND, and Abbe number VD of each lens of the optical lens of Example 5.
  • Table 10 shows the conic coefficients and higher-order coefficients that can be used for each aspherical mirror surface in Example 5, where each aspherical surface type can be defined by the formula (1) given in Example 1 above.
  • FIG. 6 shows a schematic structural diagram of an optical lens according to Embodiment 6 of the present application.
  • the optical lens includes a first lens L1, a second lens L2, a third lens L3, a fourth lens L4, a fifth lens L5, and a sixth lens L6 in sequence from the object side to the image side along the optical axis and the seventh lens L7.
  • the first lens L1 is a biconcave lens with negative refractive power, the object side S1 is concave, and the image side S2 is concave.
  • the second lens L2 is a biconvex lens with positive refractive power, the object side S3 is convex, and the image side S4 is convex.
  • the third lens L3 is a biconvex lens with positive refractive power, the object side S6 is convex, and the image side S7 is convex.
  • the fourth lens L4 is a biconvex lens with positive refractive power, the object side S8 is convex, and the image side S9 is convex.
  • the fifth lens L5 is a biconcave lens with negative refractive power, the object side S9 is concave, and the image side S10 is concave.
  • the sixth lens L6 is a convex-concave lens with positive refractive power, and its object side S11 is convex, and its image side S12 is concave.
  • the seventh lens L7 is a meniscus lens with negative refractive power, the object side S13 is concave, and the image side S14 is convex.
  • the fourth lens L4 and the fifth lens L5 may be cemented to form a cemented lens.
  • the optical lens may further include a diaphragm STO, and the diaphragm STO may be disposed between the second lens L2 and the third lens L3 to improve imaging quality.
  • the stop STO may be disposed between the second lens L2 and the third lens L3 at a position close to the object side surface S6 of the third lens L3.
  • the optical lens may further include a filter L8 and/or a protective glass L8' having an object side S15 and an image side S16, the filter L8 can be used to correct color deviation and the protective glass L8' can be used to protect Image sensor chip IMA located at the imaging plane.
  • the light from the object sequentially passes through each of the surfaces S1 to S16 and is finally imaged on the imaging surface.
  • Table 11 shows the curvature radius R, thickness/distance d, refractive index ND, and Abbe number VD of each lens of the optical lens of Example 6.
  • Table 12 shows the conic coefficients and higher-order coefficients that can be used for each aspherical mirror surface in Example 6, where each aspherical surface type can be defined by the formula (1) given in Example 1 above.
  • FIG. 7 shows a schematic structural diagram of an optical lens according to Embodiment 7 of the present application.
  • the optical lens includes a first lens L1, a second lens L2, a third lens L3, a fourth lens L4, a fifth lens L5, and a sixth lens L6 in sequence from the object side to the image side along the optical axis and the seventh lens L7.
  • the first lens L1 is a biconcave lens with negative refractive power, the object side S1 is concave, and the image side S2 is concave.
  • the second lens L2 is a biconvex lens with positive refractive power, the object side S4 is convex, and the image side S5 is convex.
  • the third lens L3 is a biconvex lens with positive refractive power, the object side S6 is convex, and the image side S7 is convex.
  • the fourth lens L4 is a biconvex lens with positive refractive power, the object side S8 is convex, and the image side S9 is convex.
  • the fifth lens L5 is a biconcave lens with negative refractive power
  • the object side S9 is concave
  • the image side S10 is concave
  • the sixth lens L6 is a biconvex lens with positive refractive power
  • the object side S11 is convex
  • the image side S12 is convex
  • the seventh lens L7 is a biconcave lens with negative refractive power
  • the object side S13 is concave
  • the image side S14 is concave.
  • the fourth lens L4 and the fifth lens L5 may be cemented to form a cemented lens.
  • the optical lens may further include a diaphragm STO, and the diaphragm STO may be disposed between the second lens L2 and the third lens L3 to improve imaging quality.
  • the stop STO may be disposed between the second lens L2 and the third lens L3 at a position close to the object side surface S6 of the third lens L3.
  • the optical lens may further include a filter L8 and/or a protective glass L8' having an object side S15 and an image side S16, the filter L8 can be used to correct color deviation and the protective glass L8' can be used to protect Image sensor chip IMA located at the imaging plane.
  • Light from the object sequentially passes through each of the surfaces S1 to S16 and is finally imaged on the imaging surface.
  • Table 13 shows the curvature radius R, thickness/distance d, refractive index ND, and Abbe number VD of each lens of the optical lens of Example 7.
  • Table 14 shows conic coefficients and higher-order coefficients that can be used for each aspherical mirror surface in Example 7, where each aspherical surface type can be defined by the formula (1) given in Example 1 above.
  • FIG. 8 shows a schematic structural diagram of an optical lens according to Embodiment 8 of the present application.
  • the optical lens includes a first lens L1 , a second lens L2 , a third lens L3 , a fourth lens L4 , a fifth lens L5 , and a sixth lens L1 , a second lens L2 , a third lens L3 , a fourth lens L4 , a fifth lens L5 , a sixth lens Lens L6 and seventh lens L7.
  • the first lens L1 is a concave concave lens with negative refractive power, the first side S1 is concave, and the second side S2 is concave.
  • the second lens L2 is a convex-concave lens with positive refractive power, the first side S3 is convex, and the second side S4 is concave.
  • the third lens L3 is a convex convex lens with positive refractive power, the first side S6 is convex, and the second side S7 is convex.
  • the fourth lens L4 is a convex-concave lens with positive refractive power, its first side S8 is convex, and the second side S9 is concave.
  • the fifth lens L5 is a convex-concave lens with negative refractive power
  • the first side S9 is convex
  • the second side S10 is concave.
  • the sixth lens L6 is a convex-concave lens with positive refractive power, the first side S10 of which is convex, and the second side S11 is concave.
  • the seventh lens L7 is a concave concave lens with negative refractive power, the first side S12 is concave, and the second side S13 is concave.
  • the optical lens may further include a diaphragm STO, and the diaphragm STO may be arranged between the second lens L2 and the third lens L3 to increase the outgoing light and ensure the amount of light passing through.
  • the stop STO may be disposed between the second lens L2 and the third lens L3 at a position close to the second side surface S4 of the second lens L2.
  • the optical lens may further include a filter L8 having a first side S14 and a second side S15, and the filter L8 may be used to correct color deviation.
  • the optical lens may further include a protective glass L9 having a first side surface S16 and a second side surface S17, and the protective glass L9 may be used to protect the image sensor chip IMA located at the imaging surface and/or the image source surface.
  • Table 15 shows the radius of curvature R and thickness/distance d of each lens of the optical lens of Example 8 (it should be understood that the thickness/distance d of the row where S1 is located is the center thickness d1 of the first lens L1, and the thickness of the row where S2 is located /The distance d is the separation distance d2 between the first lens L1 and the second lens L2, and so on), the refractive index N, and the Abbe number Vd.
  • both the first side S3 and the second side S4 of the second lens L2 and the first side S12 and the second side S13 of the seventh lens L7 can be aspherical, and the surface type of each aspherical lens can be implemented as described above. Equation (1) given in Example 1 defines.
  • Table 16 below gives the conic coefficient k and higher order coefficients A4, A6, A8, A10, A12, A14 and A16 that can be used for each of the aspheric mirror surfaces S3, S4, S12 and S13 in Example 8.
  • FIG. 9 shows a schematic structural diagram of an optical lens according to Embodiment 9 of the present application.
  • the optical lens includes a first lens L1, a second lens L2, a third lens L3, a fourth lens L4, a fifth lens L5, a sixth lens L1, a second lens L2, a fourth lens L4, a fifth lens L5, a sixth lens and Lens L6 and seventh lens L7.
  • the first lens L1 is a concave concave lens with negative refractive power, the first side S1 is concave, and the second side S2 is concave.
  • the second lens L2 is a convex-concave lens with positive refractive power, the first side S3 is convex, and the second side S4 is concave.
  • the third lens L3 is a convex convex lens with positive refractive power, the first side S6 is convex, and the second side S7 is convex.
  • the fourth lens L4 is a convex-concave lens with positive refractive power, its first side S8 is convex, and the second side S9 is concave.
  • the fifth lens L5 is a convex-concave lens with negative refractive power
  • the first side S9 is convex
  • the second side S10 is concave.
  • the sixth lens L6 is a convex-concave lens with positive refractive power, the first side S10 of which is convex, and the second side S11 is concave.
  • the seventh lens L7 is a concave concave lens with negative refractive power, the first side S12 is concave, and the second side S13 is concave.
  • the optical lens may further include a diaphragm STO, and the diaphragm STO may be arranged between the second lens L2 and the third lens L3 to increase the outgoing light and ensure the amount of light passing through.
  • the stop STO may be disposed between the second lens L2 and the third lens L3 at a position close to the second side surface S4 of the second lens L2.
  • the optical lens may further include a filter L8 having a first side S14 and a second side S15, and the filter L8 may be used to correct color deviation.
  • the optical lens may further include a protective glass L9 having a first side surface S16 and a second side surface S17, and the protective glass L9 may be used to protect the image sensor chip IMA located at the imaging surface and/or the image source surface.
  • Table 17 shows the curvature radius R, thickness/distance d, refractive index N, and Abbe number Vd of each lens of the optical lens of Example 9.
  • Table 18 shows the conic coefficients and higher order coefficients that can be used for each aspherical mirror surface in Example 9, where each aspherical surface type can be defined by the formula (1) given in Example 1 above.
  • FIG. 10 shows a schematic structural diagram of an optical lens according to Embodiment 10 of the present application.
  • the optical lens includes a first lens L1 , a second lens L2 , a third lens L3 , a fourth lens L4 , a fifth lens L5 , a sixth lens L1 , a second lens L2 , a third lens L3 , a fourth lens L4 , a fifth lens L5 , a sixth lens Lens L6 and seventh lens L7.
  • the first lens L1 is a concave concave lens with negative refractive power
  • the first side S1 is concave
  • the second side S2 is concave.
  • the second lens L2 is a convex-concave lens with positive refractive power
  • the first side S3 is convex
  • the second side S4 is concave.
  • the third lens L3 is a convex convex lens with positive refractive power
  • the first side S6 is convex
  • the second side S7 is convex.
  • the fourth lens L4 is a convex lens with positive refractive power
  • the first side S8 is convex
  • the second side S9 is convex.
  • the fifth lens L5 is a concave concave lens with negative refractive power
  • the first side S9 is concave
  • the second side S10 is concave.
  • the sixth lens L6 is a convex-concave lens with positive refractive power, the first side S10 of which is convex, and the second side S11 is concave.
  • the seventh lens L7 is a convex-concave lens with negative refractive power, the first side S12 of which is convex, and the second side S13 is concave.
  • the optical lens may further include a diaphragm STO, and the diaphragm STO may be arranged between the second lens L2 and the third lens L3 to increase the outgoing light and ensure the amount of light passing through.
  • the stop STO may be disposed between the second lens L2 and the third lens L3 at a position close to the second side surface S4 of the second lens L2.
  • the optical lens may further include a filter L8 having a first side S14 and a second side S15, and the filter L8 may be used to correct color deviation.
  • the optical lens may further include a protective glass L9 having a first side surface S16 and a second side surface S17, and the protective glass L9 may be used to protect the image sensor chip IMA located at the imaging surface and/or the image source surface.
  • Table 19 shows the curvature radius R, thickness/distance d, refractive index N, and Abbe number Vd of each lens of the optical lens of Example 10.
  • Table 20 shows the conic coefficients and higher-order coefficients that can be used for each aspherical mirror surface in Example 10, where each aspherical surface type can be defined by the formula (1) given in Example 1 above.
  • FIG. 11 shows a schematic structural diagram of an optical lens according to Embodiment 11 of the present application.
  • the optical lens includes a first lens L1 , a second lens L2 , a third lens L3 , a fourth lens L4 , a fifth lens L5 , a sixth lens L1 , a second lens L2 , a third lens L3 , a fourth lens L4 , a fifth lens L5 , a sixth lens Lens L6 and seventh lens L7.
  • the first lens L1 is a concave concave lens with negative refractive power
  • the first side S1 is concave
  • the second side S2 is concave.
  • the second lens L2 is a convex-concave lens with positive refractive power
  • the first side S3 is convex
  • the second side S4 is concave.
  • the third lens L3 is a convex convex lens with positive refractive power
  • the first side S6 is convex
  • the second side S7 is convex.
  • the fourth lens L4 is a convex lens with positive refractive power
  • the first side S8 is convex
  • the second side S9 is convex.
  • the fifth lens L5 is a concave concave lens with negative refractive power
  • the first side S9 is concave
  • the second side S10 is concave.
  • the sixth lens L6 is a convex-concave lens with positive refractive power, the first side S10 of which is convex, and the second side S11 is concave.
  • the seventh lens L7 is a convex-concave lens with negative refractive power, the first side S12 of which is convex, and the second side S13 is concave.
  • the optical lens may further include a diaphragm STO, and the diaphragm STO may be disposed between the second lens L2 and the third lens L3 to increase the outgoing light and ensure the amount of light passing.
  • the stop STO may be disposed between the second lens L2 and the third lens L3 at a position close to the second side surface S4 of the second lens L2.
  • the optical lens may further include a filter L8 having a first side surface S14 and a second side surface S15, and the filter L8 may be used to correct color deviation.
  • the optical lens may further include a protective glass L9 having a first side surface S16 and a second side surface S17, and the protective glass L9 may be used to protect the image sensor chip IMA located at the imaging surface and/or the image source surface.
  • Table 21 shows the curvature radius R, thickness/distance d, refractive index N, and Abbe number Vd of each lens of the optical lens of Example 11.
  • Table 22 shows the conic coefficients and higher-order coefficients that can be used for each aspherical mirror surface in Example 11, where each aspherical surface type can be defined by the formula (1) given in Example 1 above.
  • FIG. 12 shows a schematic structural diagram of an optical lens according to Embodiment 12 of the present application.
  • the optical lens includes a first lens L1 , a second lens L2 , a third lens L3 , a fourth lens L4 , a fifth lens L5 , a sixth lens L1 , a second lens L2 , a third lens L3 , a fourth lens L4 , a fifth lens L5 , a sixth lens Lens L6 and seventh lens L7.
  • the first lens L1 is a concave concave lens with negative refractive power
  • the first side S1 is concave
  • the second side S2 is concave.
  • the second lens L2 is a convex-convex lens with positive refractive power
  • the first side S3 is convex
  • the second side S4 is convex.
  • the third lens L3 is a convex convex lens with positive refractive power
  • the first side S6 is convex
  • the second side S7 is convex.
  • the fourth lens L4 is a convex-concave lens with positive refractive power, its first side S8 is convex, and the second side S9 is concave.
  • the fifth lens L5 is a convex-concave lens with negative refractive power
  • the first side S9 is convex
  • the second side S10 is concave.
  • the sixth lens L6 is a convex-concave lens with positive refractive power, the first side S10 of which is convex, and the second side S11 is concave.
  • the seventh lens L7 is a concave concave lens with negative refractive power, the first side S12 is concave, and the second side S13 is concave.
  • the optical lens may further include a diaphragm STO, and the diaphragm STO may be disposed between the second lens L2 and the third lens L3 to increase the outgoing light and ensure the amount of light passing.
  • the stop STO may be disposed near the middle position between the second lens L2 and the third lens L3.
  • the optical lens may further include a filter L8 having a first side surface S14 and a second side surface S15, and the filter L8 may be used to correct color deviation.
  • the optical lens may further include a protective glass L9 having a first side surface S16 and a second side surface S17, and the protective glass L9 may be used to protect the image sensor chip IMA located at the imaging surface and/or the image source surface.
  • Table 23 shows the curvature radius R, thickness/distance d, refractive index N, and Abbe number Vd of each lens of the optical lens of Example 12.
  • Table 24 shows the conic coefficients and higher-order coefficients that can be used for each aspherical mirror surface in Example 12, where each aspherical surface type can be defined by the formula (1) given in Example 1 above.
  • FIG. 13 shows a schematic structural diagram of an optical lens according to Embodiment 13 of the present application.
  • the optical lens includes a first lens L1 , a second lens L2 , a third lens L3 , a fourth lens L4 , a fifth lens L5 , a sixth lens L1 , a second lens L2 , a third lens L3 , a fourth lens L4 , a fifth lens L5 , a sixth lens Lens L6 and seventh lens L7.
  • the first lens L1 is a concave concave lens with negative refractive power
  • the first side S1 is concave
  • the second side S2 is concave.
  • the second lens L2 is a convex-convex lens with positive refractive power
  • the first side S3 is convex
  • the second side S4 is convex.
  • the third lens L3 is a convex convex lens with positive refractive power
  • the first side S6 is convex
  • the second side S7 is convex.
  • the fourth lens L4 is a convex-concave lens with positive refractive power, its first side S8 is convex, and the second side S9 is concave.
  • the fifth lens L5 is a convex-concave lens with negative refractive power
  • the first side S9 is convex
  • the second side S10 is concave.
  • the sixth lens L6 is a convex-concave lens with positive refractive power, the first side S10 of which is convex, and the second side S11 is concave.
  • the seventh lens L7 is a concave concave lens with negative refractive power, the first side S12 is concave, and the second side S13 is concave.
  • the optical lens may further include a diaphragm STO, and the diaphragm STO may be disposed between the second lens L2 and the third lens L3 to increase the outgoing light and ensure the amount of light passing.
  • the stop STO may be disposed near the middle position between the second lens L2 and the third lens L3.
  • the optical lens may further include a filter L8 having a first side surface S14 and a second side surface S15, and the filter L8 may be used to correct color deviation.
  • the optical lens may further include a protective glass L9 having a first side surface S16 and a second side surface S17, and the protective glass L9 may be used to protect the image sensor chip IMA located at the imaging surface and/or the image source surface.
  • Table 25 shows the curvature radius R, thickness/distance d, refractive index N, and Abbe number Vd of each lens of the optical lens of Example 13.
  • Table 26 shows the conic coefficients and higher-order coefficients that can be used for each aspherical mirror surface in Example 13, where each aspherical surface type can be defined by the formula (1) given in Example 1 above.
  • FIG. 14 shows a schematic structural diagram of an optical lens according to Embodiment 14 of the present application.
  • the optical lens includes a first lens L1 , a second lens L2 , a third lens L3 , a fourth lens L4 , a fifth lens L5 , a sixth lens L1 , a second lens L2 , a third lens L3 , a fourth lens L4 , a fifth lens L5 , a sixth lens Lens L6 and seventh lens L7.
  • the first lens L1 is a concave concave lens with negative refractive power
  • the first side S1 is concave
  • the second side S2 is concave.
  • the second lens L2 is a convex-convex lens with positive refractive power
  • the first side S3 is convex
  • the second side S4 is convex.
  • the third lens L3 is a convex convex lens with positive refractive power
  • the first side S6 is convex
  • the second side S7 is convex.
  • the fourth lens L4 is a convex lens with positive refractive power
  • the first side S8 is convex
  • the second side S9 is convex.
  • the fifth lens L5 is a concave concave lens with negative refractive power
  • the first side S9 is concave
  • the second side S10 is concave.
  • the sixth lens L6 is a convex-concave lens with negative refractive power, the first side S10 of which is convex, and the second side S11 is concave.
  • the seventh lens L7 is a concave concave lens with negative refractive power, the first side S12 is concave, and the second side S13 is concave.
  • the optical lens may further include a diaphragm STO, and the diaphragm STO may be arranged between the second lens L2 and the third lens L3 to increase the outgoing light and ensure the amount of light passing through.
  • the stop STO may be disposed near the middle position between the second lens L2 and the third lens L3.
  • the optical lens may further include a filter L8 having a first side S14 and a second side S15, and the filter L8 may be used to correct color deviation.
  • the optical lens may further include a protective glass L9 having a first side surface S16 and a second side surface S17, and the protective glass L9 may be used to protect the image sensor chip IMA located at the imaging surface and/or the image source surface.
  • Table 27 shows the curvature radius R, thickness/distance d, refractive index N, and Abbe number Vd of each lens of the optical lens of Example 14.
  • Table 28 shows the conic coefficients and higher order coefficients that can be used for each aspherical mirror surface in Example 14, where each aspherical surface type can be defined by the formula (1) given in Example 1 above.
  • FIG. 15 shows a schematic structural diagram of an optical lens according to Embodiment 15 of the present application.
  • the optical lens includes a first lens L1, a second lens L2, a third lens L3, a fourth lens L4, a fifth lens L5, a sixth lens L1, a second lens L2, a third lens L3, a fourth lens L4, a fifth lens L5, and a sixth lens in sequence from the first side to the second side along the optical axis.
  • the first lens L1 is a concave concave lens with negative refractive power
  • the first side S1 is concave
  • the second side S2 is concave.
  • the second lens L2 is a convex-convex lens with positive refractive power
  • the first side S3 is convex
  • the second side S4 is convex.
  • the third lens L3 is a convex convex lens with positive refractive power
  • the first side S6 is convex
  • the second side S7 is convex.
  • the fourth lens L4 is a convex lens with positive refractive power
  • the first side S8 is convex
  • the second side S9 is convex.
  • the fifth lens L5 is a concave concave lens with negative refractive power
  • the first side S9 is concave
  • the second side S10 is concave.
  • the sixth lens L6 is a convex-concave lens with negative refractive power, the first side S10 of which is convex, and the second side S11 is concave.
  • the seventh lens L7 is a concave concave lens with negative refractive power, the first side S12 is concave, and the second side S13 is concave.
  • the optical lens may further include a diaphragm STO, and the diaphragm STO may be disposed between the second lens L2 and the third lens L3 to increase the outgoing light and ensure the amount of light passing.
  • the stop STO may be disposed near the middle position between the second lens L2 and the third lens L3.
  • the optical lens may further include a filter L8 having a first side surface S14 and a second side surface S15, and the filter L8 may be used to correct color deviation.
  • the optical lens may further include a protective glass L9 having a first side surface S16 and a second side surface S17, and the protective glass L9 may be used to protect the image sensor chip IMA located at the imaging surface and/or the image source surface.
  • Table 29 shows the curvature radius R, thickness/distance d, refractive index N, and Abbe number Vd of each lens of the optical lens of Example 15.
  • Table 30 shows the conic coefficients and higher-order coefficients that can be used for each aspherical mirror surface in Example 15, where each aspherical surface type can be defined by the formula (1) given in Example 1 above.
  • FIG. 16 shows a schematic structural diagram of an optical lens according to Embodiment 16 of the present application.
  • the optical lens includes a first lens L1 , a second lens L2 , a third lens L3 , a fourth lens L4 , a fifth lens L5 , and a sixth lens L1 , a second lens L2 , a third lens L3 , a fourth lens L4 , a fifth lens L5 , a sixth lens Lens L6 and seventh lens L7.
  • the first lens L1 is a concave concave lens with negative refractive power, the first side S1 is concave, and the second side S2 is concave.
  • the second lens L2 is a convex-concave lens with positive refractive power, the first side S3 is convex, and the second side S4 is concave.
  • the third lens L3 is a convex convex lens with positive refractive power, the first side S6 is convex, and the second side S7 is convex.
  • the fourth lens L4 is a convex-concave lens with positive refractive power, its first side S8 is convex, and the second side S9 is concave.
  • the fifth lens L5 is a convex-concave lens with negative refractive power, the first side S10 of which is convex, and the second side S11 is concave.
  • the sixth lens L6 is a convex-concave lens with positive refractive power, the first side S12 is convex, and the second side S13 is concave.
  • the seventh lens L7 is a concave concave lens with negative refractive power, the first side S14 is concave, and the second side S15 is concave.
  • the optical lens may further include a diaphragm STO, and the diaphragm STO may be arranged between the second lens L2 and the third lens L3 to increase the outgoing light and ensure the amount of light passing through.
  • the stop STO may be disposed between the second lens L2 and the third lens L3 at a position close to the second side surface S4 of the second lens L2.
  • the optical lens may further include a filter L8 having a first side S16 and a second side S17, and the filter L8 may be used to correct color deviation.
  • the optical lens may further include a protective glass L9 having a first side surface S18 and a second side surface S19, and the protective glass L9 may be used to protect the image sensor chip IMA located at the imaging surface and/or the image source surface.
  • Table 31 shows the curvature radius R, thickness/distance d, refractive index N, and Abbe number Vd of each lens of the optical lens of Example 16.
  • Table 32 shows the conic coefficients and higher-order coefficients that can be used for each aspherical mirror surface in Example 16, where each aspherical surface type can be defined by the formula (1) given in Example 1 above.
  • FIG. 17 shows a schematic structural diagram of an optical lens according to Embodiment 17 of the present application.
  • the optical lens includes a first lens L1, a second lens L2, a third lens L3, a fourth lens L4, a fifth lens L5, a sixth lens L1, a second lens L2, a third lens L3, a fourth lens L4, a fifth lens L5, and a sixth lens in sequence from the first side to the second side along the optical axis Lens L6 and seventh lens L7.
  • the first lens L1 is a concave concave lens with negative refractive power
  • the first side S1 is concave
  • the second side S2 is concave.
  • the second lens L2 is a convex-concave lens with positive refractive power
  • the first side S3 is convex
  • the second side S4 is concave.
  • the third lens L3 is a convex convex lens with positive refractive power
  • the first side S6 is convex
  • the second side S7 is convex.
  • the fourth lens L4 is a convex convex lens with positive refractive power
  • the first side S8 is convex
  • the second side S9 is convex.
  • the fifth lens L5 is a concave concave lens with negative refractive power
  • the first side S10 is concave
  • the second side S11 is concave
  • the sixth lens L6 is a convex-concave lens with positive refractive power, the first side S12 of which is convex, and the second side S13 is concave.
  • the seventh lens L7 is a convex-concave lens with negative refractive power, the first side S14 of which is convex, and the second side S15 is concave.
  • the optical lens may further include a diaphragm STO, and the diaphragm STO may be disposed between the second lens L2 and the third lens L3 to increase the outgoing light and ensure the amount of light passing.
  • the stop STO may be disposed between the second lens L2 and the third lens L3 at a position close to the second side surface S4 of the second lens L2.
  • the optical lens may further include a filter L8 having a first side S16 and a second side S17, and the filter L8 may be used to correct color deviation.
  • the optical lens may further include a protective glass L9 having a first side surface S18 and a second side surface S19, and the protective glass L9 may be used to protect the image sensor chip IMA located at the imaging surface and/or the image source surface.
  • Table 33 shows the curvature radius R, thickness/distance d, refractive index N, and Abbe number Vd of each lens of the optical lens of Example 17.
  • Table 34 shows conic coefficients and higher-order coefficients that can be used for each aspherical mirror surface in Example 17, where each aspherical surface type can be defined by the formula (1) given in Example 1 above.
  • FIG. 18 shows a schematic structural diagram of an optical lens according to Embodiment 18 of the present application.
  • the optical lens includes a first lens L1 , a second lens L2 , a third lens L3 , a fourth lens L4 , a fifth lens L5 , a sixth lens L1 , a second lens L2 , a third lens L3 , a fourth lens L4 , a fifth lens L5 , a sixth lens Lens L6 and seventh lens L7.
  • the first lens L1 is a concave concave lens with negative refractive power
  • the first side S1 is concave
  • the second side S2 is concave.
  • the second lens L2 is a convex convex lens with positive refractive power
  • the first side S3 is convex
  • the second side S4 is convex.
  • the third lens L3 is a convex convex lens with positive refractive power
  • the first side S6 is convex
  • the second side S7 is convex.
  • the fourth lens L4 is a convex-concave lens with positive refractive power
  • the first side S8 is convex
  • the second side S9 is concave.
  • the fifth lens L5 is a convex-concave lens with negative refractive power, the first side S10 of which is convex, and the second side S11 is concave.
  • the sixth lens L6 is a convex-concave lens with positive refractive power, the first side S12 of which is convex, and the second side S13 is concave.
  • the seventh lens L7 is a concave concave lens with negative refractive power, the first side S14 is concave, and the second side S15 is concave.
  • the optical lens may further include a diaphragm STO, and the diaphragm STO may be disposed between the second lens L2 and the third lens L3 to increase the outgoing light and ensure the amount of light passing.
  • the stop STO may be disposed near the middle position between the second lens L2 and the third lens L3.
  • the optical lens may further include a filter L8 having a first side S16 and a second side S17, and the filter L8 may be used to correct color deviation.
  • the optical lens may further include a protective glass L9 having a first side surface S18 and a second side surface S19, and the protective glass L9 may be used to protect the image sensor chip IMA located at the imaging surface and/or the image source surface.
  • Table 35 shows the curvature radius R, thickness/distance d, refractive index N, and Abbe number Vd of each lens of the optical lens of Example 18.
  • Table 36 shows conic coefficients and higher-order coefficients that can be used for each aspherical mirror surface in Example 18, where each aspherical surface type can be defined by the formula (1) given in Example 1 above.
  • FIG. 19 shows a schematic structural diagram of an optical lens according to Embodiment 19 of the present application.
  • the optical lens includes a first lens L1 , a second lens L2 , a third lens L3 , a fourth lens L4 , a fifth lens L5 , a sixth lens L1 , a second lens L2 , a third lens L3 , a fourth lens L4 , a fifth lens L5 , a sixth lens Lens L6 and seventh lens L7.
  • the first lens L1 is a concave concave lens with negative refractive power
  • the first side S1 is concave
  • the second side S2 is concave.
  • the second lens L2 is a convex-convex lens with positive refractive power
  • the first side S3 is convex
  • the second side S4 is convex.
  • the third lens L3 is a convex convex lens with positive refractive power
  • the first side S6 is convex
  • the second side S7 is convex.
  • the fourth lens L4 is a convex lens with positive refractive power
  • the first side S8 is convex
  • the second side S9 is convex.
  • the fifth lens L5 is a concave concave lens with negative refractive power
  • the first side S10 is concave
  • the second side S11 is concave
  • the sixth lens L6 is a convex-concave lens with negative refractive power, the first side S12 of which is convex, and the second side S13 is concave.
  • the seventh lens L7 is a concave concave lens with negative refractive power, the first side S14 is concave, and the second side S15 is concave.
  • the optical lens may further include a diaphragm STO, and the diaphragm STO may be disposed between the second lens L2 and the third lens L3 to increase the outgoing light and ensure the amount of light passing.
  • the stop STO may be disposed near the middle position between the second lens L2 and the third lens L3.
  • the optical lens may further include a filter L8 having a first side S16 and a second side S17, and the filter L8 may be used to correct color deviation.
  • the optical lens may further include a protective glass L9 having a first side surface S18 and a second side surface S19, and the protective glass L9 may be used to protect the image sensor chip IMA located at the imaging surface and/or the image source surface.
  • Table 37 shows the curvature radius R, thickness/distance d, refractive index N, and Abbe number Vd of each lens of the optical lens of Example 19.
  • Table 38 shows the conic coefficients and higher-order coefficients that can be used for each aspherical mirror surface in Example 19, where each aspherical surface type can be defined by the formula (1) given in Example 1 above.
  • Examples 1 to 7 satisfy the relationships shown in Table 39 below, respectively.
  • TTL, F, H, ENPD, F3, F4, F5, F45, R1, R2, R6, R7, d1, d4, d5, dn, dm, D41, SAG41, BFL are in millimeters (mm ), and the FOV is in degrees (°).
  • Example 2 Example 3
  • Example 4 Example 5
  • Example 6 Example 7 TTL 31.37 29.16 32.02 32.33 31.66 30.61 31.46 F 15.23 14.26 15.87 16.06 15.33 14.16 15.36 H 7.99 7.45 8.36 8.50 8.16 7.55 8.03 FOV 30 30 30 30 30 30 30 ENPD 9.17 8.49 9.45 9.56 9.12 8.43 8.77 F3 17.88 21.34 20.94 22.42 21.30 20.52 16.23 F4 14.03 16.62 15.83 14.57 15.58 10.98 17.31 F5 -9.57 -11.09 -10.62 -9.30 -10.40 -6.33 -9.79 F45 -83.38 -113.84 -80.12 -59.92 -79.32 -30.03 -36.93 dn 4.80 5.42 4.80 5.53 4.80 5.30 5.98 dm 3.50 3.50 3.50 3.50 3.44 D41 6.04 6.38 6.17 6.10 6.14 5.96 5.20 SAG41
  • Examples 8 to 19 satisfy the relationships shown in Table 40-1, Table 40-2, and Table 40-3 below, respectively.
  • Table 40-1, Table 40-2, and Table 40-3 TTL, F, F1, F2, F3, F4, F5, F6, F7, SAG61, SAG62, D61, D62, D, BFL, R6, R7 , H, F456, EPD, d4, d5, d6, Ti10, d46, F45, T, and d7 are in millimeters (mm), FOV is in degrees (°), and ⁇ 1 and ⁇ 2 are in radians.
  • Example 11 TTL 28.700 29.303 28.594 28.554 F 14.460 14.517 14.277 14.331 FOV 31.000 31.000 31.000 31.000 F1 -22.209 -22.313 -23.965 -23.078 F2 37.651 40.579 28.232 28.026 F3 17.034 17.133 18.304 18.239 F4 22.105 23.301 16.499 16.615 F5 -15.463 -16.350 -11.025 -11.120 F6 32.567 31.586 66.203 63.387 F7 -21.874 -22.623 -56.050 -51.777 SAG61 1.248 1.259 1.190 1.217 SAG62 0.643 0.643 0.798 0.808 D61 8.903 8.938 8.709 8.797 D62 7.566 7.636 7.300 7.381 Vd3 95.100 95.100 95.100 Vd4 61.248 61.248 61.248 61.248 D 11.195 11.230
  • the present application also provides an electronic device, which may include the optical lens according to the above-mentioned embodiments of the present application and an imaging element for converting an optical image formed by the optical lens into an electrical signal.
  • the electronic device can be an independent electronic device such as a detection distance camera, or an imaging module integrated on a detection distance device such as a distance detection device.
  • the electronic device may also be an independent imaging device such as a vehicle-mounted camera, or an imaging module integrated in, for example, an assisted driving system.

Landscapes

  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Optics & Photonics (AREA)
  • Lenses (AREA)

Abstract

一种光学镜头和包括该光学镜头的电子设备。光学镜头沿着光轴由物侧至像侧依序包括:具有负光焦度的第一透镜(L1),其物侧面(S1)为凹面,像侧面(S2)为凹面;具有正光焦度的第二透镜(L2),其物侧面(S3,S4)为凸面;具有正光焦度的第三透镜(L3),其物侧面(S6)为凸面,像侧面(S7)为凸面;具有正光焦度的第四透镜(L4),其物侧面(S8)为凸面;具有负光焦度的第五透镜(L5),其像侧面(S10,S9)为凹面;具有正光焦度的第六透镜(L6),其物侧面(S11,S10)为凸面;以及具有负光焦度的第七透镜(L7)。

Description

光学镜头及电子设备
交叉引用
本专利申请要求于2020年12月25日提交的、申请号为202011560293.0、发明名称为“光学镜头及电子设备”的中国专利申请以及于2021年7月1日提交的、申请号为202110744979.3、发明名称为“光学镜头及电子设备”的中国专利申请的优先权,这两件申请的全文以引用的方式并入本申请中。
技术领域
本申请涉及光学元件领域,更具体地,涉及一种光学镜头及电子设备。
背景技术
近年来,随着汽车辅助驾驶系统的高速发展,光学镜头在汽车上的应用越来越广泛,例如,在智能手机、安防监控、汽车辅助驾驶、智能检测以及虚拟现实等多个领域中光学镜头均发挥着不可替代的作用。与此同时,用户对光学镜头的像素的要求越来越高。为了满足车载镜头的应用需求,越来越多的镜头生产商开始研究如何提高车载前视镜头对红绿灯的辨识度。此外,出于安全性考虑,用作车载前视镜头的光学镜头还需要同时具备较高的成像性能。
得益于近年来汽车辅助驾驶系统的高速发展,光学镜头在汽车上得到越来越广泛的应用,对车载镜头的像素要求越来越高。同时,随着汽车自动驾驶技术的不断发展,越来越多的公司也开始研究对红绿灯辨识度良好的前视镜头,为了能够准确地识别红绿灯信号,需要这类光学镜头具有较高的色差要求。另外,因安全性的考虑,应用于前视的光学镜头还需具有非常高的性能要求,而现有的普通镜头在使用中存在如下一些问题:例如,镜片表面的反射产生鬼像,易诱导车载芯片产生虚警信号,使汽车辅助驾驶系统错误响应,极大影响行车安全;而且,普通镜头的相对照度低、成像不均匀又会使得芯片边缘区域接收的光能量偏低,在阴天等情况下,光能量低于芯片的触发阈值时,又易出现漏警情况,对人身安全造成威胁。因此,消除鬼像和提高光学镜头的相对照度是十分必要的。再者,前视镜头的使用环境和放置位置,要求其兼备小型化和高解像两种略有冲突的性能。
目前,为了提高现有车载光学镜头的解像能力,大多数镜头生产商通常会采用增加透镜数量的方式来实现对镜头解像能力的提升,但这在一定程度上将会影响镜头的小型化特性。另外,考虑到车载镜头的特殊应用场景,用作车载前视镜头的光学镜头还需要在色差方面具有优异的表现,以使其能够准确地识别红绿信号灯,从而有助于车辆的安全驾驶。
所以目前市场正需要一款具有高解像兼顾小型化、低成本、色差好、性能佳等特点的光学镜头,能够满足汽车前视应用的要求。
发明内容
本申请的第一方面提供了一种光学镜头。该光学镜头沿着光轴由物侧至像侧依序包括:具有负光焦度的第一透镜,其物侧面为凹面,像侧面为凹面;具有正光焦度的第二透镜,其物侧面为凸面;具有正光焦度的第三透镜,其物侧面为凸面,像侧面为凸面;具有正光焦度的第四透镜,其物侧面为凸面;具有负光焦度的第五透镜,其像侧面为凹面;具有正光焦度的第六透镜,其物侧面为凸面;以及具有负光焦度的第七透镜。
在一个实施方式中,第二透镜的像侧面为凹面。
在一个实施方式中,第二透镜的像侧面为凸面。
在一个实施方式中,第四透镜的像侧面为凹面。
在一个实施方式中,第四透镜的像侧面为凸面。
在一个实施方式中,第五透镜的物侧面为凸面。
在一个实施方式中,第五透镜的物侧面为凹面。
在一个实施方式中,第六透镜的像侧面为凹面。
在一个实施方式中,第六透镜的像侧面为凸面。
在一个实施方式中,第七透镜的物侧面为凹面,像侧面为凸面。
在一个实施方式中,第七透镜的物侧面为凹面或凸面,像侧面为凹面。
在一个实施方式中,第四透镜和第五透镜胶合形成胶合透镜。
在一个实施方式中,第二透镜和第七透镜具有非球面镜面。
在一个实施方式中,光学镜头还包括设置在第二透镜与第三透镜之间的光阑。
在一个实施方式中,光学镜头还包括设置在第一透镜与第二透镜之间的光阑。
在一个实施方式中,第一透镜的物侧面的中心至光学镜头的成像面在光轴上的距离TTL与光学镜头的总有效焦距F可满足:TTL/F≤2.5。
在一个实施方式中,第一透镜的物侧面的中心至光学镜头的成像面在光轴上的距离TTL、光学镜头的最大视场角FOV以及光学镜头的最大视场角对应的像高H可满足:TTL/H/FOV≤0.7。
在一个实施方式中,第三透镜的阿贝数VD3与第四透镜的阿贝数VD4可满足:VD3+VD4≥110。
在一个实施方式中,光学镜头的最大视场角FOV、光学镜头的总有效焦距F以及光学镜头的最大视场角对应的像高H可满足:(FOV×F)/H≥50°。
在一个实施方式中,第七透镜的像侧面的中心至光学镜头的成像面在光轴上的距离BFL与第一透镜的物侧面的中心至光学镜头的成像面在光轴上的距离TTL可满足:BFL/TTL≥0.07。
在一个实施方式中,第四透镜的有效焦距F4与第五透镜的有效焦距F5可满足:1≤|F4/F5|≤2。
在一个实施方式中,第三透镜的有效焦距F3与光学镜头的总有效焦距F可满足:1≤|F3/F|≤2。
在一个实施方式中,第四透镜和第五透镜胶合形成的胶合透镜的有效焦距F45与光学镜头的总有效焦距F可满足:1≤|F45/F|≤10。
在一个实施方式中,第四透镜和第五透镜胶合形成胶合透镜,光学镜头可满足:1≤dn/dm≤2,其中,dn是第二透镜、第三透镜和胶合透镜中具有最大中心厚度的透镜的中心厚度;以及dm是第二透镜、第三透镜和胶合透镜中具有最小中心厚度的透镜的中心厚度。
在一个实施方式中,第三透镜的物侧面的曲率半径R6与第三透镜的像侧面的曲率半径R7可满足:0.5≤|R6/R7|≤2。
在一个实施方式中,第一透镜的物侧面的曲率半径R1、第一透镜的像侧面的曲率半径R2以及第一透镜在光轴上的中心厚度d1可满足:0.1≤|R1/(R2+d1)|≤1。
在一个实施方式中,光学镜头的总有效焦距F与光学镜头的入瞳直径ENPD可满足:F/ENPD≤2。
在一个实施方式中,光学镜头的最大视场角对应的第四透镜的物侧面的最大通光半口径D41与第四透镜的物侧面和光轴的交点至第四透镜的物侧面的最大通光口径在光轴上的距离SAG41可满足:arctan(SAG41/D41)≤30。
在一个实施方式中,光学镜头的总有效焦距F与第一透镜的物侧面的曲率半径R1可满足:0.5≤R1/F≤2。
在一个实施方式中,第四透镜在光轴上的中心厚度d4、第五透镜在光轴上的中心厚度d5以及第一透镜的物侧面的中心至光学镜头的成像面在光轴上的距离TTL可满足:(d4+d5)/TTL≤0.3。
在一个实施方式中,以弧度为单位的光学镜头的最大视场角θ、光学镜头的总有效焦距F以及光学镜头的最大视场角对应的像高H可满足:|(H-F×θ)/(F×θ)|≤0.2。
本申请第二方面提供了一种光学镜头。该光学镜头沿着光轴由物侧至像侧依序包括:具有负光焦度的第一透镜;具有正光焦度的第二透镜;具有正光焦度的第三透镜;具有正光焦度的第四透镜;具有负光焦度的第五透镜;具有正光焦度的第六透镜;以及具有负光焦度的第七透镜。第七透镜的像侧面的中心至光学镜头的成像面在光轴上的距离BFL与第一透镜的物侧面的中心至光学镜头的成像面在光轴上的距离TTL可满足:BFL/TTL≥0.07。
本申请的第三方面提供了一种光学镜头,该光学镜头沿光轴由第一侧至第二侧依序包括:具有负光焦度的第一透镜,其第一侧面为凹面,第二侧面为凹面;具有正光焦度的第二透镜,其第一侧面为凸面;具有正光焦度的第三透镜,其第一侧面为凸面,第二侧面为凸面;具有正光焦度的第四透镜,其第一侧面为凸面;具有负光焦度的第五透镜,其第二侧面为凹面;具有光焦度的第六透镜,其第一侧面为凸面,第二侧面为凹面;以及具有负光焦度的第七透镜,其第二侧面为凹面。
在一个实施方式中,所述第二透镜的第二侧面为凹面。
在一个实施方式中,所述第二透镜的第二侧面为凸面。
在一个实施方式中,所述第四透镜的第二侧面为凹面。
在一个实施方式中,所述第四透镜的第二侧面为凸面。
在一个实施方式中,所述第五透镜的第一侧面为凸面。
在一个实施方式中,所述第五透镜的第一侧面为凹面。
在一个实施方式中,所述第七透镜的第一侧面为凹面。
在一个实施方式中,所述第七透镜的第一侧面为凸面。
在一个实施方式中,所述第二透镜具有非球面镜面。
在一个实施方式中,所述第七透镜具有非球面镜面。
在一个实施方式中,所述第四透镜、所述第五透镜以及所述第六透镜胶合形成胶合透镜。
在一个实施方式中,所述光学镜头还包括设置于所述第二透镜和所述第三透镜之间的光阑。
在一个实施方式中,所述第七透镜的第二侧面上具有至少一个反曲点。
在一个实施方式中,所述第一透镜的第一侧面的中心至所述光学镜头的成像面在所述光轴上的距离TTL与所述光学镜头的总有效焦距F满足:TTL/F≤2.5。
在一个实施方式中,所述第三透镜的阿贝数Vd3与所述第四透镜的阿贝数Vd4满足:Vd3+Vd4≥100。
在一个实施方式中,所述第六透镜的第一侧面的最大通光口径处的矢高SAG61、所述第六透镜的第一侧面的最大通光全口径D61、所述第六透镜的第二侧面的最大通光口径处的矢高SAG62以及所述第六透镜的第二侧面的最大通光全口径D62满足:0.2≤(SAG61/D61)/(SAG62/D62)≤2.5。
在一个实施方式中,所述第四透镜的有效焦距F4与所述第五透镜的有效焦距F5满足:|F4/F5|≤2.5。
在一个实施方式中,所述第四透镜在所述光轴上的中心厚度d4、所述第五透镜在所述光轴上的中心厚度d5、所述第六透镜在所述光轴上的中心厚度d6以及所述第一透镜的第一侧面的中心至所述光学镜头的成像面在所述光轴上的距离TTL满足:0.1≤(d4+d5+d6)/TTL≤0.8。
在一个实施方式中,所述第七透镜的第二侧面的中心至所述光学镜头的成像面在所述光轴上的距离BFL与所述第一透镜的第一侧面的中心至所述光学镜头的成像面在所述光轴上的距离TTL满足:BFL/TTL≥0.05。
在一个实施方式中,所述第三透镜的第一侧面的曲率半径R6与所述第三透镜的第二侧面的曲率半径R7满足:|R6/R7|≤1.3。
在一个实施方式中,所述光学镜头的最大视场角FOV、所述光学镜头的总有效焦距F以及所述光学镜头的最大视场角对应的像高H满足:(FOV×F)/H≥45。
在一个实施方式中,所述光学镜头的总有效焦距F与所述光学镜头的入瞳直径EPD满足:1≤F/EPD≤2。
在一个实施方式中,所述光学镜头的最大视场角对应的所述第一透镜的第一侧面的最大通光口径D、所述光学镜头的最大视场角对应的像高H以及所述光学镜头的最大视场角对应的弧度值θ满足:D/H/θ≤5。
在一个实施方式中,所述第四透镜与所述第五透镜的组合焦距F45与所述光学镜头的总有效焦距F满足:|F45/F|≤12。
在一个实施方式中,所述第四透镜、所述第五透镜和所述第六透镜的组合焦距F456与所述光学镜头的总有效焦距F满足:|F456/F|≥2。
在一个实施方式中,所述第六透镜的第一侧面的中心至所述光学镜头的成像面在所述光轴上的距离Ti10与所述第一透镜的第一侧面的中心至所述光学镜头的成像面在所述光轴上的距离TTL满足:0.2≤Ti10/TTL≤0.6。
在一个实施方式中,所述第七透镜在所述光轴上的中心厚度d7与所述第一透镜的第一侧面的中心至所述光学镜头的成像面在所述光轴上的距离TTL满足:0.05≤d7/TTL≤0.2。
在一个实施方式中,所述第四透镜的第二侧面的中心至所述第六透镜的第一侧面的中心在所述光轴上的间隔距离d46与所述第一透镜的第一侧面的中心至所述光学镜头的成像面在所述光轴上的距离TTL满足:d46/TTL≤0.05。
在一个实施方式中,所述光学镜头边缘视场中心主光线到达所述第六透镜前的入射光线与所述光轴夹角的弧度值θ1与所述光学镜头边缘视场中心主光线到达所述第六透镜后的出射光线与所述光轴夹角的弧度值θ2满足:θ2/θ1≤2。
在一个实施方式中,所述第六透镜的有效焦距F6与所述光学镜头的总有效焦距F满足:2.1≤|F6/F|≤10。
在一个实施方式中,所述第四透镜的折射率N4、所述第五透镜的折射率N5与所述第 六透镜的折射率N6满足:1≤(N6-N4)/(N5-N4)≤2。
在一个实施方式中,所述第四透镜在所述光轴上的中心厚度d4、所述第五透镜在所述光轴上的中心厚度d5、所述第六透镜在所述光轴上的中心厚度d6与所述第四透镜的第一侧面的中心到所述第六透镜的第二侧面的中心在所述光轴上的距离T满足:T≤0.03+d4+d5+d6。
本申请的第四方面提供了一种光学镜头,该光学镜头沿光轴由第一侧至第二侧依序包括:具有负光焦度的第一透镜;具有正光焦度的第二透镜;具有正光焦度的第三透镜;具有正光焦度的第四透镜;具有负光焦度的第五透镜;具有光焦度的第六透镜;以及具有负光焦度的第七透镜,其中,所述第四透镜、所述第五透镜以及所述第六透镜胶合形成胶合透镜。
本申请的第五方面提供了一种电子设备。该电子设备包括根据本申请提供的光学镜头及用于将所述光学镜头形成的光学图像转换为电信号的成像元件。
本申请采用了七片透镜,通过优化设置各透镜的形状、光焦度等,使光学镜头具有高解像兼顾小型化、照度高、低成本、色差好、温度性能佳、前端口径小、后焦长、小CRA以及良好的成像质量等至少一个有益效果,使得光学镜头能够较好地满足车载前视应用的要求。
附图说明
结合附图,通过以下非限制性实施方式的详细描述,本申请的其它特征、目的和优点将变得更加明显。在附图中:
图1为示出根据本申请实施例1的光学镜头的结构示意图;
图2为示出根据本申请实施例2的光学镜头的结构示意图;
图3为示出根据本申请实施例3的光学镜头的结构示意图;
图4为示出根据本申请实施例4的光学镜头的结构示意图;
图5为示出根据本申请实施例5的光学镜头的结构示意图;
图6为示出根据本申请实施例6的光学镜头的结构示意图;
图7为示出根据本申请实施例7的光学镜头的结构示意图;
图8为示出根据本申请实施例8的光学镜头的结构示意图;
图9为示出根据本申请实施例9的光学镜头的结构示意图;
图10为示出根据本申请实施例10的光学镜头的结构示意图;
图11为示出根据本申请实施例11的光学镜头的结构示意图;
图12为示出根据本申请实施例12的光学镜头的结构示意图;
图13为示出根据本申请实施例13的光学镜头的结构示意图;
图14为示出根据本申请实施例14的光学镜头的结构示意图;
图15为示出根据本申请实施例15的光学镜头的结构示意图;
图16为示出根据本申请实施例16的光学镜头的结构示意图;
图17为示出根据本申请实施例17的光学镜头的结构示意图;
图18为示出根据本申请实施例18的光学镜头的结构示意图;
图19为示出根据本申请实施例19的光学镜头的结构示意图;以及
图20为示出根据本申请实施例的光学镜头边缘视场中心主光线到达第六透镜前的入射光线与光轴夹角的弧度值θ1和光学镜头边缘视场中心主光线到达第六透镜后的出射光线与光轴夹角的弧度值θ2的示意图。
具体实施方式
为了更好地理解本申请,将参考附图对本申请的各个方面做出更详细的说明。应理解,这些详细说明只是对本申请的示例性实施方式的描述,而非以任何方式限制本申请的范围。在说明书全文中,相同的附图标号指代相同的元件。表述“和/或”包括相关联的所列项目中的一个或多个的任何和全部组合。
应注意,在本说明书中,第一、第二、第三等的表述仅用于将一个特征与另一个特征区分开来,而不表示对特征的任何限制。因此,在不背离本申请的教导的情况下,下文中讨论的第一透镜也可被称作第二透镜或第三透镜。
在附图中,为了便于说明,已稍微夸大了透镜的厚度、尺寸和形状。具体来讲,附图中所示的球面或非球面的形状通过示例的方式示出。即,球面或非球面的形状不限于附图中示出的球面或非球面的形状。附图仅为示例而并非严格按比例绘制。
在本文中,近轴区域是指光轴附近的区域。若透镜表面为凸面且未界定该凸面位置时,则表示该透镜表面至少于近轴区域为凸面;若透镜表面为凹面且未界定该凹面位置时,则表示该透镜表面至少于近轴区域为凹面。每个透镜最靠近被摄物的表面称为该透镜的物侧面,每个透镜最靠近成像侧的表面称为该透镜的像侧面。
应理解,本申请提供的光学镜头既可以用于摄像,又可以用于投影。当本申请提供的光学镜头用于摄像镜头时,本文中涉及的“第一侧”可指代物侧,“第二侧”可指代像侧;当本申请提供的光学镜头用于投影镜头或雷达发射镜头时,本文中涉及的“第一侧”可指代成像侧,“第二侧”可指代像源侧。
还应理解的是,用语“包括”、“包括有”、“具有”、“包含”和/或“包含有”,当在本说明书中使用时表示存在所陈述的特征、元件和/或部件,但不排除存在或附加有一个或多个其它特征、元件、部件和/或它们的组合。此外,当诸如“...中的至少一个”的表述出现在所列特征的列表之后时,修饰整个所列特征,而不是修饰列表中的单独元件。此外,当描述本申请的实施方式时,使用“可”表示“本申请的一个或多个实施方式”。并且,用语“示例性的”旨在指代示例或举例说明。
除非另外限定,否则本文中使用的所有用语(包括技术用语和科学用语)均具有与本申请所属领域普通技术人员的通常理解相同的含义。还应理解的是,用语(例如在常用词典中定义的用语)应被解释为具有与它们在相关技术的上下文中的含义一致的含义,并且将不被以理想化或过度形式化意义解释,除非本文中明确如此限定。
需要说明的是,在不冲突的情况下,本申请中的实施例及实施例中的特征可以相互组合。下面将参考附图并结合实施例来详细说明本申请。
以下对本申请的特征、原理和其它方面进行详细描述。
在示例性实施方式中,光学镜头包括例如七片具有光焦度的透镜,即第一透镜、第二透镜、第三透镜、第四透镜、第五透镜、第六透镜和第七透镜。这七片透镜沿着光轴从物侧至像侧依序排列。
在示例性实施方式中,光学镜头还可进一步包括设置于成像面的感光元件。可选地,设置于成像面的感光元件可以是感光耦合元件(CCD)或互补性氧化金属半导体元件(CMOS)。
在示例性实施方式中,第一透镜可具有负光焦度。第一透镜可具有双凹面型。第一透镜的这种光焦度和面型设置,既可以使光线准确平稳地进入后方光学系统,提高解像质量,还可以尽可能地收集大视场光线,增加通光量。第一透镜可以是球面镜片。第一透镜是球面镜片,可以易于在第一透镜上增镀防水膜,同时还可以降低加工成本。
在示例性实施方式中,第二透镜可具有正光焦度。第二透镜可具有凸凹面型或双凸面型。第二透镜的这种光焦度和面型设置,有利于光线汇聚,有利于减小光学镜筒口径及筒长,实现小型化。优选地,第二透镜可以是非球面镜片。
在示例性实施方式中,第三透镜可具有正光焦度。第三透镜可具有双凸面型。第三透镜的这种光焦度和面型设置,有利于光线汇聚,有利于减小光学镜筒口径及筒长,实现小型化。
在示例性实施方式中,第四透镜可具有正光焦度。第四透镜可具有凸凹面型或凸凸面型。第四透镜的这种光焦度和面型设置,色散系数较大,有利于矫正系统色散,平衡系统像差,凸凹的镜片利于加工性,且第一面是凸面的镜片容易汇聚光线,拉低口径。
在示例性实施方式中,第五透镜可具有负光焦度。第五透镜可具有凸凹面型或凹凹面型。第五透镜可选用折射率较高的材料,可使结构更加紧凑,另外,凸凹的镜片利于加工性,并且第一面是凸面的镜片容易汇聚光线,拉低口径。
在示例性实施方式中,第六透镜可具有正光焦度。第六透镜可具有凸凹面型或双凸面型。第六透镜的这种光焦度和面型设置,有利于光线汇聚,有利于减小光学镜筒口径及筒长,实现小型化。
在示例性实施方式中,第六透镜可具有正光焦度或负光焦度。第六透镜可具有凸凹面型。第六透镜的两面曲率半径接近,有利于光线的平缓传播,有助于降低系统的敏感程度。
在示例性实施方式中,第七透镜可具有负光焦度。第七透镜可具有凹凸面型、凸凹面型或双凹面型。优选地,第七透镜具有非球面镜面。第七透镜的这种光焦度和面型设置,有利于平缓前面光线走势,有利于提高解像质量。
在示例性实施方式中,第七透镜可具有负光焦度。第七透镜可具有凹凹面型或凸凹面型。第七透镜的这种光焦度和面型设置,可平衡系统像差,有利于平缓前面光线的走势,有利于解像,并且其中凸凹面型的镜片利于加工性。优选地,第七透镜可具有非球面镜面,可以有效地校正像差,可进一步提升解像,使像面的照度更均匀。
在示例性实施方式中,根据本申请的光学镜头可满足:TTL/F≤2.5,其中,TTL是第一透镜的物侧面的中心至光学镜头的成像面在光轴上的距离,F是光学镜头的总有效焦距。更具体地,TTL和F进一步可满足:TTL/F≤2.2。满足TTL/F≤2.5,可以有效地限制镜头的长度,有利于实现镜头小型化。
在示例性实施方式中,根据本申请的光学镜头可满足:TTL/H/FOV≤0.7,其中,TTL 是第一透镜的物侧面的中心至光学镜头的成像面在光轴上的距离,FOV是光学镜头的最大视场角,H是光学镜头的最大视场角对应的像高。更具体地,TTL、H和FOV进一步可满足:TTL/H/FOV≤0.55。满足TTL/H/FOV≤0.7,可以在不改变镜头的成像面和像高的情况下,有效地限制镜头的长度,实现镜头小型化。
在示例性实施方式中,根据本申请的光学镜头可满足:VD3+VD4≥110,其中,VD3是第三透镜的阿贝数,VD4是第四透镜的阿贝数。更具体地,VD3和VD4进一步可满足:VD3+VD4≥120。满足VD3+VD4≥110,有助于矫正色差,提高解像。
在示例性实施方式中,根据本申请的光学镜头可满足:50≤VD3≤120,其中,VD3是第三透镜的阿贝数。更具体地,VD3进一步可满足:60≤VD3≤100。满足50≤VD3≤120,有助于矫正色差,提高解像。
在示例性实施方式中,根据本申请的光学镜头可满足:40≤VD4≤120,其中,VD4是第四透镜的阿贝数。更具体地,VD4进一步可满足:45≤VD4≤100。满足40≤VD4≤120,有助于矫正色差,提高解像。
在示例性实施方式中,根据本申请的光学镜头可满足:(FOV×F)/H≥50°,其中,FOV是光学镜头的最大视场角,F是光学镜头的总有效焦距,H是光学镜头的最大视场角对应的像高。更具体地,FOV、F和H进一步可满足:(FOV×F)/H≥55°。满足(FOV×F)/H≥50°,有利于实现大角度分辨率,同时有利于满足长焦、大视场角等特性。
在示例性实施方式中,根据本申请的光学镜头可满足:BFL/TTL≥0.07,其中,BFL是第七透镜的像侧面的中心至光学镜头的成像面在光轴上的距离,TTL是第一透镜的物侧面的中心至光学镜头的成像面在光轴上的距离。更具体地,BFL和TTL进一步可满足:BFL/TTL≥0.075。满足BFL/TTL≥0.07,既有利于在实现小型化的基础上,使后焦较长,有利于模组的组装,又有利于使透镜组的长度较短,使透镜组结构紧凑,降低镜片对MTF的敏感度,提高生产良率,降低生产成本。
在示例性实施方式中,根据本申请的光学镜头可满足:1≤|F4/F5|≤2,其中,F4是第四透镜的有效焦距,F5是第五透镜的有效焦距。更具体地,F4和F5进一步可满足:1.4≤|F4/F5|≤1.9。满足1≤|F4/F5|≤2,有助于光线平缓过渡,矫正色差。
在示例性实施方式中,根据本申请的光学镜头可满足:1≤|F3/F|≤2,其中,F3是第三透镜的有效焦距,F是光学镜头的总有效焦距。更具体地,F3和F进一步可满足:1≤|F3/F|≤1.5。满足1≤|F3/F|≤2,有助于更好地调整色差,提升解像。
在示例性实施方式中,根据本申请的光学镜头可满足:1≤|F45/F|≤10,其中,F45是第四透镜和第五透镜胶合形成的胶合透镜的有效焦距,F是光学镜头的总有效焦距。更具体地,F45和F进一步可满足:2≤|F45/F|≤8。满足1≤|F45/F|≤10,有助于更多的光线平稳进入,提升照度。
在示例性实施方式中,根据本申请的光学镜头可满足:1≤dn/dm≤2,其中,第四透镜和第五透镜胶合形成胶合透镜,dn是第二透镜、第三透镜和胶合透镜中具有最大中心厚度的透镜的中心厚度,dm是第二透镜、第三透镜和胶合透镜中具有最小中心厚度的透镜的中心厚度。更具体地,dn和dm进一步可满足:1.3≤dn/dm≤1.8。满足1≤dn/dm≤2,有助于高低温下光学镜头整体的光线偏折变化较小,温度性能较佳。
在示例性实施方式中,根据本申请的光学镜头可满足:0.5≤|R6/R7|≤2,其中,R6是第三透镜的物侧面的曲率半径,R7是第三透镜的像侧面的曲率半径。更具体地,R6和R7进一步可满足:0.8≤|R6/R7|≤1.9。满足0.5≤|R6/R7|≤2,可以校正光学镜头的像差,降低光学镜头的公差敏感度。
在示例性实施方式中,根据本申请的光学镜头可满足:0.1≤|R1/(R2+d1)|≤1,其中,R1是第一透镜的物侧面的曲率半径,R2是第一透镜的像侧面的曲率半径,d1是第一透镜在光轴上的中心厚度。更具体地,R1、R2和d1进一步可满足:0.3≤|R1/(R2+d1)|≤0.8。满足0.1≤|R1/(R2+d1)|≤1,可以使第一透镜的周边光线与中心光线存有光程差,有利于发散中心光线,进入后方光学系统,且有利于减小镜头前端口径,减小体积,有利于实现小型化,有利于降低成本。
在示例性实施方式中,根据本申请的光学镜头可满足:F/ENPD≤2,其中,F是光学镜头的总有效焦距,ENPD是光学镜头的入瞳直径。更具体地,F和ENPD进一步可满足:F/ENPD≤1.8。满足F/ENPD≤2,有助于提升相对照度。
在示例性实施方式中,根据本申请的光学镜头可满足:arctan(SAG41/D41)≤30,其中,D41是光学镜头的最大视场角对应的第四透镜的物侧面的最大通光半口径,SAG41是第四透镜的物侧面和光轴的交点至第四透镜的物侧面的最大通光口径在光轴上的距离。更具体地, SAG41和D41进一步可满足:arctan(SAG41/D41)≤24。满足arctan(SAG41/D41)≤30,有助于减弱鬼像。
在示例性实施方式中,根据本申请的光学镜头可满足:0.5≤R1/F≤2,其中,F是光学镜头的总有效焦距,R1是第一透镜的物侧面的曲率半径。更具体地,R1和F进一步可满足:0.9≤R1/F≤1.5。满足0.5≤R1/F≤2,有利于提高镜头的相对照度。
在示例性实施方式中,根据本申请的光学镜头可满足:(d4+d5)/TTL≤0.3,其中,d4是第四透镜在光轴上的中心厚度,d5是第五透镜在光轴上的中心厚度,TTL是第一透镜的物侧面的中心至光学镜头的成像面在光轴上的距离。更具体地,d4、d5和TTL进一步可满足:(d4+d5)/TTL≤0.2。满足(d4+d5)/TTL≤0.3,有利于提升相对照度。
在示例性实施方式中,根据本申请的光学镜头可满足:|(H-F×θ)/(F×θ)|≤0.2,其中,θ是以弧度为单位的光学镜头的最大视场角,F是光学镜头的总有效焦距,H是光学镜头的最大视场角对应的像高。更具体地,H、F和θ进一步可满足:|(H-F×θ)/(F×θ)|≤0.18。满足|(H-F×θ)/(F×θ)|≤0.2,可以在不改变镜头的视场角和成像面大小的情况下,通过增大镜头的焦距来突出镜头成像面中心区域的成像效果。
在示例性实施方式中,第二透镜与第三透镜之间或第一透镜与第二透镜之间可设置有用于限制光束的光阑以进一步提高光学镜头的成像质量。将光阑设置在第二透镜和第三透镜之间或第一透镜与第二透镜之间,有利于对进入光学镜头的光线进行有效的收束,减小镜片口径。在本申请实施方式中,光阑可设置在第一透镜的像侧面的附近处,或设置在第二透镜的物侧面的附近处,或设置在第二透镜的像侧面的附近处,或设置在第三透镜的物侧面的附近处。然而,应注意,此处公开的光阑的位置仅是示例而非限制;在替代的实施方式中,也可根据实际需要将光阑设置在其他位置。
在示例性实施方式中,根据需要,根据本申请的光学镜头还可包括设置在第七透镜与成像面之间的滤光片和/或保护玻璃,以对具有不同波长的光线进行过滤,并防止光学镜头的像方元件(例如,芯片)损坏。
如本领域技术人员已知的,胶合透镜可用于最大限度地减少色差或消除色差。在光学镜头中使用胶合透镜能够改善像质、减少光能量的反射损失,从而实现高解像,提升镜头成像的清晰度。另外,胶合透镜的使用还可简化镜头制造过程中的装配程序。
在示例性实施方式中,第四透镜和第五透镜可胶合形成胶合透镜。具有正光焦度且物侧面和像侧面均为凸面的第四透镜与具有负光焦度且物侧面和像侧面均为凹面的第五透镜胶合,或者具有正光焦度且物侧面为凸面和像侧面为凹面的第四透镜与具有负光焦度且物侧面为凸面和像侧面为凹面的第五透镜胶合,有利于将经过第四透镜的光线平缓过渡至成像面,有利于减小镜头总长度,有利于矫正光学镜头的各种像差,实现在光学镜头结构紧凑的前提下,提高系统分辨率、优化畸变及CRA等光学性能。
上述透镜间采用胶合方式具有以下优点中的至少一个:减少自身色差,降低公差敏感度,通过残留的部分色差以平衡系统的整体色差;减小两个透镜之间的间隔距离,从而减小系统总长;减少透镜之间的组立部件,从而减少工序,降低成本;降低透镜单元因在组立过程中产生的倾斜/偏芯等公差敏感度问题,提高生产良率;减少透镜间反射引起光量损失,提升照度;进一步减小场曲,有效矫正光学镜头的轴外点像差。这样的胶合设计分担了系统的整体色差矫正,有效校正像差,以提高解像力,且使得光学系统整体紧凑,满足小型化要求。
在示例性实施方式中,第一透镜、第三透镜、第四透镜、第五透镜和第六透镜可为球面透镜;第二透镜和第七透镜可为非球面透镜。特别地,为了提高光学系统的解像质量,第一透镜、第二透镜、第三透镜、第四透镜、第五透镜、第六透镜和第七透镜可均为非球面透镜。非球面透镜的特点是:从透镜中心到周边曲率是连续变化的。与从透镜中心到周边有恒定曲率的球面透镜不同,非球面透镜具有更佳的曲率半径特性,具有改善歪曲像差及改善像散像差的优点。采用非球面透镜后,能够尽可能地消除在成像的时候出现的像差,从而提升镜头的成像质量。非球面透镜的设置有助于矫正系统像差,提升解像力。
根据本申请的上述实施方式的光学镜头通过各透镜形状和光焦度的合理设置,在仅使用7片透镜的情况下,实现光学系统具有较小色差、高解像(可达到八百万像素以上)、小型化、较小前端口径、较长后焦以及良好的成像质量等至少一个有益效果。同时,光学系统还兼顾镜头体积小、敏感度低、生产良率高的低成本要求。该光学镜头还具有较小的CRA,既可以避免光线后端出射时打到镜筒上产生杂光,又可以很好地匹配车载芯片,使光学镜头不会产生偏色和暗角等现象。同时该光学镜头温度适应性能佳、高低温环境下成像效果变化小、像质稳定,有利于该光学镜头在大部分环境下使用。
根据本申请的上述实施方式的光学镜头通过设置胶合透镜,分担系统的整体色差矫正, 既有利于矫正系统像差,提高系统解像质量,减少配合敏感问题,又有利于使得光学系统结构整体紧凑,满足小型化要求。
在示例性实施方式中,光学镜头中的第一透镜至第七透镜可均由玻璃制成。用玻璃制成的光学透镜可抑制光学镜头后焦随温度变化的偏移,以提高系统稳定性。同时采用玻璃材质可避免因使用环境中高、低温温度变化造成的镜头成像模糊,影响到镜头的正常使用。具体地,在重点关注解像质量和信赖性时,第一透镜至第七透镜可均为玻璃非球面镜片。当然在温度稳定性要求较低的应用场合中,光学镜头中的第一透镜至第七透镜也可均由塑料制成。用塑料制作光学透镜,可有效减小制作成本。当然,光学镜头中的第一透镜至第七透镜也可由塑料和玻璃搭配制成。
在示例性实施方式中,第四透镜、第五透镜和第六透镜可胶合形成胶合透镜,从而可分担系统的整体色差矫正,有效校正像差,以提高解像,且可使得光学系统整体紧凑,有利于满足小型化要求。另外,胶合可降低单部品公差的影响,提升整体性能,同时,胶合可消除第五透镜和第六透镜之间的空气腔体,避免了光线在该空气腔体之间来回反射,可有效降低鬼像的风险。
在示例性实施方式中,光学镜头还可包括设置于第二透镜与第三透镜之间的光阑,将光阑设置于第二透镜之后,可有助于增大出射光线,有利于保证通光量。在本申请实施方式中,光阑可设置在第二透镜的第二侧面的附近处,或设置在第三透镜的第一侧面的附近处,或设置在第二透镜和第三透镜的中间位置附近处。然而,应注意,此处公开的光阑的位置仅是示例而非限制;在替代的实施方式中,也可根据实际需要将光阑设置在其他位置。
在示例性实施方式中,第七透镜的第二侧面上可具有至少一个反曲点,有利于矫正系统像差,提高系统的解像能力。
在示例性实施方式中,根据本申请的光学镜头可满足:TTL/F≤2.5,其中,TTL是光学镜头的光学总长,即第一透镜的第一侧面的中心至光学镜头的成像面在光轴上的距离,F是光学镜头的总有效焦距。更具体地,TTL和F进一步可满足:TTL/F≤2.2。满足TTL/F≤2.5,有利于限制镜头体积,实现镜头小型化。
在示例性实施方式中,根据本申请的光学镜头可满足:Vd3+Vd4≥100,其中,Vd3是第三透镜的阿贝数,Vd4是第四透镜的阿贝数。更具体地,Vd3和Vd4进一步可满足:Vd3+Vd4≥120。满足Vd3+Vd4≥100,可有利于进一步限定透镜对某物点发出光线的偏折能力,以矫正取像镜头的色差,使经取像镜头后的像更加真实。
在示例性实施方式中,根据本申请的光学镜头可满足:0.2≤(SAG61/D61)/(SAG62/D62)≤2.5,其中,SAG61是第六透镜的第一侧面的最大通光口径处的矢高,D61是第六透镜的第一侧面的最大通光全口径,SAG62是第六透镜的第二侧面的最大通光口径处的矢高,D62是第六透镜的第二侧面的最大通光全口径。更具体地,SAG61、D61、SAG62以及D62进一步可满足:0.5≤(SAG61/D61)/(SAG62/D62)≤2。满足0.2≤(SAG61/D61)/(SAG62/D62)≤2.5,第六透镜的第一侧面和第二侧面的形状接近,可有利于平缓过渡周边光线,有利于降低镜片敏感度。
在示例性实施方式中,根据本申请的光学镜头可满足:|F4/F5|≤2.5,其中,F4是第四透镜的有效焦距,F5是第五透镜的有效焦距。更具体地,F4和F5进一步可满足:|F4/F5|≤2。满足|F4/F5|≤2.5,胶合件第四透镜和第五透镜两镜片焦距相近,有助于光线平缓过渡,有利于矫正色差,提升像质,且可有效改善镜头的热补偿。
在示例性实施方式中,根据本申请的光学镜头可满足:0.1≤(d4+d5+d6)/TTL≤0.8,其中,d4是第四透镜在光轴上的中心厚度,d5是第五透镜在光轴上的中心厚度,d6是第六透镜在光轴上的中心厚度,TTL是第一透镜的第一侧面的中心至光学镜头的成像面在光轴上的距离。更具体地,d4、d5、d6以及TTL进一步可满足:0.2≤(d4+d5+d6)/TTL≤0.4。满足0.1≤(d4+d5+d6)/TTL≤0.8,合理的胶合件镜片焦距的设置,有助于更多的光线平稳进入,有利于提升照度。
在示例性实施方式中,根据本申请的光学镜头可满足:BFL/TTL≥0.05,其中,BFL是第七透镜的第二侧面的中心至光学镜头的成像面在光轴上的距离,TTL是第一透镜的第一侧面的中心至光学镜头的成像面在光轴上的距离。更具体地,BFL和TTL进一步可满足:BFL/TTL≥0.1。满足BFL/TTL≥0.05,可使光学镜头具有后焦长的特点,有利于组装。
在示例性实施方式中,根据本申请的光学镜头可满足:|R6/R7|≤1.3,其中,R6是第三透镜的第一侧面的曲率半径,R7是第三透镜的第二侧面的曲率半径。更具体地,R6和R7进一步可满足:|R6/R7|≤1.2。满足|R6/R7|≤1.3,镜片对称,有利于矫正球差,提高成像质量,并可方便组立组装。
在示例性实施方式中,根据本申请的光学镜头可满足:(FOV×F)/H≥45,其中,FOV是光学镜头的最大视场角,F是光学镜头的总有效焦距,H是光学镜头的最大视场角对应的像高。更具体地,FOV、F和H进一步可满足:(FOV×F)/H≥50。满足(FOV×F)/H≥45,可有利于实现小畸变,有利于同时满足长焦和大视场角。
在示例性实施方式中,根据本申请的光学镜头可满足:1≤F/EPD≤2,其中,F是光学镜头的总有效焦距,EPD是光学镜头的入瞳直径。更具体地,F和EPD进一步可满足:1.5≤F/EPD≤1.8。满足1≤F/EPD≤2,入瞳直径大,可有助于提升相对照度。
在示例性实施方式中,根据本申请的光学镜头可满足:D/H/θ≤5,其中,D是光学镜头的最大视场角对应的第一透镜的第一侧面的最大通光口径,H是光学镜头的最大视场角对应的像高,θ是光学镜头的最大视场角对应的弧度值。更具体地,D、H和θ进一步可满足:D/H/θ≤3。满足D/H/θ≤5,可实现镜头前端口径小,有利于镜头的小型化。
在示例性实施方式中,根据本申请的光学镜头可满足:|F45/F|≤12,其中,F45是第四透镜与第五透镜的组合焦距,F是光学镜头的总有效焦距。更具体地,F45和F进一步可满足:|F45/F|≤10。满足|F45/F|≤12,胶合件前两枚镜片,即第四透镜和第五透镜聚集光线,可使结构更加紧凑,使后续光线走势平缓,有利于镜头的小型化和高解像。
在示例性实施方式中,根据本申请的光学镜头可满足:|F456/F|≥2,其中,F456是第四透镜、第五透镜和第六透镜的组合焦距,F是光学镜头的总有效焦距。更具体地,F456和F进一步可满足:|F456/F|≥2.5。满足|F456/F|≥2,合理的胶合件镜片焦距的设置,有助于更多的光线平稳进入,有利于提升照度。
在示例性实施方式中,根据本申请的光学镜头可满足:0.2≤Ti10/TTL≤0.6,其中,Ti10是第六透镜的第一侧面的中心至光学镜头的成像面在光轴上的距离,TTL是第一透镜的第一侧面的中心至光学镜头的成像面在光轴上的距离。更具体地,Ti10和TTL进一步可满足:0.3≤Ti10/TTL≤0.5。满足0.2≤Ti10/TTL≤0.6,可使得第六透镜距像面较远,可有助于消除鬼像。
在示例性实施方式中,根据本申请的光学镜头可满足:0.05≤d7/TTL≤0.2,其中,d7是第七透镜在光轴上的中心厚度,TTL是第一透镜的第一侧面的中心至光学镜头的成像面在光轴上的距离。更具体地,d7和TTL进一步可满足:0.07≤d7/TTL≤0.15。满足0.05≤d7/TTL≤0.2,较厚的最后一枚镜片(即第七透镜)可以使光线偏折平缓,有利于提高相对照度,同时可分担第三透镜的转折压力,缓解第三透镜的敏感性及重量,还可平衡像差,提高解像。
在示例性实施方式中,根据本申请的光学镜头可满足:d46/TTL≤0.05,其中,d46是第四透镜的第二侧面的中心至第六透镜的第一侧面的中心在光轴上的间隔距离,TTL是第一透镜的第一侧面的中心至光学镜头的成像面在光轴上的距离。更具体地,d46和TTL进一步可满足:d46/TTL≤0.04。满足d46/TTL≤0.05,缩短第四透镜与第六透镜的距离,有利于降低由于两面曲率接近产生的鬼像问题,同时可减少空气间隔,减小镜头体积。
在示例性实施方式中,根据本申请的光学镜头可满足:θ2/θ1≤2,其中,θ1是光学镜头边缘视场中心主光线到达第六透镜前的入射光线与光轴夹角的弧度值,θ2是光学镜头边缘视场中心主光线到达第六透镜后的出射光线与光轴夹角的弧度值。如图13所示,图13中A1所指示的即为光学镜头边缘视场中心主光线。更具体地,θ1和θ2进一步可满足:θ2/θ1≤1.5。满足θ2/θ1≤2,可使光线走势平缓,有利于光线平缓过渡,有利于降低镜片敏感项,有利于提升照度。
在示例性实施方式中,根据本申请的光学镜头可满足:2.1≤|F6/F|≤10,其中,F6是第六透镜的有效焦距,F是光学镜头的总有效焦距。更具体地,F6和F进一步可满足:2.1≤|F6/F|≤8。满足2.1≤|F6/F|≤10,胶合件中合理的焦距分配可以降低光能量损失,有利于提升照度,同时校正像差,提高解像。
在示例性实施方式中,根据本申请的光学镜头可满足:1≤(N6-N4)/(N5-N4)≤2,其中,N4是第四透镜的折射率,N5是第五透镜的折射率,N6是第六透镜的折射率。更具体地,N4、N5和N6进一步可满足:1≤(N6-N4)/(N5-N4)≤1.8。满足1≤(N6-N4)/(N5-N4)≤2,第四透镜、第五透镜和第六透镜的折射率相接近可以使得光线走势平缓,可降低镜片的折射率敏感性,同时可有利于平衡像差,提高解像。
在示例性实施方式中,根据本申请的光学镜头可满足:T≤0.03+d4+d5+d6,其中,d4是第四透镜在光轴上的中心厚度,d5是第五透镜在光轴上的中心厚度,d6是第六透镜在光轴上的中心厚度,T是第四透镜的第一侧面的中心到第六透镜的第二侧面的中心在光轴上的距离。更具体地,d4、d5、d6和T进一步可满足:T≤0.02+d4+d5+d6。
在示例性实施方式中,根据需要,本申请的光学镜头还可包括设置在第七透镜与成像面之间的滤光片和/或保护玻璃,以对具有不同波长的光线进行过滤,并防止光学镜头的第二侧元件(例如,芯片)损坏。
在示例性实施方式中,第一透镜可为球面透镜;第二透镜可为非球面透镜;第三透镜、第四透镜、第五透镜和第六透镜可为球面透镜;第七透镜可为非球面透镜。本申请并不具体限定球面透镜和非球面透镜的具体数量,在重点关注解像质量时,可以增加非球面透镜的数量。特别地,为了提高光学系统的解像质量,第一透镜、第二透镜、第三透镜、第四透镜、第五透镜、第六透镜和第七透镜可均为非球面透镜。非球面透镜的特点是:从透镜中心到周边曲率是连续变化的。与从透镜中心到周边有恒定曲率的球面透镜不同,非球面透镜具有更佳的曲率半径特性,具有改善歪曲像差及改善像散像差的优点。采用非球面透镜后,能够尽可能地消除在成像的时候出现的像差,从而提升镜头的成像质量。非球面透镜的设置有助于校正系统像差,提升解像力。
在示例性实施方式中,第一透镜、第二透镜、第三透镜、第四透镜、第五透镜、第六透镜和第七透镜可均为玻璃透镜。用玻璃制成的光学透镜可抑制光学镜头后焦随温度变化的偏移,以提高系统稳定性。同时采用玻璃材质可避免因使用环境中高、低温温度变化造成的镜头成像模糊以及影响镜头的正常使用等问题。具体地,在重点关注温度性能和解像质量时,第一透镜至第七透镜可均为玻璃非球面镜片。在温度稳定性要求较低的应用场合中,光学镜头中的第一透镜至第七透镜也可均由塑料制成。用塑料制作光学透镜,可有效降低制作成本。当然,光学镜头中的第一透镜至第七透镜也可由塑料和玻璃搭配制成。
根据本申请的上述实施方式的光学镜头通过各透镜形状和光焦度的合理设置,实现光学镜头具有高解像兼顾小型化、低成本、色差好、后焦长以及良好的成像质量等至少一个有益效果,使得光学镜头能够较好地满足车载前视应用的要求。具体地,根据本申请的上述实施方式的光学镜头通过采用三胶合透镜的形式消除镜片表面反射产生的附加鬼像,保证车载芯片接收信号的准确性,而且三胶合的镜片形式易于降低配合敏感项。另外,通过合适的光阑位置设置、大入瞳口径的选取、合理的镜片材料搭配及光焦度的设置等,可以实现很好地匹配车载芯片,使得成像均匀,相对照度高,无偏色和暗角现象。并且,通过非球面镜片及合理的光焦度设置等手段,使光学系统仅用七片镜片实现兼顾了小型化和高解像的要求。通过系统光焦度的合理分配还能够实现高低温下成像效果变化小,像质稳定,适于车辆使用的大部分环境。而且较低的公差敏感程度可降低加工和组立难度,降低镜头成本。
然而,本领域的技术人员应当理解,在未背离本申请要求保护的技术方案的情况下,可改变构成镜头的透镜数量,来获得本说明书中描述的各个结果和优点。例如,虽然在实施方式中以七片透镜为例进行了描述,但是该光学镜头不限于包括七片透镜。如果需要,该光学镜头还可包括其它数量的透镜。
下面参照附图进一步描述可适用于上述实施方式的光学镜头的具体实施例。
实施例1
以下参照图1描述根据本申请实施例1的光学镜头。图1示出了根据本申请实施例1的光学镜头的结构示意图。
如图1所示,光学镜头沿着光轴由物侧至像侧依序包括第一透镜L1、第二透镜L2、第三透镜L3、第四透镜L4、第五透镜L5、第六透镜L6和第七透镜L7。
第一透镜L1为具有负光焦度的双凹透镜,其物侧面S1为凹面,像侧面S2为凹面。第二透镜L2为具有正光焦度的凸凹透镜,其物侧面S3为凸面,像侧面S4为凹面。第三透镜L3为具有正光焦度的双凸透镜,其物侧面S6为凸面,像侧面S7为凸面。第四透镜L4为具有正光焦度的双凸透镜,其物侧面S8为凸面,像侧面S9为凸面。第五透镜L5为具有负光焦度的双凹透镜,其物侧面S9为凹面,像侧面S10为凹面。第六透镜L6为具有正光焦度的凸凹透镜,其物侧面S11为凸面,像侧面S12为凹面。第七透镜L7为具有负光焦度的双凹透镜,其物侧面S13为凹面,像侧面S14为凹面。第四透镜L4和第五透镜L5可胶合组成胶合透镜。
光学镜头还可包括光阑STO,光阑STO可设置在第二透镜L2与第三透镜L3之间,以提高成像质量。例如,光阑STO可设置在第二透镜L2与第三透镜L3之间靠近第三透镜L3的物侧面S6的位置处。
可选地,该光学镜头还可包括具有物侧面S15和像侧面S16的滤光片L8和/或保护玻璃L8’,该滤光片L8可用于校正色彩偏差以及该保护玻璃L8’可用于保护位于成像面处的图像传感芯片IMA。来自物体的光依序穿过各表面S1至S16并最终成像在成像面上。
表1示出了实施例1的光学镜头的各透镜的曲率半径R、厚度/距离d(应理解,S1所 在行的厚度/距离d为第一透镜L1的中心厚度d1,S2所在行的厚度/距离d为第一透镜L1与第二透镜L2之间的间隔距离d12,以此类推)、折射率ND以及阿贝数VD。
面号 曲率半径R(mm) 厚度/距离d(mm) 折射率ND 阿贝数VD
S1 -19.5884 1.5000 1.63 35.71
S2 33.9260 1.1679    
S3 20.4750 3.5000 1.69 31.08
S4 130.3176 2.4829    
STO 无穷大 0.1000    
S6 19.5461 3.8588 1.62 60.37
S7 -23.9112 0.7123    
S8 8.9847 4.0000 1.62 63.41
S9 -231.9778 0.8000 1.69 31.16
S10 6.8501 2.2786    
S11 8.4199 3.3079 1.62 63.41
S12 12.5241 1.9915    
S13 -46.0151 2.2000 1.69 31.08
S14 81.6951 2.2998    
S15 无穷大 1.0500 1.52 64.21
S16 无穷大 0.1250    
IMA 无穷大      
表1
在实施例1中,第二透镜L2和第七透镜L7可以是非球面透镜,第一透镜L1、第三透镜L3、第四透镜L4、第五透镜L5和第六透镜L6可以是球面透镜。各非球面透镜的面型x可利用但不限于以下非球面公式进行限定:
Figure PCTCN2021135070-appb-000001
其中,x为非球面沿光轴方向在高度为h的位置时,距非球面顶点的距离矢高;c为非球面的近轴曲率,c=1/R(即,近轴曲率c为上表1中曲率半径R的倒数);k为圆锥系数;Ai是非球面第i-th阶的修正系数。下表2给出了可用于实施例1中各非球面镜面S3、S4、S13和S14的圆锥系数k和高次项系数A4、A6、A8、A10、A12、A14和A16。
面号 k A4 A6 A8 A10 A12 A14 A16
S3 / -3.7105E-05 1.6207E-07 -2.3982E-08 8.6145E-10 -1.5626E-11 1.1394E-13 /
S4 / 4.7170E-05 6.5744E-08 -3.7075E-09 1.4165E-10 -3.2150E-12 3.1006E-14 /
S13 99.0000 -1.5203E-03 -3.4714E-05 7.4417E-06 -1.0749E-06 8.8882E-08 -3.7695E-09 6.5359E-11
S14 -62.8703 -1.1346E-03 -5.0952E-05 9.6905E-06 -1.0188E-06 6.2823E-08 -2.0529E-09 2.7405E-11
表2
实施例2
以下参照图2描述了根据本申请实施例2的光学镜头。在本实施例及为简洁起见,将省略部分与实施例1相似的描述。图2示出了根据本申请实施例2的光学镜头的结构示意图。
如图2所示,光学镜头沿着光轴由物侧至像侧依序包括第一透镜L1、第二透镜L2、第三透镜L3、第四透镜L4、第五透镜L5、第六透镜L6和第七透镜L7。
第一透镜L1为具有负光焦度的双凹透镜,其物侧面S1为凹面,像侧面S2为凹面。第二透镜L2为具有正光焦度的凸凹透镜,其物侧面S3为凸面,像侧面S4为凹面。第三透镜L3为具有正光焦度的双凸透镜,其物侧面S6为凸面,像侧面S7为凸面。第四透镜L4为具有正光焦度的凸凹透镜,其物侧面S8为凸面,像侧面S9为凹面。第五透镜L5为具有负光焦度的凸凹透镜,其物侧面S9为凸面,像侧面S10为凹面。第六透镜L6为具有正光焦度的凸凹透镜,其物侧面S11为凸面,像侧面S12为凹面。第七透镜L7为具有负光焦度的双凹透镜,其物侧面S13为凹面,像侧面S14为凹面。第四透镜L4和第五透镜L5可胶合组成胶合透镜。
光学镜头还可包括光阑STO,光阑STO可设置在第二透镜L2与第三透镜L3之间,以提高成像质量。例如,光阑STO可设置在第二透镜L2与第三透镜L3之间靠近第三透镜L3的物侧面S6的位置处。
可选地,该光学镜头还可包括具有物侧面S15和像侧面S16的滤光片L8和/或保护玻璃L8’,该滤光片L8可用于校正色彩偏差以及该保护玻璃L8’可用于保护位于成像面处的图像传感芯片IMA。来自物体的光依序穿过各表面S1至S16并最终成像在成像面上。
表3示出了实施例2的光学镜头的各透镜的曲率半径R、厚度/距离d、折射率ND以及 阿贝数VD。表4示出了可用于实施例2中各非球面镜面的圆锥系数和高次项系数,其中,各非球面面型可由上述实施例1中给出的公式(1)限定。
面号 曲率半径R(mm) 厚度/距离d(mm) 折射率ND 阿贝数VD
S1 -20.1913 1.5000 1.63 35.71
S2 43.4901 1.0568    
S3 19.9373 3.5000 1.69 31.08
S4 150.0000 1.4161    
STO 无穷大 0.1000    
S6 18.0000 4.3982 1.44 95.10
S7 -18.0000 0.1915    
S8 8.7534 4.0000 1.62 60.37
S9 46.7841 1.4216 1.69 31.16
S10 6.5301 1.4381    
S11 7.9309 2.8895 1.69 53.35
S12 13.7310 2.5645    
S13 -57.7828 1.8706 1.70 30.05
S14 31.5296 1.6339    
S15 无穷大 1.0500 1.52 64.21
S16 无穷大 0.1250    
IMA 无穷大      
表3
面号 k A4 A6 A8 A10 A12 A14 A16
S3 / -2.0471E-05 7.5344E-07 -5.0240E-08 1.7146E-09 -2.8399E-11 1.6874E-13 /
S4 / 6.7666E-05 5.0176E-07 -1.6310E-08 4.3557E-10 -2.1257E-12 -5.0188E-14 /
S13 99.0000 -2.0570E-03 -2.5626E-05 6.8082E-06 -1.0087E-06 8.2449E-08 -3.3965E-09 5.5732E-11
S14 -62.8703 -1.3845E-03 -4.5932E-05 9.6159E-06 -1.0199E-06 6.3437E-08 -2.0854E-09 2.7892E-11
表4
实施例3
以下参照图3描述了根据本申请实施例3的光学镜头。图3示出了根据本申请实施例3的光学镜头的结构示意图。
如图3所示,光学镜头沿着光轴由物侧至像侧依序包括第一透镜L1、第二透镜L2、第三透镜L3、第四透镜L4、第五透镜L5、第六透镜L6和第七透镜L7。
第一透镜L1为具有负光焦度的双凹透镜,其物侧面S1为凹面,像侧面S2为凹面。第二透镜L2为具有正光焦度的双凸透镜,其物侧面S3为凸面,像侧面S4为凸面。第三透镜L3为具有正光焦度的双凸透镜,其物侧面S6为凸面,像侧面S7为凸面。第四透镜L4为具有正光焦度的凸凹透镜,其物侧面S8为凸面,像侧面S9为凹面。第五透镜L5为具有负光焦度的凸凹透镜,其物侧面S9为凸面,像侧面S10为凹面。第六透镜L6为具有正光焦度的凸凹透镜,其物侧面S11为凸面,像侧面S12为凹面。第七透镜L7为具有负光焦度的双凹透镜,其物侧面S13为凹面,像侧面S14为凹面。第四透镜L4和第五透镜L5可胶合组成胶合透镜。
光学镜头还可包括光阑STO,光阑STO可设置在第二透镜L2与第三透镜L3之间,以提高成像质量。例如,光阑STO可设置在第二透镜L2与第三透镜L3之间靠近第三透镜L3的物侧面S6的位置处。
可选地,该光学镜头还可包括具有物侧面S15和像侧面S16的滤光片L8和/或保护玻璃L8’,该滤光片L8可用于校正色彩偏差以及该保护玻璃L8’可用于保护位于成像面处的图像传感芯片IMA。来自物体的光依序穿过各表面S1至S16并最终成像在成像面上。
表5示出了实施例3的光学镜头的各透镜的曲率半径R、厚度/距离d、折射率ND以及阿贝数VD。表6示出了可用于实施例3中各非球面镜面的圆锥系数和高次项系数,其中,各非球面面型可由上述实施例1中给出的公式(1)限定。
面号 曲率半径R(mm) 厚度/距离d(mm) 折射率ND 阿贝数VD
S1 -16.1545 1.5000 1.64 34.47
S2 29.3143 1.3250    
S3 22.4413 3.5000 1.69 31.08
S4 -70.5212 0.9161    
STO 无穷大 0.1000    
S6 17.6650 4.3217 1.44 95.10
S7 -17.6650 1.7245    
S8 8.9136 4.0000 1.58 59.46
S9 194.9548 0.8000 1.69 31.16
S10 7.0895 2.1460    
S11 8.6147 3.8638 1.68 55.56
S12 14.0321 1.9701    
S13 -76.4746 1.7330 1.69 31.08
S14 32.1216 2.9441    
S15 无穷大 1.0500 1.52 64.21
S16 无穷大 0.1250    
IMA 无穷大      
表5
面号 k A4 A6 A8 A10 A12 A14 A16
S3 / -3.8271E-05 5.9776E-07 -3.4406E-08 8.7411E-10 -5.8120E-12 -4.3626E-14 /
S4 / 4.1503E-05 2.7181E-07 1.4009E-08 -1.1311E-09 3.6539E-11 -3.9143E-13 /
S13 99.0000 -2.0074E-03 -2.9249E-05 6.1365E-06 -8.2939E-07 6.4084E-08 -2.5213E-09 3.9531E-11
S14 -62.8703 -1.2996E-03 -5.0610E-05 9.4551E-06 -9.5569E-07 5.7514E-08 -1.8419E-09 2.4052E-11
表6
实施例4
以下参照图4描述了根据本申请实施例4的光学镜头。图4示出了根据本申请实施例4的光学镜头的结构示意图。
如图4所示,光学镜头沿着光轴由物侧至像侧依序包括第一透镜L1、第二透镜L2、第三透镜L3、第四透镜L4、第五透镜L5、第六透镜L6和第七透镜L7。
第一透镜L1为具有负光焦度的双凹透镜,其物侧面S1为凹面,像侧面S2为凹面。第二透镜L2为具有正光焦度的双凸透镜,其物侧面S3为凸面,像侧面S4为凸面。第三透镜L3为具有正光焦度的双凸透镜,其物侧面S6为凸面,像侧面S7为凸面。第四透镜L4为具有正光焦度的双凸透镜,其物侧面S8为凸面,像侧面S9为凸面。第五透镜L5为具有负光焦度的双凹透镜,其物侧面S9为凹面,像侧面S10为凹面。第六透镜L6为具有正光焦度的凸凹透镜,其物侧面S11为凸面,像侧面S12为凹面。第七透镜L7为具有负光焦度的凸凹透镜,其物侧面S13为凸面,像侧面S14为凹面。第四透镜L4和第五透镜L5可胶合组成胶合透镜。
光学镜头还可包括光阑STO,光阑STO可设置在第二透镜L2与第三透镜L3之间,以提高成像质量。例如,光阑STO可设置在第二透镜L2与第三透镜L3之间靠近第三透镜L3的物侧面S6的位置处。
可选地,该光学镜头还可包括具有物侧面S15和像侧面S16的滤光片L8和/或保护玻璃L8’,该滤光片L8可用于校正色彩偏差以及该保护玻璃L8’可用于保护位于成像面处的图像传感芯片IMA。来自物体的光依序穿过各表面S1至S16并最终成像在成像面上。
表7示出了实施例4的光学镜头的各透镜的曲率半径R、厚度/距离d、折射率ND以及阿贝数VD。表8示出了可用于实施例4中各非球面镜面的圆锥系数和高次项系数,其中,各非球面面型可由上述实施例1中给出的公式(1)限定。
面号 曲率半径R(mm) 厚度/距离d(mm) 折射率ND 阿贝数VD
S1 -15.6523 1.5000 1.64 34.47
S2 26.7265 1.3125    
S3 20.7151 3.5000 1.67 32.18
S4 -47.3250 1.1765    
STO 无穷大 0.1000    
S6 19.0000 4.1094 1.44 95.10
S7 -19.0000 0.5906    
S8 9.7932 4.0000 1.59 61.25
S9 -60.9188 1.5279 1.69 31.16
S10 7.2950 2.3062    
S11 8.8675 4.1664 1.69 53.35
S12 14.8577 2.0614    
S13 384.7739 1.5491 1.69 31.08
S14 25.0833 3.2535    
S15 无穷大 1.0500 1.52 64.21
S16 无穷大 0.1250    
IMA 无穷大      
表7
面号 k A4 A6 A8 A10 A12 A14 A16
S3 / -4.9659E-05 6.1691E-07 -4.0306E-08 1.2912E-09 -1.8951E-11 1.0017E-13 /
S4 / 2.3164E-05 3.3249E-07 -6.3657E-09 -2.4718E-11 7.1529E-12 -1.0220E-13 /
S13 99.0000 -2.0017E-03 -3.2448E-05 6.4981E-06 -8.5155E-07 5.9474E-08 -2.1615E-09 3.0716E-11
S14 -62.8703 -1.1026E-03 -7.2596E-05 1.0862E-05 -1.0210E-06 5.8817E-08 -1.8065E-09 2.2476E-11
表8
实施例5
以下参照图5描述了根据本申请实施例5的光学镜头。图5示出了根据本申请实施例5的光学镜头的结构示意图。
如图5所示,光学镜头沿着光轴由物侧至像侧依序包括第一透镜L1、第二透镜L2、第三透镜L3、第四透镜L4、第五透镜L5、第六透镜L6和第七透镜L7。
第一透镜L1为具有负光焦度的双凹透镜,其物侧面S1为凹面,像侧面S2为凹面。第二透镜L2为具有正光焦度的双凸透镜,其物侧面S3为凸面,像侧面S4为凸面。第三透镜L3为具有正光焦度的双凸透镜,其物侧面S6为凸面,像侧面S7为凸面。第四透镜L4为具有正光焦度的凸凹透镜,其物侧面S8为凸面,像侧面S9为凹面。第五透镜L5为具有负光焦度的凸凹透镜,其物侧面S9为凸面,像侧面S10为凹面。第六透镜L6为具有正光焦度的凸凹透镜,其物侧面S11为凸面,像侧面S12为凹面。第七透镜L7为具有负光焦度的双凹透镜,其物侧面S13为凹面,像侧面S14为凹面。第四透镜L4和第五透镜L5可胶合组成胶合透镜。
光学镜头还可包括光阑STO,光阑STO可设置在第二透镜L2与第三透镜L3之间,以提高成像质量。例如,光阑STO可设置在第二透镜L2与第三透镜L3之间靠近第三透镜L3的物侧面S6的位置处。
可选地,该光学镜头还可包括具有物侧面S15和像侧面S16的滤光片L8和/或保护玻璃L8’,该滤光片L8可用于校正色彩偏差以及该保护玻璃L8’可用于保护位于成像面处的图像传感芯片IMA。来自物体的光依序穿过各表面S1至S16并最终成像在成像面上。
表9示出了实施例5的光学镜头的各透镜的曲率半径R、厚度/距离d、折射率ND以及阿贝数VD。表10示出了可用于实施例5中各非球面镜面的圆锥系数和高次项系数,其中,各非球面面型可由上述实施例1中给出的公式(1)限定。
面号 曲率半径R(mm) 厚度/距离d(mm) 折射率ND 阿贝数VD
S1 -16.6256 1.5000 1.63 35.71
S2 29.7756 1.2734    
S3 21.3393 3.5000 1.69 31.08
S4 -88.4857 1.2183    
STO 无穷大 0.1000    
S6 18.0000 4.2152 1.44 95.10
S7 -18.0000 1.6403    
S8 8.7651 4.0000 1.59 61.25
S9 150.0000 0.8000 1.69 31.16
S10 6.8706 1.8891    
S11 8.5672 3.7863 1.69 53.35
S12 14.4137 2.1266    
S13 -71.5241 1.8506 1.69 31.08
S14 32.9097 2.5880    
S15 无穷大 1.0500 1.52 64.21
S16 无穷大 0.1250    
IMA 无穷大      
表9
面号 k A4 A6 A8 A10 A12 A14 A16
S3 / -3.7510E-05 5.9171E-07 -4.6538E-08 1.0496E-09 -1.2080E-11 2.7220E-14 /
S4 / 4.2985E-05 3.4428E-07 2.6962E-09 -5.5635E-10 2.0465E-11 -2.3853E-13 /
S13 100.0000 -1.9210E-03 -2.6859E-05 5.6963E-06 -8.0102E-07 6.2995E-08 -2.5115E-09 3.9842E-11
S14 -62.8703 -1.2608E-03 -4.8323E-05 8.9504E-06 -9.1359E-07 5.5212E-08 -1.7712E-09 2.3152E-11
表10
实施例6
以下参照图6描述了根据本申请实施例6的光学镜头。图6示出了根据本申请实施例6的光学镜头的结构示意图。
如图6所示,光学镜头沿着光轴由物侧至像侧依序包括第一透镜L1、第二透镜L2、第三透镜L3、第四透镜L4、第五透镜L5、第六透镜L6和第七透镜L7。
第一透镜L1为具有负光焦度的双凹透镜,其物侧面S1为凹面,像侧面S2为凹面。第二透镜L2为具有正光焦度的双凸透镜,其物侧面S3为凸面,像侧面S4为凸面。第三透镜L3为具有正光焦度的双凸透镜,其物侧面S6为凸面,像侧面S7为凸面。第四透镜L4为 具有正光焦度的双凸透镜,其物侧面S8为凸面,像侧面S9为凸面。第五透镜L5为具有负光焦度的双凹透镜,其物侧面S9为凹面,像侧面S10为凹面。第六透镜L6为具有正光焦度的凸凹透镜,其物侧面S11为凸面,像侧面S12为凹面。第七透镜L7为具有负光焦度的凹凸透镜,其物侧面S13为凹面,像侧面S14为凸面。第四透镜L4和第五透镜L5可胶合组成胶合透镜。
光学镜头还可包括光阑STO,光阑STO可设置在第二透镜L2与第三透镜L3之间,以提高成像质量。例如,光阑STO可设置在第二透镜L2与第三透镜L3之间靠近第三透镜L3的物侧面S6的位置处。
可选地,该光学镜头还可包括具有物侧面S15和像侧面S16的滤光片L8和/或保护玻璃L8’,该滤光片L8可用于校正色彩偏差以及该保护玻璃L8’可用于保护位于成像面处的图像传感芯片IMA。来自物体的光依序穿过各表面S1至S16并最终成像在成像面上。
表11示出了实施例6的光学镜头的各透镜的曲率半径R、厚度/距离d、折射率ND以及阿贝数VD。表12示出了可用于实施例6中各非球面镜面的圆锥系数和高次项系数,其中,各非球面面型可由上述实施例1中给出的公式(1)限定。
面号 曲率半径R(mm) 厚度/距离d(mm) 折射率ND 阿贝数VD
S1 -15.1107 1.5000 1.63 35.71
S2 46.3570 1.3874    
S3 22.6421 3.5000 1.67 32.20
S4 -35.2366 1.1558    
STO 无穷大 0.1000    
S6 16.6267 5.7519 1.44 95.10
S7 -17.5069 0.1000    
S8 9.6130 4.0000 1.62 47.10
S9 -20.3233 1.2951 1.70 30.05
S10 5.8578 0.6775    
S11 8.7266 5.2150 1.68 55.50
S12 12.2257 1.4002    
S13 -49.0957 2.2000 1.99 16.50
S14 -150.0000 1.1480    
S15 无穷大 1.0500 1.44 95.10
S16 无穷大 0.1250    
IMA 无穷大      
表11
面号 k A4 A6 A8 A10 A12 A14 A16
S3 / -5.1020E-05 7.5329E-07 -4.2666E-08 1.5382E-09 -2.4485E-11 1.4318E-13 /
S4 / 3.5745E-05 4.1950E-07 3.4460E-09 -3.6341E-10 1.5691E-11 -1.9184E-13 /
S13 99.0000 -7.1476E-04 -5.5994E-05 1.2995E-05 -1.9445E-06 1.6857E-07 -7.5975E-09 1.3956E-10
S14 -62.8703 -3.7632E-04 -1.2259E-04 2.0800E-05 -2.2269E-06 1.3943E-07 -4.6330E-09 6.1740E-11
表12
实施例7
以下参照图7描述了根据本申请实施例7的光学镜头。图7示出了根据本申请实施例7的光学镜头的结构示意图。
如图7所示,光学镜头沿着光轴由物侧至像侧依序包括第一透镜L1、第二透镜L2、第三透镜L3、第四透镜L4、第五透镜L5、第六透镜L6和第七透镜L7。
第一透镜L1为具有负光焦度的双凹透镜,其物侧面S1为凹面,像侧面S2为凹面。第二透镜L2为具有正光焦度的双凸透镜,其物侧面S4为凸面,像侧面S5为凸面。第三透镜L3为具有正光焦度的双凸透镜,其物侧面S6为凸面,像侧面S7为凸面。第四透镜L4为具有正光焦度的双凸透镜,其物侧面S8为凸面,像侧面S9为凸面。第五透镜L5为具有负光焦度的双凹透镜,其物侧面S9为凹面,像侧面S10为凹面。第六透镜L6为具有正光焦度的双凸透镜,其物侧面S11为凸面,像侧面S12为凸面。第七透镜L7为具有负光焦度的双凹透镜,其物侧面S13为凹面,像侧面S14为凹面。第四透镜L4和第五透镜L5可胶合组成胶合透镜。
光学镜头还可包括光阑STO,光阑STO可设置在第二透镜L2与第三透镜L3之间,以提高成像质量。例如,光阑STO可设置在第二透镜L2与第三透镜L3之间靠近第三透镜L3的物侧面S6的位置处。
可选地,该光学镜头还可包括具有物侧面S15和像侧面S16的滤光片L8和/或保护玻璃L8’,该滤光片L8可用于校正色彩偏差以及该保护玻璃L8’可用于保护位于成像面处的图像 传感芯片IMA。来自物体的光依序穿过各表面S1至S16并最终成像在成像面上。
表13示出了实施例7的光学镜头的各透镜的曲率半径R、厚度/距离d、折射率ND以及阿贝数VD。表14示出了可用于实施例7中各非球面镜面的圆锥系数和高次项系数,其中,各非球面面型可由上述实施例1中给出的公式(1)限定。
面号 曲率半径R(mm) 厚度/距离d(mm) 折射率ND 阿贝数VD
S1 -17.8873 1.5000 1.63 35.71
S2 31.4007 1.9000    
STO 无穷大 -0.2000    
S4 26.4443 3.4437 1.69 31.08
S5 -61.4510 0.5675    
S6 26.9499 4.3896 1.60 65.55
S7 -14.5099 0.1000    
S8 11.2892 3.9410 1.50 81.59
S9 -32.3560 2.0422 1.69 31.16
S10 8.8194 1.8673    
S11 30.0718 4.5099 1.74 44.90
S12 -27.8809 2.2839    
S13 -45.4324 1.5000 1.69 31.08
S14 16.6348 2.4404    
S15 无穷大 1.0500 1.52 64.21
S16 无穷大 0.1250    
IMA 无穷大      
表13
面号 k A4 A6 A8 A10 A12 A14 A16
S4 -0.0825 -1.8105E-04 -8.2560E-07 -1.2030E-07 4.1156E-09 -9.1497E-11 7.4049E-13 /
S5 -0.0170 -2.9465E-05 -2.2046E-07 -8.1492E-08 2.7871E-09 -5.3169E-11 4.3644E-13 /
S13 99.0000 -1.2704E-03 -2.6943E-05 7.5046E-06 -8.5132E-07 5.5618E-08 -1.9359E-09 3.0544E-11
S14 -70.0000 2.6044E-04 -1.9687E-04 2.3243E-05 -1.8904E-06 9.5294E-08 -2.7333E-09 3.5524E-11
表14
实施例8
以下参照图8描述了根据本申请实施例8的光学镜头。图8示出了根据本申请实施例8的光学镜头的结构示意图。
如图8所示,光学镜头沿着光轴由第一侧至第二侧依序包括第一透镜L1、第二透镜L2、第三透镜L3、第四透镜L4、第五透镜L5、第六透镜L6和第七透镜L7。
第一透镜L1为具有负光焦度的凹凹透镜,其第一侧面S1为凹面,第二侧面S2为凹面。第二透镜L2为具有正光焦度的凸凹透镜,其第一侧面S3为凸面,第二侧面S4为凹面。第三透镜L3为具有正光焦度的凸凸透镜,其第一侧面S6为凸面,第二侧面S7为凸面。第四透镜L4为具有正光焦度的凸凹透镜,其第一侧面S8为凸面,第二侧面S9为凹面。第五透镜L5为具有负光焦度的凸凹透镜,其第一侧面S9为凸面,第二侧面S10为凹面。第六透镜L6为具有正光焦度的凸凹透镜,其第一侧面S10为凸面,第二侧面S11为凹面。第七透镜L7为具有负光焦度的凹凹透镜,其第一侧面S12为凹面,第二侧面S13为凹面。
光学镜头还可包括光阑STO,光阑STO可设置在第二透镜L2与第三透镜L3之间,以增大出射光线,保证通光量。例如,光阑STO可设置在第二透镜L2与第三透镜L3之间靠近第二透镜L2的第二侧面S4的位置处。
可选地,该光学镜头还可包括具有第一侧面S14和第二侧面S15的滤光片L8,该滤光片L8可用于校正色彩偏差。可选地,该光学镜头还可包括具有第一侧面S16和第二侧面S17的保护玻璃L9,该保护玻璃L9可用于保护位于成像面和/或像源面处的图像传感芯片IMA。当该光学镜头用于摄像时,来自物体的光依序穿过各表面S1至S17并最终成像在成像面上;当该光学镜头用于投影时,来自像源面的光依序穿过各表面S17至S1并最终投射至目标物(未示出)。
表15示出了实施例8的光学镜头的各透镜的曲率半径R、厚度/距离d(应理解,S1所在行的厚度/距离d为第一透镜L1的中心厚度d1,S2所在行的厚度/距离d为第一透镜L1与第二透镜L2之间的间隔距离d2,以此类推)、折射率N以及阿贝数Vd。
面号 曲率半径R(mm) 厚度/距离d(mm) 折射率N 阿贝数Vd
S1 -19.5627 1.7534 1.63 35.71
S2 50.5661 1.3000    
S3 19.2849 3.6768 1.68 31.09
S4 70.1367 0.3124    
STO 无穷大 0.3501    
S6 14.1410 4.8294 1.44 95.10
S7 -14.1410 0.1000    
S8 10.3861 3.4683 1.59 61.25
S9 44.4133 0.9000 1.69 31.16
S10 8.5607 3.5122 1.69 53.35
S11 11.4416 1.8560    
S12 -91.6396 2.8916 1.68 31.09
S13 18.1821 1.0000    
S14 无穷大 0.5500 1.52 64.21
S15 无穷大 1.5749    
S16 无穷大 0.5000 1.52 64.21
S17 无穷大 0.1250    
IMA 无穷大      
表15
在实施例8中,第二透镜L2的第一侧面S3和第二侧面S4以及第七透镜L7的第一侧面S12和第二侧面S13均可以是非球面,各非球面透镜的面型可由上述实施例1中给出的公式(1)限定。
下表16给出了可用于实施例8中各非球面镜面S3、S4、S12和S13的圆锥系数k和高次项系数A4、A6、A8、A10、A12、A14和A16。
面号 k A4 A6 A8 A10 A12 A14 A16
S3 -1.9883 -7.8123E-05 -4.2778E-06 -1.7038E-10 1.8096E-09 -8.7209E-12 -2.8868E-12 5.7061E-14
S4 -126.1065 5.1660E-05 -4.4125E-06 5.7603E-08 -1.4782E-09 9.8617E-11 -2.6412E-12 2.0821E-14
S12 111.7484 -2.1236E-03 4.6351E-06 -2.6601E-06 1.7262E-07 2.3326E-09 -4.2426E-10 7.1339E-12
S13 0.4386 -1.1904E-03 -9.9344E-06 4.8754E-06 -4.7095E-07 2.4134E-08 -5.2654E-10 2.7616E-12
表16
实施例9
以下参照图9描述了根据本申请实施例9的光学镜头。在本实施例及以下实施例中,为简洁起见,将省略部分与实施例1相似的描述。图9示出了根据本申请实施例9的光学镜头的结构示意图。
如图9所示,光学镜头沿着光轴由第一侧至第二侧依序包括第一透镜L1、第二透镜L2、第三透镜L3、第四透镜L4、第五透镜L5、第六透镜L6和第七透镜L7。
第一透镜L1为具有负光焦度的凹凹透镜,其第一侧面S1为凹面,第二侧面S2为凹面。第二透镜L2为具有正光焦度的凸凹透镜,其第一侧面S3为凸面,第二侧面S4为凹面。第三透镜L3为具有正光焦度的凸凸透镜,其第一侧面S6为凸面,第二侧面S7为凸面。第四透镜L4为具有正光焦度的凸凹透镜,其第一侧面S8为凸面,第二侧面S9为凹面。第五透镜L5为具有负光焦度的凸凹透镜,其第一侧面S9为凸面,第二侧面S10为凹面。第六透镜L6为具有正光焦度的凸凹透镜,其第一侧面S10为凸面,第二侧面S11为凹面。第七透镜L7为具有负光焦度的凹凹透镜,其第一侧面S12为凹面,第二侧面S13为凹面。
光学镜头还可包括光阑STO,光阑STO可设置在第二透镜L2与第三透镜L3之间,以增大出射光线,保证通光量。例如,光阑STO可设置在第二透镜L2与第三透镜L3之间靠近第二透镜L2的第二侧面S4的位置处。
可选地,该光学镜头还可包括具有第一侧面S14和第二侧面S15的滤光片L8,该滤光片L8可用于校正色彩偏差。可选地,该光学镜头还可包括具有第一侧面S16和第二侧面S17的保护玻璃L9,该保护玻璃L9可用于保护位于成像面和/或像源面处的图像传感芯片IMA。当该光学镜头用于摄像时,来自物体的光依序穿过各表面S1至S17并最终成像在成像面上;当该光学镜头用于投影时,来自像源面的光依序穿过各表面S17至S1并最终投射至目标物(未示出)。
表17示出了实施例9的光学镜头的各透镜的曲率半径R、厚度/距离d、折射率N以及阿贝数Vd。表18示出了可用于实施例9中各非球面镜面的圆锥系数和高次项系数,其中,各非球面面型可由上述实施例1中给出的公式(1)限定。
面号 曲率半径R(mm) 厚度/距离d(mm) 折射率N 阿贝数Vd
S1 -19.6921 1.9977 1.63 35.71
S2 50.7814 1.3000    
S3 19.3855 3.6768 1.68 31.09
S4 58.8695 0.3124    
STO 无穷大 0.3501    
S6 14.2056 4.9617 1.44 95.10
S7 -14.2056 0.1000    
S8 10.3555 3.4962 1.59 61.25
S9 36.5383 0.9000 1.69 31.16
S10 8.5607 3.5122 1.69 53.35
S11 11.6616 1.9201    
S12 -115.0595 3.0478 1.68 31.09
S13 18.1402 1.0000    
S14 无穷大 0.5500 1.52 64.21
S15 无穷大 1.5534    
S16 无穷大 0.5000 1.52 64.21
S17 无穷大 0.1250    
IMA 无穷大      
表17
面号 k A4 A6 A8 A10 A12 A14 A16
S3 -2.1907 -8.0339E-05 -4.2526E-06 1.1678E-09 1.8612E-09 -7.1812E-12 -2.7891E-12 6.1277E-14
S4 -114.2484 5.3348E-05 -4.3750E-06 5.9617E-08 -1.3891E-09 1.0210E-10 -2.5134E-12 2.5355E-14
S12 111.7484 -1.9511E-03 1.1417E-05 -2.7185E-06 1.4740E-07 9.2394E-10 -4.5250E-10 1.1557E-11
S13 3.8345 -1.1148E-03 -9.1450E-06 4.8271E-06 -4.7667E-07 2.3900E-08 -5.2999E-10 2.9502E-12
表18
实施例10
以下参照图10描述了根据本申请实施例10的光学镜头。图10示出了根据本申请实施例10的光学镜头的结构示意图。
如图10所示,光学镜头沿着光轴由第一侧至第二侧依序包括第一透镜L1、第二透镜L2、第三透镜L3、第四透镜L4、第五透镜L5、第六透镜L6和第七透镜L7。
第一透镜L1为具有负光焦度的凹凹透镜,其第一侧面S1为凹面,第二侧面S2为凹面。第二透镜L2为具有正光焦度的凸凹透镜,其第一侧面S3为凸面,第二侧面S4为凹面。第三透镜L3为具有正光焦度的凸凸透镜,其第一侧面S6为凸面,第二侧面S7为凸面。第四透镜L4为具有正光焦度的凸凸透镜,其第一侧面S8为凸面,第二侧面S9为凸面。第五透镜L5为具有负光焦度的凹凹透镜,其第一侧面S9为凹面,第二侧面S10为凹面。第六透镜L6为具有正光焦度的凸凹透镜,其第一侧面S10为凸面,第二侧面S11为凹面。第七透镜L7为具有负光焦度的凸凹透镜,其第一侧面S12为凸面,第二侧面S13为凹面。
光学镜头还可包括光阑STO,光阑STO可设置在第二透镜L2与第三透镜L3之间,以增大出射光线,保证通光量。例如,光阑STO可设置在第二透镜L2与第三透镜L3之间靠近第二透镜L2的第二侧面S4的位置处。
可选地,该光学镜头还可包括具有第一侧面S14和第二侧面S15的滤光片L8,该滤光片L8可用于校正色彩偏差。可选地,该光学镜头还可包括具有第一侧面S16和第二侧面S17的保护玻璃L9,该保护玻璃L9可用于保护位于成像面和/或像源面处的图像传感芯片IMA。当该光学镜头用于摄像时,来自物体的光依序穿过各表面S1至S17并最终成像在成像面上;当该光学镜头用于投影时,来自像源面的光依序穿过各表面S17至S1并最终投射至目标物(未示出)。
表19示出了实施例10的光学镜头的各透镜的曲率半径R、厚度/距离d、折射率N以及阿贝数Vd。表20示出了可用于实施例10中各非球面镜面的圆锥系数和高次项系数,其中,各非球面面型可由上述实施例1中给出的公式(1)限定。
面号 曲率半径R(mm) 厚度/距离d(mm) 折射率N 阿贝数Vd
S1 -18.2122 2.1900 1.63 35.71
S2 91.5896 1.3000    
S3 15.9609 3.6768 1.68 31.09
S4 82.1044 0.3124    
STO 无穷大 0.3501    
S6 15.3499 4.2661 1.44 95.10
S7 -15.3499 0.1000    
S8 11.0263 3.5722 1.59 61.25
S9 -74.0451 0.9000 1.69 31.16
S10 8.5607 3.5122 1.69 53.35
S11 8.7445 1.1390    
S12 42.8310 3.4567 1.68 31.09
S13 19.5997 1.0000    
S14 无穷大 0.5500 1.52 64.21
S15 无穷大 1.6433    
S16 无穷大 0.5000 1.52 64.21
S17 无穷大 0.1250    
IMA 无穷大      
表19
面号 k A4 A6 A8 A10 A12 A14 A16
S3 -1.2503 -5.2305E-05 -3.6383E-06 1.0506E-08 1.1058E-09 -1.7647E-11 -1.8172E-12 4.2628E-14
S4 -19.4584 6.0849E-05 -5.0579E-06 1.0785E-07 -1.1556E-09 2.8820E-11 -5.5564E-12 9.5713E-14
S12 111.7484 -1.7463E-03 -2.3651E-06 -4.7823E-06 1.9787E-07 4.8069E-09 -9.0659E-10 2.0359E-11
S13 8.7661 -8.1164E-04 -5.0789E-05 6.4219E-06 -5.2170E-07 2.2554E-08 -4.0630E-10 1.2723E-12
表20
实施例11
以下参照图11描述了根据本申请实施例11的光学镜头。图11示出了根据本申请实施例11的光学镜头的结构示意图。
如图11所示,光学镜头沿着光轴由第一侧至第二侧依序包括第一透镜L1、第二透镜L2、第三透镜L3、第四透镜L4、第五透镜L5、第六透镜L6和第七透镜L7。
第一透镜L1为具有负光焦度的凹凹透镜,其第一侧面S1为凹面,第二侧面S2为凹面。第二透镜L2为具有正光焦度的凸凹透镜,其第一侧面S3为凸面,第二侧面S4为凹面。第三透镜L3为具有正光焦度的凸凸透镜,其第一侧面S6为凸面,第二侧面S7为凸面。第四透镜L4为具有正光焦度的凸凸透镜,其第一侧面S8为凸面,第二侧面S9为凸面。第五透镜L5为具有负光焦度的凹凹透镜,其第一侧面S9为凹面,第二侧面S10为凹面。第六透镜L6为具有正光焦度的凸凹透镜,其第一侧面S10为凸面,第二侧面S11为凹面。第七透镜L7为具有负光焦度的凸凹透镜,其第一侧面S12为凸面,第二侧面S13为凹面。
光学镜头还可包括光阑STO,光阑STO可设置在第二透镜L2与第三透镜L3之间,以增大出射光线,保证通光量。例如,光阑STO可设置在第二透镜L2与第三透镜L3之间靠近第二透镜L2的第二侧面S4的位置处。
可选地,该光学镜头还可包括具有第一侧面S14和第二侧面S15的滤光片L8,该滤光片L8可用于校正色彩偏差。可选地,该光学镜头还可包括具有第一侧面S16和第二侧面S17的保护玻璃L9,该保护玻璃L9可用于保护位于成像面和/或像源面处的图像传感芯片IMA。当该光学镜头用于摄像时,来自物体的光依序穿过各表面S1至S17并最终成像在成像面上;当该光学镜头用于投影时,来自像源面的光依序穿过各表面S17至S1并最终投射至目标物(未示出)。
表21示出了实施例11的光学镜头的各透镜的曲率半径R、厚度/距离d、折射率N以及阿贝数Vd。表22示出了可用于实施例11中各非球面镜面的圆锥系数和高次项系数,其中,各非球面面型可由上述实施例1中给出的公式(1)限定。
面号 曲率半径R(mm) 厚度/距离d(mm) 折射率N 阿贝数Vd
S1 -17.5430 2.1900 1.63 35.71
S2 88.2265 1.3000    
S3 15.9139 3.6768 1.68 31.09
S4 83.5400 0.3124    
STO 无穷大 0.3501    
S6 15.3266 4.0659 1.44 95.10
S7 -15.3266 0.1000    
S8 10.9973 3.5900 1.59 61.25
S9 -80.4208 0.9000 1.69 31.16
S10 8.5607 3.5122 1.69 53.35
S11 8.8341 1.1668    
S12 42.5869 3.5939 1.68 31.09
S13 18.7052 1.0000    
S14 无穷大 0.5500 1.52 64.21
S15 无穷大 1.6211    
S16 无穷大 0.5000 1.52 64.21
S17 无穷大 0.1250    
IMA 无穷大      
表21
面号 k A4 A6 A8 A10 A12 A14 A16
S3 -1.1813 -5.0216E-05 -3.5999E-06 1.1111E-08 1.1125E-09 -1.7696E-11 -1.8265E-12 4.1969E-14
S4 -25.0730 5.9839E-05 -5.0378E-06 1.0997E-07 -1.0455E-09 3.3510E-11 -5.3830E-12 1.0101E-13
S12 111.7484 -1.7139E-03 -1.4895E-06 -4.7634E-06 1.9798E-07 4.7660E-09 -9.1351E-10 1.9392E-11
S13 8.8839 -8.0227E-04 -5.0540E-05 6.4224E-06 -5.2212E-07 2.2518E-08 -4.0837E-10 1.1992E-12
表22
实施例12
以下参照图12描述了根据本申请实施例12的光学镜头。图12示出了根据本申请实施例12的光学镜头的结构示意图。
如图12所示,光学镜头沿着光轴由第一侧至第二侧依序包括第一透镜L1、第二透镜L2、第三透镜L3、第四透镜L4、第五透镜L5、第六透镜L6和第七透镜L7。
第一透镜L1为具有负光焦度的凹凹透镜,其第一侧面S1为凹面,第二侧面S2为凹面。第二透镜L2为具有正光焦度的凸凸透镜,其第一侧面S3为凸面,第二侧面S4为凸面。第三透镜L3为具有正光焦度的凸凸透镜,其第一侧面S6为凸面,第二侧面S7为凸面。第四透镜L4为具有正光焦度的凸凹透镜,其第一侧面S8为凸面,第二侧面S9为凹面。第五透镜L5为具有负光焦度的凸凹透镜,其第一侧面S9为凸面,第二侧面S10为凹面。第六透镜L6为具有正光焦度的凸凹透镜,其第一侧面S10为凸面,第二侧面S11为凹面。第七透镜L7为具有负光焦度的凹凹透镜,其第一侧面S12为凹面,第二侧面S13为凹面。
光学镜头还可包括光阑STO,光阑STO可设置在第二透镜L2与第三透镜L3之间,以增大出射光线,保证通光量。例如,光阑STO可设置在第二透镜L2与第三透镜L3之间的接近中间位置处。
可选地,该光学镜头还可包括具有第一侧面S14和第二侧面S15的滤光片L8,该滤光片L8可用于校正色彩偏差。可选地,该光学镜头还可包括具有第一侧面S16和第二侧面S17的保护玻璃L9,该保护玻璃L9可用于保护位于成像面和/或像源面处的图像传感芯片IMA。当该光学镜头用于摄像时,来自物体的光依序穿过各表面S1至S17并最终成像在成像面上;当该光学镜头用于投影时,来自像源面的光依序穿过各表面S17至S1并最终投射至目标物(未示出)。
表23示出了实施例12的光学镜头的各透镜的曲率半径R、厚度/距离d、折射率N以及阿贝数Vd。表24示出了可用于实施例12中各非球面镜面的圆锥系数和高次项系数,其中,各非球面面型可由上述实施例1中给出的公式(1)限定。
面号 曲率半径R(mm) 厚度/距离d(mm) 折射率N 阿贝数Vd
S1 -21.0378 2.0356 1.63 35.71
S2 90.3590 1.3000    
S3 39.6428 4.0336 1.68 31.09
S4 -81.6552 0.3124    
STO 无穷大 0.3030    
S6 13.3886 5.0337 1.44 95.10
S7 -13.3886 0.1000    
S8 12.1937 2.5963 1.59 61.25
S9 72.4279 0.9000 1.69 31.16
S10 9.7320 4.0157 1.69 53.35
S11 10.9907 1.7947    
S12 -96.0347 2.9347 1.68 31.09
S13 18.6062 1.0000    
S14 无穷大 0.5500 1.52 64.21
S15 无穷大 1.5990    
S16 无穷大 0.5000 1.52 64.21
S17 无穷大 0.1250    
IMA 无穷大      
表23
面号 k A4 A6 A8 A10 A12 A14 A16
S3 -2.14E+01 -1.4330E-04 -6.2796E-06 9.1669E-08 -2.5156E-11 -6.3307E-11 6.2426E-13 3.6010E-14
S4 90.3151 -4.0975E-05 -3.5927E-06 1.3933E-07 -2.9167E-09 4.8797E-11 -8.5504E-13 2.4389E-14
S12 90.6595 -1.9270E-03 2.9788E-05 -6.1005E-06 3.0942E-07 9.8562E-09 -1.4336E-09 2.8091E-11
S13 9.4064 -1.1456E-03 -1.7175E-05 5.2293E-06 -5.1668E-07 2.5392E-08 -4.9374E-10 -6.3824E-13
表24
实施例13
以下参照图13描述了根据本申请实施例13的光学镜头。图13示出了根据本申请实施例13的光学镜头的结构示意图。
如图13所示,光学镜头沿着光轴由第一侧至第二侧依序包括第一透镜L1、第二透镜L2、第三透镜L3、第四透镜L4、第五透镜L5、第六透镜L6和第七透镜L7。
第一透镜L1为具有负光焦度的凹凹透镜,其第一侧面S1为凹面,第二侧面S2为凹面。第二透镜L2为具有正光焦度的凸凸透镜,其第一侧面S3为凸面,第二侧面S4为凸面。第三透镜L3为具有正光焦度的凸凸透镜,其第一侧面S6为凸面,第二侧面S7为凸面。第四透镜L4为具有正光焦度的凸凹透镜,其第一侧面S8为凸面,第二侧面S9为凹面。第五透镜L5为具有负光焦度的凸凹透镜,其第一侧面S9为凸面,第二侧面S10为凹面。第六透镜L6为具有正光焦度的凸凹透镜,其第一侧面S10为凸面,第二侧面S11为凹面。第七透镜L7为具有负光焦度的凹凹透镜,其第一侧面S12为凹面,第二侧面S13为凹面。
光学镜头还可包括光阑STO,光阑STO可设置在第二透镜L2与第三透镜L3之间,以增大出射光线,保证通光量。例如,光阑STO可设置在第二透镜L2与第三透镜L3之间的接近中间位置处。
可选地,该光学镜头还可包括具有第一侧面S14和第二侧面S15的滤光片L8,该滤光片L8可用于校正色彩偏差。可选地,该光学镜头还可包括具有第一侧面S16和第二侧面S17的保护玻璃L9,该保护玻璃L9可用于保护位于成像面和/或像源面处的图像传感芯片IMA。当该光学镜头用于摄像时,来自物体的光依序穿过各表面S1至S17并最终成像在成像面上;当该光学镜头用于投影时,来自像源面的光依序穿过各表面S17至S1并最终投射至目标物(未示出)。
表25示出了实施例13的光学镜头的各透镜的曲率半径R、厚度/距离d、折射率N以及阿贝数Vd。表26示出了可用于实施例13中各非球面镜面的圆锥系数和高次项系数,其中,各非球面面型可由上述实施例1中给出的公式(1)限定。
面号 曲率半径R(mm) 厚度/距离d(mm) 折射率N 阿贝数Vd
S1 -20.9581 1.7881 1.63 35.71
S2 92.2112 1.3000    
S3 40.2022 4.3666 1.68 31.09
S4 -82.3384 0.3124    
STO 无穷大 0.3030    
S6 13.4062 5.0580 1.44 95.10
S7 -13.4062 0.1000    
S8 12.2341 2.5808 1.59 61.25
S9 72.4279 0.9000 1.69 31.16
S10 9.7957 4.0023 1.69 53.35
S11 10.8460 1.7836    
S12 -90.0012 2.9486 1.68 31.09
S13 18.3105 1.0000    
S14 无穷大 0.5500 1.52 64.21
S15 无穷大 1.5584    
S16 无穷大 0.5000 1.52 64.21
S17 无穷大 0.1250    
IMA 无穷大      
表25
面号 k A4 A6 A8 A10 A12 A14 A16
S3 -5.7771 -1.2627E-04 -6.5743E-06 8.4729E-08 1.0802E-10 -5.2545E-11 7.7215E-13 1.7635E-14
S4 143.0531 -4.3451E-05 -2.8959E-06 1.5907E-07 -2.5967E-09 4.9007E-11 -1.1080E-12 9.3629E-15
S12 111.7484 -1.7822E-03 1.9339E-05 -6.3505E-06 3.1841E-07 1.1122E-08 -1.3752E-09 2.5376E-11
S13 8.9881 -1.2525E-03 -1.0655E-05 5.0871E-06 -5.3065E-07 2.4910E-08 -4.8680E-10 2.1057E-12
表26
实施例14
以下参照图14描述了根据本申请实施例14的光学镜头。图14示出了根据本申请实施例14的光学镜头的结构示意图。
如图14所示,光学镜头沿着光轴由第一侧至第二侧依序包括第一透镜L1、第二透镜L2、第三透镜L3、第四透镜L4、第五透镜L5、第六透镜L6和第七透镜L7。
第一透镜L1为具有负光焦度的凹凹透镜,其第一侧面S1为凹面,第二侧面S2为凹面。第二透镜L2为具有正光焦度的凸凸透镜,其第一侧面S3为凸面,第二侧面S4为凸面。第三透镜L3为具有正光焦度的凸凸透镜,其第一侧面S6为凸面,第二侧面S7为凸面。第四透镜L4为具有正光焦度的凸凸透镜,其第一侧面S8为凸面,第二侧面S9为凸面。第五透镜L5为具有负光焦度的凹凹透镜,其第一侧面S9为凹面,第二侧面S10为凹面。第六透镜L6为具有负光焦度的凸凹透镜,其第一侧面S10为凸面,第二侧面S11为凹面。第七透镜L7为具有负光焦度的凹凹透镜,其第一侧面S12为凹面,第二侧面S13为凹面。
光学镜头还可包括光阑STO,光阑STO可设置在第二透镜L2与第三透镜L3之间,以增大出射光线,保证通光量。例如,光阑STO可设置在第二透镜L2与第三透镜L3之间的接近中间位置处。
可选地,该光学镜头还可包括具有第一侧面S14和第二侧面S15的滤光片L8,该滤光片L8可用于校正色彩偏差。可选地,该光学镜头还可包括具有第一侧面S16和第二侧面S17的保护玻璃L9,该保护玻璃L9可用于保护位于成像面和/或像源面处的图像传感芯片IMA。当该光学镜头用于摄像时,来自物体的光依序穿过各表面S1至S17并最终成像在成像面上;当该光学镜头用于投影时,来自像源面的光依序穿过各表面S17至S1并最终投射至目标物(未示出)。
表27示出了实施例14的光学镜头的各透镜的曲率半径R、厚度/距离d、折射率N以及阿贝数Vd。表28示出了可用于实施例14中各非球面镜面的圆锥系数和高次项系数,其中,各非球面面型可由上述实施例1中给出的公式(1)限定。
面号 曲率半径R(mm) 厚度/距离d(mm) 折射率N 阿贝数Vd
S1 -19.0793 1.7875 1.63 35.71
S2 111.5874 1.3000    
S3 33.4753 4.0013 1.68 31.09
S4 -89.1446 0.3124    
STO 无穷大 0.3030    
S6 13.3291 4.9855 1.44 95.10
S7 -13.3291 0.1000    
S8 11.7852 3.0546 1.59 61.25
S9 -69.9739 0.9000 1.69 31.16
S10 14.7909 4.0013 1.69 53.35
S11 10.9365 1.6202    
S12 -100.5267 2.5910 1.68 31.09
S13 17.7577 1.0000    
S14 无穷大 0.5500 1.52 64.21
S15 无穷大 1.5745    
S16 无穷大 0.5000 1.52 64.21
S17 无穷大 0.1250    
IMA 无穷大      
表27
面号 k A4 A6 A8 A10 A12 A14 A16
S3 -44.8893 -1.5794E-04 -2.3734E-06 1.4243E-07 -2.4197E-09 -2.1340E-10 -1.8971E-12 2.5803E-13
S4 85.0915 2.1366E-05 -6.0288E-06 1.0343E-07 -2.2060E-09 1.2274E-10 1.4285E-12 -8.9050E-14
S12 111.7484 -2.4503E-03 4.1702E-05 -6.5126E-06 3.0800E-07 9.6824E-09 -1.5437E-09 4.5133E-11
S13 7.6602 -1.4217E-03 -2.6528E-05 5.9593E-06 -5.0747E-07 2.5369E-08 -4.9914E-10 -2.2879E-12
表28
实施例15
以下参照图15描述了根据本申请实施例15的光学镜头。图15示出了根据本申请实施例15的光学镜头的结构示意图。
如图15所示,光学镜头沿着光轴由第一侧至第二侧依序包括第一透镜L1、第二透镜L2、第三透镜L3、第四透镜L4、第五透镜L5、第六透镜L6和第七透镜L7。
第一透镜L1为具有负光焦度的凹凹透镜,其第一侧面S1为凹面,第二侧面S2为凹面。第二透镜L2为具有正光焦度的凸凸透镜,其第一侧面S3为凸面,第二侧面S4为凸面。第三透镜L3为具有正光焦度的凸凸透镜,其第一侧面S6为凸面,第二侧面S7为凸面。第四透镜L4为具有正光焦度的凸凸透镜,其第一侧面S8为凸面,第二侧面S9为凸面。第五透镜L5为具有负光焦度的凹凹透镜,其第一侧面S9为凹面,第二侧面S10为凹面。第六透镜L6为具有负光焦度的凸凹透镜,其第一侧面S10为凸面,第二侧面S11为凹面。第七透镜L7为具有负光焦度的凹凹透镜,其第一侧面S12为凹面,第二侧面S13为凹面。
光学镜头还可包括光阑STO,光阑STO可设置在第二透镜L2与第三透镜L3之间,以增大出射光线,保证通光量。例如,光阑STO可设置在第二透镜L2与第三透镜L3之间的接近中间位置处。
可选地,该光学镜头还可包括具有第一侧面S14和第二侧面S15的滤光片L8,该滤光片L8可用于校正色彩偏差。可选地,该光学镜头还可包括具有第一侧面S16和第二侧面S17的保护玻璃L9,该保护玻璃L9可用于保护位于成像面和/或像源面处的图像传感芯片IMA。当该光学镜头用于摄像时,来自物体的光依序穿过各表面S1至S17并最终成像在成像面上; 当该光学镜头用于投影时,来自像源面的光依序穿过各表面S17至S1并最终投射至目标物(未示出)。
表29示出了实施例15的光学镜头的各透镜的曲率半径R、厚度/距离d、折射率N以及阿贝数Vd。表30示出了可用于实施例15中各非球面镜面的圆锥系数和高次项系数,其中,各非球面面型可由上述实施例1中给出的公式(1)限定。
面号 曲率半径R(mm) 厚度/距离d(mm) 折射率N 阿贝数Vd
S1 -19.0781 1.7881 1.63 35.71
S2 111.5874 1.3000    
S3 33.4707 4.0012 1.68 31.09
S4 -89.1451 0.3124    
STO 无穷大 0.3030    
S6 13.3291 4.9855 1.44 95.10
S7 -13.3291 0.1000    
S8 11.7851 3.0546 1.59 61.25
S9 -70.0000 0.9000 1.69 31.16
S10 14.8402 4.0013 1.69 53.35
S11 10.9367 1.6202    
S12 -100.5267 2.5911 1.68 31.09
S13 17.7586 1.0000    
S14 无穷大 0.5500 1.52 64.21
S15 无穷大 1.5745    
S16 无穷大 0.5000 1.52 64.21
S17 无穷大 0.1250    
IMA 无穷大      
表29
面号 k A4 A6 A8 A10 A12 A14 A16
S3 -44.8980 -1.5795E-04 -2.3734E-06 1.4245E-07 -2.4191E-09 -2.1338E-10 -1.8971E-12 2.5802E-13
S4 85.0699 2.1373E-05 -6.0288E-06 1.0342E-07 -2.2064E-09 1.2274E-10 1.4286E-12 -8.9015E-14
S12 111.7484 -2.4504E-03 4.1699E-05 -6.5126E-06 3.0800E-07 9.6824E-09 -1.5437E-09 4.5141E-11
S13 7.6593 -1.4217E-03 -2.6531E-05 5.9593E-06 -5.0747E-07 2.5369E-08 -4.9912E-10 -2.2876E-12
表30
实施例16
以下参照图16描述了根据本申请实施例16的光学镜头。图16示出了根据本申请实施例16的光学镜头的结构示意图。
如图16所示,光学镜头沿着光轴由第一侧至第二侧依序包括第一透镜L1、第二透镜L2、第三透镜L3、第四透镜L4、第五透镜L5、第六透镜L6和第七透镜L7。
第一透镜L1为具有负光焦度的凹凹透镜,其第一侧面S1为凹面,第二侧面S2为凹面。第二透镜L2为具有正光焦度的凸凹透镜,其第一侧面S3为凸面,第二侧面S4为凹面。第三透镜L3为具有正光焦度的凸凸透镜,其第一侧面S6为凸面,第二侧面S7为凸面。第四透镜L4为具有正光焦度的凸凹透镜,其第一侧面S8为凸面,第二侧面S9为凹面。第五透镜L5为具有负光焦度的凸凹透镜,其第一侧面S10为凸面,第二侧面S11为凹面。第六透镜L6为具有正光焦度的凸凹透镜,其第一侧面S12为凸面,第二侧面S13为凹面。第七透镜L7为具有负光焦度的凹凹透镜,其第一侧面S14为凹面,第二侧面S15为凹面。
光学镜头还可包括光阑STO,光阑STO可设置在第二透镜L2与第三透镜L3之间,以增大出射光线,保证通光量。例如,光阑STO可设置在第二透镜L2与第三透镜L3之间靠近第二透镜L2的第二侧面S4的位置处。
可选地,该光学镜头还可包括具有第一侧面S16和第二侧面S17的滤光片L8,该滤光片L8可用于校正色彩偏差。可选地,该光学镜头还可包括具有第一侧面S18和第二侧面S19的保护玻璃L9,该保护玻璃L9可用于保护位于成像面和/或像源面处的图像传感芯片IMA。当该光学镜头用于摄像时,来自物体的光依序穿过各表面S1至S19并最终成像在成像面上;当该光学镜头用于投影时,来自像源面的光依序穿过各表面S19至S1并最终投射至目标物(未示出)。
表31示出了实施例16的光学镜头的各透镜的曲率半径R、厚度/距离d、折射率N以及阿贝数Vd。表32示出了可用于实施例16中各非球面镜面的圆锥系数和高次项系数,其中,各非球面面型可由上述实施例1中给出的公式(1)限定。
面号 曲率半径R(mm) 厚度/距离d(mm) 折射率N 阿贝数Vd
S1 -19.6921 1.9977 1.63 35.70
S2 50.7814 1.3000    
S3 19.3855 3.6768 1.68 31.10
S4 58.8745 0.3124    
STO 无穷大 0.3301    
S6 14.2056 4.9617 1.44 95.10
S7 -14.2056 0.1000    
S8 10.3555 3.4962 1.59 61.20
S9 36.5383 0.0050 1.54 56.10
S10 36.5383 0.9000 1.69 31.20
S11 8.5607 0.0050 1.54 56.10
S12 8.5607 3.5422 1.69 53.30
S13 11.6616 1.9201    
S14 -115.0595 3.0458 1.68 31.10
S15 18.1402 1.0000    
S16 无穷大 0.5500 1.52 64.20
S17 无穷大 1.5534    
S18 无穷大 0.5000 1.52 64.20
S19 无穷大 0.125    
IMA 无穷大      
表31
面号 k A4 A6 A8 A10 A12 A14 A16
S3 -2.1907 -8.0339E-05 -4.2526E-06 1.1678E-09 1.8612E-09 -7.1812E-12 -2.7891E-12 6.1277E-14
S4 -112.5630 5.3348E-05 -4.3750E-06 5.9617E-08 -1.3891E-09 1.0210E-10 -2.5134E-12 2.5355E-14
S14 111.7484 -1.9511E-03 1.1417E-05 -2.7185E-06 1.4740E-07 9.2394E-10 -4.5250E-10 1.1557E-11
S15 3.8345 -1.1148E-03 -9.1450E-06 4.8271E-06 -4.7667E-07 2.3900E-08 -5.2999E-10 2.9502E-12
表32
实施例17
以下参照图17描述了根据本申请实施例17的光学镜头。图17示出了根据本申请实施例17的光学镜头的结构示意图。
如图17所示,光学镜头沿着光轴由第一侧至第二侧依序包括第一透镜L1、第二透镜L2、第三透镜L3、第四透镜L4、第五透镜L5、第六透镜L6和第七透镜L7。
第一透镜L1为具有负光焦度的凹凹透镜,其第一侧面S1为凹面,第二侧面S2为凹面。第二透镜L2为具有正光焦度的凸凹透镜,其第一侧面S3为凸面,第二侧面S4为凹面。第三透镜L3为具有正光焦度的凸凸透镜,其第一侧面S6为凸面,第二侧面S7为凸面。第四透镜L4为具有正光焦度的凸凸透镜,其第一侧面S8为凸面,第二侧面S9为凸面。第五透镜L5为具有负光焦度的凹凹透镜,其第一侧面S10为凹面,第二侧面S11为凹面。第六透镜L6为具有正光焦度的凸凹透镜,其第一侧面S12为凸面,第二侧面S13为凹面。第七透镜L7为具有负光焦度的凸凹透镜,其第一侧面S14为凸面,第二侧面S15为凹面。
光学镜头还可包括光阑STO,光阑STO可设置在第二透镜L2与第三透镜L3之间,以增大出射光线,保证通光量。例如,光阑STO可设置在第二透镜L2与第三透镜L3之间靠近第二透镜L2的第二侧面S4的位置处。
可选地,该光学镜头还可包括具有第一侧面S16和第二侧面S17的滤光片L8,该滤光片L8可用于校正色彩偏差。可选地,该光学镜头还可包括具有第一侧面S18和第二侧面S19的保护玻璃L9,该保护玻璃L9可用于保护位于成像面和/或像源面处的图像传感芯片IMA。当该光学镜头用于摄像时,来自物体的光依序穿过各表面S1至S19并最终成像在成像面上;当该光学镜头用于投影时,来自像源面的光依序穿过各表面S19至S1并最终投射至目标物(未示出)。
表33示出了实施例17的光学镜头的各透镜的曲率半径R、厚度/距离d、折射率N以及阿贝数Vd。表34示出了可用于实施例17中各非球面镜面的圆锥系数和高次项系数,其中,各非球面面型可由上述实施例1中给出的公式(1)限定。
面号 曲率半径R(mm) 厚度/距离d(mm) 折射率N 阿贝数Vd
S1 -17.5430 2.1900 1.63 35.71
S2 88.2265 1.3000    
S3 15.9139 3.6768 1.68 31.09
S4 83.5400 0.3124    
STO 无穷大 0.3501    
S6 15.3266 4.0659 1.44 95.10
S7 -15.3266 0.1000    
S8 10.9973 3.5900 1.59 61.25
S9 -80.4208 0.0050 1.54 56.11
S10 -80.4208 0.9000 1.69 31.16
S11 8.5607 0.0050 1.54 56.11
S12 8.5607 3.5122 1.69 53.35
S13 8.8341 1.1668    
S14 42.5869 3.5939 1.68 31.09
S15 18.7052 1.0000    
S16 无穷大 0.5500 1.52 64.21
S17 无穷大 1.6211    
S18 无穷大 0.5000 1.52 64.21
S19 无穷大 0.125    
IMA 无穷大      
表33
面号 k A4 A6 A8 A10 A12 A14 A16
S3 -1.1813 -5.0216E-05 -3.5999E-06 1.1111E-08 1.1125E-09 -1.7696E-11 -1.8265E-12 4.1969E-14
S4 -25.0730 5.9839E-05 -5.0378E-06 1.0997E-07 -1.0455E-09 3.3510E-11 -5.3830E-12 1.0101E-13
S14 111.7484 -1.7139E-03 -1.4895E-06 -4.7634E-06 1.9798E-07 4.7660E-09 -9.1351E-10 1.9392E-11
S15 8.8839 -8.0227E-04 -5.0540E-05 6.4224E-06 -5.2212E-07 2.2518E-08 -4.0837E-10 1.1992E-12
表34
实施例18
以下参照图18描述了根据本申请实施例18的光学镜头。图18示出了根据本申请实施例18的光学镜头的结构示意图。
如图18所示,光学镜头沿着光轴由第一侧至第二侧依序包括第一透镜L1、第二透镜L2、第三透镜L3、第四透镜L4、第五透镜L5、第六透镜L6和第七透镜L7。
第一透镜L1为具有负光焦度的凹凹透镜,其第一侧面S1为凹面,第二侧面S2为凹面。第二透镜L2为具有正光焦度的凸凸透镜,其第一侧面S3为凸面,第二侧面S4为凸面。第三透镜L3为具有正光焦度的凸凸透镜,其第一侧面S6为凸面,第二侧面S7为凸面。第四透镜L4为具有正光焦度的凸凹透镜,其第一侧面S8为凸面,第二侧面S9为凹面。第五透镜L5为具有负光焦度的凸凹透镜,其第一侧面S10为凸面,第二侧面S11为凹面。第六透镜L6为具有正光焦度的凸凹透镜,其第一侧面S12为凸面,第二侧面S13为凹面。第七透镜L7为具有负光焦度的凹凹透镜,其第一侧面S14为凹面,第二侧面S15为凹面。
光学镜头还可包括光阑STO,光阑STO可设置在第二透镜L2与第三透镜L3之间,以增大出射光线,保证通光量。例如,光阑STO可设置在第二透镜L2与第三透镜L3之间的接近中间位置处。
可选地,该光学镜头还可包括具有第一侧面S16和第二侧面S17的滤光片L8,该滤光片L8可用于校正色彩偏差。可选地,该光学镜头还可包括具有第一侧面S18和第二侧面S19的保护玻璃L9,该保护玻璃L9可用于保护位于成像面和/或像源面处的图像传感芯片IMA。当该光学镜头用于摄像时,来自物体的光依序穿过各表面S1至S19并最终成像在成像面上;当该光学镜头用于投影时,来自像源面的光依序穿过各表面S19至S1并最终投射至目标物(未示出)。
表35示出了实施例18的光学镜头的各透镜的曲率半径R、厚度/距离d、折射率N以及阿贝数Vd。表36示出了可用于实施例18中各非球面镜面的圆锥系数和高次项系数,其中,各非球面面型可由上述实施例1中给出的公式(1)限定。
面号 曲率半径R(mm) 厚度/距离d(mm) 折射率N 阿贝数Vd
S1 -20.9581 1.7881 1.63 35.71
S2 92.2112 1.3000    
S3 40.2022 4.3666 1.68 31.09
S4 -82.3384 0.3124    
STO 无穷大 0.3030    
S6 13.4062 5.0580 1.44 95.10
S7 -13.4062 0.1000    
S8 12.2341 2.5808 1.59 61.25
S9 72.4279 0.0050 1.54 56.11
S10 72.4279 0.9000 1.69 31.16
S11 9.7957 0.0050 1.54 56.11
S12 9.7957 4.0023 1.69 53.35
S13 10.8460 1.7836    
S14 -90.0012 2.9486 1.68 31.09
S15 18.3105 1.0000    
S16 无穷大 0.5500 1.52 64.21
S17 无穷大 1.5584    
S18 无穷大 0.5000 1.52 64.21
S19 无穷大 0.125    
IMA 无穷大      
表35
面号 k A4 A6 A8 A10 A12 A14 A16
S3 -5.7771 -1.2627E-04 -6.5743E-06 8.4729E-08 1.0802E-10 -5.2545E-11 7.7215E-13 1.7635E-14
S4 143.0531 -4.3451E-05 -2.8959E-06 1.5907E-07 -2.5967E-09 4.9007E-11 -1.1080E-12 9.3629E-15
S14 111.7484 -1.7822E-03 1.9339E-05 -6.3505E-06 3.1841E-07 1.1122E-08 -1.3752E-09 2.5376E-11
S15 8.9881 -1.2525E-03 -1.0655E-05 5.0871E-06 -5.3065E-07 2.4910E-08 -4.8680E-10 2.1057E-12
表36
实施例19
以下参照图19描述了根据本申请实施例19的光学镜头。图19示出了根据本申请实施例19的光学镜头的结构示意图。
如图19所示,光学镜头沿着光轴由第一侧至第二侧依序包括第一透镜L1、第二透镜L2、第三透镜L3、第四透镜L4、第五透镜L5、第六透镜L6和第七透镜L7。
第一透镜L1为具有负光焦度的凹凹透镜,其第一侧面S1为凹面,第二侧面S2为凹面。第二透镜L2为具有正光焦度的凸凸透镜,其第一侧面S3为凸面,第二侧面S4为凸面。第三透镜L3为具有正光焦度的凸凸透镜,其第一侧面S6为凸面,第二侧面S7为凸面。第四透镜L4为具有正光焦度的凸凸透镜,其第一侧面S8为凸面,第二侧面S9为凸面。第五透镜L5为具有负光焦度的凹凹透镜,其第一侧面S10为凹面,第二侧面S11为凹面。第六透镜L6为具有负光焦度的凸凹透镜,其第一侧面S12为凸面,第二侧面S13为凹面。第七透镜L7为具有负光焦度的凹凹透镜,其第一侧面S14为凹面,第二侧面S15为凹面。
光学镜头还可包括光阑STO,光阑STO可设置在第二透镜L2与第三透镜L3之间,以增大出射光线,保证通光量。例如,光阑STO可设置在第二透镜L2与第三透镜L3之间的接近中间位置处。
可选地,该光学镜头还可包括具有第一侧面S16和第二侧面S17的滤光片L8,该滤光片L8可用于校正色彩偏差。可选地,该光学镜头还可包括具有第一侧面S18和第二侧面S19的保护玻璃L9,该保护玻璃L9可用于保护位于成像面和/或像源面处的图像传感芯片IMA。当该光学镜头用于摄像时,来自物体的光依序穿过各表面S1至S19并最终成像在成像面上;当该光学镜头用于投影时,来自像源面的光依序穿过各表面S19至S1并最终投射至目标物(未示出)。
表37示出了实施例19的光学镜头的各透镜的曲率半径R、厚度/距离d、折射率N以及阿贝数Vd。表38示出了可用于实施例19中各非球面镜面的圆锥系数和高次项系数,其中,各非球面面型可由上述实施例1中给出的公式(1)限定。
面号 曲率半径R(mm) 厚度/距离d(mm) 折射率N 阿贝数Vd
S1 -19.0781 1.7881 1.63 35.71
S2 111.5874 1.3000    
S3 33.4707 4.0012 1.68 31.09
S4 -89.1451 0.3124    
STO 无穷大 0.3030    
S6 13.3291 4.9855 1.44 95.10
S7 -13.3291 0.1000    
S8 11.7851 3.0546 1.59 61.25
S9 -70.0000 0.0050 1.54 56.11
S10 -70.0000 0.9000 1.69 31.16
S11 14.8402 0.0050 1.54 56.11
S12 14.8402 4.0013 1.69 53.35
S13 10.9367 1.6202    
S14 -100.5267 2.5911 1.68 31.09
S15 17.7586 1.0000    
S16 无穷大 0.5500 1.52 64.21
S17 无穷大 1.5745    
S18 无穷大 0.5000 1.52 64.21
S19 无穷大 0.125    
IMA 无穷大      
表37
面号 k A4 A6 A8 A10 A12 A14 A16
S3 -44.8980 -1.5795E-04 -2.3734E-06 1.4245E-07 -2.4191E-09 -2.1338E-10 -1.8971E-12 2.5802E-13
S4 85.0699 2.1373E-05 -6.0288E-06 1.0342E-07 -2.2064E-09 1.2274E-10 1.4286E-12 -8.9015E-14
S14 111.7484 -2.4504E-03 4.1699E-05 -6.5126E-06 3.0800E-07 9.6824E-09 -1.5437E-09 4.5141E-11
S15 7.6593 -1.4217E-03 -2.6531E-05 5.9593E-06 -5.0747E-07 2.5369E-08 -4.9912E-10 -2.2876E-12
表38
综上,实施例1至实施例7分别满足以下表39所示的关系。在表39中,TTL、F、H、ENPD、F3、F4、F5、F45、R1、R2、R6、R7、d1、d4、d5、dn、dm、D41、SAG41、BFL的单位为毫米(mm),FOV的单位为度(°)。
条件式\实施例 实施例1 实施例2 实施例3 实施例4 实施例5 实施例6 实施例7
TTL 31.37 29.16 32.02 32.33 31.66 30.61 31.46
F 15.23 14.26 15.87 16.06 15.33 14.16 15.36
H 7.99 7.45 8.36 8.50 8.16 7.55 8.03
FOV 30 30 30 30 30 30 30
ENPD 9.17 8.49 9.45 9.56 9.12 8.43 8.77
F3 17.88 21.34 20.94 22.42 21.30 20.52 16.23
F4 14.03 16.62 15.83 14.57 15.58 10.98 17.31
F5 -9.57 -11.09 -10.62 -9.30 -10.40 -6.33 -9.79
F45 -83.38 -113.84 -80.12 -59.92 -79.32 -30.03 -36.93
dn 4.80 5.42 4.80 5.53 4.80 5.30 5.98
dm 3.50 3.50 3.50 3.50 3.50 3.50 3.44
D41 6.04 6.38 6.17 6.10 6.14 5.96 5.20
SAG41 2.33 2.76 2.48 2.13 2.51 2.07 1.27
BFL 3.47 2.81 4.12 4.43 3.76 2.32 3.62
TTL/F 2.06 2.15 2.02 2.01 2.07 2.16 2.05
TTL/H/FOV 0.131 0.137 0.128 0.127 0.129 0.135 0.131
VD3+VD4 123.8 155.5 154.6 156.4 156.4 142.2 147.1
(FOV×F)/H 57.15 57.44 56.95 56.67 56.32 56.26 57.35
BFL/TTL 0.11 0.09 0.13 0.14 0.12 0.08 0.11
|F4/F5| 1.47 1.50 1.49 1.57 1.50 1.74 1.77
|F3/F| 1.17 1.50 1.32 1.40 1.39 1.45 1.06
|F45/F| 5.48 7.98 5.05 3.73 5.18 2.12 2.40
|R1/F| 1.29 1.42 1.02 0.97 1.08 1.07 1.16
dn/dm 1.37 1.55 1.37 1.58 1.37 1.51 1.74
R1/(R2+d1) 0.55 0.45 0.52 0.55 0.53 0.32 0.54
(d4+d5)/TTL 0.15 0.18 0.15 0.17 0.15 0.17 0.19
F/ENPD 1.66 1.68 1.68 1.68 1.68 1.68 1.75
arctan(SAG41/D41) 21.12 23.40 21.91 19.28 22.24 19.16 13.71
|R6/R7| 0.82 1.00 1.00 1.00 1.00 0.95 1.86
|(H-F×θ)/(F×θ)| 0.0030 0.0020 0.0066 0.0115 0.0178 0.0190 0.0005
表39
实施例8至实施例19分别满足以下表40-1、表40-2和表40-3所示的关系。在表40-1、表40-2和表40-3中,TTL、F、F1、F2、F3、F4、F5、F6、F7、SAG61、SAG62、D61、D62、D、BFL、R6、R7、H、F456、EPD、d4、d5、d6、Ti10、d46、F45、T以及d7的单位均为毫米(mm),FOV的单位为度(°),θ1和θ2的单位为弧度。
条件式\实施例 实施例8 实施例9 实施例10 实施例11
TTL 28.700 29.303 28.594 28.554
F 14.460 14.517 14.277 14.331
FOV 31.000 31.000 31.000 31.000
F1 -22.209 -22.313 -23.965 -23.078
F2 37.651 40.579 28.232 28.026
F3 17.034 17.133 18.304 18.239
F4 22.105 23.301 16.499 16.615
F5 -15.463 -16.350 -11.025 -11.120
F6 32.567 31.586 66.203 63.387
F7 -21.874 -22.623 -56.050 -51.777
SAG61 1.248 1.259 1.190 1.217
SAG62 0.643 0.643 0.798 0.808
D61 8.903 8.938 8.709 8.797
D62 7.566 7.636 7.300 7.381
Vd3 95.100 95.100 95.100 95.100
Vd4 61.248 61.248 61.248 61.248
D 11.195 11.230 11.177 11.147
BFL 3.750 3.728 3.818 3.796
R6 14.141 14.206 15.350 15.327
R7 -14.141 -14.206 -15.350 -15.327
H 8.063 8.049 8.122 8.103
F456 65.442 59.239 -155.388 -182.582
EPD 8.790 8.825 8.679 8.712
d4 3.468 3.496 3.572 3.590
d5 0.900 0.900 0.900 0.900
d6 3.512 3.512 3.512 3.512
Ti10 12.010 12.209 11.926 12.069
d46 0.900 0.900 0.900 0.900
θ1 0.097 0.099 0.102 0.103
θ2 0.097 0.098 0.102 0.102
F45 -105.675 -114.562 -60.346 -61.545
d7 2.892 3.048 3.457 3.594
N4 1.589 1.589 1.589 1.589
N5 1.689 1.689 1.689 1.689
N6 1.694 1.694 1.694 1.694
T 7.881 7.908 7.984 8.002
TTL/F 1.985 2.019 2.003 1.993
(SAG61/D61)/(SAG62/D62) 1.649 1.674 1.250 1.264
Vd3+Vd4 156.348 156.348 156.348 156.348
D/H/θ 2.566 2.579 2.543 2.543
|F4/F5| 1.430 1.425 1.497 1.494
BFL/TTL 0.131 0.127 0.134 0.133
|R6/R7| -1.000 -1.000 -1.000 -1.000
(FOV×F)/H 55.594 55.912 54.492 54.825
|F456/F| 4.526 4.081 10.884 12.741
F/EPD 1.645 1.645 1.645 1.645
(d4+d5+d6)/TTL 0.275 0.270 0.279 0.280
Ti10/TTL 0.418 0.417 0.417 0.423
d46/TTL 0.031 0.031 0.031 0.032
θ2/θ1 1.0000 0.9899 1.0000 0.9903
|F45/F| 7.3081 7.8915 4.2268 4.2946
|F6/F| 2.2522 2.1757 4.6371 4.4232
d7/TTL 0.1008 0.1040 0.1209 0.1259
(N6-N4)/(N5-N4) 1.050 1.050 1.050 1.050
T-(d4+d5+d6) 0.000 0.000 0.000 0.000
表40-1
条件式\实施例 实施例12 实施例13 实施例14 实施例15
TTL 29.134 29.177 28.706 28.707
F 14.435 14.887 13.819 13.818
FOV 31.000 31.000 31.000 31.000
F1 -26.938 -26.982 -25.765 -25.764
F2 39.421 39.942 35.940 35.936
F3 16.218 16.243 16.141 16.141
F4 24.423 24.522 17.310 17.311
F5 -16.321 -16.445 -17.545 -17.594
F6 52.884 56.703 -105.067 -103.124
F7 -22.478 -21.928 -21.797 -21.798
SAG61 1.153 1.141 0.695 0.693
SAG62 0.670 0.677 0.625 0.625
D61 9.188 9.176 8.961 8.962
D62 7.559 7.546 7.286 7.286
Vd3 95.100 95.100 95.100 95.100
Vd4 61.248 61.248 61.248 61.248
D 11.261 11.232 12.349 12.350
BFL 3.774 3.733 3.750 3.750
R6 13.389 13.406 13.329 13.329
R7 -13.389 -13.406 -13.329 -13.329
H 8.085 8.048 8.060 8.060
F456 1117.170 -42666.000 2000.660 1997.930
EPD 8.775 9.050 8.401 8.400
d4 2.596 2.581 3.055 3.055
d5 0.900 0.900 0.900 0.900
d6 4.016 4.002 4.001 4.001
Ti10 12.519 12.468 11.962 11.962
d46 0.900 0.900 0.900 0.900
θ1 0.095 0.095 0.094 0.094
θ2 0.095 0.094 0.094 0.094
F45 -71.786 -72.818 129.895 127.616
d7 2.935 2.949 2.591 2.591
N4 1.589 1.589 1.589 1.589
N5 1.689 1.689 1.689 1.689
N6 1.694 1.694 1.694 1.694
T 7.512 7.483 7.956 7.956
TTL/F 2.018 1.960 2.077 2.077
(SAG61/D61)/(SAG62/D62) 1.415 1.385 0.905 0.902
Vd3+Vd4 156.348 156.348 156.348 156.348
D/H/θ 2.574 2.579 2.832 2.832
|F4/F5| 1.496 1.491 0.987 0.984
BFL/TTL 0.130 0.128 0.131 0.131
|R6/R7| -1.000 -1.000 -1.000 -1.000
(FOV×F)/H 55.348 57.342 53.151 53.148
|F456/F| 77.392 2866.067 144.774 144.585
F/EPD 1.645 1.645 1.645 1.645
(d4+d5+d6)/TTL 0.258 0.256 0.277 0.277
Ti10/TTL 0.430 0.427 0.417 0.417
d46/TTL 0.031 0.031 0.031 0.031
θ2/θ1 1.0000 0.9895 1.0000 1.0000
|F45/F| 4.9730 4.8915 9.3996 9.2352
|F6/F| 3.6635 3.8090 7.6029 7.4628
d7/TTL 0.1007 0.1011 0.0903 0.0903
(N6-N4)/(N5-N4) 1.050 1.050 1.050 1.050
T-(d4+d5+d6) 0.000 0.000 0.000 0.000
表40-2
条件式\实施例 实施例16 实施例17 实施例18 实施例19
TTL 29.321 28.564 29.187 28.717
F 14.464 14.317 14.871 13.803
FOV 35.600 35.600 35.600 35.600
F1 -22.313 -23.078 -26.982 -25.764
F2 40.577 28.026 39.942 35.936
F3 17.133 18.239 16.242 16.141
F4 23.301 16.615 24.522 17.311
F5 -16.350 -11.120 -16.445 -17.594
F6 31.500 63.387 56.703 -103.124
F7 -22.623 -51.777 -21.928 -21.798
SAG61 1.250 1.214 1.138 0.691
SAG62 0.638 0.807 0.676 0.623
D61 8.910 8.790 9.166 8.951
D62 7.606 7.376 7.538 7.278
Vd3 95.100 95.100 95.100 95.100
Vd4 61.200 61.248 61.248 61.248
D 11.198 11.139 11.222 12.355
BFL 3.728 3.796 3.7334 3.7495
R6 14.206 15.327 13.406 13.329
R7 -14.206 -15.327 -13.406 -13.329
H 9.378 9.402 9.352 9.378
F456 58.965 -183.291 -115201.000 1930.310
EPD 8.793 8.704 9.040 8.391
d4 3.496 3.590 2.581 3.055
d5 0.900 0.900 0.900 0.900
d6 3.542 3.512 4.002 4.001
Ti10 12.236 12.069 12.468 11.962
d46 0.910 0.910 0.910 0.910
θ1 0.124 0.129 0.117 0.113
θ2 0.099 0.102 0.094 0.094
F45 22.563 26.815 28.166 25.188
d7 3.046 3.594 2.949 2.591
N4 1.589 1.589 1.589 1.589
N5 1.690 1.689 1.689 1.689
N6 1.690 1.694 1.694 1.694
T 7.948 8.012 7.493 7.966
TTL/F 2.027 1.995 1.963 2.080
(SAG61/D61)/(SAG62/D62) 1.674 1.263 1.385 0.902
Vd3+Vd4 156.300 156.348 156.348 156.348
D/H/θ 1.922 1.907 1.931 2.120
|F4/F5| 1.425 1.494 1.491 0.984
BFL/TTL 0.127 0.133 0.128 0.131
|R6/R7| 1.000 1.000 1.000 1.000
(FOV×F)/H 54.907 54.211 56.607 52.398
|F456/F| 4.077 12.802 7746.949 139.847
F/EPD 1.645 1.645 1.645 1.645
(d4+d5+d6)/TTL 0.271 0.280 0.256 0.277
Ti10/TTL 0.417 0.423 0.427 0.417
d46/TTL 0.031 0.032 0.031 0.032
θ2/θ1 0.7952 0.7934 0.8038 0.8336
|F45/F| 1.5600 1.8729 1.8941 1.8248
|F6/F| 2.1779 4.4273 3.8131 7.4711
d7/TTL 0.1039 0.1258 0.1010 0.0902
(N6-N4)/(N5-N4) 1.000 1.046 1.046 1.046
T-(d4+d5+d6) 0.010 0.010 0.010 0.010
表40-3
本申请还提供了一种电子设备,该电子设备可包括根据本申请上述实施方式的光学镜头及用于将所述光学镜头形成的光学图像转换为电信号的成像元件。该电子设备可以是诸如探测距离相机的独立电子设备,也可以是集成在诸如探测距离设备上的成像模块。此外,电子设备还可以是诸如车载相机的独立成像设备,也可以是集成在诸如辅助驾驶系统上的成像模块。
以上描述仅为本申请的较佳实施例以及对所运用技术原理的说明。本领域技术人员应当理解,本申请中所涉及的发明范围,并不限于上述技术特征的特定组合而成的技术方案,同时也应涵盖在不脱离所述发明构思的情况下,由上述技术特征或其等同特征进行任意组合而形成的其它技术方案。例如上述特征与本申请中公开的(但不限于)具有类似功能的技术特征进行互相替换而形成的技术方案。

Claims (67)

  1. 光学镜头,其特征在于,沿着光轴由物侧至像侧依序包括:
    具有负光焦度的第一透镜,其物侧面为凹面,像侧面为凹面;
    具有正光焦度的第二透镜,其物侧面为凸面;
    具有正光焦度的第三透镜,其物侧面为凸面,像侧面为凸面;
    具有正光焦度的第四透镜,其物侧面为凸面;
    具有负光焦度的第五透镜,其像侧面为凹面;
    具有正光焦度的第六透镜,其物侧面为凸面;以及
    具有负光焦度的第七透镜。
  2. 根据权利要求1所述的光学镜头,其特征在于,所述第二透镜的像侧面为凹面。
  3. 根据权利要求1所述的光学镜头,其特征在于,所述第二透镜的像侧面为凸面。
  4. 根据权利要求1所述的光学镜头,其特征在于,所述第四透镜的像侧面为凹面。
  5. 根据权利要求1所述的光学镜头,其特征在于,所述第四透镜的像侧面为凸面。
  6. 根据权利要求1所述的光学镜头,其特征在于,所述第五透镜的物侧面为凸面。
  7. 根据权利要求1所述的光学镜头,其特征在于,所述第五透镜的物侧面为凹面。
  8. 根据权利要求1所述的光学镜头,其特征在于,所述第六透镜的像侧面为凹面。
  9. 根据权利要求1所述的光学镜头,其特征在于,所述第六透镜的像侧面为凸面。
  10. 根据权利要求1所述的光学镜头,其特征在于,所述第七透镜的物侧面为凹面,像侧面为凸面。
  11. 根据权利要求1所述的光学镜头,其特征在于,所述第七透镜的物侧面为凹面或凸面,像侧面为凹面。
  12. 根据权利要求1所述的光学镜头,其特征在于,所述第四透镜和所述第五透镜胶合形成胶合透镜。
  13. 根据权利要求1所述的光学镜头,其特征在于,所述第二透镜和所述第七透镜具有非球面镜面。
  14. 根据权利要求1所述的光学镜头,其特征在于,所述光学镜头还包括设置在所述第二透镜与所述第三透镜之间的光阑。
  15. 根据权利要求1所述的光学镜头,其特征在于,所述光学镜头还包括设置在所述第一透镜与所述第二透镜之间的光阑。
  16. 根据权利要求1-15中任一项所述的光学镜头,其特征在于,所述第一透镜的物侧面的中心至所述光学镜头的成像面在所述光轴上的距离TTL与所述光学镜头的总有效焦距F满足:TTL/F≤2.5。
  17. 根据权利要求1-15中任一项所述的光学镜头,其特征在于,所述第一透镜的物侧面的中心至所述光学镜头的成像面在所述光轴上的距离TTL、所述光学镜头的最大视场角FOV以及所述光学镜头的最大视场角对应的像高H满足:TTL/H/FOV≤0.7。
  18. 根据权利要求1-15中任一项所述的光学镜头,其特征在于,所述第三透镜的阿贝数VD3与所述第四透镜的阿贝数VD4满足:VD3+VD4≥110。
  19. 根据权利要求1-15中任一项所述的光学镜头,其特征在于,所述光学镜头的最大视场角FOV、所述光学镜头的总有效焦距F以及所述光学镜头的最大视场角对应的像高H满足:(FOV×F)/H≥50°。
  20. 根据权利要求1-15中任一项所述的光学镜头,其特征在于,所述第七透镜的像侧面的中心至所述光学镜头的成像面在所述光轴上的距离BFL与所述第一透镜的物侧面的中心至所述光学镜头的成像面在所述光轴上的距离TTL满足:BFL/TTL≥0.07。
  21. 根据权利要求1-15中任一项所述的光学镜头,其特征在于,所述第四透镜的有效焦距F4与所述第五透镜的有效焦距F5满足:1≤|F4/F5|≤2。
  22. 根据权利要求1-15中任一项所述的光学镜头,其特征在于,所述第三透镜的有效焦距F3与所述光学镜头的总有效焦距F满足:1≤|F3/F|≤2。
  23. 根据权利要求1-15中任一项所述的光学镜头,其特征在于,所述第四透镜和所述第五透镜胶合形成的胶合透镜的有效焦距F45与所述光学镜头的总有效焦距F满足:1≤|F45/F|≤10。
  24. 根据权利要求1-15中任一项所述的光学镜头,其特征在于,所述第四透镜和所述 第五透镜胶合形成胶合透镜,所述光学镜头满足:1≤dn/dm≤2,其中,
    dn是所述第二透镜、所述第三透镜和所述胶合透镜中具有最大中心厚度的透镜的中心厚度;以及
    dm是所述第二透镜、所述第三透镜和所述胶合透镜中具有最小中心厚度的透镜的中心厚度。
  25. 根据权利要求1-15中任一项所述的光学镜头,其特征在于,所述第三透镜的物侧面的曲率半径R6与所述第三透镜的像侧面的曲率半径R7满足:0.5≤|R6/R7|≤2。
  26. 根据权利要求1-15中任一项所述的光学镜头,其特征在于,所述第一透镜的物侧面的曲率半径R1、所述第一透镜的像侧面的曲率半径R2以及所述第一透镜在所述光轴上的中心厚度d1满足:0.1≤|R1/(R2+d1)|≤1。
  27. 根据权利要求1-15中任一项所述的光学镜头,其特征在于,所述光学镜头的总有效焦距F与所述光学镜头的入瞳直径ENPD满足:F/ENPD≤2。
  28. 根据权利要求1-15中任一项所述的光学镜头,其特征在于,所述光学镜头的最大视场角对应的所述第四透镜的物侧面的最大通光半口径D41与所述第四透镜的物侧面和所述光轴的交点至所述第四透镜的物侧面的最大通光口径在所述光轴上的距离SAG41满足:arctan(SAG41/D41)≤30。
  29. 根据权利要求1-15中任一项所述的光学镜头,其特征在于,所述光学镜头的总有效焦距F与所述第一透镜的物侧面的曲率半径R1满足:0.5≤R1/F≤2。
  30. 根据权利要求1-15中任一项所述的光学镜头,其特征在于,所述第四透镜在所述光轴上的中心厚度d4、所述第五透镜在所述光轴上的中心厚度d5以及所述第一透镜的物侧面的中心至所述光学镜头的成像面在所述光轴上的距离TTL满足:(d4+d5)/TTL≤0.3。
  31. 根据权利要求1-15中任一项所述的光学镜头,其特征在于,以弧度为单位的所述光学镜头的最大视场角θ、所述光学镜头的总有效焦距F以及所述光学镜头的最大视场角对应的像高H满足:|(H-F×θ)/(F×θ)|≤0.2。
  32. 光学镜头,其特征在于,沿着光轴由物侧至像侧依序包括:
    具有负光焦度的第一透镜;
    具有正光焦度的第二透镜;
    具有正光焦度的第三透镜;
    具有正光焦度的第四透镜;
    具有负光焦度的第五透镜;
    具有正光焦度的第六透镜;以及
    具有负光焦度的第七透镜;
    所述第七透镜的像侧面的中心至所述光学镜头的成像面在所述光轴上的距离BFL与所述第一透镜的物侧面的中心至所述光学镜头的成像面在所述光轴上的距离TTL满足:
    BFL/TTL≥0.07。
  33. 光学镜头,其特征在于,所述光学镜头沿光轴由第一侧至第二侧依序包括:
    具有负光焦度的第一透镜,其第一侧面为凹面,第二侧面为凹面;
    具有正光焦度的第二透镜,其第一侧面为凸面;
    具有正光焦度的第三透镜,其第一侧面为凸面,第二侧面为凸面;
    具有正光焦度的第四透镜,其第一侧面为凸面;
    具有负光焦度的第五透镜,其第二侧面为凹面;
    具有光焦度的第六透镜,其第一侧面为凸面,第二侧面为凹面;以及
    具有负光焦度的第七透镜,其第二侧面为凹面。
  34. 根据权利要求33所述的光学镜头,其特征在于,所述第二透镜的第二侧面为凹面。
  35. 根据权利要求33所述的光学镜头,其特征在于,所述第二透镜的第二侧面为凸面。
  36. 根据权利要求33所述的光学镜头,其特征在于,所述第四透镜的第二侧面为凹面。
  37. 根据权利要求33所述的光学镜头,其特征在于,所述第四透镜的第二侧面为凸面。
  38. 根据权利要求33所述的光学镜头,其特征在于,所述第五透镜的第一侧面为凸面。
  39. 根据权利要求33所述的光学镜头,其特征在于,所述第五透镜的第一侧面为凹面。
  40. 根据权利要求33所述的光学镜头,其特征在于,所述第七透镜的第一侧面为凹面。
  41. 根据权利要求33所述的光学镜头,其特征在于,所述第七透镜的第一侧面为凸面。
  42. 根据权利要求33所述的光学镜头,其特征在于,所述第二透镜具有非球面镜面。
  43. 根据权利要求33所述的光学镜头,其特征在于,所述第七透镜具有非球面镜面。
  44. 根据权利要求33所述的光学镜头,其特征在于,所述第四透镜、所述第五透镜以 及所述第六透镜胶合形成胶合透镜。
  45. 根据权利要求33所述的光学镜头,其特征在于,所述光学镜头还包括设置于所述第二透镜和所述第三透镜之间的光阑。
  46. 根据权利要求33所述的光学镜头,其特征在于,所述第七透镜的第二侧面上具有至少一个反曲点。
  47. 根据权利要求33-46中任一项所述的光学镜头,其特征在于,所述第一透镜的第一侧面的中心至所述光学镜头的成像面在所述光轴上的距离TTL与所述光学镜头的总有效焦距F满足:TTL/F≤2.5。
  48. 根据权利要求33-46中任一项所述的光学镜头,其特征在于,所述第三透镜的阿贝数Vd3与所述第四透镜的阿贝数Vd4满足:Vd3+Vd4≥100。
  49. 根据权利要求33-46中任一项所述的光学镜头,其特征在于,所述第六透镜的第一侧面的最大通光口径处的矢高SAG61、所述第六透镜的第一侧面的最大通光全口径D61、所述第六透镜的第二侧面的最大通光口径处的矢高SAG62以及所述第六透镜的第二侧面的最大通光全口径D62满足:0.2≤(SAG61/D61)/(SAG62/D62)≤2.5。
  50. 根据权利要求33-46中任一项所述的光学镜头,其特征在于,所述第四透镜的有效焦距F4与所述第五透镜的有效焦距F5满足:|F4/F5|≤2.5。
  51. 根据权利要求33-46中任一项所述的光学镜头,其特征在于,所述第四透镜在所述光轴上的中心厚度d4、所述第五透镜在所述光轴上的中心厚度d5、所述第六透镜在所述光轴上的中心厚度d6以及所述第一透镜的第一侧面的中心至所述光学镜头的成像面在所述光轴上的距离TTL满足:0.1≤(d4+d5+d6)/TTL≤0.8。
  52. 根据权利要求33-46中任一项所述的光学镜头,其特征在于,所述第七透镜的第二侧面的中心至所述光学镜头的成像面在所述光轴上的距离BFL与所述第一透镜的第一侧面的中心至所述光学镜头的成像面在所述光轴上的距离TTL满足:BFL/TTL≥0.05。
  53. 根据权利要求33-46中任一项所述的光学镜头,其特征在于,所述第三透镜的第一侧面的曲率半径R6与所述第三透镜的第二侧面的曲率半径R7满足:|R6/R7|≤1.3。
  54. 根据权利要求33-46中任一项所述的光学镜头,其特征在于,所述光学镜头的最大视场角FOV、所述光学镜头的总有效焦距F以及所述光学镜头的最大视场角对应的像高H满足:(FOV×F)/H≥45。
  55. 根据权利要求33-46中任一项所述的光学镜头,其特征在于,所述光学镜头的总有效焦距F与所述光学镜头的入瞳直径EPD满足:1≤F/EPD≤2。
  56. 根据权利要求33-46中任一项所述的光学镜头,其特征在于,所述光学镜头的最大视场角对应的所述第一透镜的第一侧面的最大通光口径D、所述光学镜头的最大视场角对应的像高H以及所述光学镜头的最大视场角对应的弧度值θ满足:D/H/θ≤5。
  57. 根据权利要求33-46中任一项所述的光学镜头,其特征在于,所述第四透镜和所述第五透镜的组合焦距F45与所述光学镜头的总有效焦距F满足:|F45/F|≤12。
  58. 根据权利要求33-46中任一项所述的光学镜头,其特征在于,所述第四透镜、所述第五透镜和所述第六透镜的组合焦距F456与所述光学镜头的总有效焦距F满足:|F456/F|≥2。
  59. 根据权利要求33-46中任一项所述的光学镜头,其特征在于,所述第六透镜的第一侧面的中心至所述光学镜头的成像面在所述光轴上的距离Ti10与所述第一透镜的第一侧面的中心至所述光学镜头的成像面在所述光轴上的距离TTL满足:0.2≤Ti10/TTL≤0.6。
  60. 根据权利要求33-46中任一项所述的光学镜头,其特征在于,所述第七透镜在所述光轴上的中心厚度d7与所述第一透镜的第一侧面的中心至所述光学镜头的成像面在所述光轴上的距离TTL满足:0.05≤d7/TTL≤0.2。
  61. 根据权利要求33-46中任一项所述的光学镜头,其特征在于,所述第四透镜的第二侧面的中心至所述第六透镜的第一侧面的中心在所述光轴上的间隔距离d46与所述第一透镜的第一侧面的中心至所述光学镜头的成像面在所述光轴上的距离TTL满足:d46/TTL≤0.05。
  62. 根据权利要求33-46中任一项所述的光学镜头,其特征在于,所述光学镜头边缘视场中心主光线到达所述第六透镜前的入射光线与所述光轴夹角的弧度值θ1与所述光学镜头边缘视场中心主光线到达所述第六透镜后的出射光线与所述光轴夹角的弧度值θ2满足:
    θ2/θ1≤2。
  63. 根据权利要求33-46中任一项所述的光学镜头,其特征在于,所述第六透镜的有效焦距F6与所述光学镜头的总有效焦距F满足:2.1≤|F6/F|≤10。
  64. 根据权利要求33-46中任一项所述的光学镜头,其特征在于,所述第四透镜的折射率N4、所述第五透镜的折射率N5与所述第六透镜的折射率N6满足:1≤(N6-N4)/(N5-N4)≤2。
  65. 根据权利要求33-46中任一项所述的光学镜头,其特征在于,所述第四透镜在所述光轴上的中心厚度d4、所述第五透镜在所述光轴上的中心厚度d5、所述第六透镜在所述光轴上的中心厚度d6与所述第四透镜的第一侧面的中心到所述第六透镜的第二侧面的中心在所述光轴上的距离T满足:T≤0.03+d4+d5+d6。
  66. 光学镜头,其特征在于,所述光学镜头沿光轴由第一侧至第二侧依序包括:
    具有负光焦度的第一透镜;
    具有正光焦度的第二透镜;
    具有正光焦度的第三透镜;
    具有正光焦度的第四透镜;
    具有负光焦度的第五透镜;
    具有光焦度的第六透镜;以及
    具有负光焦度的第七透镜,
    其中,所述第四透镜、所述第五透镜以及所述第六透镜胶合形成胶合透镜。
  67. 一种电子设备,其特征在于,包括根据权利要求1-66中任一项所述的光学镜头及用于将所述光学镜头形成的光学图像转换为电信号的成像元件。
PCT/CN2021/135070 2020-12-25 2021-12-02 光学镜头及电子设备 WO2022135103A1 (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
US18/326,553 US20230367104A1 (en) 2020-12-25 2023-05-31 Optical lens assembly and electronic device

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
CN202011560293.0 2020-12-25
CN202011560293.0A CN114690368A (zh) 2020-12-25 2020-12-25 光学镜头及电子设备
CN202110744979.3A CN115561875A (zh) 2021-07-01 2021-07-01 光学镜头及电子设备
CN202110744979.3 2021-07-01

Related Child Applications (1)

Application Number Title Priority Date Filing Date
US18/326,553 Continuation-In-Part US20230367104A1 (en) 2020-12-25 2023-05-31 Optical lens assembly and electronic device

Publications (1)

Publication Number Publication Date
WO2022135103A1 true WO2022135103A1 (zh) 2022-06-30

Family

ID=82157375

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2021/135070 WO2022135103A1 (zh) 2020-12-25 2021-12-02 光学镜头及电子设备

Country Status (2)

Country Link
US (1) US20230367104A1 (zh)
WO (1) WO2022135103A1 (zh)

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2017228832A (ja) * 2016-06-20 2017-12-28 パナソニックIpマネジメント株式会社 撮像装置
TWI646368B (zh) * 2018-03-21 2019-01-01 先進光電科技股份有限公司 光學成像系統(四)
CN110515175A (zh) * 2018-05-21 2019-11-29 大立光电股份有限公司 摄像光学镜头、取像装置及电子装置
CN110824676A (zh) * 2019-12-24 2020-02-21 浙江舜宇光学有限公司 光学成像镜头
CN111308671A (zh) * 2020-04-09 2020-06-19 浙江舜宇光学有限公司 光学成像镜头
CN211857034U (zh) * 2019-12-24 2020-11-03 浙江舜宇光学有限公司 光学成像镜头

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2017228832A (ja) * 2016-06-20 2017-12-28 パナソニックIpマネジメント株式会社 撮像装置
TWI646368B (zh) * 2018-03-21 2019-01-01 先進光電科技股份有限公司 光學成像系統(四)
CN110515175A (zh) * 2018-05-21 2019-11-29 大立光电股份有限公司 摄像光学镜头、取像装置及电子装置
CN110824676A (zh) * 2019-12-24 2020-02-21 浙江舜宇光学有限公司 光学成像镜头
CN211857034U (zh) * 2019-12-24 2020-11-03 浙江舜宇光学有限公司 光学成像镜头
CN111308671A (zh) * 2020-04-09 2020-06-19 浙江舜宇光学有限公司 光学成像镜头

Also Published As

Publication number Publication date
US20230367104A1 (en) 2023-11-16

Similar Documents

Publication Publication Date Title
WO2021082727A1 (zh) 光学成像镜头
WO2020119145A1 (zh) 摄像镜头
WO2021129577A1 (zh) 光学成像镜头及成像设备
WO2020107759A1 (zh) 光学镜头及成像设备
WO2022028625A1 (zh) 光学镜头及电子设备
CN113495342B (zh) 光学镜头及电子设备
WO2020248877A1 (zh) 光学镜头及成像设备
WO2019205874A1 (zh) 光学镜头
CN115128770B (zh) 光学镜头
WO2022100731A1 (zh) 光学镜头及电子设备
CN112859289B (zh) 光学镜头及电子设备
CN115128769A (zh) 光学镜头
WO2021109677A1 (zh) 光学镜头及电子设备
CN113009674B (zh) 光学镜头及电子设备
WO2024046456A1 (zh) 光学镜头
CN114089500A (zh) 光学镜头及电子设备
WO2022089603A1 (zh) 光学镜头及电子设备
CN116609922A (zh) 一种光学镜头
WO2022135103A1 (zh) 光学镜头及电子设备
CN112987231B (zh) 光学镜头及电子设备
WO2020200309A1 (zh) 光学镜头及成像设备
WO2021052092A1 (zh) 光学成像镜头
CN112748512B (zh) 光学镜头及电子设备
CN116224535A (zh) 光学镜头及电子设备
CN114690368A (zh) 光学镜头及电子设备

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 21909100

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 21909100

Country of ref document: EP

Kind code of ref document: A1