WO2022100731A1 - 光学镜头及电子设备 - Google Patents

光学镜头及电子设备 Download PDF

Info

Publication number
WO2022100731A1
WO2022100731A1 PCT/CN2021/130629 CN2021130629W WO2022100731A1 WO 2022100731 A1 WO2022100731 A1 WO 2022100731A1 CN 2021130629 W CN2021130629 W CN 2021130629W WO 2022100731 A1 WO2022100731 A1 WO 2022100731A1
Authority
WO
WIPO (PCT)
Prior art keywords
lens
optical
optical lens
object side
convex
Prior art date
Application number
PCT/CN2021/130629
Other languages
English (en)
French (fr)
Inventor
赵哲
宋越
王东方
姚波
Original Assignee
宁波舜宇车载光学技术有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority claimed from CN202011268322.6A external-priority patent/CN112305715B/zh
Priority claimed from CN202110270238.6A external-priority patent/CN113009674B/zh
Application filed by 宁波舜宇车载光学技术有限公司 filed Critical 宁波舜宇车载光学技术有限公司
Publication of WO2022100731A1 publication Critical patent/WO2022100731A1/zh
Priority to US18/196,822 priority Critical patent/US20230333349A1/en

Links

Images

Classifications

    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B13/00Optical objectives specially designed for the purposes specified below
    • G02B13/001Miniaturised objectives for electronic devices, e.g. portable telephones, webcams, PDAs, small digital cameras
    • G02B13/0015Miniaturised objectives for electronic devices, e.g. portable telephones, webcams, PDAs, small digital cameras characterised by the lens design
    • G02B13/002Miniaturised objectives for electronic devices, e.g. portable telephones, webcams, PDAs, small digital cameras characterised by the lens design having at least one aspherical surface
    • G02B13/0045Miniaturised objectives for electronic devices, e.g. portable telephones, webcams, PDAs, small digital cameras characterised by the lens design having at least one aspherical surface having five or more lenses
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B13/00Optical objectives specially designed for the purposes specified below
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B13/00Optical objectives specially designed for the purposes specified below
    • G02B13/06Panoramic objectives; So-called "sky lenses" including panoramic objectives having reflecting surfaces
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B13/00Optical objectives specially designed for the purposes specified below
    • G02B13/18Optical objectives specially designed for the purposes specified below with lenses having one or more non-spherical faces, e.g. for reducing geometrical aberration
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B9/00Optical objectives characterised both by the number of the components and their arrangements according to their sign, i.e. + or -
    • G02B9/62Optical objectives characterised both by the number of the components and their arrangements according to their sign, i.e. + or - having six components only

Definitions

  • the present application relates to the field of optical elements, and more particularly, to an optical lens and electronic equipment.
  • vehicle camera As a key component of autonomous driving assistance system, plays a vital role in the safe driving of autonomous vehicles. Users have higher and higher requirements for the size, resolution capability and image quality of vehicle-mounted lenses.
  • in-vehicle lenses in autonomous driving assistance systems have special requirements compared with ordinary optical lenses.
  • vehicle-mounted optical lenses require the front-end aperture to be as small as possible, the ability to transmit light is strong, and it can adapt to changes in the light and shade of the external environment.
  • optical lenses have been widely used in various fields.
  • optical lenses play an irreplaceable role in various fields such as intelligent detection, security monitoring, smart phones, and car assisted driving.
  • lens manufacturers in various fields have begun to spare no effort to invest a lot of time and energy in the research and development of lens performance.
  • the vehicle lens as a key component for the automatic driving assistance system to obtain external information, has also greatly improved its imaging quality, and the market has more and more requirements for vehicle lenses.
  • the vehicle lens in the automatic driving assistance system needs to have more special and strict requirements than ordinary optical lenses.
  • the in-vehicle camera in the automatic driving assistance system needs to be able to be used normally in dark environments such as night or cloudy and rainy days; at the same time, it also needs to be able to accurately judge the current road conditions.
  • the application environment of the car lens such as high temperature in summer and low temperature in winter
  • the lens applied under such conditions will produce image plane shift, making the lens imaging. Blurred, affecting normal use.
  • most car lenses on the market cannot guarantee clear images in high and low temperature environments.
  • the present application provides an optical lens.
  • the optical lens sequentially includes from the object side to the image side along the optical axis: a first lens with negative refractive power whose image side is concave; a second lens with refractive power whose object side is concave and whose image side is concave; is convex; the third lens with positive power has a convex object side and the image side is convex; the fourth lens with power has a convex object side; the fifth lens with power has an image side is convex; and a sixth lens having optical power.
  • the object side of the first lens is convex.
  • the object side of the first lens is concave.
  • the second lens has a negative optical power.
  • the second lens has positive power.
  • the fourth lens has a positive refractive power, and its image side is convex.
  • the fourth lens has a negative power and its image side is concave.
  • the fifth lens has a negative refractive power, and its object side is concave.
  • the fifth lens has a positive refractive power, and its object side surface is convex.
  • the sixth lens has positive refractive power, the object side surface is convex, and the image side surface is concave.
  • the sixth lens has positive refractive power, the object side is concave, and the image side is convex.
  • the sixth lens has positive refractive power, the object side surface is convex, and the image side surface is convex.
  • the sixth lens has negative refractive power, the object side is convex, and the image side is concave.
  • the sixth lens has negative refractive power, the object side is concave, and the image side is convex.
  • the sixth lens has negative refractive power, the object side is concave, and the image side is concave.
  • the fourth lens and the fifth lens are cemented to form a cemented lens.
  • the sixth lens may have an aspherical mirror surface.
  • the distance TTL from the center of the object side surface of the first lens to the imaging surface of the optical lens on the optical axis and the total effective focal length F of the optical lens may satisfy: TTL/F ⁇ 7.
  • the maximum angle of view FOV of the optical lens, the distance TTL from the center of the object side surface of the first lens to the imaging surface of the optical lens on the optical axis, and the image height H corresponding to the maximum angle of view of the optical lens can be determined. Satisfaction: TTL/H/FOV ⁇ 0.05.
  • the maximum field of view FOV of the optical lens, the maximum clear aperture D of the object side of the first lens corresponding to the maximum field of view of the optical lens, and the image height H corresponding to the maximum field of view of the optical lens can be Satisfaction: D/H/FOV ⁇ 0.03.
  • the effective focal length F45 of the cemented lens formed by cementing the fourth lens and the fifth lens and the total effective focal length F of the optical lens may satisfy: 1 ⁇ F45/F ⁇ 8.
  • the lens edge slope K2 of the image side surface of the first lens corresponding to the maximum field angle of the optical lens may satisfy: arctan(1/K2) ⁇ 35.
  • the maximum field angle FOV of the optical lens, the total effective focal length F of the optical lens, and the image height H corresponding to the maximum field angle of the optical lens may satisfy: (FOV ⁇ F)/H ⁇ 70.
  • the distance d8i from the center of the object side of the fourth lens to the imaging plane of the optical lens on the optical axis and the distance TTL from the center of the object side of the first lens to the imaging plane of the optical lens on the optical axis can be Satisfaction: d8i/TTL ⁇ 0.3.
  • the radius of curvature R3 of the object side of the second lens, the radius of curvature R4 of the image side of the second lens, and the central thickness T2 of the second lens may satisfy: 0.2 ⁇
  • the center thickness Tn1 of the n1th lens with the largest center thickness among the second to fourth lenses and the center thickness Tm1 of the m1th lens with the smallest center thickness among the second to fourth lenses may satisfy: Tn1/Tm1 ⁇ 2, wherein n1 and m1 are selected from 2, 3, and 4.
  • the center thickness Tn2 of the n2-th lens with the largest center thickness among the second, third, and fifth lenses and the m2-th lens with the smallest center thickness among the second, third, and fifth lenses may satisfy: Tn2/Tm2 ⁇ 2, wherein n2 and m2 are selected from 2, 3, and 5.
  • the refractive index Nd1 of the first lens and the refractive index Nd2 of the second lens may satisfy: 0.5 ⁇ Nd1/Nd2 ⁇ 1.5.
  • the effective focal length F3 of the third lens and the effective focal length F5 of the fifth lens may satisfy: 1.2 ⁇
  • the effective focal length F3 of the third lens and the effective focal length F4 of the fourth lens may satisfy: 1 ⁇
  • the effective focal length F3 of the third lens, the effective focal length F4 of the fourth lens, the temperature coefficient of refraction dn/dt(3) of the third lens, and the temperature coefficient of refraction dn/dt(4) of the fourth lens ) can satisfy: -2 ⁇ 10 6 ⁇ (F3+F4)/(dn/dt(3)+dn/dt(4)) ⁇ -4 ⁇ 10 5 .
  • the effective focal length F3 of the third lens, the effective focal length F5 of the fifth lens, the temperature coefficient of refraction dn/dt(3) of the third lens, and the temperature coefficient of refraction dn/dt(5) of the fifth lens ) can satisfy: -2 ⁇ 10 6 ⁇ (F3+F5)/(dn/dt(3)+dn/dt(5)) ⁇ -4 ⁇ 10 5 .
  • the radian ⁇ of the maximum angle of view of the optical lens, the total effective focal length F of the optical lens, and the image height H corresponding to the maximum angle of view of the optical lens can satisfy: (H-F ⁇ )/(F ⁇ ) ⁇ -0.1.
  • the lens edge slope K11 of the object side surface of the sixth lens corresponding to the maximum field angle of the optical lens may satisfy: arctan(1/K11) ⁇ -4.
  • the aperture value FNO of the optical lens and the total effective focal length F of the optical lens may satisfy: FNO/F ⁇ 0.1.
  • the effective focal length F4 of the fourth lens and the effective focal length F5 of the fifth lens may satisfy: 0.2 ⁇
  • the effective focal length F3 of the third lens and the total effective focal length F of the optical lens may satisfy: 1 ⁇
  • the distance BFL from the center of the image side surface of the sixth lens to the imaging surface of the optical lens on the optical axis and the distance TTL from the center of the object side surface of the first lens to the imaging surface of the optical lens on the optical axis can be Satisfaction: BFL/TTL ⁇ 0.05.
  • the distance d23 between the center of the image side of the second lens and the center of the object side of the third lens on the optical axis is on the optical axis and the center of the object side of the first lens to the imaging surface of the optical lens is on the optical axis
  • the distance TTL can satisfy: 0.04 ⁇ d23/TTL ⁇ 0.2.
  • the effective focal length F6 of the sixth lens and the total effective focal length F of the optical lens may satisfy:
  • the effective focal length F1 of the first lens and the total effective focal length F of the optical lens may satisfy: -2.0 ⁇ F1/F ⁇ -1.0.
  • the curvature radius R10 of the image side surface of the fifth lens and the total effective focal length F of the optical lens may satisfy: -6.0 ⁇ R10/F ⁇ -1.0.
  • the distance TTL between the center thickness T2 of the second lens and the center of the object side surface of the first lens to the imaging surface of the optical lens on the optical axis can satisfy: T2/TTL ⁇ 0.15.
  • the optical lens includes sequentially from the object side to the image side along the optical axis: a first lens, a second lens, a third lens, a fourth lens, a fifth lens and a sixth lens; the first lens has negative refractive power; The third lens has positive refractive power; and the distance d8i from the center of the object side surface of the fourth lens to the imaging surface of the optical lens on the optical axis and the center of the object side surface of the first lens to the imaging surface of the optical lens on the optical axis Distance to TTL can satisfy: d8i/TTL ⁇ 0.3.
  • an optical lens which includes sequentially from an object side to an image side along an optical axis: a first lens with negative refractive power, the object side surface is convex, and the image side surface is concave;
  • the second lens with optical power has a concave object side and a convex image side;
  • the third lens with positive power has a convex object side and a convex image side;
  • the fourth lens with positive power has an object side
  • the side surface is convex, the image side is convex;
  • the fifth lens with negative refractive power is concave on the object side;
  • the sixth lens with positive refractive power is convex on the object side.
  • the image side surface of the fifth lens is convex.
  • the image side surface of the fifth lens is concave.
  • the image side surface of the sixth lens is concave.
  • the image side surface of the sixth lens is convex.
  • the fourth lens and the fifth lens are cemented to form a cemented lens.
  • the first lens and the sixth lens have aspherical mirror surfaces.
  • the distance TTL from the center of the object side surface of the first lens to the imaging surface of the optical lens on the optical axis and the total effective focal length F of the optical lens may satisfy: 4.5 ⁇ TTL/F ⁇ 7.
  • the distance TTL from the center of the object side surface of the first lens to the imaging surface of the optical lens on the optical axis, the maximum angle of view FOV of the optical lens, and the image height H corresponding to the maximum angle of view of the optical lens can be determined. Satisfaction: TTL/H/FOV ⁇ 0.05.
  • the maximum field of view FOV of the optical lens, the maximum clear aperture D of the object side of the first lens corresponding to the maximum field of view of the optical lens, and the image height H corresponding to the maximum field of view of the optical lens can be Satisfaction: D/H/FOV ⁇ 0.03.
  • the maximum angle of view FOV of the optical lens, the total effective focal length F of the optical lens, and the image height H corresponding to the maximum angle of view of the optical lens may satisfy: (FOV ⁇ F)/H ⁇ 65.
  • the effective focal length F1 of the first lens and the total effective focal length F of the optical lens may satisfy: -2.5 ⁇ F1/F ⁇ -1.
  • the lens edge slope K2 of the image side surface of the first lens corresponding to the maximum field angle of the optical lens may satisfy: arctan(1/K2) ⁇ 35.
  • the curvature radius R3 of the object side surface of the second lens and the curvature radius R4 of the image side surface of the second lens may satisfy: 0.6 ⁇ R3/R4 ⁇ 1.2.
  • the radius of curvature R3 of the object side of the second lens, the radius of curvature R4 of the image side of the second lens, and the center thickness d2 of the second lens on the optical axis may satisfy: 1 ⁇ R3/(R4+d2 ) ⁇ 2.
  • the center thickness d2 of the second lens on the optical axis and the distance TTL from the center of the object side surface of the first lens to the imaging surface of the optical lens on the optical axis may satisfy: 0.15 ⁇ d2/TTL ⁇ 0.3.
  • the effective focal length F3 of the third lens and the total effective focal length F of the optical lens may satisfy: 1.5 ⁇ F3/F ⁇ 3.5.
  • the curvature radius R7 of the image side surface of the third lens and the total effective focal length F of the optical lens may satisfy: R7/F ⁇ -2.
  • the effective focal length F3 of the third lens and the effective focal length F4 of the fourth lens may satisfy: 1 ⁇ F3/F4 ⁇ 2.5.
  • the effective focal length F45 of the cemented lens formed by cementing the fourth lens and the fifth lens and the total effective focal length F of the optical lens may satisfy: 2.5 ⁇ F45/F ⁇ 13.
  • the Abbe number Vd4 of the fourth lens and the Abbe number Vd5 of the fifth lens may satisfy: 2.6 ⁇ Vd4/Vd5 ⁇ 5.3.
  • the distance T 8-i from the center of the object side surface of the fourth lens to the imaging surface of the optical lens on the optical axis and the distance T 8-i from the center of the object side surface of the first lens to the imaging surface of the optical lens on the optical axis Distance to TTL can satisfy: 0.35 ⁇ T 8-i /TTL ⁇ 0.52.
  • the distance T8-11 from the center of the object side of the fourth lens to the center of the image side of the sixth lens on the optical axis and the radius of curvature R8 of the object side of the fourth lens may satisfy: 1 ⁇ ( T 8-11 )/R8 ⁇ 2.
  • the optical lens further includes an auxiliary lens located between the sixth lens and the imaging surface, and the distance T 3-13 on the optical axis from the center of the object side surface of the second lens to the center of the image side surface of the auxiliary lens is the same as
  • the distance TTL from the center of the object side surface of the first lens to the imaging surface of the optical lens on the optical axis may satisfy: 0.7 ⁇ (T 3-13 )/TTL ⁇ 0.9.
  • the lens edge slope K12 of the image side of the sixth lens corresponding to the maximum field angle of the optical lens may satisfy: arctan(1/K12) ⁇ 0.
  • the curvature radius R11 of the object side surface of the sixth lens and the total effective focal length F of the optical lens may satisfy: 2 ⁇ R11/F ⁇ 6.
  • the sag SAG11 at the maximum clear aperture on the object side of the sixth lens corresponding to the maximum field angle of the optical lens is the maximum clear light on the object side of the sixth lens corresponding to the maximum field angle of the optical lens Diameter D11 can satisfy:
  • the image height H corresponding to the maximum angle of view of the optical lens, the total effective focal length F of the optical lens, and the maximum angle of view ⁇ of the optical lens in radians may satisfy: 0.3 ⁇ (H/2) /(F ⁇ tan( ⁇ /2)) ⁇ 1.6.
  • the viewing angle ⁇ can satisfy: D/H/ ⁇ 1.0.
  • the optical lens sequentially includes from the object side to the image side along the optical axis: the first lens with negative refractive power; the second lens with refractive power; the third lens with positive refractive power; the fourth lens with positive refractive power a lens; a fifth lens having negative refractive power; and a sixth lens having positive refractive power.
  • the image height H corresponding to the maximum angle of view of the optical lens, the total effective focal length F of the optical lens, and the maximum angle of view ⁇ of the optical lens in radians can satisfy: 0.3 ⁇ (H/2)/(F ⁇ tan( ⁇ /2)) ⁇ 1.6.
  • the electronic device includes an optical lens provided according to the present application and an imaging element for converting an optical image formed by the optical lens into an electrical signal.
  • This application uses six lenses, and by optimizing the shape and power of each lens, the optical lens has high resolution, miniaturization, smaller front diameter, better temperature performance, large field of view, and no ghost images. , large central angular resolution, low cost, high imaging quality, etc. at least one beneficial effect.
  • FIG. 1 is a schematic structural diagram illustrating an optical lens according to Embodiment 1 of the present application.
  • FIG. 2 is a schematic structural diagram illustrating an optical lens according to Embodiment 2 of the present application.
  • FIG. 3 is a schematic structural diagram illustrating an optical lens according to Embodiment 3 of the present application.
  • FIG. 4 is a schematic structural diagram illustrating an optical lens according to Embodiment 4 of the present application.
  • FIG. 5 is a schematic structural diagram illustrating an optical lens according to Embodiment 5 of the present application.
  • FIG. 6 is a schematic structural diagram illustrating an optical lens according to Embodiment 6 of the present application.
  • FIG. 7 is a schematic structural diagram illustrating an optical lens according to Embodiment 7 of the present application.
  • FIG. 8 is a schematic structural diagram illustrating an optical lens according to Embodiment 8 of the present application.
  • FIG. 9 is a schematic structural diagram illustrating an optical lens according to Embodiment 9 of the present application.
  • FIG. 10 is a schematic structural diagram illustrating an optical lens according to Embodiment 10 of the present application.
  • FIG. 11 is a schematic structural diagram illustrating an optical lens according to Embodiment 11 of the present application.
  • FIG. 12 is a schematic structural diagram illustrating an optical lens according to Embodiment 12 of the present application.
  • FIG. 13 is a schematic structural diagram illustrating an optical lens according to Embodiment 13 of the present application.
  • FIG. 14 is a schematic structural diagram illustrating an optical lens according to Embodiment 14 of the present application.
  • FIG. 15 is a schematic structural diagram illustrating an optical lens according to Embodiment 15 of the present application.
  • FIG. 16 is a schematic structural diagram illustrating an optical lens according to Embodiment 16 of the present application.
  • FIG. 17 is a schematic structural diagram illustrating an optical lens according to Embodiment 17 of the present application.
  • Embodiment 18 is a schematic structural diagram illustrating an optical lens according to Embodiment 18 of the present application.
  • FIG. 19 is a schematic structural diagram illustrating an optical lens according to Embodiment 19 of the present application.
  • FIG. 20 is a schematic structural diagram illustrating an optical lens according to Embodiment 20 of the present application.
  • FIG. 21 is a schematic structural diagram illustrating an optical lens according to Embodiment 21 of the present application.
  • FIG. 22 is a schematic structural diagram illustrating an optical lens according to Embodiment 22 of the present application.
  • first, second, third etc. are only used to distinguish one feature from another feature and do not imply any limitation on the feature. Accordingly, the first lens discussed below may also be referred to as a second lens or a third lens without departing from the teachings of the present application.
  • the thickness, size and shape of the lenses have been slightly exaggerated for convenience of explanation.
  • the spherical or aspherical shapes shown in the figures are shown by way of example. That is, the shape of the spherical or aspherical surface is not limited to the shape of the spherical or aspherical surface shown in the drawings.
  • the drawings are examples only and are not drawn strictly to scale.
  • the paraxial region refers to the region near the optical axis. If the lens surface is convex and the convex position is not defined, it means that the lens surface is convex at least in the paraxial region; if the lens surface is concave and the concave position is not defined, it means that the lens surface is at least in the paraxial region. Concave.
  • the surface of each lens closest to the subject is called the object side of the lens, and the surface of each lens closest to the imaging side is called the image side of the lens.
  • the optical lens includes, for example, six lenses having optical power, ie, a first lens, a second lens, a third lens, a fourth lens, a fifth lens, and a sixth lens.
  • the six lenses are arranged in sequence from the object side to the image side along the optical axis.
  • the optical lens may further include a photosensitive element disposed on the imaging surface.
  • the photosensitive element disposed on the imaging surface may be a photosensitive coupling element (CCD) or a complementary metal oxide semiconductor element (CMOS).
  • the first lens may have negative refractive power.
  • the first lens may have a convex-concave type or a concave-concave type.
  • the first lens has a negative refractive power, and the image side is concave, which is conducive to collecting light with a large field of view into the rear optical system as much as possible, fixing the direction of the large-angle light in the edge area, and reducing the imaging aberration of the large-angle light. Helps to improve resolution.
  • a high refractive index material such as refractive index Nd1 ⁇ 1.8
  • a low refractive index material such as refractive index Nd1
  • the first lens may preferably be an aspherical lens to further improve the resolution quality.
  • the second lens may have positive refractive power or negative refractive power.
  • the second lens may have a concave-convex surface type.
  • the setting of the optical power and the surface shape of the second lens is beneficial to collect the light emitted from the first lens, so that the trend of the light can be smoothly transitioned.
  • the shape of the second lens can be close to the shape of concentric circles, so that there is an optical path difference between the peripheral light of the optical lens and the central light, the central light is diverged, and enters the rear optical lens, and it is also beneficial to reduce the front end of the lens.
  • the diameter of the lens reduces the volume of the lens, which is conducive to miniaturization and cost reduction.
  • the third lens may have positive refractive power.
  • the third lens may have a convex-convex type.
  • the third lens has a positive refractive power, which can condense the light, so that the divergent light can smoothly enter the rear optical lens, which is conducive to compressing the light, and can further smooth the transition of the light.
  • the fourth lens may have positive refractive power or negative refractive power.
  • the fourth lens may have a convex-convex type or a convex-concave type.
  • the fifth lens may have positive refractive power or negative refractive power.
  • the fifth lens may have a convex-convex type or a concave-convex type.
  • the sixth lens may have positive refractive power or negative refractive power.
  • the sixth lens may have a convex-concave type, a concave-convex type, a convex-convex type, or a concave-convex type.
  • the power and surface design of the sixth lens can smoothly transition the light in front to the imaging surface of the optical lens, reduce the total optical length, correct astigmatism and field curvature, and improve the resolution capability of the optical lens.
  • the sixth lens may have an aspherical mirror surface to improve resolution quality.
  • the optical lens according to the present application may satisfy: TTL/F ⁇ 7, where TTL is the distance from the center of the object side of the first lens to the imaging surface of the optical lens on the optical axis, and F is the optical axis The total effective focal length of the lens. More specifically, TTL and F may further satisfy: TTL/F ⁇ 6.5. Satisfying TTL/F ⁇ 7 is conducive to miniaturization.
  • the optical lens according to the present application may satisfy: TTL/H/FOV ⁇ 0.05, where FOV is the maximum field angle of the optical lens, and TTL is the center of the object side of the first lens to the optical lens
  • the distance of the imaging plane on the optical axis, H is the image height corresponding to the maximum field of view of the optical lens.
  • TTL, H and FOV may further satisfy: TTL/H/FOV ⁇ 0.03. Satisfying TTL/H/FOV ⁇ 0.05 is conducive to miniaturization.
  • the optical lens according to the present application can satisfy: D/H/FOV ⁇ 0.03, where FOV is the maximum angle of view of the optical lens, and D is the first lens corresponding to the maximum angle of view of the optical lens
  • the maximum clear aperture of the object side, H is the image height corresponding to the maximum field of view of the optical lens.
  • D, H and FOV may further satisfy: D/H/FOV ⁇ 0.01. Satisfying D/H/FOV ⁇ 0.03 is conducive to reducing the diameter of the front end and realizing miniaturization.
  • the optical lens according to the present application may satisfy: 1 ⁇ F45/F ⁇ 8, where F45 is the effective focal length of the cemented lens formed by cementing the fourth lens and the fifth lens, and F is the total focal length of the optical lens Effective focal length. More specifically, F45 and F may further satisfy: 2 ⁇ F45/F ⁇ 6. Satisfying 1 ⁇ F45/F ⁇ 8, the light trend between the third lens and the sixth lens can be controlled, the aberration caused by the large-angle light entering through the third lens can be reduced, and the structure of the optical lens can be made compact. , which is conducive to miniaturization.
  • the optical lens according to the present application can satisfy: arctan(1/K2) ⁇ 35, where K2 is the lens edge slope of the image side of the first lens corresponding to the maximum angle of view of the optical lens, arctan (1/K2) is the opening angle of the image side surface of the first lens corresponding to the maximum field angle of the optical lens. More specifically, K2 can further satisfy: arctan(1/K2) ⁇ 42. Satisfying arctan(1/K2) ⁇ 35, the opening angle of the image side of the first lens can be made larger, which is conducive to quickly focusing the large-angle peripheral light entering through the first lens, so as to improve the imaging quality.
  • the optical lens according to the present application may satisfy: (FOV ⁇ F)/H ⁇ 70, where FOV is the maximum field angle of the optical lens, F is the total effective focal length of the optical lens, and H is the optical lens The image height corresponding to the maximum field of view of the lens. More specifically, FOV, F and H may further satisfy: (FOV ⁇ F)/H ⁇ 75. Satisfying (FOV ⁇ F)/H ⁇ 70 is conducive to making the optical lens have the characteristics of telephoto and large field of view at the same time, which is helpful to improve the imaging effect of the optical lens while taking into account the large field of view. Large angular resolution.
  • the optical lens according to the present application may satisfy: d8i/TTL ⁇ 0.3, where d8i is the distance from the center of the object side of the fourth lens to the imaging surface of the optical lens on the optical axis, and TTL is the first The distance from the center of the object side of a lens to the imaging plane of the optical lens on the optical axis. More specifically, d8i and TTL can further satisfy: d8i/TTL ⁇ 0.4. Satisfying d8i/TTL ⁇ 0.3 is beneficial to eliminate ghost images.
  • the optical lens according to the present application may satisfy: 0.2 ⁇
  • the optical lens according to the present application may satisfy: Tn1/Tm1 ⁇ 2, wherein Tn1 is the center thickness of the n1th lens having the largest center thickness among the second to fourth lenses, and Tm1 is the second lens
  • Tn1 and Tm1 are selected from 2, 3, and 4.
  • Tn1 and Tm1 can further satisfy: Tn1/Tm1 ⁇ 1.5, satisfy Tn1/Tm1 ⁇ 2, which is beneficial to make the center thickness of the second lens to the fourth lens close, which is helpful for the light trend of the optical lens to be smooth and polarized.
  • the fold change is small, which helps reduce sensitivity.
  • the optical lens according to the present application may satisfy: Tn2/Tm2 ⁇ 2, where Tn2 is the center thickness of the n2th lens having the largest center thickness among the second lens, the third lens, and the fifth lens, Tm2 is the center thickness of the m2-th lens having the smallest center thickness among the second lens, the third lens, and the fifth lens, and n2 and m2 are selected from 2, 3, and 5. More specifically, Tn2 and Tm2 may further satisfy: Tn2/Tm2 ⁇ 1.7. Satisfying Tn2/Tm2 ⁇ 2 helps to make the center thicknesses of the second lens, the third lens and the fifth lens close, helps the optical lens to have a smooth light trend, small deflection changes, and helps reduce sensitivity.
  • the optical lens according to the present application may satisfy: 0.5 ⁇ Nd1/Nd2 ⁇ 1.5, wherein Nd1 is the refractive index of the first lens, and Nd2 is the refractive index of the second lens. More specifically, Nd1 and Nd2 may further satisfy: 0.9 ⁇ Nd1/Nd2 ⁇ 1.1. Satisfying 0.5 ⁇ Nd1/Nd2 ⁇ 1.5 is beneficial to make the refractive index of the first lens and the second lens similar, and the first lens and the second lens are preferably high refractive index materials, which can quickly change the large-angle light entering the first lens. direction, which is conducive to reducing the diameter of the front end and improving the imaging quality.
  • the optical lens according to the present application may satisfy: 1.2 ⁇
  • the optical lens according to the present application may satisfy: 1 ⁇
  • the optical lens according to the present application may satisfy: -2 ⁇ 10 6 ⁇ (F3+F4)/(dn/dt(3)+dn/dt(4)) ⁇ -4 ⁇ 10 5 , where F3 is the effective focal length of the third lens, F4 is the effective focal length of the fourth lens, dn/dt(3) is the temperature coefficient of refractive index of the third lens, and dn/dt(4) is the temperature of the refractive index of the fourth lens coefficient. More specifically, F3, F4, dn/dt(3) and dn/dt(4) may further satisfy: -1 ⁇ 10 6 ⁇ (F3+F4)/(dn/dt(3)+dn/dt(4 )) ⁇ -5.7 ⁇ 10 5 .
  • the optical lens according to the present application may satisfy: -2 ⁇ 10 6 ⁇ (F3+F5)/(dn/dt(3)+dn/dt(5)) ⁇ -4 ⁇ 10 5 , where F3 is the effective focal length of the third lens, F5 is the effective focal length of the fifth lens, dn/dt(3) is the temperature coefficient of refractive index of the third lens, and dn/dt(5) is the temperature of the refractive index of the fifth lens coefficient. More specifically, F3, F5, dn/dt(3) and dn/dt(5) may further satisfy: -9 ⁇ 10 5 ⁇ (F3+F5)/(dn/dt(3)+dn/dt(5 )) ⁇ -4.8 ⁇ 10 5 .
  • the optical lens according to the present application may satisfy: (H-F ⁇ )/(F ⁇ ) ⁇ -0.1, where ⁇ is the radian of the maximum field of view of the optical lens, and F is the radian of the maximum field of view of the optical lens
  • the total effective focal length, H is the image height corresponding to the maximum field of view of the optical lens.
  • H, F and ⁇ may further satisfy: (H ⁇ F ⁇ )/(F ⁇ ) ⁇ 0.2. Satisfying (H-F ⁇ )/(F ⁇ ) ⁇ -0.1, it can help to increase the total effective focal length of the lens and highlight the central area of the lens’ imaging surface under the condition that the field angle of the lens and the size of the imaging surface remain unchanged. Imaging effect.
  • the optical lens according to the present application may satisfy: arctan(1/K11) ⁇ -4, where K11 is the lens edge slope of the object side of the sixth lens corresponding to the maximum angle of view of the optical lens, arctan(1/K11) is the opening angle of the object side of the sixth lens corresponding to the maximum angle of view of the optical lens. More specifically, K11 may further satisfy: arctan(1/K11) ⁇ 6. Satisfying arctan(1/K11) ⁇ -4 is beneficial to make the edge opening angle of the object side of the sixth lens to be negative, and to bend to the object side, which is beneficial to correct astigmatism and field curvature.
  • the optical lens according to the present application may satisfy: FNO/F ⁇ 0.1, where FNO is the aperture value of the optical lens, and F is the total effective focal length of the optical lens. More specifically, FNO and F may further satisfy: FNO/F ⁇ 0.28. Satisfying FNO/F ⁇ 0.1 is beneficial to make the optical lens have the characteristics of large aperture.
  • the optical lens according to the present application may satisfy: 0.2 ⁇
  • the optical lens according to the present application may satisfy: 1 ⁇
  • the optical lens according to the present application may satisfy: BFL/TTL ⁇ 0.05, where BFL is the distance from the center of the image side surface of the sixth lens to the imaging surface of the optical lens on the optical axis, and TTL is the first The distance from the center of the object side of a lens to the imaging plane of the optical lens on the optical axis. More specifically, BFL and TTL can further satisfy: BFL/TTL ⁇ 0.08. Satisfying BFL/TTL ⁇ 0.05 can make the lens compact, reduce the sensitivity of the lens to MTF, improve the production yield and reduce the production cost on the basis of ensuring the miniaturization and assembly characteristics.
  • the optical lens according to the present application may satisfy: 0.04 ⁇ d23/TTL ⁇ 0.2, where d23 is the distance from the center of the image side of the second lens to the center of the object side of the third lens on the optical axis
  • the separation distance, TTL is the distance from the center of the object side of the first lens to the imaging plane of the optical lens on the optical axis.
  • d23 and TTL may further satisfy: 0.06 ⁇ d23/TTL ⁇ 0.11. Satisfying 0.04 ⁇ d23/TTL ⁇ 0.2 can make the distance between the first lens and the second lens smaller, which is conducive to the miniaturization of the lens, reduces the sensitivity of the lens to MTF, and reduces the production cost.
  • the optical lens according to the present application may satisfy:
  • the optical lens according to the present application may satisfy: -2.0 ⁇ F1/F ⁇ -1.0, wherein F1 is the effective focal length of the first lens, and F is the total effective focal length of the optical lens. More specifically, F1 and F may further satisfy: -1.82 ⁇ F1/F ⁇ -1.26. Satisfying -2.0 ⁇ F1/F ⁇ -1.0 helps to make more light enter the optical lens smoothly and increase the illuminance.
  • the optical lens according to the present application may satisfy: -6.0 ⁇ R10/F ⁇ -1.0, wherein R10 is the curvature radius of the image side surface of the fifth lens, and F is the total effective focal length of the optical lens. More specifically, R10 and F may further satisfy: -4.8 ⁇ R10/F ⁇ -1.4. Satisfying -6.0 ⁇ R10/F ⁇ -1.0, the image side surface of the fifth lens can be convex.
  • the optical lens according to the present application may satisfy: T2/TTL ⁇ 0.15, where T2 is the center thickness of the second lens, and TTL is the center of the object side of the first lens to the imaging surface of the optical lens at distance on the optical axis. More specifically, T2 and TTL may further satisfy: 0.15 ⁇ T2/TTL ⁇ 0.3. Satisfying T2/TTL ⁇ 0.15 is conducive to collecting the light emitted by the first lens, making the light transition smoothly, reducing the sensitivity of the lens to MTF, and improving the resolution.
  • a diaphragm for limiting the light beam may be disposed between the second lens and the third lens to further improve the imaging quality of the optical lens. Disposing the diaphragm between the second lens and the third lens is conducive to increasing the aperture of the diaphragm, effectively converging the light entering the optical lens, reducing the aperture of the lens, and shortening the total length of the optical lens.
  • the diaphragm may be disposed near the image side of the second lens or near the object side of the third lens.
  • the position of the diaphragm disclosed here is only an example and not a limitation; in alternative embodiments, the diaphragm can also be set at other positions according to actual needs.
  • a diaphragm can also be arranged between the third lens and the fourth lens to further improve the imaging quality of the optical lens.
  • the optical lens of the present application may further include a filter and/or a protective glass disposed between the sixth lens and the imaging surface, so as to filter light with different wavelengths and prevent Damage to the image-side element (eg, chip) of the optical lens.
  • a filter and/or a protective glass disposed between the sixth lens and the imaging surface, so as to filter light with different wavelengths and prevent Damage to the image-side element (eg, chip) of the optical lens.
  • cemented lenses can be used to minimize or eliminate chromatic aberration.
  • Using a cemented lens in an optical lens can improve the image quality and reduce the reflection loss of light energy, thereby achieving high resolution and improving the clarity of lens imaging.
  • the use of cemented lenses simplifies assembly procedures in the lens manufacturing process.
  • the fourth lens and the fifth lens may be cemented to form a cemented lens.
  • a fourth lens with a convex object side and a convex image side is cemented with a fifth lens with a concave object side and a convex image side or a fourth lens with a convex object side and a concave image side and a convex object side with an image side
  • the convex fifth lens is cemented, which is conducive to the smooth transition of the light passing through the fourth lens to the rear optical system, and is conducive to reducing the total length of the optical lens.
  • the fourth lens and the fifth lens may not be cemented, which is beneficial to improve the resolution.
  • the fourth lens and the fifth lens of the above-mentioned cemented lens are respectively a lens with positive refractive power and a lens with negative refractive power, wherein the lens with positive refractive power has a lower refractive index and has negative refractive power.
  • both the object side and the image side of the cemented lens are convex. This allows the light to be further concentrated and then transitioned to the rear optics.
  • the above-mentioned gluing method between the lenses has at least one of the following advantages: fully correcting various aberrations of the optical lens, under the premise of the compact structure of the optical lens, it can improve the resolution, optimize the optical performance such as distortion and CRA; reduce the reflection between the lenses Causes the loss of light quantity; the combination of high and low refractive index is conducive to the rapid transition of the light in front, increasing the aperture of the diaphragm, increasing the amount of light passing, which is helpful for night vision requirements; reducing the separation distance between the two lenses, thereby reducing the size of the system Overall length; reduce assembly components between lenses, thereby reducing processes and costs; reducing lens unit sensitivity to tolerances such as tilt/decentration generated during assembly, improving production yield; cemented lenses can have positive focal lengths degree, so that the light can be effectively and smoothly converged after the cemented lens, so that the light can reach the imaging surface smoothly; reduce the overall weight and cost.
  • Such a glued design shares the overall chromatic aberration correction of the
  • the sixth lens may be an aspheric lens; the first lens, the second lens, the third lens, the fourth lens, and the fifth lens may be spherical lenses.
  • the first lens and the sixth lens may be aspherical lenses; the second lens, the third lens, the fourth lens and the fifth lens may be spherical lenses.
  • the first lens, the second lens and the sixth lens may be aspherical lenses; the third lens, the fourth lens and the fifth lens may be spherical lenses.
  • the second lens, the third lens and the sixth lens may be aspherical lenses; the first lens, the fourth lens and the fifth lens may be spherical lenses.
  • the first lens, the second lens, the third lens, the fourth lens, the fifth lens and the sixth lens may all be aspherical lenses.
  • the characteristic of aspherical lenses is that the curvature changes continuously from the center of the lens to the periphery.
  • aspheric lenses have better curvature radius characteristics, and have the advantages of improving distortion and astigmatism.
  • the aberration that occurs during imaging can be eliminated as much as possible, thereby improving the imaging quality of the lens.
  • Aspherical lens settings help correct system aberrations and improve resolution.
  • the optical lens according to the above-mentioned embodiments of the present application achieves high resolution (can reach more than 8 million pixels) and miniaturization of the optical system under the condition that only 6 lenses are used through reasonable setting of the lens shape and refractive power. , telephoto, large field of view, no ghost image, and good imaging quality at least one beneficial effect.
  • the optical lens also takes into account the requirements of small lens size, small front-end aperture, low sensitivity, low impact on the resolution of the lens under high and low temperature, wide working range, and high production yield.
  • the total effective focal length of the optical lens is long, and the central area has a large angular resolution, which can improve the recognition of environmental objects, and can increase the detection area of the central part in a targeted manner.
  • the optical lens according to the above embodiments of the present application is provided with a cemented lens, which can effectively eliminate the influence of ghost images on the optical lens, so that the optical lens has higher resolution quality on the basis of eliminating ghost images.
  • a cemented lens which can effectively eliminate the influence of ghost images on the optical lens, so that the optical lens has higher resolution quality on the basis of eliminating ghost images.
  • the first to sixth lenses in the optical lens may all be made of glass.
  • the optical lens made of glass can suppress the shift of the optical lens back focus with temperature changes, so as to improve the system stability.
  • the use of glass material can avoid the blurring of the lens image caused by the high and low temperature temperature changes in the use environment, which affects the normal use of the lens.
  • the first to sixth lenses may all be glass aspherical lenses.
  • the first lens to the sixth lens in the optical lens can also be made of plastic. Using plastic to make the optical lens can effectively reduce the manufacturing cost.
  • the optical lens includes, for example, six lenses having optical power, ie, a first lens, a second lens, a third lens, a fourth lens, a fifth lens, and a sixth lens.
  • the six lenses are arranged in sequence from the object side to the image side along the optical axis.
  • the optical lens may further include a photosensitive element disposed on the imaging surface.
  • the photosensitive element disposed on the imaging surface may be a photosensitive coupling element (CCD) or a complementary metal oxide semiconductor element (CMOS).
  • the first lens may have negative refractive power.
  • the first lens may have a convex and concave type.
  • the setting of the optical power and the surface shape of the first lens is conducive to collecting light with a large field of view into the rear optical lens as much as possible, and is conducive to fixing the direction and trend of light with a large angle at the edge. In practical applications, it is conducive to the sliding of water droplets, so as to reduce the influence of the external environment on the imaging quality of the lens.
  • the first lens may have an aspherical mirror surface, which is beneficial for the central area of the lens to have a large angular resolution, which is beneficial for improving the resolution.
  • the first lens can use a material with a high refractive index, which is beneficial to reducing the diameter of the front end of the lens and improving the imaging quality.
  • the second lens may have positive refractive power or negative refractive power.
  • the second lens may have a concave-convex surface type.
  • the setting of the optical power and the surface shape of the second lens is conducive to collecting the light entering after passing through the first lens, so that the trend of the light can be smoothly transitioned.
  • the second lens can be set in a shape close to concentric circles, so that the light emitted by the first lens can be smoothly transitioned to the rear optical lens, and it is beneficial to reduce the diameter of the front end of the lens, reduce the volume of the lens, and help to realize the miniaturization of the lens. reduce costs.
  • the third lens may have positive refractive power.
  • the third lens may have a convex-convex type.
  • the setting of the optical power and the surface shape of the third lens is favorable for concentrating light.
  • the third lens may have a biconvex surface and a relatively gentle shape of the lens, which is conducive to the smooth entry of the divergent light into the rear and further smooth transition of the light.
  • the fourth lens may have positive refractive power.
  • the fourth lens may have a convex-convex type. The setting of the optical power and the surface shape of the fourth lens is favorable for concentrating light.
  • the fifth lens may have negative refractive power.
  • the fifth lens may have a concave-convex surface type or a concave-convex surface type.
  • the setting of the focal power and surface shape of the fifth lens is beneficial to prevent the light from the object side from being too divergent after entering the lens.
  • the sixth lens may have positive refractive power.
  • the sixth lens may have a convex-concave type or a convex-convex type.
  • the setting of the refractive power and the surface shape of the sixth lens, in particular, setting the surface shape of the sixth lens to be relatively gentle is beneficial to correct astigmatism and field curvature, and improve the resolution capability of the optical lens.
  • the optical lens according to the present application may satisfy: 4.5 ⁇ TTL/F ⁇ 7, where TTL is the distance from the center of the object side of the first lens to the imaging plane of the optical lens on the optical axis, F is the total effective focal length of the optical lens. More specifically, TTL and F may further satisfy: 4.5 ⁇ TTL/F ⁇ 6.8. Satisfying 4.5 ⁇ TTL/F ⁇ 7 is conducive to miniaturization, improving lens resolution and reducing lens sensitivity. If the TTL/F is too small, the lens sensitivity will increase.
  • the optical lens according to the present application may satisfy: TTL/H/FOV ⁇ 0.05, where TTL is the distance from the center of the object side of the first lens to the imaging surface of the optical lens on the optical axis, FOV is the maximum field of view of the optical lens, and H is the image height corresponding to the maximum field of view of the optical lens. More specifically, TTL, H and FOV may further satisfy: TTL/H/FOV ⁇ 0.036. Satisfying TTL/H/FOV ⁇ 0.05 is conducive to miniaturization.
  • the optical lens according to the present application may satisfy: D/H/FOV ⁇ 0.03, where FOV is the maximum angle of view of the optical lens, and D is the first lens corresponding to the maximum angle of view of the optical lens
  • the maximum clear aperture of the object side, H is the image height corresponding to the maximum field of view of the optical lens.
  • D, H and FOV may further satisfy: D/H/FOV ⁇ 0.02. Satisfying D/H/FOV ⁇ 0.03 is conducive to reducing the diameter of the front end and realizing miniaturization.
  • the optical lens according to the present application may satisfy: (FOV ⁇ F)/H ⁇ 65, where FOV is the maximum field angle of the optical lens, F is the total effective focal length of the optical lens, and H is the optical lens The image height corresponding to the maximum field of view of the lens. More specifically, FOV, F and H may further satisfy: (FOV ⁇ F)/H ⁇ 73. Satisfying (FOV ⁇ F)/H ⁇ 65 is beneficial for the optical lens to satisfy both the telephoto and the large angle of view, and it is helpful for the lens to meet the large angle of view and at the same time achieve the center large angle resolution.
  • the optical lens according to the present application may satisfy: -2.5 ⁇ F1/F ⁇ -1, where F1 is the effective focal length of the first lens, and F is the total effective focal length of the optical lens. More specifically, F1 and F may further satisfy: -2 ⁇ F1/F ⁇ -1.7. Satisfying -2.5 ⁇ F1/F ⁇ -1 is favorable for light with a large field of view to enter the optical lens.
  • the optical lens according to the present application may satisfy: arctan(1/K2) ⁇ 35, where K2 is the lens edge slope of the image side of the first lens corresponding to the maximum field angle of the optical lens. More specifically, K2 can further satisfy: arctan(1/K2) ⁇ 36. Satisfying arctan(1/K2) ⁇ 35 is conducive to making the opening angle of the image side of the first lens larger, and is conducive to quickly focusing the large-angle peripheral light emitted by the first lens, so as to improve the imaging quality.
  • the optical lens according to the present application may satisfy: 0.6 ⁇ R3/R4 ⁇ 1.2, wherein R3 is the curvature radius of the object side of the second lens, and R4 is the curvature radius of the image side of the second lens. More specifically, R3 and R4 may further satisfy: 0.6 ⁇ R3/R4 ⁇ 1. Satisfying 0.6 ⁇ R3/R4 ⁇ 1.2 is favorable for making the shape of the second lens close to concentric circles, which is favorable for the smooth transition of the light trend.
  • the optical lens according to the present application may satisfy: 1 ⁇ R3/(R4+d2) ⁇ 2, wherein R3 is the radius of curvature of the object side of the second lens, and R4 is the image side of the second lens
  • the curvature radius of d2 is the central thickness of the second lens on the optical axis. More specifically, R3, R4 and d2 may further satisfy: 1.3 ⁇ R3/(R4+d2) ⁇ 1.9. Satisfying 1 ⁇ R3/(R4+d2) ⁇ 2 is favorable for making the shape of the second lens close to concentric circles, which is favorable for the smooth transition of the light trend.
  • the optical lens according to the present application may satisfy: 0.15 ⁇ d2/TTL ⁇ 0.3, where d2 is the center thickness of the second lens on the optical axis, and TTL is the center to the object side of the first lens The distance of the imaging plane of the optical lens on the optical axis. More specifically, d2 and TTL may further satisfy: 0.17 ⁇ d2/TTL ⁇ 0.22. Satisfying 0.15 ⁇ d2/TTL ⁇ 0.3 is beneficial to the processability of the second lens and makes the light trend smoothly transition.
  • the optical lens according to the present application may satisfy: 1.5 ⁇ F3/F ⁇ 3.5, wherein F3 is the effective focal length of the third lens, and F is the total effective focal length of the optical lens. More specifically, F3 and F may further satisfy: 1.8 ⁇ F3/F ⁇ 3. Satisfying 1.5 ⁇ F3/F ⁇ 3.5 helps to balance various aberrations.
  • the optical lens according to the present application may satisfy: R7/F ⁇ -2, where R7 is the curvature radius of the image side surface of the third lens, and F is the total effective focal length of the optical lens. More specifically, R7 and F may further satisfy: R7/F ⁇ -2.5. Satisfying R7/F ⁇ -2 is beneficial to reduce the sensitivity of the third lens.
  • the optical lens according to the present application may satisfy: 1 ⁇ F3/F4 ⁇ 2.5, wherein F3 is the effective focal length of the third lens, and F4 is the effective focal length of the fourth lens. More specifically, F3 and F4 may further satisfy: 1.2 ⁇ F3/F4 ⁇ 2.2. Satisfying 1 ⁇ F3/F4 ⁇ 2.5 is helpful for the smooth transition of light and the improvement of image quality.
  • the optical lens according to the present application may satisfy: 2.5 ⁇ F45/F ⁇ 13, wherein F45 is the effective focal length of the cemented lens formed by the cementation of the fourth lens and the fifth lens, and F is the total focal length of the optical lens Effective focal length. More specifically, F45 and F may further satisfy: 3 ⁇ F45/F ⁇ 12.5. Satisfying 2.5 ⁇ F45/F ⁇ 13, it is beneficial to control the light trend between the third lens and the sixth lens, reduce the aberration caused by the large-angle light emitted after the third lens, and at the same time help to make the lens structure compact, Conducive to miniaturization.
  • the optical lens according to the present application may satisfy: 2.6 ⁇ Vd4/Vd5 ⁇ 5.3, wherein Vd4 is the Abbe number of the fourth lens, and Vd5 is the Abbe number of the fifth lens. More specifically, Vd4 and Vd5 may further satisfy: 2.8 ⁇ Vd4/Vd5 ⁇ 5.1. Satisfying 2.6 ⁇ Vd4/Vd5 ⁇ 5.3 helps to correct chromatic aberration.
  • the optical lens according to the present application may satisfy: 0.35 ⁇ T 8-i /TTL ⁇ 0.52, wherein T 8-i is the center of the object side of the fourth lens to the imaging surface of the optical lens in light The distance on the axis, TTL is the distance from the center of the object side of the first lens to the imaging plane of the optical lens on the optical axis. More specifically, T 8-i and TTL may further satisfy: 0.4 ⁇ T 8-i /TTL ⁇ 0.48. Satisfying 0.35 ⁇ T 8-i /TTL ⁇ 0.52 helps to eliminate ghost images.
  • the optical lens according to the present application may satisfy: 1 ⁇ (T 8-11 )/R8 ⁇ 2, where T 8-11 is the center of the object side of the fourth lens to the image of the sixth lens The distance from the center of the side surface on the optical axis, R8 is the radius of curvature of the object side surface of the fourth lens. More specifically, T 8-11 and R8 may further satisfy: 1 ⁇ (T 8-11 )/R8 ⁇ 1.6.
  • the optical lens further includes an auxiliary lens located between the sixth lens and the imaging surface.
  • the optical lens according to the present application may satisfy: 0.7 ⁇ (T 3-13 )/TTL ⁇ 0.9, wherein T 3-13 is the distance from the center of the object side of the second lens to the center of the image side of the auxiliary lens on the optical axis Distance, TTL is the distance from the center of the object side of the first lens to the imaging plane of the optical lens on the optical axis. More specifically, T 3-13 and TTL may further satisfy: 0.72 ⁇ (T 3-13 )/TTL ⁇ 0.85. Satisfying 0.7 ⁇ (T 3-13 )/TTL ⁇ 0.9 helps to reduce the energy projected on the image surface by the ghost image generated by the second lens and the auxiliary lens due to reflection.
  • the optical lens according to the present application may satisfy arctan(1/K12) ⁇ 0, where K12 is the lens edge slope of the image side of the sixth lens corresponding to the maximum field angle of the optical lens. More specifically, K12 may further satisfy: arctan(1/K12) ⁇ 1.
  • the opening angle of the central area of the image side of the sixth lens can be a positive opening angle bent to the image side, and the opening angle of the edge area can be zero or a negative opening angle bent to the object side , so that the center area and the edge area of the image side of the sixth lens have different angular directions, so that there is an inflection point on the image side of the sixth lens, which is conducive to correcting astigmatism and field curvature and improving the resolution.
  • the optical lens according to the present application may satisfy: 2 ⁇ R11/F ⁇ 6, where R11 is the curvature radius of the object side surface of the sixth lens, and F is the total effective focal length of the optical lens. More specifically, R11 and F may further satisfy: 2 ⁇ R11/F ⁇ 5.5. Satisfying 2 ⁇ R11/F ⁇ 6 helps smooth transition of light and reduces lens sensitivity.
  • the optical lens according to the present application may satisfy:
  • SAG11 is the maximum clear aperture on the object side of the sixth lens corresponding to the maximum angle of view of the optical lens
  • SAG11 is the distance on the optical axis from the intersection of the object side of the sixth lens and the optical axis to the maximum aperture on the optical axis of the object side of the sixth lens corresponding to the maximum angle of view of the optical lens
  • D11 is the optical axis of the optical lens.
  • SAG11 and D11 may further satisfy:
  • the optical lens according to the present application may satisfy: 0.3 ⁇ (H/2)/(F ⁇ tan( ⁇ /2)) ⁇ 1.6, where H is the maximum angle of view corresponding to the optical lens Image height, F is the total effective focal length of the optical lens, ⁇ is the maximum field of view of the optical lens in radians. More specifically, H, F, and ⁇ may further satisfy: 0.35 ⁇ (H/2)/(F ⁇ tan( ⁇ /2)) ⁇ 1.5. Satisfying 0.3 ⁇ (H/2)/(F ⁇ tan( ⁇ /2)) ⁇ 1.6 is beneficial to realize large angular resolution.
  • the optical lens according to the present application may satisfy: Nd1 ⁇ 1.75, where Nd1 is the Abbe number of the first lens. More specifically, Nd1 may further satisfy: Nd1 ⁇ 1.78. Satisfying Nd1 ⁇ 1.75 is conducive to rapidly changing the optical path of the large-angle light entering the first lens, reducing the diameter of the front end, and improving imaging quality.
  • the optical lens according to the present application may satisfy: dn3/dt3 ⁇ -5.0 ⁇ 10 -6 , where dn3/dt3 is the temperature coefficient of refractive index of the third lens, that is, the refractive index of the third lens varies with The amount of change in temperature. Satisfying dn3/dt3 ⁇ -5.0 ⁇ 10 -6 is helpful for the lens to maintain better resolution under high and low temperature, so that the lens has better temperature performance.
  • the optical lens according to the present application may satisfy: dn4/dt4 ⁇ -5.0 ⁇ 10 -6 , wherein dn4/dt4 is the temperature coefficient of refractive index of the fourth lens, that is, the refractive index of the fourth lens varies with The amount of change in temperature. Satisfying dn4/dt4 ⁇ -5.0 ⁇ 10 -6 is helpful for the lens to maintain better resolution under high and low temperature, so that the lens has better temperature performance.
  • the optical lens according to the present application may satisfy: 1.1 ⁇ FNO ⁇ 2.3, where FNO is the f-number of the optical lens. More specifically, FNO may further satisfy: 1.3 ⁇ FNO ⁇ 2.2. Satisfying 1.1 ⁇ FNO ⁇ 2.3 is conducive to realizing large aperture characteristics.
  • the optical lens according to the present application can satisfy: D/H/ ⁇ 1.0, where H is the image height corresponding to the maximum field angle of the optical lens, and D is the maximum field angle corresponding to the optical lens
  • the maximum clear aperture of the object side of the first lens, ⁇ is the maximum field of view of the optical lens in radians. More specifically, D, H, and ⁇ may further satisfy: D/H/ ⁇ 0.8. Satisfying D/H/ ⁇ 1.0 is conducive to reducing the diameter of the front end.
  • a diaphragm for limiting the light beam may be disposed between the second lens and the third lens to further improve the imaging quality of the optical lens.
  • the diaphragm is arranged between the second lens and the third lens, which is beneficial to effectively converge the light entering the optical lens, shorten the total length of the lens, and reduce the diameter of the front lens group.
  • the diaphragm may be disposed near the image side of the second lens or near the object side of the third lens.
  • the position of the diaphragm disclosed here is only an example and not a limitation; in alternative embodiments, the diaphragm can also be set at other positions according to actual needs.
  • the auxiliary lens disposed between the sixth lens and the imaging surface may be a filter and/or a protective glass to filter light with different wavelengths and prevent the image-side element ( For example, chip) is damaged.
  • cemented lenses can be used to minimize or eliminate chromatic aberration.
  • Using a cemented lens in an optical lens can improve the image quality and reduce the reflection loss of light energy, thereby achieving high resolution and improving the clarity of lens imaging.
  • the use of cemented lenses simplifies assembly procedures in the lens manufacturing process.
  • the fourth lens and the fifth lens may be cemented to form a cemented lens.
  • the fourth lens with positive refractive power and the object side and the image side are both convex and the fifth lens with negative refractive power and the object side are concave, which can smoothly transition the light emitted by the front lens to the imaging surface of the optical lens, It is beneficial to make the optical lens compact, reduce the size of the optical lens, correct various aberrations of the optical lens, reduce the coordination sensitivity of each lens, improve the resolution, and optimize the optical performance such as distortion and CRA.
  • the refractive index of the fifth lens with negative refractive power can be higher than the refractive index of the fourth lens with positive refractive power, so that the light can be effectively and smoothly converged at the rear of the lens, so that the light reaches the imaging surface smoothly, which is beneficial to Reducing the overall weight of the lens is conducive to reducing the manufacturing cost.
  • the fifth lens with a high refractive index and the fourth lens with a low refractive index are combined to form a cemented lens, which is conducive to the rapid transition of the light ahead, and is conducive to increasing the aperture of the aperture, improving the amount of light passing through, and contributing to the needs of night vision.
  • the fourth lens and the fifth lens may not be cemented, which is beneficial to improve the resolution.
  • the cementing method between the above-mentioned lenses has at least one of the following advantages: reducing self-chromatic aberration, reducing tolerance sensitivity, and balancing the overall chromatic aberration of the system through the residual partial chromatic aberration; reducing the separation distance between the two lenses, thereby reducing the size of the system Overall length; reduce assembly components between lenses, thereby reducing processes and costs; reducing lens units due to tolerance sensitivity issues such as tilt/decentration generated during assembly, improving production yields; reducing the amount of light caused by reflection between lenses It can reduce the field curvature and correct the off-axis point aberration of the system.
  • Such a gluing design shares the overall chromatic aberration correction of the system, effectively corrects aberrations to improve resolution, and makes the optical system as a whole compact to meet miniaturization requirements.
  • the second lens, the third lens, the fourth lens and the fifth lens may be spherical lenses; the first lens and the sixth lens may be aspherical lenses.
  • the present application does not specifically limit the specific numbers of spherical lenses and aspherical lenses, and the number of aspherical lenses can be increased when the image quality is emphasized.
  • the first lens, the second lens, the third lens, the fourth lens, the fifth lens and the sixth lens may all be aspherical lenses.
  • the characteristic of aspherical lenses is that the curvature changes continuously from the center of the lens to the periphery.
  • aspheric lenses Unlike spherical lenses, which have a constant curvature from the center of the lens to the periphery, aspheric lenses have better curvature radius characteristics, and have the advantages of improving distortion and astigmatism. After the aspherical lens is used, the aberration that occurs during imaging can be eliminated as much as possible, thereby improving the imaging quality of the lens. Aspherical lens settings help correct system aberrations and improve resolution.
  • the optical lens according to the above-mentioned embodiments of the present application achieves high resolution (up to 8 million pixels or more) and miniaturization of the optical lens under the condition that only 6 lenses are used through the reasonable setting of the shape and power of each lens. , Small front-end aperture, good temperature performance, telephoto, large field of view, no ghost image, large central angular resolution, low cost, and good imaging quality, etc. at least one beneficial effect.
  • the optical lens can have more than eight million pixels, which is conducive to achieving higher definition.
  • the optical lens can have a long focal length and a large angular resolution in the central area, which can improve the recognition of environmental objects and increase the detection area of the central part in a targeted manner.
  • the optical lens also has better temperature performance, which is beneficial for the optical lens to have less change in imaging effect under high and low temperature environments, stable image quality, less impact of high and low temperature on the resolution of the lens, and wide operating temperature range of the optical lens. It is beneficial that the optical lens can be used in most environments.
  • the optical lens according to the above embodiments of the present application is provided with a cemented lens to share the overall chromatic aberration correction of the system, which not only helps to correct the system aberration, improves the system resolution quality, reduces the problem of coordination sensitivity, but also helps to make the overall structure of the optical system compact. , to meet the miniaturization requirements.
  • the above-mentioned cemented lens can also effectively eliminate the influence of ghost images on the lens, so that the lens has a higher resolution on the basis of eliminating ghost images.
  • the first lens, the second lens, the third lens, the fourth lens, the fifth lens and the sixth lens may all be glass lenses.
  • the optical lens By setting the optical lens to an all-glass structure and reasonably matching lenses with different refractive index temperature coefficients, the lens can still image clearly in high and low temperature environments (such as -40°C to 120°C), which can greatly improve the performance of autonomous driving. safety.
  • the optical lens made of glass can suppress the shift of the optical lens back focus with temperature changes, so as to improve the system stability.
  • the use of glass material can avoid the blurring of the lens image caused by the high and low temperature temperature changes in the use environment, which affects the normal use of the lens.
  • the first to sixth lenses may all be glass aspherical lenses.
  • the first lens to the sixth lens in the optical lens can also be made of plastic. Using plastic to make the optical lens can effectively reduce the manufacturing cost.
  • the first lens to the sixth lens in the optical lens can also be made of plastic and glass.
  • the number of lenses constituting the lens can be changed to obtain the various results and advantages described in this specification without departing from the technical solutions claimed in the present application.
  • the optical lens is not limited to including six lenses. If desired, the optical lens may also include other numbers of lenses.
  • FIG. 1 shows a schematic structural diagram of an optical lens according to Embodiment 1 of the present application.
  • the optical lens includes sequentially from the object side to the image side along the optical axis: a first lens L1, a second lens L2, a third lens L3, a fourth lens L4, a fifth lens L5 and a sixth lens L6.
  • the first lens L1 is a convex-concave lens with negative refractive power, the object side S1 is convex, and the image side S2 is concave.
  • the second lens L2 is a meniscus lens with negative refractive power, the object side S3 is concave, and the image side S4 is convex.
  • the third lens L3 is a biconvex lens with positive refractive power, the object side S6 is convex, and the image side S7 is convex.
  • the fourth lens L4 is a biconvex lens with positive refractive power, the object side S8 is convex, and the image side S9 is convex.
  • the fifth lens L5 is a meniscus lens with negative refractive power
  • the object side S9 is concave
  • the image side S10 is convex
  • the sixth lens L6 is a convex-concave lens with negative refractive power
  • its object side surface S11 is a convex surface
  • its image side surface S12 is a concave surface.
  • the fourth lens L4 and the fifth lens L5 may be cemented to form a cemented lens.
  • the optical lens may further include a diaphragm STO, and the diaphragm STO may be disposed between the second lens L2 and the third lens L3 to improve imaging quality.
  • the stop STO may be provided between the second lens L2 and the third lens L3 at a position close to the image side surface S4 of the second lens L2.
  • the optical lens may further include a filter L7 and/or a protective glass L7' having an object side S13 and an image side S14.
  • the filter L7 and/or the protective glass L7' can be used to correct color deviation and/or protect the image sensor chip IMA located at the imaging surface S15.
  • the light from the object sequentially passes through the surfaces S1 to S14 and is finally imaged on the imaging surface S15.
  • Table 1 shows the radius of curvature R, thickness T/distance d of each lens of the optical lens of Example 1 (it should be understood that the thickness T/distance d of the row where S1 is located is the center thickness T1 of the first lens L1, and the row where S2 is located
  • the thickness T/distance d is the separation distance d23 between the image side surface of the first lens L1 and the object side surface of the second lens L2, and so on), the refractive index Nd, and the dispersion coefficient Vd.
  • the first lens L1 and the sixth lens L6 may be aspherical lenses
  • the second lens L2, the third lens L3, the fourth lens L4 and the fifth lens L5 may be spherical lenses.
  • the surface type x of each aspherical lens can be defined by, but not limited to, the following aspherical formula:
  • x is the distance vector height of the aspheric surface from the vertex of the aspheric surface when the height is h along the optical axis;
  • k is the conic coefficient;
  • Ai is the correction coefficient of the i-th order of the aspheric surface.
  • Table 2 shows the conic coefficient k and higher order coefficients A4, A6, A8, A10, A12, A14 and A16 that can be used for each of the aspheric mirror surfaces S1, S2, S11 and S12 in Example 1.
  • FIG. 2 shows a schematic structural diagram of an optical lens according to Embodiment 2 of the present application.
  • the optical lens includes a first lens L1, a second lens L2, a third lens L3, a fourth lens L4, a fifth lens L5 and a sixth lens L6 in sequence from the object side to the image side along the optical axis .
  • the first lens L1 is a convex-concave lens with negative refractive power, the object side S1 is convex, and the image side S2 is concave.
  • the second lens L2 is a meniscus lens with negative refractive power, the object side S3 is concave, and the image side S4 is convex.
  • the third lens L3 is a biconvex lens with positive refractive power, the object side S6 is convex, and the image side S7 is convex.
  • the fourth lens L4 is a biconvex lens with positive refractive power, the object side S8 is convex, and the image side S9 is convex.
  • the fifth lens L5 is a meniscus lens with negative refractive power
  • the object side S9 is concave
  • the image side S10 is convex
  • the sixth lens L6 is a convex-concave lens with negative refractive power
  • its object side surface S11 is a convex surface
  • its image side surface S12 is a concave surface.
  • the fourth lens L4 and the fifth lens L5 may be cemented to form a cemented lens.
  • the optical lens may further include a diaphragm STO, and the diaphragm STO may be disposed between the second lens L2 and the third lens L3 to improve imaging quality.
  • the stop STO may be disposed between the second lens L2 and the third lens L3 at a position close to the image side surface S4 of the second lens L2.
  • the optical lens may further include a filter L7 and/or a protective glass L7' having an object side S13 and an image side S14.
  • the filter L7 and/or the protective glass L7' can be used to correct color deviation and/or protect the image sensor chip IMA located at the imaging surface S15.
  • the light from the object sequentially passes through the surfaces S1 to S14 and is finally imaged on the imaging surface S15.
  • the first lens L1 and the sixth lens L6 may be aspherical lenses
  • the second lens L2, the third lens L3, the fourth lens L4 and the fifth lens L5 may be spherical lenses.
  • Table 3 shows the curvature radius R, thickness T/distance d, refractive index Nd, and dispersion coefficient Vd of each lens of the optical lens of Example 2.
  • Table 4 shows the conic coefficients and higher-order coefficients that can be used for each aspherical mirror surface in Example 2, where each aspherical surface type can be defined by the formula (1) given in Example 1 above.
  • FIG. 3 shows a schematic structural diagram of an optical lens according to Embodiment 3 of the present application.
  • the optical lens includes a first lens L1 , a second lens L2 , a third lens L3 , a fourth lens L4 , a fifth lens L5 and a sixth lens L6 in sequence from the object side to the image side along the optical axis .
  • the first lens L1 is a convex-concave lens with negative refractive power, the object side S1 is convex, and the image side S2 is concave.
  • the second lens L2 is a meniscus lens with positive refractive power, the object side S3 is concave, and the image side S4 is convex.
  • the third lens L3 is a biconvex lens with positive refractive power, the object side S6 is convex, and the image side S7 is convex.
  • the fourth lens L4 is a biconvex lens with positive refractive power, the object side S8 is convex, and the image side S9 is convex.
  • the fifth lens L5 is a meniscus lens with negative refractive power
  • the object side S9 is concave
  • the image side S10 is convex
  • the sixth lens L6 is a convex-concave lens with negative refractive power
  • its object side surface S11 is a convex surface
  • its image side surface S12 is a concave surface.
  • the fourth lens L4 and the fifth lens L5 may be cemented to form a cemented lens.
  • the optical lens may further include a diaphragm STO, and the diaphragm STO may be disposed between the second lens L2 and the third lens L3 to improve imaging quality.
  • the stop STO may be disposed between the second lens L2 and the third lens L3 at a position close to the image side surface S4 of the second lens L2.
  • the optical lens may further include a filter L7 and/or a protective glass L7' having an object side S13 and an image side S14.
  • the filter L7 and/or the protective glass L7' can be used to correct color deviation and/or protect the image sensor chip IMA located at the imaging surface S15.
  • the light from the object sequentially passes through the surfaces S1 to S14 and is finally imaged on the imaging surface S15.
  • the first lens L1 and the sixth lens L6 may be aspherical lenses
  • the second lens L2, the third lens L3, the fourth lens L4 and the fifth lens L5 may be spherical lenses.
  • Table 5 shows the curvature radius R, thickness T/distance d, refractive index Nd, and dispersion coefficient Vd of each lens of the optical lens of Example 3.
  • Table 6 shows the conic coefficients and higher-order coefficients that can be used for each aspherical mirror surface in Example 3, where each aspherical surface type can be defined by the formula (1) given in Example 1 above.
  • FIG. 4 shows a schematic structural diagram of an optical lens according to Embodiment 4 of the present application.
  • the optical lens includes a first lens L1 , a second lens L2 , a third lens L3 , a fourth lens L4 , a fifth lens L5 and a sixth lens L6 in sequence from the object side to the image side along the optical axis .
  • the first lens L1 is a convex-concave lens with negative refractive power, the object side S1 is convex, and the image side S2 is concave.
  • the second lens L2 is a meniscus lens with negative refractive power, the object side S3 is concave, and the image side S4 is convex.
  • the third lens L3 is a biconvex lens with positive refractive power, the object side S6 is convex, and the image side S7 is convex.
  • the fourth lens L4 is a convex-concave lens with negative refractive power, the object side S8 is convex, and the image side S9 is concave.
  • the fifth lens L5 is a biconvex lens with positive refractive power, the object side S9 is convex, and the image side S10 is convex.
  • the sixth lens L6 is a biconcave lens with negative refractive power, the object side S11 is concave, and the image side S12 is concave.
  • the fourth lens L4 and the fifth lens L5 may be cemented to form a cemented lens.
  • the optical lens may further include a diaphragm STO, and the diaphragm STO may be disposed between the second lens L2 and the third lens L3 to improve imaging quality.
  • the stop STO may be disposed between the second lens L2 and the third lens L3 at a position close to the image side surface S4 of the second lens L2.
  • the optical lens may further include a filter L7 and/or a protective glass L7' having an object side S13 and an image side S14.
  • the filter L7 and/or the protective glass L7' can be used to correct color deviation and/or protect the image sensor chip IMA located at the imaging surface S15.
  • the light from the object sequentially passes through the surfaces S1 to S14 and is finally imaged on the imaging surface S15.
  • the first lens L1 and the sixth lens L6 may be aspherical lenses
  • the second lens L2, the third lens L3, the fourth lens L4 and the fifth lens L5 may be spherical lenses.
  • Table 7 shows the curvature radius R, thickness T/distance d, refractive index Nd, and dispersion coefficient Vd of each lens of the optical lens of Example 4.
  • Table 8 shows the conic coefficients and higher-order coefficients that can be used for each aspherical mirror surface in Example 4, where each aspherical surface type can be defined by the formula (1) given in Example 1 above.
  • FIG. 5 shows a schematic structural diagram of an optical lens according to Embodiment 5 of the present application.
  • the optical lens includes a first lens L1 , a second lens L2 , a third lens L3 , a fourth lens L4 , a fifth lens L5 and a sixth lens L6 in sequence from the object side to the image side along the optical axis .
  • the first lens L1 is a biconcave lens with negative refractive power, the object side S1 is concave, and the image side S2 is concave.
  • the second lens L2 is a meniscus lens with positive refractive power, the object side S3 is concave, and the image side S4 is convex.
  • the third lens L3 is a biconvex lens with positive refractive power, the object side S6 is convex, and the image side S7 is convex.
  • the fourth lens L4 is a convex-concave lens with negative refractive power, the object side S8 is convex, and the image side S9 is concave.
  • the fifth lens L5 is a biconvex lens with positive refractive power, the object side S9 is convex, and the image side S10 is convex.
  • the sixth lens L6 is a convex-concave lens with negative refractive power, and its object side surface S11 is a convex surface, and its image side surface S12 is a concave surface.
  • the fourth lens L4 and the fifth lens L5 may be cemented to form a cemented lens.
  • the optical lens may further include a diaphragm STO, and the diaphragm STO may be disposed between the second lens L2 and the third lens L3 to improve imaging quality.
  • the stop STO may be disposed between the second lens L2 and the third lens L3 at a position close to the image side surface S4 of the second lens L2.
  • the optical lens may further include a filter L7 and/or a protective glass L7' having an object side S13 and an image side S14.
  • the filter L7 and/or the protective glass L7' can be used to correct color deviation and/or protect the image sensor chip IMA located at the imaging surface S15.
  • the light from the object sequentially passes through the surfaces S1 to S14 and is finally imaged on the imaging surface S15.
  • the first lens L1, the second lens L2 and the sixth lens L6 may be aspherical lenses
  • the third lens L3, the fourth lens L4 and the fifth lens L5 may be spherical lenses.
  • Table 9 shows the curvature radius R, thickness T/distance d, refractive index Nd, and dispersion coefficient Vd of each lens of the optical lens of Example 5.
  • Table 10 shows the conic coefficients and higher-order coefficients that can be used for each aspherical mirror surface in Example 5, where each aspherical surface type can be defined by the formula (1) given in Example 1 above.
  • FIG. 6 shows a schematic structural diagram of an optical lens according to Embodiment 6 of the present application.
  • the optical lens includes a first lens L1 , a second lens L2 , a third lens L3 , a fourth lens L4 , a fifth lens L5 and a sixth lens L6 in sequence from the object side to the image side along the optical axis .
  • the first lens L1 is a biconcave lens with negative refractive power, the object side S1 is concave, and the image side S2 is concave.
  • the second lens L2 is a meniscus lens with negative refractive power, the object side S3 is concave, and the image side S4 is convex.
  • the third lens L3 is a biconvex lens with positive refractive power, the object side S6 is convex, and the image side S7 is convex.
  • the fourth lens L4 is a convex-concave lens with negative refractive power, the object side S8 is convex, and the image side S9 is concave.
  • the fifth lens L5 is a biconvex lens with positive refractive power, the object side S9 is convex, and the image side S10 is convex.
  • the sixth lens L6 is a meniscus lens with negative refractive power, and its object side surface S11 is a concave surface, and its image side surface S12 is a convex surface.
  • the fourth lens L4 and the fifth lens L5 may be cemented to form a cemented lens.
  • the optical lens may further include a diaphragm STO, and the diaphragm STO may be disposed between the second lens L2 and the third lens L3 to improve imaging quality.
  • the stop STO may be disposed between the second lens L2 and the third lens L3 at a position close to the image side surface S4 of the second lens L2.
  • the optical lens may further include a filter L7 and/or a protective glass L7' having an object side S13 and an image side S14.
  • the filter L7 and/or the protective glass L7' can be used to correct color deviation and/or protect the image sensor chip IMA located at the imaging surface S15.
  • the light from the object sequentially passes through the surfaces S1 to S14 and is finally imaged on the imaging surface S15.
  • the first lens L1 and the sixth lens L6 may be aspherical lenses
  • the second lens L2, the third lens L3, the fourth lens L4 and the fifth lens L5 may be spherical lenses.
  • Table 11 shows the curvature radius R, thickness T/distance d, refractive index Nd, and dispersion coefficient Vd of each lens of the optical lens of Example 6.
  • Table 12 shows the conic coefficients and higher-order coefficients that can be used for each aspherical mirror surface in Example 6, where each aspherical surface type can be defined by the formula (1) given in Example 1 above.
  • FIG. 7 shows a schematic structural diagram of an optical lens according to Embodiment 7 of the present application.
  • the optical lens includes a first lens L1 , a second lens L2 , a third lens L3 , a fourth lens L4 , a fifth lens L5 and a sixth lens L6 in sequence from the object side to the image side along the optical axis .
  • the first lens L1 is a biconcave lens with negative refractive power, the object side S1 is concave, and the image side S2 is concave.
  • the second lens L2 is a meniscus lens with positive refractive power, the object side S3 is concave, and the image side S4 is convex.
  • the third lens L3 is a biconvex lens with positive refractive power, the object side S6 is convex, and the image side S7 is convex.
  • the fourth lens L4 is a convex-concave lens with negative refractive power, the object side S8 is convex, and the image side S9 is concave.
  • the fifth lens L5 is a biconvex lens with positive refractive power
  • the object side S9 is convex
  • the image side S10 is convex
  • the sixth lens L6 is a convex-concave lens with positive refractive power
  • its object side surface S11 is a convex surface
  • its image side surface S12 is a concave surface.
  • the fourth lens L4 and the fifth lens L5 may be cemented to form a cemented lens.
  • the optical lens may further include a diaphragm STO, and the diaphragm STO may be disposed between the second lens L2 and the third lens L3 to improve imaging quality.
  • the stop STO may be disposed between the second lens L2 and the third lens L3 at a position close to the image side surface S4 of the second lens L2.
  • the optical lens may further include a filter L7 and/or a protective glass L7' having an object side S13 and an image side S14.
  • the filter L7 and/or the protective glass L7' can be used to correct color deviation and/or protect the image sensor chip IMA located at the imaging surface S15.
  • the light from the object sequentially passes through the surfaces S1 to S14 and is finally imaged on the imaging surface S15.
  • the first lens L1 , the second lens L2 and the sixth lens L6 may be aspherical lenses, and the third lens L3 , the fourth lens L4 and the fifth lens L5 may be spherical lenses.
  • Table 13 shows the curvature radius R, thickness T/distance d, refractive index Nd, and dispersion coefficient Vd of each lens of the optical lens of Example 7.
  • Table 14 shows the conic coefficients and higher-order coefficients that can be used for each aspherical mirror surface in Example 7, where each aspherical surface type can be defined by the formula (1) given in Example 1 above.
  • FIG. 8 shows a schematic structural diagram of an optical lens according to Embodiment 8 of the present application.
  • the optical lens includes a first lens L1 , a second lens L2 , a third lens L3 , a fourth lens L4 , a fifth lens L5 and a sixth lens L6 in sequence from the object side to the image side along the optical axis .
  • the first lens L1 is a biconcave lens with negative refractive power, the object side S1 is concave, and the image side S2 is concave.
  • the second lens L2 is a meniscus lens with positive refractive power, the object side S3 is concave, and the image side S4 is convex.
  • the third lens L3 is a biconvex lens with positive refractive power, the object side S6 is convex, and the image side S7 is convex.
  • the fourth lens L4 is a convex-concave lens with negative refractive power, the object side S8 is convex, and the image side S9 is concave.
  • the fifth lens L5 is a biconvex lens with positive refractive power
  • the object side S9 is convex
  • the image side S10 is convex
  • the sixth lens L6 is a convex-concave lens with positive refractive power
  • its object side surface S11 is a convex surface
  • its image side surface S12 is a concave surface.
  • the fourth lens L4 and the fifth lens L5 may be cemented to form a cemented lens.
  • the optical lens may further include a diaphragm STO, and the diaphragm STO may be disposed between the second lens L2 and the third lens L3 to improve imaging quality.
  • the stop STO may be disposed between the second lens L2 and the third lens L3 at a position close to the image side surface S4 of the second lens L2.
  • the optical lens may further include a filter L7 and/or a protective glass L7' having an object side S13 and an image side S14.
  • the filter L7 and/or the protective glass L7' can be used to correct color deviation and/or protect the image sensor chip IMA located at the imaging surface S15.
  • the light from the object sequentially passes through the surfaces S1 to S14 and is finally imaged on the imaging surface S15.
  • the first lens L1 , the second lens L2 and the sixth lens L6 may be aspherical lenses, and the third lens L3 , the fourth lens L4 and the fifth lens L5 may be spherical lenses.
  • Table 15 shows the curvature radius R, thickness T/distance d, refractive index Nd, and dispersion coefficient Vd of each lens of the optical lens of Example 8.
  • Table 16 shows the conic coefficients and higher-order coefficients that can be used for each aspherical mirror surface in Example 8, where each aspherical surface type can be defined by the formula (1) given in Example 1 above.
  • FIG. 9 shows a schematic structural diagram of an optical lens according to Embodiment 9 of the present application.
  • the optical lens includes a first lens L1 , a second lens L2 , a third lens L3 , a fourth lens L4 , a fifth lens L5 and a sixth lens L6 in sequence from the object side to the image side along the optical axis .
  • the first lens L1 is a biconcave lens with negative refractive power, the object side S1 is concave, and the image side S2 is concave.
  • the second lens L2 is a meniscus lens with positive refractive power, the object side S3 is concave, and the image side S4 is convex.
  • the third lens L3 is a biconvex lens with positive refractive power, the object side S5 is convex, and the image side S6 is convex.
  • the fourth lens L4 is a biconvex lens with positive refractive power, the object side S8 is convex, and the image side S9 is convex.
  • the fifth lens L5 is a meniscus lens with negative refractive power
  • the object side S9 is concave
  • the image side S10 is convex
  • the sixth lens L6 is a convex-concave lens with positive refractive power
  • its object side surface S11 is a convex surface
  • its image side surface S12 is a concave surface.
  • the fourth lens L4 and the fifth lens L5 may be cemented to form a cemented lens.
  • the optical lens may further include a diaphragm STO, and the diaphragm STO may be disposed between the third lens L3 and the fourth lens L4 to improve imaging quality.
  • the stop STO may be disposed between the third lens L3 and the fourth lens L4 at a position close to the object side surface S8 of the fourth lens L4.
  • the optical lens may further include a filter L7 and/or a protective glass L7' having an object side S13 and an image side S14.
  • the filter L7 and/or the protective glass L7' can be used to correct color deviation and/or protect the image sensor chip IMA located at the imaging surface S15.
  • the light from the object sequentially passes through the surfaces S1 to S14 and is finally imaged on the imaging surface S15.
  • the second lens L2, the third lens L3 and the sixth lens L6 may be aspherical lenses, and the first lens L1, the fourth lens L4 and the fifth lens L5 may be spherical lenses.
  • Table 17 shows the curvature radius R, thickness T/distance d, refractive index Nd, and dispersion coefficient Vd of each lens of the optical lens of Example 9.
  • Table 18 shows the conic coefficients and higher-order coefficients that can be used for each aspherical mirror surface in Example 9, where each aspherical surface type can be defined by the formula (1) given in Example 1 above.
  • FIG. 10 shows a schematic structural diagram of an optical lens according to Embodiment 10 of the present application.
  • the optical lens includes a first lens L1 , a second lens L2 , a third lens L3 , a fourth lens L4 , a fifth lens L5 and a sixth lens in sequence from the object side to the image side along the optical axis. L6.
  • the first lens L1 is a biconcave lens with negative refractive power, the object side S1 is concave, and the image side S2 is concave.
  • the second lens L2 is a meniscus lens with positive refractive power, the object side S3 is concave, and the image side S4 is convex.
  • the third lens L3 is a biconvex lens with positive refractive power, the object side S5 is convex, and the image side S6 is convex.
  • the fourth lens L4 is a biconvex lens with positive refractive power, the object side S8 is convex, and the image side S9 is convex.
  • the fifth lens L5 is a meniscus lens with negative refractive power, the object side S9 is concave, and the image side S10 is convex.
  • the sixth lens L6 is a meniscus lens with positive refractive power, the object side S11 is concave, and the image side S12 is convex.
  • the fourth lens L4 and the fifth lens L5 may be cemented to form a cemented lens.
  • the optical lens may further include a diaphragm STO, and the diaphragm STO may be disposed between the third lens L3 and the fourth lens L4 to improve imaging quality.
  • the stop STO may be disposed between the third lens L3 and the fourth lens L4 at a position close to the object side surface S8 of the fourth lens L4.
  • the optical lens may further include a filter L7 and/or a protective glass L7' having an object side S13 and an image side S14.
  • the filter L7 and/or the protective glass L7' can be used to correct color deviation and/or protect the image sensor chip IMA located at the imaging surface S15.
  • the light from the object sequentially passes through the surfaces S1 to S14 and is finally imaged on the imaging surface S15.
  • the second lens L2, the third lens L3 and the sixth lens L6 may be aspherical lenses, and the first lens L1, the fourth lens L4 and the fifth lens L5 may be spherical lenses.
  • Table 19 shows the curvature radius R, thickness T/distance d, refractive index Nd, and dispersion coefficient Vd of each lens of the optical lens of Example 10.
  • Table 20 shows the conic coefficients and higher-order coefficients that can be used for each aspherical mirror surface in Example 10, where each aspherical surface type can be defined by the formula (1) given in Example 1 above.
  • FIG. 11 shows a schematic structural diagram of an optical lens according to Embodiment 11 of the present application.
  • the optical lens includes a first lens L1 , a second lens L2 , a third lens L3 , a fourth lens L4 , a fifth lens L5 and a sixth lens in sequence from the object side to the image side along the optical axis. L6.
  • the first lens L1 is a biconcave lens with negative refractive power, the object side S1 is concave, and the image side S2 is concave.
  • the second lens L2 is a meniscus lens with positive refractive power, the object side S3 is concave, and the image side S4 is convex.
  • the third lens L3 is a biconvex lens with positive refractive power, the object side S6 is convex, and the image side S7 is convex.
  • the fourth lens L4 is a convex-concave lens with negative refractive power, the object side S8 is convex, and the image side S9 is concave.
  • the fifth lens L5 is a biconvex lens with positive refractive power, the object side S9 is convex, and the image side S10 is convex.
  • the sixth lens L6 is a biconvex lens with positive refractive power, and its object side S11 is convex, and its image side S12 is convex.
  • the fourth lens L4 and the fifth lens L5 may be cemented to form a cemented lens.
  • the optical lens may further include a diaphragm STO, and the diaphragm STO may be disposed between the second lens L2 and the third lens L3 to improve imaging quality.
  • the stop STO may be disposed between the second lens L2 and the third lens L3 at a position close to the object side surface S6 of the third lens L3.
  • the optical lens may further include a filter L7 having an object side surface S13 and an image side surface S14.
  • This filter L7 can be used to correct color deviations.
  • the optical lens may further include a protective glass L8 having an object side S15 and an image side S16.
  • the protective glass L8 can be used to protect the image sensor chip IMA located at the imaging surface S17. The light from the object sequentially passes through the surfaces S1 to S16 and is finally imaged on the imaging surface S17.
  • the first lens L1 , the second lens L2 and the sixth lens L6 may be aspherical lenses, and the third lens L3 , the fourth lens L4 and the fifth lens L5 may be spherical lenses.
  • Table 21 shows the curvature radius R, thickness T/distance d, refractive index Nd, and dispersion coefficient Vd of each lens of the optical lens of Example 11.
  • Table 22 shows the conic coefficients and higher order coefficients that can be used for each aspherical mirror surface in Example 11, where each aspherical surface type can be defined by the formula (1) given in Example 1 above.
  • FIG. 12 shows a schematic structural diagram of an optical lens according to Embodiment 12 of the present application.
  • the optical lens includes a first lens L1 , a second lens L2 , a third lens L3 , a fourth lens L4 , a fifth lens L5 and a sixth lens L6 in sequence from the object side to the image side along the optical axis .
  • the first lens L1 is a convex-concave lens with negative refractive power, the object side S1 is convex, and the image side S2 is concave.
  • the second lens L2 is a meniscus lens with negative refractive power, the object side S3 is concave, and the image side S4 is convex.
  • the third lens L3 is a biconvex lens with positive refractive power, the object side S6 is convex, and the image side S7 is convex.
  • the fourth lens L4 is a biconvex lens with positive refractive power, the object side S8 is convex, and the image side S9 is convex.
  • the fifth lens L5 is a meniscus lens with negative refractive power
  • the object side S9 is concave
  • the image side S10 is convex
  • the sixth lens L6 is a convex-concave lens with positive refractive power
  • its object side surface S11 is a convex surface
  • its image side surface S12 is a concave surface.
  • the fourth lens L4 and the fifth lens L5 may be cemented to form a cemented lens.
  • the optical lens may further include a diaphragm STO, and the diaphragm STO may be disposed between the second lens L2 and the third lens L3 to improve imaging quality.
  • the stop STO may be disposed between the second lens L2 and the third lens L3 at a position close to the image side surface S4 of the second lens L2.
  • the optical lens may further include a filter L7 and/or a protective glass L7' having an object side S13 and an image side S14.
  • the filter L7 and/or the protective glass L7' can be used to correct color deviation and/or protect the image sensor chip IMA located at the imaging surface.
  • the light from the object sequentially passes through each of the surfaces S1 to S14 and is finally imaged on the imaging surface.
  • Table 23 shows the radius of curvature R, thickness d/distance Ti of each lens of the optical lens of Embodiment 12 (it should be understood that the thickness d/distance Ti of the row where S1 is located is the central thickness d1 of the first lens L1, S2 The thickness d/distance T i of the row is the separation distance T 2-3 between the image side S2 of the first lens L1 and the object side S3 of the second lens L2, and so on), the refractive index Nd and the Abbe number Vd .
  • Table 24 shows the conic coefficients and higher-order coefficients that can be used for each aspherical mirror surface in Example 12, where each aspherical surface type can be defined by the formula (1) given in Example 1 above.
  • Fig. 13 shows a schematic structural diagram of an optical lens according to Embodiment 13 of the present application.
  • the optical lens includes a first lens L1 , a second lens L2 , a third lens L3 , a fourth lens L4 , a fifth lens L5 and a sixth lens L6 in sequence from the object side to the image side along the optical axis .
  • the first lens L1 is a convex-concave lens with negative refractive power, the object side S1 is convex, and the image side S2 is concave.
  • the second lens L2 is a meniscus lens with negative refractive power, the object side S3 is concave, and the image side S4 is convex.
  • the third lens L3 is a biconvex lens with positive refractive power, the object side S6 is convex, and the image side S7 is convex.
  • the fourth lens L4 is a biconvex lens with positive refractive power, the object side S8 is convex, and the image side S9 is convex.
  • the fifth lens L5 is a meniscus lens with negative refractive power, the object side S9 is concave, and the image side S10 is convex.
  • the sixth lens L6 is a biconvex lens with positive refractive power, the object side S11 is convex, and the image side S12 is convex.
  • the fourth lens L4 and the fifth lens L5 may be cemented to form a cemented lens.
  • the optical lens may further include a diaphragm STO, and the diaphragm STO may be disposed between the second lens L2 and the third lens L3 to improve imaging quality.
  • the stop STO may be disposed between the second lens L2 and the third lens L3 at a position close to the image side surface S4 of the second lens L2.
  • the optical lens may further include a filter L7 and/or a protective glass L7' having an object side S13 and an image side S14.
  • the filter L7 and/or the protective glass L7' can be used to correct color deviation and/or protect the image sensor chip IMA located at the imaging surface.
  • the light from the object sequentially passes through each of the surfaces S1 to S14 and is finally imaged on the imaging surface.
  • Table 25 shows the curvature radius R, thickness d/distance Ti , refractive index Nd, and Abbe number Vd of each lens of the optical lens of Example 13.
  • Table 26 shows the conic coefficients and higher-order coefficients that can be used for each aspherical mirror surface in Example 13, where each aspherical surface type can be defined by the formula (1) given in Example 1 above.
  • Fig. 14 shows a schematic structural diagram of an optical lens according to Embodiment 14 of the present application.
  • the optical lens includes a first lens L1 , a second lens L2 , a third lens L3 , a fourth lens L4 , a fifth lens L5 and a sixth lens L6 in sequence from the object side to the image side along the optical axis .
  • the first lens L1 is a convex-concave lens with negative refractive power, the object side S1 is convex, and the image side S2 is concave.
  • the second lens L2 is a meniscus lens with negative refractive power, the object side S3 is concave, and the image side S4 is convex.
  • the third lens L3 is a biconvex lens with positive refractive power, the object side S6 is convex, and the image side S7 is convex.
  • the fourth lens L4 is a biconvex lens with positive refractive power, the object side S8 is convex, and the image side S9 is convex.
  • the fifth lens L5 is a meniscus lens with negative refractive power
  • the object side S9 is concave
  • the image side S10 is convex
  • the sixth lens L6 is a convex-concave lens with positive refractive power
  • its object side surface S11 is a convex surface
  • its image side surface S12 is a concave surface.
  • the fourth lens L4 and the fifth lens L5 may be cemented to form a cemented lens.
  • the optical lens may further include a diaphragm STO, and the diaphragm STO may be disposed between the second lens L2 and the third lens L3 to improve imaging quality.
  • the stop STO may be disposed between the second lens L2 and the third lens L3 at a position close to the image side surface S4 of the second lens L2.
  • the optical lens may further include a filter L7 and/or a protective glass L7' having an object side S13 and an image side S14.
  • the filter L7 and/or the protective glass L7' can be used to correct color deviation and/or protect the image sensor chip IMA located at the imaging surface.
  • the light from the object sequentially passes through each of the surfaces S1 to S14 and is finally imaged on the imaging surface.
  • Table 27 shows the curvature radius R, thickness d/distance Ti , refractive index Nd, and Abbe number Vd of each lens of the optical lens of Example 14.
  • Table 28 shows the conic coefficients and higher order coefficients that can be used for each aspherical mirror surface in Example 14, where each aspherical surface type can be defined by the formula (1) given in Example 1 above.
  • Fig. 15 shows a schematic structural diagram of an optical lens according to Embodiment 15 of the present application.
  • the optical lens includes a first lens L1 , a second lens L2 , a third lens L3 , a fourth lens L4 , a fifth lens L5 and a sixth lens L6 in sequence from the object side to the image side along the optical axis .
  • the first lens L1 is a convex-concave lens with negative refractive power, the object side S1 is convex, and the image side S2 is concave.
  • the second lens L2 is a meniscus lens with negative refractive power, the object side S3 is concave, and the image side S4 is convex.
  • the third lens L3 is a biconvex lens with positive refractive power, the object side S6 is convex, and the image side S7 is convex.
  • the fourth lens L4 is a biconvex lens with positive refractive power, the object side S8 is convex, and the image side S9 is convex.
  • the fifth lens L5 is a meniscus lens with negative refractive power
  • the object side S9 is concave
  • the image side S10 is convex
  • the sixth lens L6 is a convex-concave lens with positive refractive power
  • its object side surface S11 is a convex surface
  • its image side surface S12 is a concave surface.
  • the fourth lens L4 and the fifth lens L5 may be cemented to form a cemented lens.
  • the optical lens may further include a diaphragm STO, and the diaphragm STO may be disposed between the second lens L2 and the third lens L3 to improve imaging quality.
  • the stop STO may be disposed between the second lens L2 and the third lens L3 at a position close to the image side surface S4 of the second lens L2.
  • the optical lens may further include a filter L7 and/or a protective glass L7' having an object side S13 and an image side S14.
  • the filter L7 and/or the protective glass L7' can be used to correct color deviation and/or protect the image sensor chip IMA located at the imaging surface.
  • the light from the object sequentially passes through each of the surfaces S1 to S14 and is finally imaged on the imaging surface.
  • Table 29 shows the curvature radius R, thickness d/distance Ti , refractive index Nd, and Abbe number Vd of each lens of the optical lens of Example 15.
  • Table 30 shows the conic coefficients and higher-order coefficients that can be used for each aspherical mirror surface in Example 15, where each aspherical surface type can be defined by the formula (1) given in Example 1 above.
  • Fig. 16 shows a schematic structural diagram of an optical lens according to Embodiment 16 of the present application.
  • the optical lens includes a first lens L1 , a second lens L2 , a third lens L3 , a fourth lens L4 , a fifth lens L5 and a sixth lens L6 in sequence from the object side to the image side along the optical axis .
  • the first lens L1 is a convex-concave lens with negative refractive power, the object side S1 is convex, and the image side S2 is concave.
  • the second lens L2 is a meniscus lens with negative refractive power, the object side S3 is concave, and the image side S4 is convex.
  • the third lens L3 is a biconvex lens with positive refractive power, the object side S6 is convex, and the image side S7 is convex.
  • the fourth lens L4 is a biconvex lens with positive refractive power, the object side S8 is convex, and the image side S9 is convex.
  • the fifth lens L5 is a biconcave lens with negative refractive power, the object side S9 is concave, and the image side S10 is concave.
  • the sixth lens L6 is a biconvex lens with positive refractive power, the object side S11 is convex, and the image side S12 is convex.
  • the fourth lens L4 and the fifth lens L5 may be cemented to form a cemented lens.
  • the optical lens may further include a diaphragm STO, and the diaphragm STO may be disposed between the second lens L2 and the third lens L3 to improve imaging quality.
  • the stop STO may be disposed between the second lens L2 and the third lens L3 at a position close to the image side surface S4 of the second lens L2.
  • the optical lens may further include a filter L7 and/or a protective glass L7' having an object side S13 and an image side S14.
  • the filter L7 and/or the protective glass L7' can be used to correct color deviation and/or protect the image sensor chip IMA located at the imaging surface.
  • the light from the object sequentially passes through each of the surfaces S1 to S14 and is finally imaged on the imaging surface.
  • Table 31 shows the curvature radius R, thickness d/distance Ti , refractive index Nd, and Abbe number Vd of each lens of the optical lens of Example 16.
  • Table 32 shows the conic coefficients and higher-order coefficients that can be used for each aspherical mirror surface in Example 16, where each aspherical surface type can be defined by the formula (1) given in Example 1 above.
  • Fig. 17 shows a schematic structural diagram of an optical lens according to Embodiment 17 of the present application.
  • the optical lens includes a first lens L1 , a second lens L2 , a third lens L3 , a fourth lens L4 , a fifth lens L5 and a sixth lens L6 in sequence from the object side to the image side along the optical axis .
  • the first lens L1 is a convex-concave lens with negative refractive power, the object side S1 is convex, and the image side S2 is concave.
  • the second lens L2 is a meniscus lens with negative refractive power, the object side S3 is concave, and the image side S4 is convex.
  • the third lens L3 is a biconvex lens with positive refractive power, the object side S6 is convex, and the image side S7 is convex.
  • the fourth lens L4 is a biconvex lens with positive refractive power, the object side S8 is convex, and the image side S9 is convex.
  • the fifth lens L5 is a biconcave lens with negative refractive power, the object side S9 is concave, and the image side S10 is concave.
  • the sixth lens L6 is a biconvex lens with positive refractive power, the object side S11 is convex, and the image side S12 is convex.
  • the fourth lens L4 and the fifth lens L5 may be cemented to form a cemented lens.
  • the optical lens may further include a diaphragm STO, and the diaphragm STO may be disposed between the second lens L2 and the third lens L3 to improve imaging quality.
  • the stop STO may be disposed between the second lens L2 and the third lens L3 at a position close to the image side surface S4 of the second lens L2.
  • the optical lens may further include a filter L7 and/or a protective glass L7' having an object side S13 and an image side S14.
  • the filter L7 and/or the protective glass L7' can be used to correct color deviation and/or protect the image sensor chip IMA located at the imaging surface. Light from the object sequentially passes through each of the surfaces S1 to S14 and is finally imaged on the imaging surface.
  • Table 33 shows the curvature radius R, thickness d/distance Ti , refractive index Nd, and Abbe number Vd of each lens of the optical lens of Example 17.
  • Table 34 shows the conic coefficients and higher-order coefficients that can be used for each aspherical mirror surface in Example 17, where each aspherical surface type can be defined by the formula (1) given in Example 1 above.
  • Fig. 18 shows a schematic structural diagram of an optical lens according to Embodiment 18 of the present application.
  • the optical lens includes a first lens L1 , a second lens L2 , a third lens L3 , a fourth lens L4 , a fifth lens L5 and a sixth lens L6 in sequence from the object side to the image side along the optical axis .
  • the first lens L1 is a convex-concave lens with negative refractive power, the object side S1 is convex, and the image side S2 is concave.
  • the second lens L2 is a meniscus lens with negative refractive power, the object side S3 is concave, and the image side S4 is convex.
  • the third lens L3 is a biconvex lens with positive refractive power, the object side S6 is convex, and the image side S7 is convex.
  • the fourth lens L4 is a biconvex lens with positive refractive power, the object side S8 is convex, and the image side S9 is convex.
  • the fifth lens L5 is a meniscus lens with negative refractive power
  • the object side S9 is concave
  • the image side S10 is convex
  • the sixth lens L6 is a convex-concave lens with positive refractive power
  • its object side surface S11 is a convex surface
  • its image side surface S12 is a concave surface.
  • the fourth lens L4 and the fifth lens L5 may be cemented to form a cemented lens.
  • the optical lens may further include a diaphragm STO, and the diaphragm STO may be disposed between the second lens L2 and the third lens L3 to improve imaging quality.
  • the stop STO may be disposed between the second lens L2 and the third lens L3 at a position close to the image side surface S4 of the second lens L2.
  • the optical lens may further include a filter L7 and/or a protective glass L7' having an object side S13 and an image side S14.
  • the filter L7 and/or the protective glass L7' can be used to correct color deviation and/or protect the image sensor chip IMA located at the imaging surface. Light from the object sequentially passes through each of the surfaces S1 to S14 and is finally imaged on the imaging surface.
  • Table 35 shows the curvature radius R, thickness d/distance Ti , refractive index Nd, and Abbe number Vd of each lens of the optical lens of Example 18.
  • Table 36 shows the conic coefficients and higher-order coefficients that can be used for each aspherical mirror surface in Example 18, where each aspherical surface type can be defined by the formula (1) given in Example 1 above.
  • Fig. 19 shows a schematic structural diagram of an optical lens according to Embodiment 19 of the present application.
  • the optical lens includes a first lens L1 , a second lens L2 , a third lens L3 , a fourth lens L4 , a fifth lens L5 and a sixth lens L6 in sequence from the object side to the image side along the optical axis .
  • the first lens L1 is a convex-concave lens with negative refractive power, the object side S1 is convex, and the image side S2 is concave.
  • the second lens L2 is a meniscus lens with negative refractive power, the object side S3 is concave, and the image side S4 is convex.
  • the third lens L3 is a biconvex lens with positive refractive power, the object side S6 is convex, and the image side S7 is convex.
  • the fourth lens L4 is a biconvex lens with positive refractive power, the object side S8 is convex, and the image side S9 is convex.
  • the fifth lens L5 is a meniscus lens with negative refractive power
  • the object side S9 is concave
  • the image side S10 is convex
  • the sixth lens L6 is a convex-concave lens with positive refractive power
  • its object side surface S11 is a convex surface
  • its image side surface S12 is a concave surface.
  • the fourth lens L4 and the fifth lens L5 may be cemented to form a cemented lens.
  • the optical lens may further include a diaphragm STO, and the diaphragm STO may be disposed between the second lens L2 and the third lens L3 to improve imaging quality.
  • the stop STO may be disposed between the second lens L2 and the third lens L3 at a position close to the image side surface S4 of the second lens L2.
  • the optical lens may further include a filter L7 and/or a protective glass L7' having an object side S13 and an image side S14.
  • the filter L7 and/or the protective glass L7' can be used to correct color deviation and/or protect the image sensor chip IMA located at the imaging surface.
  • the light from the object sequentially passes through each of the surfaces S1 to S14 and is finally imaged on the imaging surface.
  • Table 37 shows the curvature radius R, thickness d/distance Ti , refractive index Nd, and Abbe number Vd of each lens of the optical lens of Example 19.
  • Table 38 shows conic coefficients and higher-order coefficients that can be used for each aspherical mirror surface in Example 19, where each aspherical surface type can be defined by the formula (1) given in Example 1 above.
  • Fig. 20 shows a schematic structural diagram of an optical lens according to Embodiment 20 of the present application.
  • the optical lens includes a first lens L1 , a second lens L2 , a third lens L3 , a fourth lens L4 , a fifth lens L5 and a sixth lens L6 in sequence from the object side to the image side along the optical axis .
  • the first lens L1 is a convex-concave lens with negative refractive power, the object side S1 is convex, and the image side S2 is concave.
  • the second lens L2 is a meniscus lens with positive refractive power, the object side S3 is concave, and the image side S4 is convex.
  • the third lens L3 is a biconvex lens with positive refractive power, the object side S6 is convex, and the image side S7 is convex.
  • the fourth lens L4 is a biconvex lens with positive refractive power, the object side S8 is convex, and the image side S9 is convex.
  • the fifth lens L5 is a meniscus lens with negative refractive power
  • the object side S9 is concave
  • the image side S10 is convex
  • the sixth lens L6 is a convex-concave lens with positive refractive power
  • its object side surface S11 is a convex surface
  • its image side surface S12 is a concave surface.
  • the fourth lens L4 and the fifth lens L5 may be cemented to form a cemented lens.
  • the optical lens may further include a diaphragm STO, and the diaphragm STO may be disposed between the second lens L2 and the third lens L3 to improve imaging quality.
  • the stop STO may be disposed between the second lens L2 and the third lens L3 at a position close to the image side surface S4 of the second lens L2.
  • the optical lens may further include a filter L7 and/or a protective glass L7' having an object side S13 and an image side S14.
  • the filter L7 and/or the protective glass L7' can be used to correct color deviation and/or protect the image sensor chip IMA located at the imaging surface.
  • the light from the object sequentially passes through each of the surfaces S1 to S14 and is finally imaged on the imaging surface.
  • Table 39 shows the curvature radius R, thickness d/distance Ti , refractive index Nd, and Abbe number Vd of each lens of the optical lens of Example 20.
  • Table 40 shows the conic coefficients and higher-order coefficients that can be used for each aspherical mirror surface in Example 20, where each aspherical surface type can be defined by the formula (1) given in Example 1 above.
  • Fig. 21 shows a schematic structural diagram of an optical lens according to Embodiment 21 of the present application.
  • the optical lens includes a first lens L1 , a second lens L2 , a third lens L3 , a fourth lens L4 , a fifth lens L5 and a sixth lens L6 in sequence from the object side to the image side along the optical axis .
  • the first lens L1 is a convex-concave lens with negative refractive power, the object side S1 is convex, and the image side S2 is concave.
  • the second lens L2 is a meniscus lens with negative refractive power, the object side S3 is concave, and the image side S4 is convex.
  • the third lens L3 is a biconvex lens with positive refractive power, the object side S6 is convex, and the image side S7 is convex.
  • the fourth lens L4 is a biconvex lens with positive refractive power, the object side S8 is convex, and the image side S9 is convex.
  • the fifth lens L5 is a meniscus lens with negative refractive power
  • the object side S9 is concave
  • the image side S10 is convex
  • the sixth lens L6 is a convex-concave lens with positive refractive power
  • its object side surface S11 is a convex surface
  • its image side surface S12 is a concave surface.
  • the fourth lens L4 and the fifth lens L5 may be cemented to form a cemented lens.
  • the optical lens may further include a diaphragm STO, and the diaphragm STO may be disposed between the second lens L2 and the third lens L3 to improve imaging quality.
  • the stop STO may be disposed between the second lens L2 and the third lens L3 at a position close to the image side surface S4 of the second lens L2.
  • the optical lens may further include a filter L7 and/or a protective glass L7' having an object side S13 and an image side S14.
  • the filter L7 and/or the protective glass L7' can be used to correct color deviation and/or protect the image sensor chip IMA located at the imaging surface.
  • the light from the object sequentially passes through each of the surfaces S1 to S14 and is finally imaged on the imaging surface.
  • Table 41 shows the curvature radius R, thickness d/distance Ti , refractive index Nd, and Abbe number Vd of each lens of the optical lens of Example 21.
  • Table 42 shows the conic coefficients and higher-order coefficients that can be used for each aspherical mirror surface in Example 21, where each aspherical surface type can be defined by the formula (1) given in Example 1 above.
  • Fig. 22 shows a schematic structural diagram of an optical lens according to Embodiment 22 of the present application.
  • the optical lens includes a first lens L1, a second lens L2, a third lens L3, a fourth lens L4, a fifth lens L5 and a sixth lens L6 in sequence from the object side to the image side along the optical axis .
  • the first lens L1 is a convex-concave lens with negative refractive power, the object side S1 is convex, and the image side S2 is concave.
  • the second lens L2 is a meniscus lens with negative refractive power, the object side S3 is concave, and the image side S4 is convex.
  • the third lens L3 is a biconvex lens with positive refractive power, the object side S6 is convex, and the image side S7 is convex.
  • the fourth lens L4 is a biconvex lens with positive refractive power, the object side S8 is convex, and the image side S9 is convex.
  • the fifth lens L5 is a meniscus lens with negative refractive power
  • the object side S9 is concave
  • the image side S10 is convex
  • the sixth lens L6 is a convex-concave lens with positive refractive power
  • its object side surface S11 is a convex surface
  • its image side surface S12 is a concave surface.
  • the fourth lens L4 and the fifth lens L5 may be cemented to form a cemented lens.
  • the optical lens may further include a diaphragm STO, and the diaphragm STO may be disposed between the second lens L2 and the third lens L3 to improve imaging quality.
  • the stop STO may be disposed between the second lens L2 and the third lens L3 at a position close to the image side surface S4 of the second lens L2.
  • the optical lens may further include a filter L7 and/or a protective glass L7' having an object side S13 and an image side S14.
  • the filter L7 and/or the protective glass L7' can be used to correct color deviation and/or protect the image sensor chip IMA located at the imaging surface.
  • the light from the object sequentially passes through each of the surfaces S1 to S14 and is finally imaged on the imaging surface.
  • Table 43 shows the curvature radius R, thickness d/distance Ti , refractive index Nd, and Abbe number Vd of each lens of the optical lens of Example 22.
  • Table 44 shows the conic coefficients and higher-order coefficients that can be used for each aspherical mirror surface in Example 22, where each aspherical surface type can be defined by the formula (1) given in Example 1 above.
  • Examples 1 to 11 satisfy the relationships shown in Table 45-1 and Table 45-2 below, respectively.
  • Table 45-1 and Table 45-2 TTL, F, H, D, d8i, F45, F1, F2, F3, F4, F5, F6, BFL, d23, R1, R3, R4, R8, R10,
  • the unit of R11, R12, T2, T3, T4, T5 is millimeter (mm)
  • the unit of FOV is degree (°)
  • the unit of ⁇ is radian (rad).
  • Examples 12 to 22 satisfy the relationships shown in Table 46-1 and Table 46-2 below, respectively.
  • TTL, F, H, D, D11, T8 -i , T8-11 , T3-13 , d2, R3, R4, R6, R7, R8, R11 , R12, SAG11, F45, F1, F2, F3, F4, F5, F6 are in millimeters (mm), FOV is in degrees (°), and ⁇ is in radians (rad).
  • Example 21 Example 22 TTL 34.100 26.599 26.783 25.155 29.827 34.163 F 5.070 5.079 5.084 5.352 5.300 5.090 H 8.064 8.064 8.064 8.640 8.064 FOV 120.000 120.000 120.000 120.000 120.000 D 9.000 8.794 8.400 7.600 8.763 8.960 T8 -i 14.458 11.503 12.594 11.557 13.556 14.502 T8-11 10.901 7.918 9.297 8.959 10.099 10.829 T 3-13 27.447 19.887 20.991 20.397 23.786 27.689 D11/2 4.680 3.730 3.453 3.552 4.020 5.060 SAG11 0.625 -0.222 -0.355 0.209 0.005 0.317 F45 61.300 21.837 18.562 24.474 20.717 24.354 F1 -9.470 -9.828 -8.982 -8
  • the present application also provides an electronic device, which may include the optical lens according to the above-mentioned embodiments of the present application and an imaging element for converting an optical image formed by the optical lens into an electrical signal.
  • the electronic device can be a stand-alone electronic device such as a detection range camera, or an imaging module integrated on a detection range device such as.
  • the electronic device may also be an independent imaging device such as a vehicle-mounted camera, or an imaging module integrated in, for example, an assisted driving system.

Landscapes

  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Optics & Photonics (AREA)
  • Lenses (AREA)

Abstract

本申请公开了一种光学镜头和包括该光学镜头的电子设备。该光学镜头沿着光轴由物侧至像侧依序包括:具有负光焦度的第一透镜,其像侧面为凹面;具有光焦度的第二透镜,其物侧面为凹面,像侧面为凸面;具有正光焦度的第三透镜,其物侧面为凸面,像侧面为凸面;具有光焦度的第四透镜,其物侧面为凸面;具有光焦度的第五透镜,其像侧面为凸面;以及具有光焦度的第六透镜。

Description

光学镜头及电子设备
相关申请的交叉引用
本申请要求于2020年11月13日提交至中国国家知识产权局(CNIPA)的专利申请号为202011268322.6的中国专利申请以及于2021年3月12日提交至中国国家知识产权局的专利申请号为202110270238.6的中国专利申请的优先权和权益,上述中国专利申请通过引用整体并入本文。
技术领域
本申请涉及光学元件领域,更具体地,涉及一种光学镜头及电子设备。
背景技术
随着自动驾驶技术的发展,车载镜头作为自动驾驶辅助系统的关键部件,其对自动驾驶车辆的安全驾驶起着至关重要的作用。用户对车载镜头的尺寸、解像能力以及成像质量的要求也越来越高。特别地,自动驾驶辅助系统中的车载镜头与普通的光学镜头相比有着特殊的要求。如车载光学镜头要求前端口径尽量小,通光能力强,能适应外界环境的明暗变化,尤其是,自动驾驶车辆对光学镜头有着更高的成像清晰度和无鬼像的要求。
随着光学镜头成像质量的提高,光学镜头在各领域中得到了广泛应用,例如,光学镜头在智能检测、安防监控、智能手机以及汽车辅助驾驶等多种领域中均发挥着不可替代的作用。与此同时,各大领域的镜头生产商为了提高自身产品的竞争力,开始不遗余力地在镜头性能的研发上投入大量时间和精力。
近几年,随着自动驾驶辅助系统的飞速发展,车载镜头作为自动驾驶辅助系统获取外界信息的关键部件,其成像质量也得到了大幅度提升,市场上对车载镜头的要求也越来越多。例如,为了达到安全驾驶及特殊安装位置的要求,自动驾驶辅助系统中的车载镜头需要比普通的光学镜头具有更加特殊且严格的要求。
一方面,自动驾驶辅助系统中的车载镜头需要能够在如夜间或阴雨天等较暗环境下正常使用;同时还需要能够准确判断当前的路况。另一方面,在实际中车载镜头的应用环境可能存在较大的温差(如夏天的高温和冬天的低温环境),在这种条件下应用的镜头多会产生像面的偏移,使镜头成像模糊,影响正常使用。目前市场上大多数的车载镜头并不能很好地保证在高低温环境下均能清晰成像。
发明内容
本申请一方面提供了一种光学镜头。该光学镜头沿着光轴由物侧至像侧依序包括:具有负光焦度的第一透镜,其像侧面为凹面;具有光焦度的第二透镜,其物侧面为凹面,像侧面为凸面;具有正光焦度的第三透镜,其物侧面为凸面,像侧面为凸面;具有光焦度的第四透镜,其物侧面为凸面;具有光焦度的第五透镜,其像侧面为凸面;以及具有光焦度的第六透镜。
在一个实施方式中,第一透镜的物侧面为凸面。
在一个实施方式中,第一透镜的物侧面为凹面。
在一个实施方式中,第二透镜具有负光焦度。
在一个实施方式中,第二透镜具有正光焦度。
在一个实施方式中,第四透镜具有正光焦度,其像侧面为凸面。
在一个实施方式中,第四透镜具有负光焦度,其像侧面为凹面。
在一个实施方式中,第五透镜具有负光焦度,其物侧面为凹面。
在一个实施方式中,第五透镜具有正光焦度,其物侧面为凸面。
在一个实施方式中,第六透镜具有正光焦度,其物侧面为凸面,像侧面为凹面。
在一个实施方式中,第六透镜具有正光焦度,其物侧面为凹面,像侧面为凸面。
在一个实施方式中,第六透镜具有正光焦度,其物侧面为凸面,像侧面为凸面。
在一个实施方式中,第六透镜具有负光焦度,其物侧面为凸面,像侧面为凹面。
在一个实施方式中,第六透镜具有负光焦度,其物侧面为凹面,像侧面为凸面。
在一个实施方式中,第六透镜具有负光焦度,其物侧面为凹面,像侧面为凹面。
在一个实施方式中,第四透镜和第五透镜胶合形成胶合透镜。
在一个实施方式中,第六透镜可具有非球面镜面。
在一个实施方式中,第一透镜的物侧面的中心至光学镜头的成像面在光轴上的距离TTL与光学镜头的总有效焦距F可满足:TTL/F≤7。
在一个实施方式中,光学镜头的最大视场角FOV、第一透镜的物侧面的中心至光学镜头的成像面在光轴上的距离TTL以及光学镜头的最大视场角对应的像高H可满足:TTL/H/FOV≤0.05。
在一个实施方式中,光学镜头的最大视场角FOV、光学镜头的最大视场角对应的第一透镜的物侧面的最大通光口径D以及光学镜头的最大视场角对应的像高H可满足:D/H/FOV≤0.03。
在一个实施方式中,第四透镜和第五透镜胶合形成的胶合透镜的有效焦距F45与光学镜头的总有效焦距F可满足:1≤F45/F≤8。
在一个实施方式中,光学镜头的最大视场角对应的第一透镜的像侧面的镜片边缘斜率K2可满足:arctan(1/K2)≥35。
在一个实施方式中,光学镜头的最大视场角FOV、光学镜头的总有效焦距F以及光学镜头的最大视场角对应的像高H可满足:(FOV×F)/H≥70。
在一个实施方式中,第四透镜的物侧面的中心至光学镜头的成像面在光轴上的距离d8i与第一透镜的物侧面的中心至光学镜头的成像面在光轴上的距离TTL可满足:d8i/TTL≥0.3。
在一个实施方式中,第二透镜的物侧面的曲率半径R3、第二透镜的像侧面的曲率半径R4以及第二透镜的中心厚度T2可满足:0.2≤|R4/(|R3|+T2)|≤1.2。
在一个实施方式中,第二透镜至第四透镜中具有最大中心厚度的第n1透镜的中心厚度Tn1与第二透镜至第四透镜中具有最小中心厚度的第m1透镜的中心厚度Tm1可满足:Tn1/Tm1≤2,其中,n1和m1选自2、3、4。
在一个实施方式中,第二透镜、第三透镜和第五透镜中具有最大中心厚度的第n2透镜的中心厚度Tn2与第二透镜、第三透镜和第五透镜中具有最小中心厚度的第m2透镜的中心厚度Tm2可满足:Tn2/Tm2≤2,其中,n2和m2选自2、3、5。
在一个实施方式中,第一透镜的折射率Nd1与第二透镜的折射率Nd2可满足:0.5≤Nd1/Nd2≤1.5。
在一个实施方式中,第三透镜的有效焦距F3与第五透镜的有效焦距F5可满足:1.2≤|F3/F5|≤2.8。
在一个实施方式中,第三透镜的有效焦距F3与第四透镜的有效焦距F4可满足:1≤|F3/F4|≤3。
在一个实施方式中,第三透镜的有效焦距F3、第四透镜的有效焦距F4、第三透镜的折射率温度系数dn/dt(3)以及第四透镜的折射率温度系数dn/dt(4)可满足:-2×10 6≤(F3+F4)/(dn/dt(3)+dn/dt(4))≤-4×10 5
在一个实施方式中,第三透镜的有效焦距F3、第五透镜的有效焦距F5、第三透镜的折射率温度系数dn/dt(3)以及第五透镜的折射率温度系数dn/dt(5)可满足:-2×10 6≤(F3+F5)/(dn/dt(3)+dn/dt(5))≤-4×10 5
在一个实施方式中,光学镜头的最大视场角的弧度θ、光学镜头的总有效焦距F以及光学镜头的最大视场角对应的像高H可满足:(H-F×θ)/(F×θ)≤-0.1。
在一个实施方式中,光学镜头的最大视场角对应的第六透镜的物侧面的镜片边缘斜率K11可满足:arctan(1/K11)≤-4。
在一个实施方式中,光学镜头的光圈值FNO与光学镜头的总有效焦距F可满足:FNO/F≥0.1。
在一个实施方式中,第四透镜的有效焦距F4与第五透镜的有效焦距F5可满足:0.2≤|F4/F5|≤3。
在一个实施方式中,第三透镜的有效焦距F3与光学镜头的总有效焦距F可满足:1≤|F3/F|≤4。
在一个实施方式中,第六透镜的像侧面的中心至光学镜头的成像面在光轴上的距离BFL与第一透镜的物侧面的中心至光学镜头的成像面在光轴上的距离TTL可满足:BFL/TTL≥0.05。
在一个实施方式中,第二透镜的像侧面的中心至第三透镜的物侧面的中心在光轴上的间隔距离d23与第一透镜的物侧面的中心至光学镜头的成像面在光轴上的距离TTL可满足:0.04≤d23/TTL≤0.2。
在一个实施方式中,第六透镜的有效焦距F6与光学镜头的总有效焦距F可满足:|F6/F|≥3.5。
在一个实施方式中,第一透镜的有效焦距F1与光学镜头的总有效焦距F可满足:-2.0≤F1/F≤-1.0。
在一个实施方式中,第五透镜的像侧面的曲率半径R10与光学镜头的总有效焦距F可满足:-6.0≤R10/F≤-1.0。
在一个实施方式中,第二透镜的中心厚度T2与第一透镜的物侧面的中心至光学镜头的成像面在光轴上的距离TTL可满足:T2/TTL≥0.15。
本申请另一方面提供了一种光学镜头。该光学镜头沿着光轴由物侧至像侧依序包括:第一透镜、第二透镜、第三透镜、第四透镜、第五透镜以及第六透镜;第一透镜具有负光焦度;第三透镜具有正光焦度;以及第四透镜的物侧面的中心至光学镜头的成像面在光轴上的距离d8i与第一透镜的物侧面的中心至光学镜头的成像面在光轴上的距离TTL可满足:d8i/TTL≥0.3。
本申请的另一方面提供一种光学镜头,该光学镜头沿光轴从物侧到像侧依序包括:具有负光焦度的第一透镜,其物侧面为凸面,像侧面为凹面;具有光焦度的第二透镜,其物侧面为凹面,像侧面为凸面;具有正光焦度的第三透镜,其物侧面为凸面,像侧面为凸面;具有正光焦度的第四透镜,其物侧面为凸面,像侧面为凸面;具有负光焦度的第五透镜,其物侧面为凹面;以及具 有正光焦度的第六透镜,其物侧面为凸面。
在一个实施方式中,第五透镜的像侧面为凸面。
在一个实施方式中,第五透镜的像侧面为凹面。
在一个实施方式中,第六透镜的像侧面为凹面。
在一个实施方式中,第六透镜的像侧面为凸面。
在一个实施方式中,第四透镜和第五透镜胶合形成胶合透镜。
在一个实施方式中,第一透镜和第六透镜具有非球面镜面。
在一个实施方式中,第一透镜的物侧面的中心至光学镜头的成像面在光轴上的距离TTL与光学镜头的总有效焦距F可满足:4.5≤TTL/F≤7。
在一个实施方式中,第一透镜的物侧面的中心至光学镜头的成像面在光轴上的距离TTL、光学镜头的最大视场角FOV以及光学镜头的最大视场角对应的像高H可满足:TTL/H/FOV≤0.05。
在一个实施方式中,光学镜头的最大视场角FOV、光学镜头的最大视场角对应的第一透镜的物侧面的最大通光口径D以及光学镜头的最大视场角对应的像高H可满足:D/H/FOV≤0.03。
在一个实施方式中,光学镜头的最大视场角FOV、光学镜头的总有效焦距F以及光学镜头的最大视场角对应的像高H可满足:(FOV×F)/H≥65。
在一个实施方式中,第一透镜的有效焦距F1与光学镜头的总有效焦距F可满足:-2.5≤F1/F≤-1。
在一个实施方式中,光学镜头的最大视场角对应的第一透镜的像侧面的镜片边缘斜率K2可满足:arctan(1/K2)≥35。
在一个实施方式中,第二透镜的物侧面的曲率半径R3与第二透镜的像侧面的曲率半径R4可满足:0.6≤R3/R4≤1.2。
在一个实施方式中,第二透镜的物侧面的曲率半径R3、第二透镜的像侧面的曲率半径R4以及第二透镜在光轴上的中心厚度d2可满足:1≤R3/(R4+d2)≤2。
在一个实施方式中,第二透镜在光轴上的中心厚度d2与第一透镜的物侧面的中心至光学镜头的成像面在光轴上的距离TTL可满足:0.15≤d2/TTL≤0.3。
在一个实施方式中,第三透镜的有效焦距F3与光学镜头的总有效焦距F可满足:1.5≤F3/F≤3.5。
在一个实施方式中,第三透镜的像侧面的曲率半径R7与光学镜头的总有效焦距F可满足:R7/F≤-2。
在一个实施方式中,第三透镜的有效焦焦距F3与第四透镜的有效焦距F4可满足:1≤F3/F4≤2.5。
在一个实施方式中,第四透镜和第五透镜胶合形成的胶合透镜的有效焦距F45与光学镜头的总有效焦距F可满足:2.5≤F45/F≤13。
在一个实施方式中,第四透镜的阿贝数Vd4与第五透镜的阿贝数Vd5可满足:2.6≤Vd4/Vd5≤5.3。
在一个实施方式中,第四透镜的物侧面的中心至光学镜头的成像面在光轴上的距离T 8-i与第一透镜的物侧面的中心至光学镜头的成像面在光轴上的距离TTL可满足:0.35≤T 8-i/TTL≤0.52。
在一个实施方式中,第四透镜的物侧面的中心至第六透镜的像侧面的中心在光轴上的距离 T 8-11与第四透镜的物侧面的曲率半径R8可满足:1≤(T 8-11)/R8≤2。
在一个实施方式中,光学镜头还包括位于第六透镜和成像面之间的辅助镜片,第二透镜的物侧面的中心至辅助镜片的像侧面的中心在光轴上的距离T 3-13与第一透镜的物侧面的中心至光学镜头的成像面在光轴上的距离TTL可满足:0.7≤(T 3-13)/TTL≤0.9。
在一个实施方式中,光学镜头的最大视场角对应的第六透镜的像侧面的镜片边缘斜率K12可满足:arctan(1/K12)≤0。
在一个实施方式中,第六透镜的物侧面的曲率半径R11与光学镜头的总有效焦距F可满足:2≤R11/F≤6。
在一个实施方式中,光学镜头的最大视场角对应的第六透镜的物侧面的最大通光口径处的矢高SAG11与光学镜头的最大视场角对应的第六透镜的物侧面的最大通光口径D11可满足:|SAG11/D11/2|≤0.22。
在一个实施方式中,光学镜头的最大视场角对应的像高H、光学镜头的总有效焦距F以及以弧度为单位的光学镜头的最大视场角θ可满足:0.3≤(H/2)/(F×tan(θ/2))≤1.6。
在一个实施方式中,光学镜头的最大视场角对应的像高H、光学镜头的最大视场角对应的第一透镜的物侧面的最大通光口径D以及以弧度为单位的光学镜头的最大视场角θ可满足:D/H/θ≤1.0。
本申请另一方面提供了一种光学镜头。光学镜头沿光轴由物侧至像侧依序包括:具有负光焦度的第一透镜;具有光焦度的第二透镜;具有正光焦度的第三透镜;具有正光焦度的第四透镜;具有负光焦度的第五透镜;以及具有正光焦度的第六透镜。光学镜头的最大视场角对应的像高H、光学镜头的总有效焦距F以及以弧度为单位的光学镜头的最大视场角θ可满足:0.3≤(H/2)/(F×tan(θ/2))≤1.6。
本申请另一方面提供了一种电子设备。该电子设备包括根据本申请提供的光学镜头及用于将光学镜头形成的光学图像转换为电信号的成像元件。
本申请采用了六片透镜,通过优化设置各透镜的形状、光焦度等,使光学镜头具有高解像、小型化、较小前端口径、较佳温度性能、大视场角、无鬼像、大中心角分辨率、低成本、高成像品质等至少一个有益效果。
附图说明
结合附图,通过以下非限制性实施方式的详细描述,本申请的其它特征、目的和优点将变得更加明显。在附图中:
图1为示出根据本申请实施例1的光学镜头的结构示意图;
图2为示出根据本申请实施例2的光学镜头的结构示意图;
图3为示出根据本申请实施例3的光学镜头的结构示意图;
图4为示出根据本申请实施例4的光学镜头的结构示意图;
图5为示出根据本申请实施例5的光学镜头的结构示意图;
图6为示出根据本申请实施例6的光学镜头的结构示意图;
图7为示出根据本申请实施例7的光学镜头的结构示意图;
图8为示出根据本申请实施例8的光学镜头的结构示意图;
图9为示出根据本申请实施例9的光学镜头的结构示意图;
图10为示出根据本申请实施例10的光学镜头的结构示意图;
图11为示出根据本申请实施例11的光学镜头的结构示意图;
图12为示出根据本申请实施例12的光学镜头的结构示意图;
图13为示出根据本申请实施例13的光学镜头的结构示意图;
图14为示出根据本申请实施例14的光学镜头的结构示意图;
图15为示出根据本申请实施例15的光学镜头的结构示意图;
图16为示出根据本申请实施例16的光学镜头的结构示意图;
图17为示出根据本申请实施例17的光学镜头的结构示意图;
图18为示出根据本申请实施例18的光学镜头的结构示意图;
图19为示出根据本申请实施例19的光学镜头的结构示意图;
图20为示出根据本申请实施例20的光学镜头的结构示意图;
图21为示出根据本申请实施例21的光学镜头的结构示意图;以及
图22为示出根据本申请实施例22的光学镜头的结构示意图。
具体实施方式
为了更好地理解本申请,将参考附图对本申请的各个方面做出更详细的说明。应理解,这些详细说明只是对本申请的示例性实施方式的描述,而非以任何方式限制本申请的范围。在说明书全文中,相同的附图标号指代相同的元件。表述“和/或”包括相关联的所列项目中的一个或多个的任何和全部组合。
应注意,在本说明书中,第一、第二、第三等的表述仅用于将一个特征与另一个特征区分开来,而不表示对特征的任何限制。因此,在不背离本申请的教导的情况下,下文中讨论的第一透镜也可被称作第二透镜或第三透镜。
在附图中,为了便于说明,已稍微夸大了透镜的厚度、尺寸和形状。具体来讲,附图中所示的球面或非球面的形状通过示例的方式示出。即,球面或非球面的形状不限于附图中示出的球面或非球面的形状。附图仅为示例而并非严格按比例绘制。
在本文中,近轴区域是指光轴附近的区域。若透镜表面为凸面且未界定该凸面位置时,则表示该透镜表面至少于近轴区域为凸面;若透镜表面为凹面且未界定该凹面位置时,则表示该透镜表面至少于近轴区域为凹面。每个透镜最靠近被摄物的表面称为该透镜的物侧面,每个透镜最靠近成像侧的表面称为该透镜的像侧面。
还应理解的是,用语“包括”、“包括有”、“具有”、“包含”和/或“包含有”,当在本说明书中使用时表示存在所陈述的特征、元件和/或部件,但不排除存在或附加有一个或多个其它特征、元件、部件和/或它们的组合。此外,当诸如“...中的至少一个”的表述出现在所列特征的列表之后时,修饰整个所列特征,而不是修饰列表中的单独元件。此外,当描述本申请的实施方式时,使用“可”表示“本申请的一个或多个实施方式”。并且,用语“示例性的”旨在指代示例或举例说明。
除非另外限定,否则本文中使用的所有用语(包括技术用语和科学用语)均具有与本申请所属领域普通技术人员的通常理解相同的含义。还应理解的是,用语(例如在常用词典中定义的用语)应被解释为具有与它们在相关技术的上下文中的含义一致的含义,并且将不被以理想化或过度形式化意义解释,除非本文中明确如此限定。
需要说明的是,在不冲突的情况下,本申请中的实施例及实施例中的特征可以相互组合。下面将 参考附图并结合实施例来详细说明本申请。
以下对本申请的特征、原理和其它方面进行详细描述。
在示例性实施方式中,光学镜头包括例如六片具有光焦度的透镜,即第一透镜、第二透镜、第三透镜、第四透镜、第五透镜以及第六透镜。这六片透镜沿着光轴从物侧至像侧依序排列。
在示例性实施方式中,光学镜头还可进一步包括设置于成像面的感光元件。可选地,设置于成像面的感光元件可以是感光耦合元件(CCD)或互补性氧化金属半导体元件(CMOS)。
在示例性实施方式中,第一透镜可具有负光焦度。第一透镜可具有凸凹面型或凹凹面型。第一透镜具有负光焦度,且像侧面为凹面,有利于尽可能地收集大视场光线进入后方光学系统,固定边缘区域大角度光线的方向走势,减小大角度光线的成像像差,有利于提高解像。当第一透镜的物侧面为凸面时,可优选使用高折射率材料(如折射率Nd1≥1.8);当第一透镜的物侧面为凹面时,可优选使用低折射率材料(如折射率Nd1≥1.5),这样有利于减小光学镜头的前端口径,提高成像质量。在实际应用中,考虑到车载镜头在室外安装后的使用环境,可能会处于雨雪等恶劣天气环境中,第一透镜为凸凹面型的弯月透镜,有利于水滴的滑落,以减小对成像的影响。第一透镜可优选为非球面镜片,以进一步提高解像质量。
在示例性实施方式中,第二透镜可具有正光焦度或负光焦度。第二透镜可具有凹凸面型。第二透镜的这种光焦度和面型设置,有利于收集从第一透镜中射出的光线,以使光线走势平稳过渡。优选地,第二透镜的形状可接近于同心圆形状,这样可以使光学镜头的周边光线与中心光线存有光程差,发散中心光线,进入后方光学镜头,并且还有利于减小镜头的前端口径,减小镜头体积,有利于实现小型化,降低成本。
在示例性实施方式中,第三透镜可具有正光焦度。第三透镜可具有凸凸面型。第三透镜具有正光焦度,可以会聚光线,使发散的光线顺利进入后方光学镜头,有利于压缩光线,可以进一步使光线走势平稳过渡。
在示例性实施方式中,第四透镜可具有正光焦度或负光焦度。第四透镜可具有凸凸面型或凸凹面型。
在示例性实施方式中,第五透镜可具有正光焦度或负光焦度。第五透镜可具有凸凸面型或凹凸面型。
在示例性实施方式中,第六透镜可具有正光焦度或负光焦度。第六透镜可具有凸凹面型、凹凸面型、凸凸面型或凹凹面型。第六透镜的这种光焦度和面型设计,可以将前方的光线平缓过渡至光学镜头的成像面,减小光学总长,校正像散和场曲,提高光学镜头的解像能力。优选地,第六透镜可具有非球面镜面,以提高解像质量。
在示例性实施方式中,根据本申请的光学镜头可满足:TTL/F≤7,其中,TTL是第一透镜的物侧面的中心至光学镜头的成像面在光轴上的距离,F是光学镜头的总有效焦距。更具体地,TTL和F进一步可满足:TTL/F≤6.5。满足TTL/F≤7,有利于实现小型化。
在示例性实施方式中,根据本申请的光学镜头可满足:TTL/H/FOV≤0.05,其中,FOV是光学镜头的最大视场角,TTL是第一透镜的物侧面的中心至光学镜头的成像面在光轴上的距离,H是光学镜头的最大视场角对应的像高。更具体地,TTL、H和FOV进一步可满足:TTL/H/FOV≤0.03。满足TTL/H/FOV≤0.05,有利于实现小型化。
在示例性实施方式中,根据本申请的光学镜头可满足:D/H/FOV≤0.03,其中,FOV是光学镜头的最大视场角,D是光学镜头的最大视场角对应的第一透镜的物侧面的最大通光口径,H是光学镜头 的最大视场角对应的像高。更具体地,D、H和FOV进一步可满足:D/H/FOV≤0.01。满足D/H/FOV≤0.03,有利于减小前端口径,有利于实现小型化。
在示例性实施方式中,根据本申请的光学镜头可满足:1≤F45/F≤8,其中,F45是第四透镜和第五透镜胶合形成的胶合透镜的有效焦距,F是光学镜头的总有效焦距。更具体地,F45和F进一步可满足:2≤F45/F≤6。满足1≤F45/F≤8,可以控制第三透镜至第六透镜之间的光线走势,减小由于大角度光线经第三透镜射入引起的像差,同时有利于使光学镜头的结构紧凑,有利于小型化。
在示例性实施方式中,根据本申请的光学镜头可满足:arctan(1/K2)≥35,其中,K2是光学镜头的最大视场角对应的第一透镜的像侧面的镜片边缘斜率,arctan(1/K2)是光学镜头的最大视场角对应的第一透镜的像侧面的张角。更具体地,K2进一步可满足:arctan(1/K2)≥42。满足arctan(1/K2)≥35,可以使第一镜头像侧面的张角较大,有利于使经由第一透镜进入的大角度周边光线快速聚焦,以提高成像质量。
在示例性实施方式中,根据本申请的光学镜头可满足:(FOV×F)/H≥70,其中,FOV是光学镜头的最大视场角,F是光学镜头的总有效焦距,H是光学镜头的最大视场角对应的像高。更具体地,FOV、F和H进一步可满足:(FOV×F)/H≥75。满足(FOV×F)/H≥70,有利于使光学镜头同时具有长焦和大视场角的特性,有助于在提高光学镜头的成像效果的同时,还可以兼顾大视场角,实现大角度分辨率。
在示例性实施方式中,根据本申请的光学镜头可满足:d8i/TTL≥0.3,其中,d8i是第四透镜的物侧面的中心至光学镜头的成像面在光轴上的距离,TTL是第一透镜的物侧面的中心至光学镜头的成像面在光轴上的距离。更具体地,d8i和TTL进一步可满足:d8i/TTL≥0.4。满足d8i/TTL≥0.3,有利于消除鬼像。
在示例性实施方式中,根据本申请的光学镜头可满足:0.2≤|R4/(|R3|+T2)|≤1.2,其中,R3是第二透镜的物侧面的曲率半径,R4是第二透镜的像侧面的曲率半径,T2是第二透镜的中心厚度。更具体地,R4、R3和T2进一步可满足:0.4≤|R4/(|R3|+T2)|≤1。满足0.2≤|R4/(|R3|+T2)|≤1.2,有利于使第二透镜的形状接近于同心圆形状,这样可以使光学镜头的周边光线与中心光线存有光程差,发散中心光线,进入后方光学镜头,并且还有利于减小镜头的前端口径,减小镜头体积,有利于实现小型化,降低成本。
在示例性实施方式中,根据本申请的光学镜头可满足:Tn1/Tm1≤2,其中,Tn1是第二透镜至第四透镜中具有最大中心厚度的第n1透镜的中心厚度,Tm1是第二透镜至第四透镜中具有最小中心厚度的第m1透镜的中心厚度,n1和m1选自2、3、4。更具体地,Tn1和Tm1进一步可满足:Tn1/Tm1≤1.5,满足Tn1/Tm1≤2,有利于使第二透镜至第四透镜的中心厚度接近,有助于光学镜头的光线走势平缓,偏折变化小,有助于降低敏感性。
在示例性实施方式中,根据本申请的光学镜头可满足:Tn2/Tm2≤2,其中,Tn2是第二透镜、第三透镜和第五透镜中具有最大中心厚度的第n2透镜的中心厚度,Tm2是第二透镜、第三透镜和第五透镜中具有最小中心厚度的第m2透镜的中心厚度,n2和m2选自2、3、5。更具体地,Tn2和Tm2进一步可满足:Tn2/Tm2≤1.7。满足Tn2/Tm2≤2,有利于使第二透镜、第三透镜和第五透镜的中心厚度接近,有助于光学镜头的光线走势平缓,偏折变化小,有助于降低敏感性。
在示例性实施方式中,根据本申请的光学镜头可满足:0.5≤Nd1/Nd2≤1.5,其中,Nd1是第一透镜的折射率,Nd2是第二透镜的折射率。更具体地,Nd1和Nd2进一步可满足:0.9≤Nd1/Nd2≤1.1。满足0.5≤Nd1/Nd2≤1.5,有利于使第一透镜和第二透镜的折射率相近,且第一透镜和第二透镜优选 高折射率材料,可以快速改变进入第一透镜的大角度光线的方向,有利于减小前端口径,提高成像质量。
在示例性实施方式中,根据本申请的光学镜头可满足:1.2≤|F3/F5|≤2.8,其中,F3是第三透镜的有效焦距,F5是第五透镜的有效焦距。更具体地,F3和F5进一步可满足:1.6≤|F3/F5|≤2.51。满足1.2≤|F3/F5|≤2.8,有助于光线平缓过渡,减小光线走势过陡、角度过大等引起的像差,有利于提升像质。
在示例性实施方式中,根据本申请的光学镜头可满足:1≤|F3/F4|≤3,其中,F3是第三透镜的有效焦距,F4是第四透镜的有效焦距。更具体地,F3和F4进一步可满足:1.1≤|F3/F4|≤2.5。满足1≤|F3/F4|≤3,有助于光线平缓过渡,减小光线走势过陡、角度过大等引起的像差,有利于提升像质。
在示例性实施方式中,根据本申请的光学镜头可满足:-2×10 6≤(F3+F4)/(dn/dt(3)+dn/dt(4))≤-4×10 5,其中,F3是第三透镜的有效焦距,F4是第四透镜的有效焦距,dn/dt(3)是第三透镜的折射率温度系数,dn/dt(4)是第四透镜的折射率温度系数。更具体地,F3、F4、dn/dt(3)和dn/dt(4)进一步可满足:-1×10 6≤(F3+F4)/(dn/dt(3)+dn/dt(4))≤-5.7×10 5。满足-2×10 6≤(F3+F4)/(dn/dt(3)+dn/dt(4))≤-4×10 5,有助于减小光学镜头在高低温环境下光线的偏折变化,有利于使光学镜头具有较佳的温度性能。
在示例性实施方式中,根据本申请的光学镜头可满足:-2×10 6≤(F3+F5)/(dn/dt(3)+dn/dt(5))≤-4×10 5,其中,F3是第三透镜的有效焦距,F5是第五透镜的有效焦距,dn/dt(3)是第三透镜的折射率温度系数,dn/dt(5)是第五透镜的折射率温度系数。更具体地,F3、F5、dn/dt(3)和dn/dt(5)进一步可满足:-9×10 5≤(F3+F5)/(dn/dt(3)+dn/dt(5))≤-4.8×10 5。满足-2×10 6≤(F3+F5)/(dn/dt(3)+dn/dt(5))≤-4×10 5,有助于减小光学镜头在高低温环境下光线的偏折变化,有利于使光学镜头具有较佳的温度性能。
在示例性实施方式中,根据本申请的光学镜头可满足:(H-F×θ)/(F×θ)≤-0.1,其中,θ是光学镜头的最大视场角的弧度,F是光学镜头的总有效焦距,H是光学镜头的最大视场角对应的像高。更具体地,H、F和θ进一步可满足:(H-F×θ)/(F×θ)≤-0.2。满足(H-F×θ)/(F×θ)≤-0.1,可以在保证镜头视场角和成像面大小不变的情况下,有利于增大镜头的总有效焦距,突出镜头成像面中心区域的成像效果。
在示例性实施方式中,根据本申请的光学镜头可满足:arctan(1/K11)≤-4,其中,K11是光学镜头的最大视场角对应的第六透镜的物侧面的镜片边缘斜率,arctan(1/K11)是光学镜头的最大视场角对应的第六透镜的物侧面的张角。更具体地,K11进一步可满足:arctan(1/K11)≤-6。满足arctan(1/K11)≤-4,有利于使第六透镜物侧面的边缘张角为负值,弯向物侧面,有利于校正像散和场曲。
在示例性实施方式中,根据本申请的光学镜头可满足:FNO/F≥0.1,其中,FNO是光学镜头的光圈值,F是光学镜头的总有效焦距。更具体地,FNO和F进一步可满足:FNO/F≥0.28。满足FNO/F≥0.1,有利于使光学镜头具有大光圈特性。
在示例性实施方式中,根据本申请的光学镜头可满足:0.2≤|F4/F5|≤3,其中,F4是第四透镜的有效焦距,F5是第五透镜的有效焦距。更具体地,F4和F5进一步可满足:0.6≤|F4/F5|≤2.6。满足0.2≤|F4/F5|≤3,有助于光线平缓过渡,有利于矫正色差。
在示例性实施方式中,根据本申请的光学镜头可满足:1≤|F3/F|≤4,其中,F3是第三透镜的有效焦距,F是光学镜头的总有效焦距。更具体地,F3和F进一步可满足:1.7≤|F3/F|≤3.3。满足1≤|F3/F|≤4,有助于平衡光学镜头的各类像差。
在示例性实施方式中,根据本申请的光学镜头可满足:BFL/TTL≥0.05,其中,BFL是第六透镜的像侧面的中心至光学镜头的成像面在光轴上的距离,TTL是第一透镜的物侧面的中心至光学镜头的成像面在光轴上的距离。更具体地,BFL和TTL进一步可满足:BFL/TTL≥0.08。满足BFL/TTL≥0.05,可以在保证小型化与组装特性的基础上,使镜头的结构紧凑,降低镜片对MTF的敏感度,提高生产良率,降低生产成本。
在示例性实施方式中,根据本申请的光学镜头可满足:0.04≤d23/TTL≤0.2,其中,d23是第二透镜的像侧面的中心至第三透镜的物侧面的中心在光轴上的间隔距离,TTL是第一透镜的物侧面的中心至光学镜头的成像面在光轴上的距离。更具体地,d23和TTL进一步可满足:0.06≤d23/TTL≤0.11。满足0.04≤d23/TTL≤0.2,可以使第一透镜和第二透镜的间距较小,有利于镜头小型化,降低镜片对MTF的敏感度,降低生产成本。
在示例性实施方式中,根据本申请的光学镜头可满足:|F6/F|≥3.5,其中,F6是第六透镜的有效焦距,F是光学镜头的总有效焦距。更具体地,F6和F进一步可满足:|F6/F|≥4.1。满足|F6/F|≥3.5,有助于提高解像力,以减小离焦对光学镜头造成的影响。
在示例性实施方式中,根据本申请的光学镜头可满足:-2.0≤F1/F≤-1.0,其中,F1是第一透镜的有效焦距,F是光学镜头的总有效焦距。更具体地,F1和F进一步可满足:-1.82≤F1/F≤-1.26。满足-2.0≤F1/F≤-1.0,有助于使更多的光线平稳进入光学镜头,增加照度。
在示例性实施方式中,根据本申请的光学镜头可满足:-6.0≤R10/F≤-1.0,其中,R10是第五透镜的像侧面的曲率半径,F是光学镜头的总有效焦距。更具体地,R10和F进一步可满足:-4.8≤R10/F≤-1.4。满足-6.0≤R10/F≤-1.0,可以使第五透镜的像侧面为凸面。
在示例性实施方式中,根据本申请的光学镜头可满足:T2/TTL≥0.15,其中,T2是第二透镜的中心厚度,TTL是第一透镜的物侧面的中心至光学镜头的成像面在光轴上的距离。更具体地,T2和TTL进一步可满足:0.15≤T2/TTL≤0.3。满足T2/TTL≥0.15,有利于收集经由第一透镜射出的光线,使光线走势平稳过渡,降低镜片对MTF的敏感度,提升解像。
在示例性实施方式中,第二透镜与第三透镜之间可设置有用于限制光束的光阑以进一步提高光学镜头的成像质量。将光阑设置在第二透镜和第三透镜之间,有利于增大光阑口径,有利于对进入光学镜头的光线进行有效的收束,减小镜片口径,缩短光学镜头的总长度。在本申请实施方式中,光阑可设置在第二透镜的像侧面的附近处,或设置在第三透镜的物侧面的附近处。然而,应注意,此处公开的光阑的位置仅是示例而非限制;在替代的实施方式中,也可根据实际需要将光阑设置在其他位置。例如,还可将光阑设置在第三透镜与第四透镜之间以进一步提高光学镜头的成像质量。
在示例性实施方式中,根据需要,本申请的光学镜头还可包括设置在第六透镜与成像面之间的滤光片和/或保护玻璃,以对具有不同波长的光线进行过滤,并防止光学镜头的像方元件(例如,芯片)损坏。
如本领域技术人员已知的,胶合透镜可用于最大限度地减少色差或消除色差。在光学镜头中使用胶合透镜能够改善像质、减少光能量的反射损失,从而实现高解像,提升镜头成像的清晰度。另外,胶合透镜的使用还可简化镜头制造过程中的装配程序。
在示例性实施方式中,第四透镜和第五透镜可胶合形成胶合透镜。物侧面为凸面且像侧面为凸面的第四透镜与物侧面为凹面且像侧面为凸面的第五透镜胶合或者物侧面为凸面且像侧面为凹面的第四透镜与物侧面为凸面且像侧面为凸面的第五透镜胶合,有利于使经过第四透镜的光线平稳过渡至后方光学系统,有利于减小光学镜头的总长度。当然,第四透镜和第五透镜也可以不胶合,这样有利于 提高解像能力。
上述组成胶合透镜的第四透镜和第五透镜分别为一个具有正光焦度的透镜和一个具有负光焦度的透镜,其中,具有正光焦度的透镜具有较低折射率,具有负光焦度的透镜具有较高折射率(相对于具有正光焦度的透镜而言)。并且胶合透镜的物侧面和像侧面均为凸面。这样可以将光线进一步汇聚后在过渡至后方光学系统。
上述透镜间采用胶合方式具有以下优点中的至少一个:充分校正光学镜头的各类像差,在光学镜头结构紧凑的前提下,可以提高分辨率、优化畸变、CRA等光学性能;减少透镜间反射引起光量损失;高低折射率的搭配,有利于前方光线的快速过渡,增大光阑口径,提升通光量,有助于夜视需求;减小两个透镜之间的间隔距离,从而减小系统总长;减少透镜之间的组立部件,从而减少工序,降低成本;降低透镜单元因在组立过程中产生的倾斜/偏芯等公差敏感度问题,提高生产良率;胶合透镜可具有正光焦度,使光线经胶合透镜后可以有效平稳地汇聚,进而使光线平稳到达成像面;减轻整体重量与成本。这样的胶合设计分担了系统的整体色差矫正,有效矫正像差,以提高解像力,且使得光学系统整体紧凑,满足小型化要求。
在示例性实施方式中,第六透镜可为非球面透镜;第一透镜、第二透镜、第三透镜、第四透镜和第五透镜可为球面透镜。或者,第一透镜和第六透镜可为非球面透镜;第二透镜、第三透镜、第四透镜和第五透镜可为球面透镜。或者,第一透镜、第二透镜和第六透镜可为非球面透镜;第三透镜、第四透镜和第五透镜可为球面透镜。或者,第二透镜、第三透镜和第六透镜可为非球面透镜;第一透镜、第四透镜和第五透镜可为球面透镜。特别地,为了提高光学系统的解像质量,第一透镜、第二透镜、第三透镜、第四透镜、第五透镜和第六透镜可均为非球面透镜。非球面透镜的特点是:从透镜中心到周边曲率是连续变化的。与从透镜中心到周边有恒定曲率的球面透镜不同,非球面透镜具有更佳的曲率半径特性,具有改善歪曲像差及改善像散像差的优点。采用非球面透镜后,能够尽可能地消除在成像的时候出现的像差,从而提升镜头的成像质量。非球面透镜的设置有助于矫正系统像差,提升解像力。
根据本申请的上述实施方式的光学镜头通过各透镜形状和光焦度的合理设置,在仅使用6片透镜的情况下,实现光学系统具有高解像(可达到八百万像素以上)、小型化、长焦、大视场角、无鬼像以及良好的成像质量等至少一个有益效果。同时,光学镜头还兼顾镜头体积小、前端口径小、敏感度低、高低温下对镜头的解像力影响小、工作范围广、生产良率高的要求。该光学镜头的总有效焦距较长,中心区域具备大角度分辨率,可以提高环境物体辨识度,可以针对性的增大中心部分探测区域。
根据本申请的上述实施方式的光学镜头通过设置胶合透镜,可以有效消除鬼像对光学镜头的影响,使得光学镜头在消除鬼像的基础上具有较高的解像质量。通过合理搭配光焦度和温度系数,可以有效改善温度变化对光学镜头光焦度的影响,进一步提升不同温度下光学镜头解析力的稳定性。通过合理选择透镜材料,有助于光线走势平缓,降低光学镜头的敏感性。
在示例性实施方式中,光学镜头中的第一透镜至第六透镜可均由玻璃制成。用玻璃制成的光学透镜可抑制光学镜头后焦随温度变化的偏移,以提高系统稳定性。同时采用玻璃材质可避免因使用环境中高、低温温度变化造成的镜头成像模糊,影响到镜头的正常使用。具体地,在重点关注解像质量和信赖性时,第一透镜至第六透镜可均为玻璃非球面镜片。当然在温度稳定性要求较低的应用场合中,光学镜头中的第一透镜至第六透镜也可均由塑料制成。用塑料制作光学透镜,可有效减小制作成本。
在示例性实施方式中,光学镜头包括例如六片具有光焦度的透镜,即第一透镜、第二透镜、第三透镜、第四透镜、第五透镜和第六透镜。这六片透镜沿着光轴从物侧至像侧依序排列。
在示例性实施方式中,光学镜头还可进一步包括设置于成像面的感光元件。可选地,设置于成像面的感光元件可以是感光耦合元件(CCD)或互补性氧化金属半导体元件(CMOS)。
在示例性实施方式中,第一透镜可具有负光焦度。第一透镜可具有凸凹面型。第一透镜的这种光焦度和面型设置,有利于尽可能地收集大视场光线进入后方光学镜头,有利于固定边缘大角度光线的方向走势。在实际应用中,有利于水滴的滑落,以减小外界环境对镜头成像质量的影响。第一透镜可具有非球面镜面,有利于镜头中心区域具备大角度分辨率,有利于提升解像。第一透镜可使用具有高折射率的材料,有利于减小镜头前端口径,有利于提高成像质量。
在示例性实施方式中,第二透镜可具有正光焦度或负光焦度。第二透镜可具有凹凸面型。第二透镜的这种光焦度和面型设置,有利于收集经过第一透镜后射入的光线,使光线走势平稳过渡。第二透镜可设置为接近同心圆的形状,这样可以将经第一透镜射出的光线平缓过渡至后方光学镜头,且有利于减小镜头前端口径,减小镜头体积,有利于实现镜头小型化,降低成本。
在示例性实施方式中,第三透镜可具有正光焦度。第三透镜可具有凸凸面型。第三透镜的这种光焦度和面型设置,有利于汇聚光线。第三透镜可具有双凸面型且透镜形状较为平缓,有利于使发散后的光线顺利进入后方,进一步使光线走势平稳过渡。
在示例性实施方式中,第四透镜可具有正光焦度。第四透镜可具有凸凸面型。第四透镜的这种光焦度和面型设置,有利于汇聚光线。
在示例性实施方式中,第五透镜可具有负光焦度。第五透镜可具有凹凸面型或凹凹面型。第五透镜的这种光焦度和面型设置,有利于避免物方光线进入镜头后过于发散。
在示例性实施方式中,第六透镜可具有正光焦度。第六透镜可具有凸凹面型或凸凸面型。第六透镜的这种光焦度和面型设置,特别地,将第六透镜的面型设置为较为平缓,有利于校正像散和场曲,提高光学镜头的解像能力。
在示例性实施方式中,根据本申请的光学镜头可满足:4.5≤TTL/F≤7,其中,TTL是第一透镜的物侧面的中心至光学镜头的成像面在光轴上的距离,F是光学镜头的总有效焦距。更具体地,TTL和F进一步可满足:4.5≤TTL/F≤6.8。满足4.5≤TTL/F≤7,有利于实现小型化,有利于提高镜头解像,降低镜头敏感性。若TTL/F过小,则会增加镜头敏感性。
在示例性实施方式中,根据本申请的光学镜头可满足:TTL/H/FOV≤0.05,其中,TTL是第一透镜的物侧面的中心至光学镜头的成像面在光轴上的距离,FOV是光学镜头的最大视场角,H是光学镜头的最大视场角对应的像高。更具体地,TTL、H和FOV进一步可满足:TTL/H/FOV≤0.036。满足TTL/H/FOV≤0.05,有利于实现小型化。
在示例性实施方式中,根据本申请的光学镜头可满足:D/H/FOV≤0.03,其中,FOV是光学镜头的最大视场角,D是光学镜头的最大视场角对应的第一透镜的物侧面的最大通光口径,H是光学镜头的最大视场角对应的像高。更具体地,D、H和FOV进一步可满足:D/H/FOV≤0.02。满足D/H/FOV≤0.03,有利于减小前端口径,有利于实现小型化。
在示例性实施方式中,根据本申请的光学镜头可满足:(FOV×F)/H≥65,其中,FOV是光学镜头的最大视场角,F是光学镜头的总有效焦距,H是光学镜头的最大视场角对应的像高。更具体地,FOV、F和H进一步可满足:(FOV×F)/H≥73。满足(FOV×F)/H≥65,有利于使光学镜头同时满足长焦和大视场角,有助于镜头在满足大视场角的同时还能实现中心大角度分辨率。
在示例性实施方式中,根据本申请的光学镜头可满足:-2.5≤F1/F≤-1,其中,F1是第一透镜的有效焦距,F是光学镜头的总有效焦距。更具体地,F1和F进一步可满足:-2≤F1/F≤-1.7。 满足-2.5≤F1/F≤-1,有利于大视场角光线进入光学镜头。
在示例性实施方式中,根据本申请的光学镜头可满足:arctan(1/K2)≥35,其中,K2是光学镜头的最大视场角对应的第一透镜的像侧面的镜片边缘斜率。更具体地,K2进一步可满足:arctan(1/K2)≥36。满足arctan(1/K2)≥35,有利于使第一透镜像侧面的张角较大,有利于使经第一透镜射出的大角度周边光线快速聚焦,以提高成像质量。
在示例性实施方式中,根据本申请的光学镜头可满足:0.6≤R3/R4≤1.2,其中,R3是第二透镜的物侧面的曲率半径,R4是第二透镜的像侧面的曲率半径。更具体地,R3和R4进一步可满足:0.6≤R3/R4≤1。满足0.6≤R3/R4≤1.2,有利于使第二透镜的形状接近同心圆,有利于光线走势平稳过渡。
在示例性实施方式中,根据本申请的光学镜头可满足:1≤R3/(R4+d2)≤2,其中,R3是第二透镜的物侧面的曲率半径,R4是第二透镜的像侧面的曲率半径,d2是第二透镜在光轴上的中心厚度。更具体地,R3、R4和d2进一步可满足:1.3≤R3/(R4+d2)≤1.9。满足1≤R3/(R4+d2)≤2,有利于使第二透镜的形状接近同心圆,有利于光线走势平稳过渡。
在示例性实施方式中,根据本申请的光学镜头可满足:0.15≤d2/TTL≤0.3,其中,d2是第二透镜在光轴上的中心厚度,TTL是第一透镜的物侧面的中心至光学镜头的成像面在光轴上的距离。更具体地,d2和TTL进一步可满足:0.17≤d2/TTL≤0.22。满足0.15≤d2/TTL≤0.3,有利于第二透镜的加工性,使光线走势平稳过渡。
在示例性实施方式中,根据本申请的光学镜头可满足:1.5≤F3/F≤3.5,其中,F3是第三透镜的有效焦距,F是光学镜头的总有效焦距。更具体地,F3和F进一步可满足:1.8≤F3/F≤3。满足1.5≤F3/F≤3.5,有助于平衡各类像差。
在示例性实施方式中,根据本申请的光学镜头可满足:R7/F≤-2,其中,R7是第三透镜的像侧面的曲率半径,F是光学镜头的总有效焦距。更具体地,R7和F进一步可满足:R7/F≤-2.5。满足R7/F≤-2,有利于降低第三透镜的敏感性。
在示例性实施方式中,根据本申请的光学镜头可满足:1≤F3/F4≤2.5,其中,F3是第三透镜的有效焦距,F4是第四透镜的有效焦距。更具体地,F3和F4进一步可满足:1.2≤F3/F4≤2.2。满足1≤F3/F4≤2.5,有助于光线平缓过渡,有利于提升像质。
在示例性实施方式中,根据本申请的光学镜头可满足:2.5≤F45/F≤13,其中,F45是第四透镜和第五透镜胶合形成的胶合透镜的有效焦距,F是光学镜头的总有效焦距。更具体地,F45和F进一步可满足:3≤F45/F≤12.5。满足2.5≤F45/F≤13,有利于控制第三透镜至第六透镜之间的光线走势,减小经第三透镜后射出的大角度光线引起的像差,同时有利于使镜片结构紧凑,有利于小型化。
在示例性实施方式中,根据本申请的光学镜头可满足:2.6≤Vd4/Vd5≤5.3,其中,Vd4是第四透镜的阿贝数,Vd5是第五透镜的阿贝数。更具体地,Vd4和Vd5进一步可满足:2.8≤Vd4/Vd5≤5.1。满足2.6≤Vd4/Vd5≤5.3,有助于矫正色差。
在示例性实施方式中,根据本申请的光学镜头可满足:0.35≤T 8-i/TTL≤0.52,其中,T 8-i是第四透镜的物侧面的中心至光学镜头的成像面在光轴上的距离,TTL是第一透镜的物侧面的中心至光学镜头的成像面在光轴上的距离。更具体地,T 8-i和TTL进一步可满足:0.4≤T 8-i/TTL≤0.48。满足0.35≤T 8-i/TTL≤0.52,有助于消除鬼像。
在示例性实施方式中,根据本申请的光学镜头可满足:1≤(T 8-11)/R8≤2,其中,T 8-11是第四 透镜的物侧面的中心至第六透镜的像侧面的中心在光轴上的距离,R8是第四透镜的物侧面的曲率半径。更具体地,T 8-11和R8进一步可满足:1≤(T 8-11)/R8≤1.6。满足1≤(T 8-11)/R8≤2,有利于增加第四透镜至第六透镜的间隔距离,以减小第四透镜至第六透镜的中心区域由于反射产生的鬼像能量,还有利于减小第四透镜物侧面的曲率半径,以减小第四透镜至第六透镜的边缘区域由于反射产生的鬼像投影在像面上的能量。
在示例性实施方式中,光学镜头还包括位于第六透镜和成像面之间的辅助镜片。根据本申请的光学镜头可满足:0.7≤(T 3-13)/TTL≤0.9,其中,T 3-13是第二透镜的物侧面的中心至辅助镜片的像侧面的中心在光轴上的距离,TTL是第一透镜的物侧面的中心至光学镜头的成像面在光轴上的距离。更具体地,T 3-13和TTL进一步可满足:0.72≤(T 3-13)/TTL≤0.85。满足0.7≤(T 3-13)/TTL≤0.9,有助于减小第二透镜与辅助镜片由于反射产生的鬼像投影在像面上的能量。
在示例性实施方式中,根据本申请的光学镜头可满足:arctan(1/K12)≤0,其中,K12是光学镜头的最大视场角对应的第六透镜的像侧面的镜片边缘斜率。更具体地,K12进一步可满足:arctan(1/K12)≤-1。满足arctan(1/K12)≤0,可以使第六透镜像侧面的中心区域的张角为弯向像侧面的正张角,边缘区域的张角为零或者为弯向物侧面的负张角,这样使得第六透镜像侧面的中心区域和边缘区域的张角方向不同,使第六透镜像侧面上存在反曲点,有利于校正像散和场曲,有利于提升解像。
在示例性实施方式中,根据本申请的光学镜头可满足:2≤R11/F≤6,其中,R11是第六透镜的物侧面的曲率半径,F是光学镜头的总有效焦距。更具体地,R11和F进一步可满足:2≤R11/F≤5.5。满足2≤R11/F≤6,有助于光线平稳过渡,降低镜头敏感程度。
在示例性实施方式中,根据本申请的光学镜头可满足:|SAG11/D11/2|≤0.22,其中,SAG11是光学镜头的最大视场角对应的第六透镜的物侧面的最大通光口径处的矢高,即SAG11是第六透镜的物侧面和光轴的交点至光学镜头的最大视场角对应的第六透镜的物侧面的最大通光口径在光轴上的距离,D11是光学镜头的最大视场角对应的第六透镜的物侧面的最大通光口径。更具体地,SAG11和D11进一步可满足:|SAG11/D11/2|≤0.2。满足|SAG11/D11/2|≤0.22,有助于光线平稳过渡,降低镜头敏感程度。
在示例性实施方式中,根据本申请的光学镜头可满足:0.3≤(H/2)/(F×tan(θ/2))≤1.6,其中,H是光学镜头的最大视场角对应的像高,F是光学镜头的总有效焦距,θ是以弧度为单位的光学镜头的最大视场角。更具体地,H、F和θ进一步可满足:0.35≤(H/2)/(F×tan(θ/2))≤1.5。满足0.3≤(H/2)/(F×tan(θ/2))≤1.6,有利于实现大角度分辨率。
在示例性实施方式中,根据本申请的光学镜头可满足:Nd1≥1.75,其中,Nd1是第一透镜的阿贝数。更具体地,Nd1进一步可满足:Nd1≥1.78。满足Nd1≥1.75,有利于迅速改变进入第一透镜的大角度光线的光路,有利于减小前端口径,有利于提高成像质量。
在示例性实施方式中,根据本申请的光学镜头可满足:dn3/dt3≤-5.0×10 -6,其中,dn3/dt3是第三透镜的折射率温度系数,即第三透镜的折射率随温度变化的变化量。满足dn3/dt3≤-5.0×10 -6,有助于镜头在高低温下保持较好的解像,使镜头具有较佳的温度性能。
在示例性实施方式中,根据本申请的光学镜头可满足:dn4/dt4≤-5.0×10 -6,其中,dn4/dt4是第四透镜的折射率温度系数,即第四透镜的折射率随温度变化的变化量。满足dn4/dt4≤-5.0×10 -6,有助于镜头在高低温下保持较好的解像,使镜头具有较佳的温度性能。
在示例性实施方式中,根据本申请的光学镜头可满足:1.1≤FNO≤2.3,其中,FNO是光 学镜头的光圈数。更具体地,FNO进一步可满足:1.3≤FNO≤2.2。满足1.1≤FNO≤2.3,有利于实现大光圈特性。
在示例性实施方式中,根据本申请的光学镜头可满足:D/H/θ≤1.0,其中,H是光学镜头的最大视场角对应的像高,D是光学镜头的最大视场角对应的第一透镜的物侧面的最大通光口径,θ是以弧度为单位的光学镜头的最大视场角。更具体地,D、H和θ进一步可满足:D/H/θ≤0.8。满足D/H/θ≤1.0,有利于减小前端口径。
在示例性实施方式中,第二透镜与第三透镜之间可设置有用于限制光束的光阑以进一步提高光学镜头的成像质量。将光阑设置在第二透镜与第三透镜之间,有利于对进入光学镜头的光线进行有效的收束,缩短镜头总长度,减小前端镜片组口径。在本申请实施方式中,光阑可设置在第二透镜的像侧面的附近处,或设置在第三透镜的物侧面的附近处。然而,应注意,此处公开的光阑的位置仅是示例而非限制;在替代的实施方式中,也可根据实际需要将光阑设置在其他位置。
在示例性实施方式中,设置在第六透镜与成像面之间的辅助镜片可以是滤光片和/或保护玻璃,以对具有不同波长的光线进行过滤,并防止光学镜头的像方元件(例如,芯片)损坏。
如本领域技术人员已知的,胶合透镜可用于最大限度地减少色差或消除色差。在光学镜头中使用胶合透镜能够改善像质、减少光能量的反射损失,从而实现高解像,提升镜头成像的清晰度。另外,胶合透镜的使用还可简化镜头制造过程中的装配程序。
在示例性实施方式中,第四透镜和第五透镜可胶合形成胶合透镜。具有正光焦度且物侧面和像侧面均为凸面的第四透镜与具有负光焦度且物侧面为凹面的第五透镜胶合,可以将前面透镜射出的光线平缓过渡至光学镜头的成像面,有利于使光学镜头的结构紧凑,减小光学镜头的尺寸,有利于校正光学镜头的各类像差,降低各透镜的配合敏感度,提高分辨率,优化畸变、CRA等光学性能。具有负光焦度的第五透镜的折射率可以高于具有正光焦度的第四透镜的折射率,这样可以使光线在镜头后部得到有效平稳的汇聚,使光线平稳到达成像面,有利于减轻镜头整体重量,有利于减小制造成本。具有高折射率的第五透镜和具有低折射率的第四透镜搭配形成胶合透镜,有利于前方光线的快速过渡,有利于增大光阑口径,提升通光量,有助于夜视需求。当然,第四透镜和第五透镜也可以不胶合,这样有利于提高解像能力。
上述透镜间采用胶合方式具有以下优点中的至少一个:减少自身色差,降低公差敏感度,通过残留的部分色差以平衡系统的整体色差;减小两个透镜之间的间隔距离,从而减小系统总长;减少透镜之间的组立部件,从而减少工序,降低成本;降低透镜单元因在组立过程中产生的倾斜/偏芯等公差敏感度问题,提高生产良率;减少透镜间反射引起光量损失,提升照度;可以进一步减小场曲,矫正系统的轴外点像差。这样的胶合设计分担了系统的整体色差校正,有效校正像差,以提高解像力,且使得光学系统整体紧凑,满足小型化要求。
在示例性实施方式中,第二透镜、第三透镜、第四透镜和第五透镜可为球面透镜;第一透镜和第六透镜可为非球面透镜。本申请并不具体限定球面透镜和非球面透镜的具体数量,在重点体现成像质量时,可以增加非球面透镜的数量。特别地,为了提高光学系统的解像质量,第一透镜、第二透镜、第三透镜、第四透镜、第五透镜和第六透镜可均为非球面透镜。非球面透镜的特点是:从透镜中心到周边曲率是连续变化的。与从透镜中心到周边有恒定曲率的球面透镜不同,非球面透镜具有更佳的曲率半径特性,具有改善歪曲像差及改善像散像差的优点。采用非球面透镜后,能够尽可能地消除在成像的时候出现的像差,从而提升镜头的成像质量。非球面透镜的设置有助于校正系统像差,提升解像力。
根据本申请的上述实施方式的光学镜头通过各透镜形状和光焦度的合理设置,在仅使用6片透镜的情况下,实现光学镜头具有高解像(可达八百万像素以上)、小型化、较小前端口径、温度性能佳、长焦、大视场角、无鬼像、大中心角分辨率、低成本以及良好的成像质量等至少一个有益效果。该光学镜头可具有达八百万以上的像素,有利于实现更高的清晰度。该光学镜头可具有较长的焦距且中心区域具有大角度分辨率,可以提高对环境物体的辨识度,针对性地增大中心部分探测区域。同时该光学镜头还具有较佳的温度性能,有利于光学镜头在高低温环境下成像效果变化较小,像质稳定,高低温对镜头解像力的影响较小,光学镜头的工作温度范围较宽,有利于该光学镜头能够在大部分环境下使用。
根据本申请的上述实施方式的光学镜头通过设置胶合透镜,分担系统的整体色差校正,既有利于校正系统像差,提高系统解像质量,减少配合敏感问题,又有利于使得光学系统结构整体紧凑,满足小型化要求。上述胶合透镜还可以有效消除鬼像对镜头的影响,使得镜头在消除鬼像的基础上具有较高的解像。
在示例性实施方式中,第一透镜、第二透镜、第三透镜、第四透镜、第五透镜和第六透镜可均为玻璃透镜。通过将光学镜头设置为全玻璃架构并合理搭配具有不同折射率温度系数的透镜,可以使镜头在高低温使用环境下(如-40℃~120℃)仍能清晰成像,可以大大提高自动驾驶的安全性。用玻璃制成的光学透镜可抑制光学镜头后焦随温度变化的偏移,以提高系统稳定性。同时采用玻璃材质可避免因使用环境中高、低温温度变化造成的镜头成像模糊,影响到镜头的正常使用。具体地,在重点关注解像质量和信赖性时,第一透镜至第六透镜可均为玻璃非球面镜片。当然在温度稳定性要求较低的应用场合中,光学镜头中的第一透镜至第六透镜也可均由塑料制成。用塑料制作光学透镜,可有效减小制作成本。当然,光学镜头中的第一透镜至第六透镜也可由塑料和玻璃搭配制成。
然而,本领域的技术人员应当理解,在未背离本申请要求保护的技术方案的情况下,可改变构成镜头的透镜数量,来获得本说明书中描述的各个结果和优点。例如,虽然在实施方式中以六片透镜为例进行了描述,但是该光学镜头不限于包括六片透镜。如果需要,该光学镜头还可包括其它数量的透镜。
下面参照附图进一步描述可适用于上述实施方式的光学镜头的具体实施例。
实施例1
以下参照图1描述根据本申请实施例1的光学镜头。图1示出了根据本申请实施例1的光学镜头的结构示意图。
如图1所示,光学镜头沿着光轴由物侧至像侧依序包括:第一透镜L1、第二透镜L2、第三透镜L3、第四透镜L4、第五透镜L5和第六透镜L6。
第一透镜L1为具有负光焦度的凸凹透镜,其物侧面S1为凸面,像侧面S2为凹面。第二透镜L2为具有负光焦度的凹凸透镜,其物侧面S3为凹面,像侧面S4为凸面。第三透镜L3为具有正光焦度的双凸透镜,其物侧面S6为凸面,像侧面S7为凸面。第四透镜L4为具有正光焦度的双凸透镜,其物侧面S8为凸面,像侧面S9为凸面。第五透镜L5为具有负光焦度的凹凸透镜,其物侧面S9为凹面,像侧面S10为凸面。第六透镜L6为具有负光焦度的凸凹透镜,其物侧面S11为凸面,像侧面S12为凹面。第四透镜L4和第五透镜L5可胶合组成胶合透镜。
光学镜头还可包括光阑STO,光阑STO可设置在第二透镜L2与第三透镜L3之间,以提高成像质量。例如,光阑STO可设置在第二透镜L2与第三透镜L3之间靠近第二透镜L2的像侧面S4的位 置处。
可选地,该光学镜头还可包括具有物侧面S13和像侧面S14的滤光片L7和/或保护玻璃L7’。该滤光片L7和/或保护玻璃L7’可用于校正色彩偏差和/或保护位于成像面S15处的图像传感芯片IMA。来自物体的光依序穿过各表面S1至S14并最终成像在成像面S15上。
表1示出了实施例1的光学镜头的各透镜的曲率半径R、厚度T/距离d(应理解,S1所在行的厚度T/距离d为第一透镜L1的中心厚度T1,S2所在行的厚度T/距离d为第一透镜L1像侧面与第二透镜L2物侧面之间的间隔距离d23,以此类推)、折射率Nd以及色散系数Vd。
Figure PCTCN2021130629-appb-000001
表1
在实施例1中,第一透镜L1和第六透镜L6可以是非球面透镜,第二透镜L2、第三透镜L3、第四透镜L4和第五透镜L5可以是球面透镜。各非球面透镜的面型x可利用但不限于以下非球面公式进行限定:
Figure PCTCN2021130629-appb-000002
其中,x为非球面沿光轴方向在高度为h的位置时,距非球面顶点的距离矢高;c为非球面的近轴曲率,c=1/R(即,近轴曲率c为上表1中曲率半径R的倒数);k为圆锥系数;Ai是非球面第i-th阶的修正系数。下表2给出了可用于实施例1中各非球面镜面S1、S2、S11和S12的圆锥系数k和高次项系数A4、A6、A8、A10、A12、A14和A16。
面号 k A4 A6 A8 A10 A12 A14 A16
S1 -3.1704 7.4997E-04 -7.9448E-04 8.8113E-05 -4.9096E-06 1.4556E-07 -1.8308E-09 /
S2 -0.9243 -6.5621E-03 -2.6063E-04 4.6197E-05 1.4470E-05 -2.7975E-06 2.1144E-07 -6.0683E-09
S11 -0.9240 -2.3208E-03 4.1138E-05 -8.9721E-06 -2.3641E-07 2.1322E-07 -1.9688E-08 5.8682E-10
S12 -51.8989 -1.6228E-03 -1.8583E-05 1.2243E-06 1.5610E-07 -1.9680E-09 -1.1862E-10 2.2063E-12
表2
实施例2
以下参照图2描述了根据本申请实施例2的光学镜头。在本实施例及以下实施例中,为简洁起 见,将省略部分与实施例1相似的描述。图2示出了根据本申请实施例2的光学镜头的结构示意图。
如图2所示,光学镜头沿着光轴由物侧至像侧依序包括第一透镜L1、第二透镜L2、第三透镜L3、第四透镜L4、第五透镜L5和第六透镜L6。
第一透镜L1为具有负光焦度的凸凹透镜,其物侧面S1为凸面,像侧面S2为凹面。第二透镜L2为具有负光焦度的凹凸透镜,其物侧面S3为凹面,像侧面S4为凸面。第三透镜L3为具有正光焦度的双凸透镜,其物侧面S6为凸面,像侧面S7为凸面。第四透镜L4为具有正光焦度的双凸透镜,其物侧面S8为凸面,像侧面S9为凸面。第五透镜L5为具有负光焦度的凹凸透镜,其物侧面S9为凹面,像侧面S10为凸面。第六透镜L6为具有负光焦度的凸凹透镜,其物侧面S11为凸面,像侧面S12为凹面。第四透镜L4和第五透镜L5可胶合组成胶合透镜。
光学镜头还可包括光阑STO,光阑STO可设置在第二透镜L2与第三透镜L3之间,以提高成像质量。例如,光阑STO可设置在第二透镜L2与第三透镜L3之间靠近第二透镜L2的像侧面S4的位置处。
可选地,该光学镜头还可包括具有物侧面S13和像侧面S14的滤光片L7和/或保护玻璃L7’。该滤光片L7和/或保护玻璃L7’可用于校正色彩偏差和/或保护位于成像面S15处的图像传感芯片IMA。来自物体的光依序穿过各表面S1至S14并最终成像在成像面S15上。
在本实施例中,第一透镜L1和第六透镜L6可以是非球面透镜,第二透镜L2、第三透镜L3、第四透镜L4和第五透镜L5可以是球面透镜。
表3示出了实施例2的光学镜头的各透镜的曲率半径R、厚度T/距离d、折射率Nd以及色散系数Vd。表4示出了可用于实施例2中各非球面镜面的圆锥系数和高次项系数,其中,各非球面面型可由上述实施例1中给出的公式(1)限定。
Figure PCTCN2021130629-appb-000003
表3
面号 k A4 A6 A8 A10 A12 A14 A16
S1 -3.0252 -3.4380E-04 -6.3504E-04 7.7416E-05 -4.4814E-06 1.3407E-07 -1.6527E-09 /
S2 -0.9225 -8.5204E-03 -2.5436E-04 4.2431E-05 1.0040E-05 -2.0406E-06 1.3847E-07 -3.1649E-09
S11 6.7045 -2.2124E-03 -3.3276E-05 5.9600E-07 5.0553E-08 4.9668E-09 -5.9603E-11 5.4900E-12
S12 -22.8974 -2.0657E-03 -1.3803E-05 -3.2269E-06 5.6733E-07 -3.6367E-08 -1.3170E-09 -2.1644E-11
表4
实施例3
以下参照图3描述了根据本申请实施例3的光学镜头。图3示出了根据本申请实施例3的光学镜头的结构示意图。
如图3所示,光学镜头沿着光轴由物侧至像侧依序包括第一透镜L1、第二透镜L2、第三透镜L3、第四透镜L4、第五透镜L5和第六透镜L6。
第一透镜L1为具有负光焦度的凸凹透镜,其物侧面S1为凸面,像侧面S2为凹面。第二透镜L2为具有正光焦度的凹凸透镜,其物侧面S3为凹面,像侧面S4为凸面。第三透镜L3为具有正光焦度的双凸透镜,其物侧面S6为凸面,像侧面S7为凸面。第四透镜L4为具有正光焦度的双凸透镜,其物侧面S8为凸面,像侧面S9为凸面。第五透镜L5为具有负光焦度的凹凸透镜,其物侧面S9为凹面,像侧面S10为凸面。第六透镜L6为具有负光焦度的凸凹透镜,其物侧面S11为凸面,像侧面S12为凹面。第四透镜L4和第五透镜L5可胶合组成胶合透镜。
光学镜头还可包括光阑STO,光阑STO可设置在第二透镜L2与第三透镜L3之间,以提高成像质量。例如,光阑STO可设置在第二透镜L2与第三透镜L3之间靠近第二透镜L2的像侧面S4的位置处。
可选地,该光学镜头还可包括具有物侧面S13和像侧面S14的滤光片L7和/或保护玻璃L7’。该滤光片L7和/或保护玻璃L7’可用于校正色彩偏差和/或保护位于成像面S15处的图像传感芯片IMA。来自物体的光依序穿过各表面S1至S14并最终成像在成像面S15上。
在本实施例中,第一透镜L1和第六透镜L6可以是非球面透镜,第二透镜L2、第三透镜L3、第四透镜L4和第五透镜L5可以是球面透镜。
表5示出了实施例3的光学镜头的各透镜的曲率半径R、厚度T/距离d、折射率Nd以及色散系数Vd。表6示出了可用于实施例3中各非球面镜面的圆锥系数和高次项系数,其中,各非球面面型可由上述实施例1中给出的公式(1)限定。
Figure PCTCN2021130629-appb-000004
表5
面号 k A4 A6 A8 A10 A12 A14 A16
S1 -2.7714 -4.1194E-04 -5.5112E-04 6.1233E-05 -3.3135E-06 9.3891E-08 -1.1041E-09 /
S2 -0.8662 -7.5765E-03 4.2000E-04 6.6432E-05 1.7956E-06 -8.0670E-07 5.5181E-08 -1.0879E-09
S11 42.2396 -2.4958E-03 2.7700E-05 -5.3142E-07 1.8533E-07 -9.3191E-09 8.4192E-10 -3.3605E-11
S12 -35.6562 -2.3279E-03 -2.6900E-05 -9.5496E-07 4.1756E-07 -3.1262E-08 1.2763E-09 -2.3454E-11
表6
实施例4
以下参照图4描述了根据本申请实施例4的光学镜头。图4示出了根据本申请实施例4的光学镜头的结构示意图。
如图4所示,光学镜头沿着光轴由物侧至像侧依序包括第一透镜L1、第二透镜L2、第三透镜L3、第四透镜L4、第五透镜L5和第六透镜L6。
第一透镜L1为具有负光焦度的凸凹透镜,其物侧面S1为凸面,像侧面S2为凹面。第二透镜L2为具有负光焦度的凹凸透镜,其物侧面S3为凹面,像侧面S4为凸面。第三透镜L3为具有正光焦度的双凸透镜,其物侧面S6为凸面,像侧面S7为凸面。第四透镜L4为具有负光焦度的凸凹透镜,其物侧面S8为凸面,像侧面S9为凹面。第五透镜L5为具有正光焦度的双凸透镜,其物侧面S9为凸面,像侧面S10为凸面。第六透镜L6为具有负光焦度的双凹透镜,其物侧面S11为凹面,像侧面S12为凹面。第四透镜L4和第五透镜L5可胶合组成胶合透镜。
光学镜头还可包括光阑STO,光阑STO可设置在第二透镜L2与第三透镜L3之间,以提高成像质量。例如,光阑STO可设置在第二透镜L2与第三透镜L3之间靠近第二透镜L2的像侧面S4的位置处。
可选地,该光学镜头还可包括具有物侧面S13和像侧面S14的滤光片L7和/或保护玻璃L7’。该滤光片L7和/或保护玻璃L7’可用于校正色彩偏差和/或保护位于成像面S15处的图像传感芯片IMA。来自物体的光依序穿过各表面S1至S14并最终成像在成像面S15上。
在本实施例中,第一透镜L1和第六透镜L6可以是非球面透镜,第二透镜L2、第三透镜L3、第四透镜L4和第五透镜L5可以是球面透镜。
表7示出了实施例4的光学镜头的各透镜的曲率半径R、厚度T/距离d、折射率Nd以及色散系数Vd。表8示出了可用于实施例4中各非球面镜面的圆锥系数和高次项系数,其中,各非球面面型可由上述实施例1中给出的公式(1)限定。
Figure PCTCN2021130629-appb-000005
表7
面号 k A4 A6 A8 A10 A12 A14 A16
S1 -8.3933 2.9512E-03 -3.5859E-04 2.0008E-05 -6.8328E-07 1.2222E-08 -7.2949E-11 /
S2 -1.0264 -4.1463E-05 3.4627E-04 -1.0313E-04 1.3124E-05 -3.0582E-08 -9.5680E-08 5.5215E-09
S11 -100.0000 -7.0230E-03 3.4286E-04 -5.2749E-05 6.2724E-06 -2.9739E-07 9.7134E-09 /
S12 -0.7354 -5.8211E-03 7.7404E-06 6.6708E-07 2.6942E-07 -1.2841E-08 3.8521E-10 /
表8
实施例5
以下参照图5描述了根据本申请实施例5的光学镜头。图5示出了根据本申请实施例5的光学镜头的结构示意图。
如图5所示,光学镜头沿着光轴由物侧至像侧依序包括第一透镜L1、第二透镜L2、第三透镜L3、第四透镜L4、第五透镜L5和第六透镜L6。
第一透镜L1为具有负光焦度的双凹透镜,其物侧面S1为凹面,像侧面S2为凹面。第二透镜L2为具有正光焦度的凹凸透镜,其物侧面S3为凹面,像侧面S4为凸面。第三透镜L3为具有正光焦度的双凸透镜,其物侧面S6为凸面,像侧面S7为凸面。第四透镜L4为具有负光焦度的凸凹透镜,其物侧面S8为凸面,像侧面S9为凹面。第五透镜L5为具有正光焦度的双凸透镜,其物侧面S9为凸面,像侧面S10为凸面。第六透镜L6为具有负光焦度的凸凹透镜,其物侧面S11为凸面,像侧面S12为凹面。第四透镜L4和第五透镜L5可胶合组成胶合透镜。
光学镜头还可包括光阑STO,光阑STO可设置在第二透镜L2与第三透镜L3之间,以提高成像质量。例如,光阑STO可设置在第二透镜L2与第三透镜L3之间靠近第二透镜L2的像侧面S4的位置处。
可选地,该光学镜头还可包括具有物侧面S13和像侧面S14的滤光片L7和/或保护玻璃L7’。该滤光片L7和/或保护玻璃L7’可用于校正色彩偏差和/或保护位于成像面S15处的图像传感芯片IMA。来自物体的光依序穿过各表面S1至S14并最终成像在成像面S15上。
在本实施例中,第一透镜L1、第二透镜L2和第六透镜L6可以是非球面透镜,第三透镜L3、第四透镜L4和第五透镜L5可以是球面透镜。
表9示出了实施例5的光学镜头的各透镜的曲率半径R、厚度T/距离d、折射率Nd以及色散系数Vd。表10示出了可用于实施例5中各非球面镜面的圆锥系数和高次项系数,其中,各非球面面型可由上述实施例1中给出的公式(1)限定。
Figure PCTCN2021130629-appb-000006
Figure PCTCN2021130629-appb-000007
表9
面号 k A4 A6 A8 A10 A12 A14
S1 -15.3377 5.6779E-04 4.3049E-05 -4.7198E-06 1.8551E-07 -2.7856E-09 /
S2 -1.8492 2.6494E-03 -6.1590E-05 1.7750E-05 -2.2206E-06 1.3416E-07 /
S3 -16.3208 -3.9195E-03 1.1965E-04 -5.3035E-06 1.4400E-07 1.5488E-08 /
S4 -0.9462 -3.2260E-04 1.5004E-06 6.2211E-07 -4.4706E-08 3.6441E-10 /
S11 32.4364 -3.0199E-03 -1.7490E-04 -2.2185E-05 2.2066E-06 -1.3121E-07 2.9327E-09
S12 8.4486 -5.1205E-03 1.4219E-04 -6.8490E-06 4.3636E-07 -2.6791E-08 6.1174E-10
表10
实施例6
以下参照图6描述了根据本申请实施例6的光学镜头。图6示出了根据本申请实施例6的光学镜头的结构示意图。
如图6所示,光学镜头沿着光轴由物侧至像侧依序包括第一透镜L1、第二透镜L2、第三透镜L3、第四透镜L4、第五透镜L5和第六透镜L6。
第一透镜L1为具有负光焦度的双凹透镜,其物侧面S1为凹面,像侧面S2为凹面。第二透镜L2为具有负光焦度的凹凸透镜,其物侧面S3为凹面,像侧面S4为凸面。第三透镜L3为具有正光焦度的双凸透镜,其物侧面S6为凸面,像侧面S7为凸面。第四透镜L4为具有负光焦度的凸凹透镜,其物侧面S8为凸面,像侧面S9为凹面。第五透镜L5为具有正光焦度的双凸透镜,其物侧面S9为凸面,像侧面S10为凸面。第六透镜L6为具有负光焦度的凹凸透镜,其物侧面S11为凹面,像侧面S12为凸面。第四透镜L4和第五透镜L5可胶合组成胶合透镜。
光学镜头还可包括光阑STO,光阑STO可设置在第二透镜L2与第三透镜L3之间,以提高成像质量。例如,光阑STO可设置在第二透镜L2与第三透镜L3之间靠近第二透镜L2的像侧面S4的位置处。
可选地,该光学镜头还可包括具有物侧面S13和像侧面S14的滤光片L7和/或保护玻璃L7’。该滤光片L7和/或保护玻璃L7’可用于校正色彩偏差和/或保护位于成像面S15处的图像传感芯片IMA。来自物体的光依序穿过各表面S1至S14并最终成像在成像面S15上。
在本实施例中,第一透镜L1和第六透镜L6可以是非球面透镜,第二透镜L2、第三透镜L3、第四透镜L4和第五透镜L5可以是球面透镜。
表11示出了实施例6的光学镜头的各透镜的曲率半径R、厚度T/距离d、折射率Nd以及色散系数Vd。表12示出了可用于实施例6中各非球面镜面的圆锥系数和高次项系数,其中,各非球面面型可由上述实施例1中给出的公式(1)限定。
Figure PCTCN2021130629-appb-000008
Figure PCTCN2021130629-appb-000009
表11
面号 k A4 A6 A8 A10 A12 A14
S1 -198.9042 1.4715E-03 -2.2507E-04 1.9181E-05 -9.6253E-07 2.6666E-08 -3.1499E-10
S2 0.4017 2.6322E-03 1.4700E-04 -1.0518E-06 2.7418E-06 -2.2299E-07 7.8720E-09
S11 87.3767 -3.2157E-03 -2.8924E-04 9.1790E-05 -1.2611E-05 8.4720E-07 -1.8020E-08
S12 -162.3540 -4.5246E-03 -1.2679E-05 1.5514E-05 -1.4420E-06 5.1453E-08 2.7655E-10
表12
实施例7
以下参照图7描述了根据本申请实施例7的光学镜头。图7示出了根据本申请实施例7的光学镜头的结构示意图。
如图7所示,光学镜头沿着光轴由物侧至像侧依序包括第一透镜L1、第二透镜L2、第三透镜L3、第四透镜L4、第五透镜L5和第六透镜L6。
第一透镜L1为具有负光焦度的双凹透镜,其物侧面S1为凹面,像侧面S2为凹面。第二透镜L2为具有正光焦度的凹凸透镜,其物侧面S3为凹面,像侧面S4为凸面。第三透镜L3为具有正光焦度的双凸透镜,其物侧面S6为凸面,像侧面S7为凸面。第四透镜L4为具有负光焦度的凸凹透镜,其物侧面S8为凸面,像侧面S9为凹面。第五透镜L5为具有正光焦度的双凸透镜,其物侧面S9为凸面,像侧面S10为凸面。第六透镜L6为具有正光焦度的凸凹透镜,其物侧面S11为凸面,像侧面S12为凹面。第四透镜L4和第五透镜L5可胶合组成胶合透镜。
光学镜头还可包括光阑STO,光阑STO可设置在第二透镜L2与第三透镜L3之间,以提高成像质量。例如,光阑STO可设置在第二透镜L2与第三透镜L3之间靠近第二透镜L2的像侧面S4的位置处。
可选地,该光学镜头还可包括具有物侧面S13和像侧面S14的滤光片L7和/或保护玻璃L7’。该滤光片L7和/或保护玻璃L7’可用于校正色彩偏差和/或保护位于成像面S15处的图像传感芯片IMA。来自物体的光依序穿过各表面S1至S14并最终成像在成像面S15上。
在本实施例中,第一透镜L1、第二透镜L2和第六透镜L6可以是非球面透镜,第三透镜L3、第四透镜L4和第五透镜L5可以是球面透镜。
表13示出了实施例7的光学镜头的各透镜的曲率半径R、厚度T/距离d、折射率Nd以及色散系数Vd。表14示出了可用于实施例7中各非球面镜面的圆锥系数和高次项系数,其中,各非球面面型可由上述实施例1中给出的公式(1)限定。
Figure PCTCN2021130629-appb-000010
Figure PCTCN2021130629-appb-000011
表13
面号 k A4 A6 A8 A10 A12
S1 -78.7929 -1.7086E-03 2.2152E-04 -1.2834E-05 4.1091E-07 -5.4148E-09
S2 -1.6450 5.8671E-04 -5.4425E-05 4.0754E-05 -4.5292E-06 2.0623E-07
S3 -1.6059 -2.1102E-03 -2.1603E-05 -6.9406E-06 7.8482E-07 -1.5028E-08
S4 0.6516 -4.0241E-05 1.9518E-06 8.1706E-08 4.7985E-09 -2.2795E-10
S11 1.0341 -7.8035E-04 -1.8000E-05 -1.8397E-07 -2.8490E-09 1.9579E-11
S12 6.7367 -1.5571E-03 -3.9319E-05 -1.6091E-07 5.2270E-08 -1.1756E-09
表14
实施例8
以下参照图8描述了根据本申请实施例8的光学镜头。图8示出了根据本申请实施例8的光学镜头的结构示意图。
如图8所示,光学镜头沿着光轴由物侧至像侧依序包括第一透镜L1、第二透镜L2、第三透镜L3、第四透镜L4、第五透镜L5和第六透镜L6。
第一透镜L1为具有负光焦度的双凹透镜,其物侧面S1为凹面,像侧面S2为凹面。第二透镜L2为具有正光焦度的凹凸透镜,其物侧面S3为凹面,像侧面S4为凸面。第三透镜L3为具有正光焦度的双凸透镜,其物侧面S6为凸面,像侧面S7为凸面。第四透镜L4为具有负光焦度的凸凹透镜,其物侧面S8为凸面,像侧面S9为凹面。第五透镜L5为具有正光焦度的双凸透镜,其物侧面S9为凸面,像侧面S10为凸面。第六透镜L6为具有正光焦度的凸凹透镜,其物侧面S11为凸面,像侧面S12为凹面。第四透镜L4和第五透镜L5可胶合组成胶合透镜。
光学镜头还可包括光阑STO,光阑STO可设置在第二透镜L2与第三透镜L3之间,以提高成像质量。例如,光阑STO可设置在第二透镜L2与第三透镜L3之间靠近第二透镜L2的像侧面S4的位置处。
可选地,该光学镜头还可包括具有物侧面S13和像侧面S14的滤光片L7和/或保护玻璃L7’。该滤光片L7和/或保护玻璃L7’可用于校正色彩偏差和/或保护位于成像面S15处的图像传感芯片IMA。来自物体的光依序穿过各表面S1至S14并最终成像在成像面S15上。
在本实施例中,第一透镜L1、第二透镜L2和第六透镜L6可以是非球面透镜,第三透镜L3、第四透镜L4和第五透镜L5可以是球面透镜。
表15示出了实施例8的光学镜头的各透镜的曲率半径R、厚度T/距离d、折射率Nd以及色散系数Vd。表16示出了可用于实施例8中各非球面镜面的圆锥系数和高次项系数,其中,各非球面面型可由上述实施例1中给出的公式(1)限定。
面号 曲率半径R 厚度T/距离d 折射率Nd 色散系数Vd
  (mm) (mm)    
S1 -21.7141 0.7960 1.59 61.12
S2 5.0952 2.7460    
S3 -8.0319 6.2400 1.59 61.12
S4 -6.4689 -1.2000    
STO 无穷大 1.3000    
S6 15.5856 5.8493 1.50 81.59
S7 -15.5856 3.2430    
S8 12.0783 1.4900 1.92 18.90
S9 6.1600 5.5000 1.50 81.59
S10 -11.6200 0.8460    
S11 34.9730 3.4002 1.59 61.12
S12 34.9833 0.3000    
S13 无穷大 0.5500 1.52 64.21
S14 无穷大 1.9110    
S15(IMA) 无穷大      
表15
面号 k A4 A6 A8 A10 A12
S1 -82.6330 -2.1419E-03 2.3776E-04 -1.3249E-05 4.1272E-07 -1.4171E-09
S2 -3.5819 1.7700E-03 -1.3263E-04 4.8750E-05 -4.9310E-06 2.0624E-07
S3 -1.4262 -2.1994E-03 -2.0235E-05 -8.1673E-06 8.5492E-07 -1.4975E-08
S4 0.3494 1.2901E-04 8.8864E-06 -2.4915E-07 2.3458E-08 -2.2872E-10
S11 36.6879 -7.6346E-04 -2.8191E-05 5.2104E-07 -3.6088E-08 3.8810E-11
S12 39.6221 -1.2379E-03 -9.1617E-05 2.2907E-06 1.9263E-08 -1.1761E-09
表16
实施例9
以下参照图9描述了根据本申请实施例9的光学镜头。图9示出了根据本申请实施例9的光学镜头的结构示意图。
如图9所示,光学镜头沿着光轴由物侧至像侧依序包括第一透镜L1、第二透镜L2、第三透镜L3、第四透镜L4、第五透镜L5和第六透镜L6。
第一透镜L1为具有负光焦度的双凹透镜,其物侧面S1为凹面,像侧面S2为凹面。第二透镜L2为具有正光焦度的凹凸透镜,其物侧面S3为凹面,像侧面S4为凸面。第三透镜L3为具有正光焦度的双凸透镜,其物侧面S5为凸面,像侧面S6为凸面。第四透镜L4为具有正光焦度的双凸透镜,其物侧面S8为凸面,像侧面S9为凸面。第五透镜L5为具有负光焦度的凹凸透镜,其物侧面S9为凹面,像侧面S10为凸面。第六透镜L6为具有正光焦度的凸凹透镜,其物侧面S11为凸面,像侧面S12为凹面。第四透镜L4和第五透镜L5可胶合组成胶合透镜。
光学镜头还可包括光阑STO,光阑STO可设置在第三透镜L3与第四透镜L4之间,以提高成像质量。例如,光阑STO可设置在第三透镜L3与第四透镜L4之间靠近第四透镜L4的物侧面S8的位置处。
可选地,该光学镜头还可包括具有物侧面S13和像侧面S14的滤光片L7和/或保护玻璃L7’。该滤光片L7和/或保护玻璃L7’可用于校正色彩偏差和/或保护位于成像面S15处的图像传感芯片IMA。来自物体的光依序穿过各表面S1至S14并最终成像在成像面S15上。
在本实施例中,第二透镜L2、第三透镜L3和第六透镜L6可以是非球面透镜,第一透镜L1、第四透镜L4和第五透镜L5可以是球面透镜。
表17示出了实施例9的光学镜头的各透镜的曲率半径R、厚度T/距离d、折射率Nd以及色散系数Vd。表18示出了可用于实施例9中各非球面镜面的圆锥系数和高次项系数,其中,各非球面面型可由上述实施例1中给出的公式(1)限定。
Figure PCTCN2021130629-appb-000012
表17
面号 k A4 A6 A8 A10 A12 A14 A16
S3 2.1446 -1.3895E-03 -1.2895E-05 7.0920E-06 -1.4005E-07 5.4569E-15 5.7808E-19 3.3087E-22
S4 -0.5905 3.1235E-04 2.9977E-05 -3.2432E-07 5.8481E-08 -9.4809E-10 -3.1037E-11 -2.3211E-21
S5 2.4808 1.9211E-04 2.2383E-05 -2.0846E-06 2.0749E-07 -1.2501E-09 9.2822E-11 -1.1382E-12
S6 5.8065 -5.4344E-04 -2.0462E-05 5.2470E-06 -2.8138E-07 2.9250E-09 4.2593E-11 1.5574E-12
S11 100.0000 -2.0284E-03 -5.5268E-05 1.1165E-05 -8.0881E-07 2.2811E-08 -1.2846E-10 9.2090E-12
S12 -100.0000 -2.8317E-03 -1.4488E-05 5.9739E-06 -3.4085E-07 7.1462E-09 2.1056E-11 -3.8502E-13
表18
实施例10
以下参照图10描述了根据本申请实施例10的光学镜头。图10示出了根据本申请实施例10的光学镜头的结构示意图。
如图10所示,光学镜头沿着光轴由物侧至像侧依序包括:第一透镜L1、第二透镜L2、第三透镜L3、第四透镜L4、第五透镜L5和第六透镜L6。
第一透镜L1为具有负光焦度的双凹透镜,其物侧面S1为凹面,像侧面S2为凹面。第二透镜L2为具有正光焦度的凹凸透镜,其物侧面S3为凹面,像侧面S4为凸面。第三透镜L3为具有正光焦度的双凸透镜,其物侧面S5为凸面,像侧面S6为凸面。第四透镜L4为具有正光焦度的双凸透镜,其物侧面S8为凸面,像侧面S9为凸面。第五透镜L5为具有负光焦度的凹凸透镜,其物侧面S9为凹面,像侧面S10为凸面。第六透镜L6为具有正光焦度的凹凸透镜,其物侧面S11为凹面,像侧面S12为凸面。第四透镜L4和第五透镜L5可胶合组成胶合透镜。
光学镜头还可包括光阑STO,光阑STO可设置在第三透镜L3与第四透镜L4之间,以提高成像质量。例如,光阑STO可设置在第三透镜L3与第四透镜L4之间靠近第四透镜L4的物侧面S8的位置处。
可选地,该光学镜头还可包括具有物侧面S13和像侧面S14的滤光片L7和/或保护玻璃L7’。该滤光片L7和/或保护玻璃L7’可用于校正色彩偏差和/或保护位于成像面S15处的图像传感芯片IMA。来自物体的光依序穿过各表面S1至S14并最终成像在成像面S15上。
在本实施例中,第二透镜L2、第三透镜L3和第六透镜L6可以是非球面透镜,第一透镜L1、第四透镜L4和第五透镜L5可以是球面透镜。
表19示出了实施例10的光学镜头的各透镜的曲率半径R、厚度T/距离d、折射率Nd以及色散系数Vd。表20示出了可用于实施例10中各非球面镜面的圆锥系数和高次项系数,其中,各非球面面型可由上述实施例1中给出的公式(1)限定。
Figure PCTCN2021130629-appb-000013
表19
面号 k A4 A6 A8 A10 A12
S3 -0.1311 -2.8570E-04 -1.1071E-05 3.9981E-06 -1.3715E-07 -2.0579E-19
S4 0.1024 1.9283E-05 1.9377E-05 -7.9504E-08 -4.2562E-09 -6.2519E-19
S5 -1.6061 1.8421E-04 1.3411E-05 -3.3735E-06 2.7030E-07 -1.2283E-08
S6 -0.5515 -3.5990E-04 -5.3693E-05 6.6341E-06 -4.5626E-07 8.5693E-09
S11 75.5480 -2.7985E-03 4.1325E-05 -8.0360E-06 -2.0062E-08 2.0688E-08
S12 61.1293 -4.3146E-03 5.2225E-05 4.9216E-07 -9.6047E-08 2.3432E-09
表20
实施例11
以下参照图11描述了根据本申请实施例11的光学镜头。图11示出了根据本申请实施例11的光学镜头的结构示意图。
如图11所示,光学镜头沿着光轴由物侧至像侧依序包括:第一透镜L1、第二透镜L2、第三透镜L3、第四透镜L4、第五透镜L5和第六透镜L6。
第一透镜L1为具有负光焦度的双凹透镜,其物侧面S1为凹面,像侧面S2为凹面。第二透镜L2为具有正光焦度的凹凸透镜,其物侧面S3为凹面,像侧面S4为凸面。第三透镜L3为具有正光焦度的双凸透镜,其物侧面S6为凸面,像侧面S7为凸面。第四透镜L4为具有负光焦度的凸凹透镜,其物侧面S8为凸面,像侧面S9为凹面。第五透镜L5为具有正光焦度的双凸透镜,其物侧面S9为凸面,像侧面S10为凸面。第六透镜L6为具有正光焦度的双凸透镜,其物侧面S11为凸面,像侧面S12为 凸面。第四透镜L4和第五透镜L5可胶合组成胶合透镜。
光学镜头还可包括光阑STO,光阑STO可设置在第二透镜L2与第三透镜L3之间,以提高成像质量。例如,光阑STO可设置在第二透镜L2与第三透镜L3之间靠近第三透镜L3的物侧面S6的位置处。
可选地,该光学镜头还可包括具有物侧面S13和像侧面S14的滤光片L7。该滤光片L7可用于校正色彩偏差。该光学镜头还可包括具有物侧面S15和像侧面S16的保护玻璃L8。该保护玻璃L8可用于保护位于成像面S17处的图像传感芯片IMA。来自物体的光依序穿过各表面S1至S16并最终成像在成像面S17上。
在本实施例中,第一透镜L1、第二透镜L2和第六透镜L6可以是非球面透镜,第三透镜L3、第四透镜L4和第五透镜L5可以是球面透镜。
表21示出了实施例11的光学镜头的各透镜的曲率半径R、厚度T/距离d、折射率Nd以及色散系数Vd。表22示出了可用于实施例11中各非球面镜面的圆锥系数和高次项系数,其中,各非球面面型可由上述实施例1中给出的公式(1)限定。
Figure PCTCN2021130629-appb-000014
表21
面号 k A4 A6 A8 A10 A12 A14 A16
S1 100.0000 -2.2324E-03 2.4548E-04 -1.3712E-05 4.2317E-07 -5.4033E-09 2.4709E-24 8.0991E-30
S2 -2.0904 -1.2495E-04 7.3804E-05 3.3917E-05 -4.4699E-06 2.0623E-07 -3.7445E-29 2.1373E-33
S3 -1.7437 -2.1064E-03 -6.5028E-06 -9.5015E-06 9.2515E-07 -4.4950E-08 1.6295E-29 3.8694E-32
S4 -0.4554 -1.6488E-04 -1.6112E-07 -1.6982E-07 9.3420E-09 2.4709E-24 2.7703E-24 -1.5915E-28
S11 -0.8221 -1.0214E-04 3.7426E-06 -6.7555E-07 1.0646E-08 8.8793E-11 / /
S12 -52.0076 -5.9389E-04 3.4949E-06 -2.1297E-06 9.5205E-08 -1.2056E-09 / /
表22
实施例12
以下参照图12描述了根据本申请实施例12的光学镜头。图12示出了根据本申请实施例12的光学镜头的结构示意图。
如图12所示,光学镜头沿着光轴由物侧至像侧依序包括第一透镜L1、第二透镜L2、第三透镜 L3、第四透镜L4、第五透镜L5和第六透镜L6。
第一透镜L1为具有负光焦度的凸凹透镜,其物侧面S1为凸面,像侧面S2为凹面。第二透镜L2为具有负光焦度的凹凸透镜,其物侧面S3为凹面,像侧面S4为凸面。第三透镜L3为具有正光焦度的双凸透镜,其物侧面S6为凸面,像侧面S7为凸面。第四透镜L4为具有正光焦度的双凸透镜,其物侧面S8为凸面,像侧面S9为凸面。第五透镜L5为具有负光焦度的凹凸透镜,其物侧面S9为凹面,像侧面S10为凸面。第六透镜L6为具有正光焦度的凸凹透镜,其物侧面S11为凸面,像侧面S12为凹面。第四透镜L4和第五透镜L5可胶合组成胶合透镜。
光学镜头还可包括光阑STO,光阑STO可设置在第二透镜L2与第三透镜L3之间,以提高成像质量。例如,光阑STO可设置在第二透镜L2与第三透镜L3之间靠近第二透镜L2的像侧面S4的位置处。
可选地,该光学镜头还可包括具有物侧面S13和像侧面S14的滤光片L7和/或保护玻璃L7’。该滤光片L7和/或保护玻璃L7’可用于校正色彩偏差和/或保护位于成像面处的图像传感芯片IMA。来自物体的光依序穿过各表面S1至S14并最终成像在成像面上。
表23示出了实施例12的光学镜头的各透镜的曲率半径R、厚度d/距离T i(应理解,S1所在行的厚度d/距离T i为第一透镜L1的中心厚度d1,S2所在行的厚度d/距离T i为第一透镜L1的像侧面S2与第二透镜L2的物侧面S3之间的间隔距离T 2-3,以此类推)、折射率Nd以及阿贝数Vd。表24示出了可用于实施例12中各非球面镜面的圆锥系数和高次项系数,其中,各非球面面型可由上述实施例1中给出的公式(1)限定。
Figure PCTCN2021130629-appb-000015
表23
面号 k A4 A6 A8 A10 A12 A14 A16
S1 -0.7746 -4.7954E-03 6.9622E-05 6.5826E-06 -4.3875E-07 7.0948E-09 1.8230E-10 -5.6927E-12
S2 -1.7143 -1.2089E-03 6.8087E-05 -1.9206E-05 6.9711E-06 -8.7421E-07 5.1451E-08 -1.1514E-09
S11 5.3844 -1.3634E-03 -3.5918E-06 -4.6289E-06 5.2286E-07 -3.5142E-08 1.2801E-09 -1.9688E-12
S12 -139.8538 -4.8702E-04 -4.5477E-05 -1.0243E-06 3.0507E-07 -1.8725E-08 5.8121E-10 -7.2925E-12
表24
实施例13
以下参照图13描述了根据本申请实施例13的光学镜头。图13示出了根据本申请实施例13的光 学镜头的结构示意图。
如图13所示,光学镜头沿着光轴由物侧至像侧依序包括第一透镜L1、第二透镜L2、第三透镜L3、第四透镜L4、第五透镜L5和第六透镜L6。
第一透镜L1为具有负光焦度的凸凹透镜,其物侧面S1为凸面,像侧面S2为凹面。第二透镜L2为具有负光焦度的凹凸透镜,其物侧面S3为凹面,像侧面S4为凸面。第三透镜L3为具有正光焦度的双凸透镜,其物侧面S6为凸面,像侧面S7为凸面。第四透镜L4为具有正光焦度的双凸透镜,其物侧面S8为凸面,像侧面S9为凸面。第五透镜L5为具有负光焦度的凹凸透镜,其物侧面S9为凹面,像侧面S10为凸面。第六透镜L6为具有正光焦度的双凸透镜,其物侧面S11为凸面,像侧面S12为凸面。第四透镜L4和第五透镜L5可胶合组成胶合透镜。
光学镜头还可包括光阑STO,光阑STO可设置在第二透镜L2与第三透镜L3之间,以提高成像质量。例如,光阑STO可设置在第二透镜L2与第三透镜L3之间靠近第二透镜L2的像侧面S4的位置处。
可选地,该光学镜头还可包括具有物侧面S13和像侧面S14的滤光片L7和/或保护玻璃L7’。该滤光片L7和/或保护玻璃L7’可用于校正色彩偏差和/或保护位于成像面处的图像传感芯片IMA。来自物体的光依序穿过各表面S1至S14并最终成像在成像面上。
表25示出了实施例13的光学镜头的各透镜的曲率半径R、厚度d/距离T i、折射率Nd以及阿贝数Vd。表26示出了可用于实施例13中各非球面镜面的圆锥系数和高次项系数,其中,各非球面面型可由上述实施例1中给出的公式(1)限定。
Figure PCTCN2021130629-appb-000016
表25
面号 k A4 A6 A8 A10 A12 A14 A16
S1 -2.8683 -1.8834E-03 -2.8107E-05 4.6365E-06 -8.4842E-08 -2.6232E-09 8.2814E-11 -3.2384E-14
S2 -3.3187 9.7947E-03 -1.6058E-03 1.7203E-04 -9.2526E-06 5.8829E-08 2.1181E-08 -7.6159E-10
S11 -25.4081 -4.8785E-05 -7.5827E-05 2.7826E-06 -1.1803E-07 9.1755E-11 1.3789E-10 -3.1927E-12
S12 220.0071 -1.1229E-03 -2.7046E-05 6.5460E-07 1.0098E-08 -5.5358E-10 2.3125E-11 -4.9086E-13
表26
实施例14
以下参照图14描述了根据本申请实施例14的光学镜头。图14示出了根据本申请实施例14的光 学镜头的结构示意图。
如图14所示,光学镜头沿着光轴由物侧至像侧依序包括第一透镜L1、第二透镜L2、第三透镜L3、第四透镜L4、第五透镜L5和第六透镜L6。
第一透镜L1为具有负光焦度的凸凹透镜,其物侧面S1为凸面,像侧面S2为凹面。第二透镜L2为具有负光焦度的凹凸透镜,其物侧面S3为凹面,像侧面S4为凸面。第三透镜L3为具有正光焦度的双凸透镜,其物侧面S6为凸面,像侧面S7为凸面。第四透镜L4为具有正光焦度的双凸透镜,其物侧面S8为凸面,像侧面S9为凸面。第五透镜L5为具有负光焦度的凹凸透镜,其物侧面S9为凹面,像侧面S10为凸面。第六透镜L6为具有正光焦度的凸凹透镜,其物侧面S11为凸面,像侧面S12为凹面。第四透镜L4和第五透镜L5可胶合组成胶合透镜。
光学镜头还可包括光阑STO,光阑STO可设置在第二透镜L2与第三透镜L3之间,以提高成像质量。例如,光阑STO可设置在第二透镜L2与第三透镜L3之间靠近第二透镜L2的像侧面S4的位置处。
可选地,该光学镜头还可包括具有物侧面S13和像侧面S14的滤光片L7和/或保护玻璃L7’。该滤光片L7和/或保护玻璃L7’可用于校正色彩偏差和/或保护位于成像面处的图像传感芯片IMA。来自物体的光依序穿过各表面S1至S14并最终成像在成像面上。
表27示出了实施例14的光学镜头的各透镜的曲率半径R、厚度d/距离T i、折射率Nd以及阿贝数Vd。表28示出了可用于实施例14中各非球面镜面的圆锥系数和高次项系数,其中,各非球面面型可由上述实施例1中给出的公式(1)限定。
Figure PCTCN2021130629-appb-000017
表27
面号 k A4 A6 A8 A10 A12 A14 A16
S1 -1.1910 -5.2279E-03 1.0345E-04 6.6236E-06 -4.6466E-07 7.4740E-09 1.5865E-10 -4.7454E-12
S2 -2.2076 -8.8807E-04 -1.0929E-06 -2.0625E-05 7.6994E-06 -8.9166E-07 4.7211E-08 -9.6242E-10
S11 6.9600 -1.8143E-03 3.0319E-06 -5.1626E-06 5.3036E-07 -3.3402E-08 1.2874E-09 -2.1499E-13
S12 -35.0938 -1.1433E-03 -1.8268E-05 -8.0006E-07 2.6696E-07 -1.8105E-08 6.6944E-10 -1.0096E-11
表28
实施例15
以下参照图15描述了根据本申请实施例15的光学镜头。图15示出了根据本申请实施例15的光 学镜头的结构示意图。
如图15所示,光学镜头沿着光轴由物侧至像侧依序包括第一透镜L1、第二透镜L2、第三透镜L3、第四透镜L4、第五透镜L5和第六透镜L6。
第一透镜L1为具有负光焦度的凸凹透镜,其物侧面S1为凸面,像侧面S2为凹面。第二透镜L2为具有负光焦度的凹凸透镜,其物侧面S3为凹面,像侧面S4为凸面。第三透镜L3为具有正光焦度的双凸透镜,其物侧面S6为凸面,像侧面S7为凸面。第四透镜L4为具有正光焦度的双凸透镜,其物侧面S8为凸面,像侧面S9为凸面。第五透镜L5为具有负光焦度的凹凸透镜,其物侧面S9为凹面,像侧面S10为凸面。第六透镜L6为具有正光焦度的凸凹透镜,其物侧面S11为凸面,像侧面S12为凹面。第四透镜L4和第五透镜L5可胶合组成胶合透镜。
光学镜头还可包括光阑STO,光阑STO可设置在第二透镜L2与第三透镜L3之间,以提高成像质量。例如,光阑STO可设置在第二透镜L2与第三透镜L3之间靠近第二透镜L2的像侧面S4的位置处。
可选地,该光学镜头还可包括具有物侧面S13和像侧面S14的滤光片L7和/或保护玻璃L7’。该滤光片L7和/或保护玻璃L7’可用于校正色彩偏差和/或保护位于成像面处的图像传感芯片IMA。来自物体的光依序穿过各表面S1至S14并最终成像在成像面上。
表29示出了实施例15的光学镜头的各透镜的曲率半径R、厚度d/距离T i、折射率Nd以及阿贝数Vd。表30示出了可用于实施例15中各非球面镜面的圆锥系数和高次项系数,其中,各非球面面型可由上述实施例1中给出的公式(1)限定。
Figure PCTCN2021130629-appb-000018
表29
面号 k A4 A6 A8 A10 A12 A14 A16
S1 -0.7248 -4.8667E-03 6.7192E-05 6.1229E-06 -4.1077E-07 7.0790E-09 1.3952E-10 -4.7194E-12
S2 -1.9054 -7.7911E-04 4.6417E-05 -2.4035E-05 7.3214E-06 -8.4390E-07 4.6130E-08 -9.8152E-10
S11 4.6316 -1.2820E-03 -6.5781E-06 -4.2935E-06 5.1124E-07 -3.5017E-08 1.2955E-09 -2.0193E-12
S12 -45.1848 -2.4643E-04 -4.5618E-05 -1.3746E-06 3.1444E-07 -1.8175E-08 5.7846E-10 -6.7103E-12
表30
实施例16
以下参照图16描述了根据本申请实施例16的光学镜头。图16示出了根据本申请实施例16的光 学镜头的结构示意图。
如图16所示,光学镜头沿着光轴由物侧至像侧依序包括第一透镜L1、第二透镜L2、第三透镜L3、第四透镜L4、第五透镜L5和第六透镜L6。
第一透镜L1为具有负光焦度的凸凹透镜,其物侧面S1为凸面,像侧面S2为凹面。第二透镜L2为具有负光焦度的凹凸透镜,其物侧面S3为凹面,像侧面S4为凸面。第三透镜L3为具有正光焦度的双凸透镜,其物侧面S6为凸面,像侧面S7为凸面。第四透镜L4为具有正光焦度的双凸透镜,其物侧面S8为凸面,像侧面S9为凸面。第五透镜L5为具有负光焦度的双凹透镜,其物侧面S9为凹面,像侧面S10为凹面。第六透镜L6为具有正光焦度的双凸透镜,其物侧面S11为凸面,像侧面S12为凸面。第四透镜L4和第五透镜L5可胶合组成胶合透镜。
光学镜头还可包括光阑STO,光阑STO可设置在第二透镜L2与第三透镜L3之间,以提高成像质量。例如,光阑STO可设置在第二透镜L2与第三透镜L3之间靠近第二透镜L2的像侧面S4的位置处。
可选地,该光学镜头还可包括具有物侧面S13和像侧面S14的滤光片L7和/或保护玻璃L7’。该滤光片L7和/或保护玻璃L7’可用于校正色彩偏差和/或保护位于成像面处的图像传感芯片IMA。来自物体的光依序穿过各表面S1至S14并最终成像在成像面上。
表31示出了实施例16的光学镜头的各透镜的曲率半径R、厚度d/距离T i、折射率Nd以及阿贝数Vd。表32示出了可用于实施例16中各非球面镜面的圆锥系数和高次项系数,其中,各非球面面型可由上述实施例1中给出的公式(1)限定。
Figure PCTCN2021130629-appb-000019
表31
面号 k A4 A6 A8 A10 A12 A14 A16
S1 -4.8601 3.0489E-05 -1.4141E-04 8.7090E-06 -1.5867E-07 -2.4566E-09 9.5805E-11 -1.1129E-13
S2 -3.7874 1.1463E-02 -1.7726E-03 1.7774E-04 -8.8882E-06 5.1953E-08 1.6661E-08 -4.8092E-10
S11 -2.2075 -6.5114E-04 -2.3336E-05 8.9909E-07 -8.8769E-08 7.5144E-10 1.4236E-10 -3.1979E-13
S12 99.9989 -7.0649E-04 -1.7040E-05 -4.5888E-07 2.9101E-08 -3.9155E-10 2.7461E-11 -7.2385E-13
表32
实施例17
以下参照图17描述了根据本申请实施例17的光学镜头。图17示出了根据本申请实施例17的光 学镜头的结构示意图。
如图17所示,光学镜头沿着光轴由物侧至像侧依序包括第一透镜L1、第二透镜L2、第三透镜L3、第四透镜L4、第五透镜L5和第六透镜L6。
第一透镜L1为具有负光焦度的凸凹透镜,其物侧面S1为凸面,像侧面S2为凹面。第二透镜L2为具有负光焦度的凹凸透镜,其物侧面S3为凹面,像侧面S4为凸面。第三透镜L3为具有正光焦度的双凸透镜,其物侧面S6为凸面,像侧面S7为凸面。第四透镜L4为具有正光焦度的双凸透镜,其物侧面S8为凸面,像侧面S9为凸面。第五透镜L5为具有负光焦度的双凹透镜,其物侧面S9为凹面,像侧面S10为凹面。第六透镜L6为具有正光焦度的双凸透镜,其物侧面S11为凸面,像侧面S12为凸面。第四透镜L4和第五透镜L5可胶合组成胶合透镜。
光学镜头还可包括光阑STO,光阑STO可设置在第二透镜L2与第三透镜L3之间,以提高成像质量。例如,光阑STO可设置在第二透镜L2与第三透镜L3之间靠近第二透镜L2的像侧面S4的位置处。
可选地,该光学镜头还可包括具有物侧面S13和像侧面S14的滤光片L7和/或保护玻璃L7’。该滤光片L7和/或保护玻璃L7’可用于校正色彩偏差和/或保护位于成像面处的图像传感芯片IMA。来自物体的光依序穿过各表面S1至S14并最终成像在成像面上。
表33示出了实施例17的光学镜头的各透镜的曲率半径R、厚度d/距离T i、折射率Nd以及阿贝数Vd。表34示出了可用于实施例17中各非球面镜面的圆锥系数和高次项系数,其中,各非球面面型可由上述实施例1中给出的公式(1)限定。
Figure PCTCN2021130629-appb-000020
表33
面号 k A4 A6 A8 A10 A12 A14 A16
S1 -4.6304 -2.1809E-04 -1.1475E-04 7.4248E-06 -1.3427E-07 -2.4151E-09 9.3783E-11 -2.3864E-13
S2 -3.6637 1.0986E-02 -1.6627E-03 1.6708E-04 -8.3717E-06 5.6536E-08 1.4834E-08 -4.0899E-10
S11 -1.5256 -6.2295E-04 -2.3902E-05 1.2130E-06 -9.7335E-08 6.8988E-10 1.2896E-10 -2.7777E-13
S12 100.0001 -6.3959E-04 -6.7073E-06 -1.0474E-06 4.2501E-08 -5.9504E-10 2.5311E-11 -6.0430E-13
表34
实施例18
以下参照图18描述了根据本申请实施例18的光学镜头。图18示出了根据本申请实施例18的光 学镜头的结构示意图。
如图18所示,光学镜头沿着光轴由物侧至像侧依序包括第一透镜L1、第二透镜L2、第三透镜L3、第四透镜L4、第五透镜L5和第六透镜L6。
第一透镜L1为具有负光焦度的凸凹透镜,其物侧面S1为凸面,像侧面S2为凹面。第二透镜L2为具有负光焦度的凹凸透镜,其物侧面S3为凹面,像侧面S4为凸面。第三透镜L3为具有正光焦度的双凸透镜,其物侧面S6为凸面,像侧面S7为凸面。第四透镜L4为具有正光焦度的双凸透镜,其物侧面S8为凸面,像侧面S9为凸面。第五透镜L5为具有负光焦度的凹凸透镜,其物侧面S9为凹面,像侧面S10为凸面。第六透镜L6为具有正光焦度的凸凹透镜,其物侧面S11为凸面,像侧面S12为凹面。第四透镜L4和第五透镜L5可胶合组成胶合透镜。
光学镜头还可包括光阑STO,光阑STO可设置在第二透镜L2与第三透镜L3之间,以提高成像质量。例如,光阑STO可设置在第二透镜L2与第三透镜L3之间靠近第二透镜L2的像侧面S4的位置处。
可选地,该光学镜头还可包括具有物侧面S13和像侧面S14的滤光片L7和/或保护玻璃L7’。该滤光片L7和/或保护玻璃L7’可用于校正色彩偏差和/或保护位于成像面处的图像传感芯片IMA。来自物体的光依序穿过各表面S1至S14并最终成像在成像面上。
表35示出了实施例18的光学镜头的各透镜的曲率半径R、厚度d/距离T i、折射率Nd以及阿贝数Vd。表36示出了可用于实施例18中各非球面镜面的圆锥系数和高次项系数,其中,各非球面面型可由上述实施例1中给出的公式(1)限定。
Figure PCTCN2021130629-appb-000021
表35
面号 k A4 A6 A8 A10 A12 A14 A16
S1 -2.7119 3.8494E-04 -7.9371E-04 8.8498E-05 -4.9077E-06 1.4449E-07 -1.8354E-09 1.7683E-12
S2 -0.9362 -7.6286E-03 -4.8761E-04 4.3451E-05 1.4969E-05 -2.8867E-06 2.0406E-07 -5.2586E-09
S11 -23.7024 -2.5375E-03 6.4591E-05 -1.0236E-05 -7.0187E-07 2.2417E-07 -1.5753E-08 3.8104E-10
S12 -150.4486 -1.4857E-03 -8.6687E-06 -2.7297E-06 2.3326E-07 2.3623E-09 -5.9068E-10 1.5432E-12
表36
实施例19
以下参照图19描述了根据本申请实施例19的光学镜头。图19示出了根据本申请实施例19的光 学镜头的结构示意图。
如图19所示,光学镜头沿着光轴由物侧至像侧依序包括第一透镜L1、第二透镜L2、第三透镜L3、第四透镜L4、第五透镜L5和第六透镜L6。
第一透镜L1为具有负光焦度的凸凹透镜,其物侧面S1为凸面,像侧面S2为凹面。第二透镜L2为具有负光焦度的凹凸透镜,其物侧面S3为凹面,像侧面S4为凸面。第三透镜L3为具有正光焦度的双凸透镜,其物侧面S6为凸面,像侧面S7为凸面。第四透镜L4为具有正光焦度的双凸透镜,其物侧面S8为凸面,像侧面S9为凸面。第五透镜L5为具有负光焦度的凹凸透镜,其物侧面S9为凹面,像侧面S10为凸面。第六透镜L6为具有正光焦度的凸凹透镜,其物侧面S11为凸面,像侧面S12为凹面。第四透镜L4和第五透镜L5可胶合组成胶合透镜。
光学镜头还可包括光阑STO,光阑STO可设置在第二透镜L2与第三透镜L3之间,以提高成像质量。例如,光阑STO可设置在第二透镜L2与第三透镜L3之间靠近第二透镜L2的像侧面S4的位置处。
可选地,该光学镜头还可包括具有物侧面S13和像侧面S14的滤光片L7和/或保护玻璃L7’。该滤光片L7和/或保护玻璃L7’可用于校正色彩偏差和/或保护位于成像面处的图像传感芯片IMA。来自物体的光依序穿过各表面S1至S14并最终成像在成像面上。
表37示出了实施例19的光学镜头的各透镜的曲率半径R、厚度d/距离T i、折射率Nd以及阿贝数Vd。表38示出了可用于实施例19中各非球面镜面的圆锥系数和高次项系数,其中,各非球面面型可由上述实施例1中给出的公式(1)限定。
Figure PCTCN2021130629-appb-000022
表37
面号 k A4 A6 A8 A10 A12 A14 A16
S1 -3.2110 7.2167E-04 -7.9505E-04 8.8089E-05 -4.9103E-06 1.4558E-07 -1.8257E-09 0.0000E+00
S2 -0.9271 -7.5142E-03 -3.8814E-04 3.5365E-05 1.4464E-05 -2.8024E-06 2.1105E-07 -5.9888E-09
S11 -11.2135 -2.3896E-03 3.2661E-05 -1.0076E-05 -2.8386E-07 2.1576E-07 -1.9269E-08 5.6615E-11
S12 -33.4982 -2.0530E-03 -3.3612E-05 -5.1136E-08 1.6524E-07 -2.4643E-09 -1.8630E-10 6.4257E-12
表38
实施例20
以下参照图20描述了根据本申请实施例20的光学镜头。图20示出了根据本申请实施例20的光 学镜头的结构示意图。
如图20所示,光学镜头沿着光轴由物侧至像侧依序包括第一透镜L1、第二透镜L2、第三透镜L3、第四透镜L4、第五透镜L5和第六透镜L6。
第一透镜L1为具有负光焦度的凸凹透镜,其物侧面S1为凸面,像侧面S2为凹面。第二透镜L2为具有正光焦度的凹凸透镜,其物侧面S3为凹面,像侧面S4为凸面。第三透镜L3为具有正光焦度的双凸透镜,其物侧面S6为凸面,像侧面S7为凸面。第四透镜L4为具有正光焦度的双凸透镜,其物侧面S8为凸面,像侧面S9为凸面。第五透镜L5为具有负光焦度的凹凸透镜,其物侧面S9为凹面,像侧面S10为凸面。第六透镜L6为具有正光焦度的凸凹透镜,其物侧面S11为凸面,像侧面S12为凹面。第四透镜L4和第五透镜L5可胶合组成胶合透镜。
光学镜头还可包括光阑STO,光阑STO可设置在第二透镜L2与第三透镜L3之间,以提高成像质量。例如,光阑STO可设置在第二透镜L2与第三透镜L3之间靠近第二透镜L2的像侧面S4的位置处。
可选地,该光学镜头还可包括具有物侧面S13和像侧面S14的滤光片L7和/或保护玻璃L7’。该滤光片L7和/或保护玻璃L7’可用于校正色彩偏差和/或保护位于成像面处的图像传感芯片IMA。来自物体的光依序穿过各表面S1至S14并最终成像在成像面上。
表39示出了实施例20的光学镜头的各透镜的曲率半径R、厚度d/距离T i、折射率Nd以及阿贝数Vd。表40示出了可用于实施例20中各非球面镜面的圆锥系数和高次项系数,其中,各非球面面型可由上述实施例1中给出的公式(1)限定。
Figure PCTCN2021130629-appb-000023
表39
面号 k A4 A6 A8 A10 A12 A14 A16
S1 -1.1632 -5.1002E-03 -9.2807E-04 1.3027E-04 -7.3684E-06 2.0215E-07 -2.1463E-09 -2.7326E-13
S2 -0.6753 -1.4148E-02 -1.9301E-03 2.9068E-04 -7.1438E-06 -2.6356E-06 2.8490E-07 -1.0983E-08
S11 -20.6271 2.3465E-03 -4.7845E-04 2.3847E-05 -1.1986E-06 1.7531E-07 -1.5844E-08 4.8104E-10
S12 3.7432 9.2818E-04 -3.3182E-04 1.7381E-06 9.8904E-07 -3.3830E-08 -9.2862E-10 4.9662E-11
表40
实施例21
以下参照图21描述了根据本申请实施例21的光学镜头。图21示出了根据本申请实施例21的光 学镜头的结构示意图。
如图21所示,光学镜头沿着光轴由物侧至像侧依序包括第一透镜L1、第二透镜L2、第三透镜L3、第四透镜L4、第五透镜L5和第六透镜L6。
第一透镜L1为具有负光焦度的凸凹透镜,其物侧面S1为凸面,像侧面S2为凹面。第二透镜L2为具有负光焦度的凹凸透镜,其物侧面S3为凹面,像侧面S4为凸面。第三透镜L3为具有正光焦度的双凸透镜,其物侧面S6为凸面,像侧面S7为凸面。第四透镜L4为具有正光焦度的双凸透镜,其物侧面S8为凸面,像侧面S9为凸面。第五透镜L5为具有负光焦度的凹凸透镜,其物侧面S9为凹面,像侧面S10为凸面。第六透镜L6为具有正光焦度的凸凹透镜,其物侧面S11为凸面,像侧面S12为凹面。第四透镜L4和第五透镜L5可胶合组成胶合透镜。
光学镜头还可包括光阑STO,光阑STO可设置在第二透镜L2与第三透镜L3之间,以提高成像质量。例如,光阑STO可设置在第二透镜L2与第三透镜L3之间靠近第二透镜L2的像侧面S4的位置处。
可选地,该光学镜头还可包括具有物侧面S13和像侧面S14的滤光片L7和/或保护玻璃L7’。该滤光片L7和/或保护玻璃L7’可用于校正色彩偏差和/或保护位于成像面处的图像传感芯片IMA。来自物体的光依序穿过各表面S1至S14并最终成像在成像面上。
表41示出了实施例21的光学镜头的各透镜的曲率半径R、厚度d/距离T i、折射率Nd以及阿贝数Vd。表42示出了可用于实施例21中各非球面镜面的圆锥系数和高次项系数,其中,各非球面面型可由上述实施例1中给出的公式(1)限定。
Figure PCTCN2021130629-appb-000024
表41
面号 k A4 A6 A8 A10 A12 A14 A16
S1 -3.6820 8.3543E-04 -5.3463E-04 5.2581E-05 -2.6479E-06 7.4250E-08 -1.0215E-09 3.7085E-12
S2 -0.8761 -5.9586E-03 -2.3601E-04 1.6199E-05 7.6983E-06 -1.3128E-06 9.7967E-08 -2.9906E-09
S11 4.4905 -1.4489E-03 -2.5005E-05 -9.1377E-07 -4.5523E-07 8.8298E-08 -5.2977E-09 1.1035E-10
S12 38.1720 -1.3382E-03 -6.2664E-05 -6.2631E-07 2.0950E-07 -2.6310E-10 -4.5792E-10 1.1051E-11
表42
实施例22
以下参照图22描述了根据本申请实施例22的光学镜头。图22示出了根据本申请实施例22的光 学镜头的结构示意图。
如图22所示,光学镜头沿着光轴由物侧至像侧依序包括第一透镜L1、第二透镜L2、第三透镜L3、第四透镜L4、第五透镜L5和第六透镜L6。
第一透镜L1为具有负光焦度的凸凹透镜,其物侧面S1为凸面,像侧面S2为凹面。第二透镜L2为具有负光焦度的凹凸透镜,其物侧面S3为凹面,像侧面S4为凸面。第三透镜L3为具有正光焦度的双凸透镜,其物侧面S6为凸面,像侧面S7为凸面。第四透镜L4为具有正光焦度的双凸透镜,其物侧面S8为凸面,像侧面S9为凸面。第五透镜L5为具有负光焦度的凹凸透镜,其物侧面S9为凹面,像侧面S10为凸面。第六透镜L6为具有正光焦度的凸凹透镜,其物侧面S11为凸面,像侧面S12为凹面。第四透镜L4和第五透镜L5可胶合组成胶合透镜。
光学镜头还可包括光阑STO,光阑STO可设置在第二透镜L2与第三透镜L3之间,以提高成像质量。例如,光阑STO可设置在第二透镜L2与第三透镜L3之间靠近第二透镜L2的像侧面S4的位置处。
可选地,该光学镜头还可包括具有物侧面S13和像侧面S14的滤光片L7和/或保护玻璃L7’。该滤光片L7和/或保护玻璃L7’可用于校正色彩偏差和/或保护位于成像面处的图像传感芯片IMA。来自物体的光依序穿过各表面S1至S14并最终成像在成像面上。
表43示出了实施例22的光学镜头的各透镜的曲率半径R、厚度d/距离T i、折射率Nd以及阿贝数Vd。表44示出了可用于实施例22中各非球面镜面的圆锥系数和高次项系数,其中,各非球面面型可由上述实施例1中给出的公式(1)限定。
Figure PCTCN2021130629-appb-000025
表43
面号 k A4 A6 A8 A10 A12 A14 A16
S1 -0.4253 -4.0491E-03 1.8542E-05 6.9041E-06 -3.9491E-07 6.8448E-09 1.0754E-10 -3.9226E-12
S2 -1.5465 -1.3324E-03 3.8037E-05 -1.3031E-05 6.3652E-06 -9.2093E-07 6.1202E-08 -1.5435E-09
S11 4.3957 -1.3201E-03 4.1010E-06 -5.4743E-06 5.5592E-07 -3.4148E-08 1.1397E-09 -1.5678E-11
S12 -70.9043 -5.2664E-04 -4.2045E-05 -1.4767E-06 3.1904E-07 -1.9163E-08 5.9565E-10 -7.5612E-12
表44
综上,实施例1至实施例11分别满足以下表45-1和表45-2所示的关系。在表45-1和表45-2中,TTL、F、H、D、d8i、F45、F1、F2、F3、F4、F5、F6、BFL、d23、R1、R3、R4、R8、R10、R11、R12、T2、T3、T4、T5、的单位为毫米(mm),FOV的单位为度(°),θ的单位为弧度(rad)。
Figure PCTCN2021130629-appb-000026
Figure PCTCN2021130629-appb-000027
表45-1
Figure PCTCN2021130629-appb-000028
Figure PCTCN2021130629-appb-000029
表45-2
综上,实施例12至实施例22分别满足以下表46-1和表46-2所示的关系。在表46-1和表46-2中,TTL、F、H、D、D11、T 8-i、T 8-11、T 3-13、d2、R3、R4、R6、R7、R8、R11、R12、SAG11、F45、F1、F2、F3、F4、F5、F6的单位为毫米(mm),FOV的单位为度(°),θ的单位为弧度(rad)。
条件式\实施例 实施例12 实施例13 实施例14 实施例15 实施例16
TTL 34.137 33.834 34.367 32.335 34.099
F 5.063 5.070 5.114 5.074 5.070
H 8.064 8.064 8.064 8.064 8.064
FOV 120.000 120.000 120.000 120.000 120.000
D 9.000 9.000 9.712 9.000 9.000
T 8-i 14.455 14.891 14.227 13.706 14.453
T 8-11 10.790 11.400 10.589 10.919 11.086
T 3-13 27.902 27.237 28.209 26.927 27.339
D11/2 4.535 4.573 4.265 4.258 4.628
SAG11 0.893 -0.016 0.374 0.652 0.559
F45 24.510 28.324 30.094 16.651 62.700
F1 -9.233 -8.866 -9.753 -9.817 -9.545
F2 -74.850 -71.727 -105.897 -84.161 -69.839
F3 14.165 13.844 13.386 15.099 13.999
F4 9.170 9.408 9.166 6.952 9.173
F5 -11.382 -10.961 -10.293 -8.810 -7.943
F6 33.880 21.857 48.811 44.262 13.787
dn3/dt3 -1.07×10 -5 -1.07×10 -5 -5.27×10 -6 -1.96×10 -5 -1.07×10 -5
dn4/dt4 -1.92×10 -5 -1.92×10 -5 -2.02×10 -5 -5.27×10 -6 -2.02×10 -5
FNO 1.450 1.460 1.460 1.460 1.460
K2 0.976 0.993 1.106 1.094 0.924
K12 -3.816 -1.405 -6.261 -42.097 -2.117
TTL/F 6.742 6.673 6.720 6.373 6.726
TTL/H/FOV 0.035 0.035 0.036 0.033 0.035
D/H/FOV 0.009 0.009 0.010 0.009 0.009
(FOV×F)/H 75.342 75.446 76.108 75.500 75.444
F1/F -1.824 -1.749 -1.907 -1.935 -1.883
F3/F 2.798 2.731 2.617 2.976 2.761
R3/R4 0.636 0.623 0.683 0.643 0.614
R3/(R4+d2) 1.393 1.514 1.302 1.448 1.604
d2/TTL 0.183 0.185 0.181 0.197 0.183
R7/F -5.219 -4.647 -9.123 -5.114 -4.715
F45/F 4.841 5.587 5.884 3.282 12.367
F3/F4 1.545 1.471 1.460 2.172 1.526
T 8-11/R8 1.342 1.387 1.310 1.226 1.455
T 3-13/TTL 0.817 0.805 0.821 0.833 0.802
T 8-i/TTL 0.423 0.440 0.414 0.424 0.424
Vd4/Vd5 4.317 4.317 4.559 2.887 4.317
arctan(1/K2) 45.688 45.190 42.108 42.432 47.255
R11/F 2.505 2.857 2.789 2.331 2.122
|SAG11/D11/2| 0.197 0.004 0.088 0.153 0.121
arctan(1/K12) -14.683 -35.444 -9.074 -1.361 -25.281
(H/2)/(F×tan(θ/2)) 0.460 0.460 0.456 0.459 0.460
D/H/θ 0.533 0.533 0.575 0.533 0.533
表46-1
条件式\实施例 实施例17 实施例18 实施例19 实施例20 实施例21 实施例22
TTL 34.100 26.599 26.783 25.155 29.827 34.163
F 5.070 5.079 5.084 5.352 5.300 5.090
H 8.064 8.064 8.064 8.064 8.640 8.064
FOV 120.000 120.000 120.000 120.000 120.000 120.000
D 9.000 8.794 8.400 7.600 8.763 8.960
T 8-i 14.458 11.503 12.594 11.557 13.556 14.502
T 8-11 10.901 7.918 9.297 8.959 10.099 10.829
T 3-13 27.447 19.887 20.991 20.397 23.786 27.689
D11/2 4.680 3.730 3.453 3.552 4.020 5.060
SAG11 0.625 -0.222 -0.355 0.209 0.005 0.317
F45 61.300 21.837 18.562 24.474 20.717 24.354
F1 -9.470 -9.828 -8.982 -8.806 -9.451 -8.805
F2 -66.731 -364.992 -108.683 82.412 -119.733 -87.853
F3 14.092 11.088 10.831 10.126 12.720 14.206
F4 9.296 7.497 7.239 7.884 7.800 9.196
F5 -8.119 -9.728 -9.709 -9.707 -10.093 -11.493
F6 13.417 129.759 431.630 126.240 55.663 29.590
dn3/dt3 -1.20×10 -5 -1.07×10 -5 -1.07×10 -5 -1.07×10 -5 -1.07×10 -5 -1.07×10 -5
dn4/dt4 -2.02×10 -5 -2.25×10 -5 -2.02×10 -5 -2.02×10 -5 -2.02×10 -5 -1.92×10 -5
FNO 1.460 1.460 1.820 2.100 1.830 1.467
K2 0.904 0.957 0.966 1.330 0.978 1.026
K12 -2.129 -2.000 -2.430 -2.914 -1.145 -2.878
TTL/F 6.726 5.237 5.268 4.700 5.628 6.712
TTL/H/FOV 0.035 0.027 0.028 0.026 0.029 0.035
D/H/FOV 0.009 0.009 0.009 0.008 0.008 0.009
(FOV×F)/H 75.442 75.582 75.656 79.635 73.611 75.739
F1/F -1.868 -1.935 -1.767 -1.646 -1.783 -1.730
F3/F 2.780 2.183 2.130 1.892 2.400 2.791
R3/R4 0.610 0.715 0.691 1.000 0.678 0.649
R3/(R4+d2) 1.588 1.587 1.403 1.694 1.578 1.444
d2/TTL 0.184 0.218 0.199 0.199 0.183 0.185
R7/F -4.196 -18.648 -4.544 -2.990 -6.313 -5.237
F45/F 12.091 4.299 3.651 4.573 3.909 4.785
F3/F4 1.516 1.479 1.496 1.284 1.631 1.545
T 8-11/R8 1.420 1.172 1.186 1.087 1.219 1.342
T 3-13/TTL 0.805 0.748 0.784 0.811 0.797 0.810
T 8-i/TTL 0.424 0.432 0.470 0.459 0.454 0.425
Vd4/Vd5 4.317 5.004 4.317 4.317 4.317 4.317
arctan(1/K2) 47.889 46.273 45.982 36.935 45.635 44.274
R11/F 2.079 4.401 5.151 2.552 3.356 2.412
|SAG11/D11/2| 0.134 0.060 0.103 0.059 0.001 0.063
arctan(1/K12) -25.160 -26.569 -22.364 -18.940 -41.122 -19.158
(H/2)/(F×tan(θ/2)) 0.460 0.459 0.458 0.436 0.471 0.458
D/H/θ 0.533 0.521 0.498 0.450 0.485 0.531
表46-2
本申请还提供了一种电子设备,该电子设备可包括根据本申请上述实施方式的光学镜头及用于将所述光学镜头形成的光学图像转换为电信号的成像元件。该电子设备可以是诸如探测距离相机的独立 电子设备,也可以是集成在诸如探测距离设备上的成像模块。此外,电子设备还可以是诸如车载相机的独立成像设备,也可以是集成在诸如辅助驾驶系统上的成像模块。
以上描述仅为本申请的较佳实施例以及对所运用技术原理的说明。本领域技术人员应当理解,本申请中所涉及的发明范围,并不限于上述技术特征的特定组合而成的技术方案,同时也应涵盖在不脱离所述发明构思的情况下,由上述技术特征或其等同特征进行任意组合而形成的其它技术方案。例如上述特征与本申请中公开的(但不限于)具有类似功能的技术特征进行互相替换而形成的技术方案。

Claims (75)

  1. 光学镜头,其特征在于,沿着光轴由物侧至像侧依序包括:
    具有负光焦度的第一透镜,其像侧面为凹面;
    具有光焦度的第二透镜,其物侧面为凹面,像侧面为凸面;
    具有正光焦度的第三透镜,其物侧面为凸面,像侧面为凸面;
    具有光焦度的第四透镜,其物侧面为凸面;
    具有光焦度的第五透镜,其像侧面为凸面;以及
    具有光焦度的第六透镜。
  2. 根据权利要求1所述的光学镜头,其特征在于,所述第一透镜的物侧面为凸面。
  3. 根据权利要求1所述的光学镜头,其特征在于,所述第一透镜的物侧面为凹面。
  4. 根据权利要求1所述的光学镜头,其特征在于,所述第二透镜具有负光焦度。
  5. 根据权利要求1所述的光学镜头,其特征在于,所述第二透镜具有正光焦度。
  6. 根据权利要求1所述的光学镜头,其特征在于,所述第四透镜具有正光焦度,其像侧面为凸面。
  7. 根据权利要求1所述的光学镜头,其特征在于,所述第四透镜具有负光焦度,其像侧面为凹面。
  8. 根据权利要求1所述的光学镜头,其特征在于,所述第五透镜具有负光焦度,其物侧面为凹面。
  9. 根据权利要求1所述的光学镜头,其特征在于,所述第五透镜具有正光焦度,其物侧面为凸面。
  10. 根据权利要求1所述的光学镜头,其特征在于,所述第六透镜具有正光焦度,其物侧面为凸面,像侧面为凹面。
  11. 根据权利要求1所述的光学镜头,其特征在于,所述第六透镜具有正光焦度,其物侧面为凹面,像侧面为凸面。
  12. 根据权利要求1所述的光学镜头,其特征在于,所述第六透镜具有正光焦度,其物侧面为凸面,像侧面为凸面。
  13. 根据权利要求1所述的光学镜头,其特征在于,所述第六透镜具有负光焦度,其物侧面为凸面,像侧面为凹面。
  14. 根据权利要求1所述的光学镜头,其特征在于,所述第六透镜具有负光焦度,其物侧面为凹面,像侧面为凸面。
  15. 根据权利要求1所述的光学镜头,其特征在于,所述第六透镜具有负光焦度,其物侧面为凹面,像侧面为凹面。
  16. 根据权利要求1所述的光学镜头,其特征在于,所述第四透镜和所述第五透镜胶合形成胶合透镜。
  17. 根据权利要求1所述的光学镜头,其特征在于,所述第六透镜具有非球面镜面。
  18. 根据权利要求1-17中任一项所述的光学镜头,其特征在于,所述第一透镜的物侧面的中心至所述光学镜头的成像面在所述光轴上的距离TTL与所述光学镜头的总有效焦距F满足:TTL/F≤7。
  19. 根据权利要求1-17中任一项所述的光学镜头,其特征在于,所述光学镜头的最大视场角FOV、所述第一透镜的物侧面的中心至所述光学镜头的成像面在所述光轴上的距离TTL以及所述光学镜头的最大视场角对应的像高H满足:TTL/H/FOV≤0.05。
  20. 根据权利要求1-17中任一项所述的光学镜头,其特征在于,所述光学镜头的最大视场角FOV、所述光学镜头的最大视场角对应的所述第一透镜的物侧面的最大通光口径D以及所述光学镜头的最大视场角对应的像高H满足:D/H/FOV≤0.03。
  21. 根据权利要求1-17中任一项所述的光学镜头,其特征在于,所述第四透镜和所述第五透镜胶合形成的胶合透镜的有效焦距F45与所述光学镜头的总有效焦距F满足:1≤F45/F≤8。
  22. 根据权利要求1-17中任一项所述的光学镜头,其特征在于,所述光学镜头的最大视场角对应的所述第一透镜的像侧面的镜片边缘斜率K2满足:arctan(1/K2)≥35。
  23. 根据权利要求1-17中任一项所述的光学镜头,其特征在于,所述光学镜头的最大视场角FOV、所述光学镜头的总有效焦距F以及所述光学镜头的最大视场角对应的像高H满足:(FOV×F)/H≥70。
  24. 根据权利要求1-17中任一项所述的光学镜头,其特征在于,所述第四透镜的物侧面的中心至所述光学镜头的成像面在所述光轴上的距离d8i与所述第一透镜的物侧面的中心至所述光学镜头的成像面在所述光轴上的距离TTL满足:d8i/TTL≥0.3。
  25. 根据权利要求1-17中任一项所述的光学镜头,其特征在于,所述第二透镜的物侧面的曲率半径R3、所述第二透镜的像侧面的曲率半径R4以及所述第二透镜的中心厚度T2满足:0.2≤|R4/(|R3|+T2)|≤1.2。
  26. 根据权利要求1-17中任一项所述的光学镜头,其特征在于,所述第二透镜至所述第四透镜中具有最大中心厚度的第n1透镜的中心厚度Tn1与所述第二透镜至所述第四透镜中具有最小中心厚度的第m1透镜的中心厚度Tm1满足:Tn1/Tm1≤2,其中,n1和m1选自2、3、4。
  27. 根据权利要求1-17中任一项所述的光学镜头,其特征在于,所述第二透镜、所述第三透镜和所述第五透镜中具有最大中心厚度的第n2透镜的中心厚度Tn2与所述第二透镜、所述第三透镜和所述第五透镜中具有最小中心厚度的第m2透镜的中心厚度Tm2满足:Tn2/Tm2≤2,其中,n2和m2选自2、3、5。
  28. 根据权利要求1-17中任一项所述的光学镜头,其特征在于,所述第一透镜的折射率Nd1与所述第二透镜的折射率Nd2满足:0.5≤Nd1/Nd2≤1.5。
  29. 根据权利要求1-17中任一项所述的光学镜头,其特征在于,所述第三透镜的有效焦距F3与所述第五透镜的有效焦距F5满足:1.2≤|F3/F5|≤2.8。
  30. 根据权利要求1-17中任一项所述的光学镜头,其特征在于,所述第三透镜的有效焦距F3与所述第四透镜的有效焦距F4满足:1≤|F3/F4|≤3。
  31. 根据权利要求1-17中任一项所述的光学镜头,其特征在于,所述第三透镜的有效焦距F3、所述第四透镜的有效焦距F4、所述第三透镜的折射率温度系数dn/dt(3)以及所述第四透镜的折射率温度系数dn/dt(4)满足:-2×10 6≤(F3+F4)/(dn/dt(3)+dn/dt(4))≤-4×10 5
  32. 根据权利要求1-17中任一项所述的光学镜头,其特征在于,所述第三透镜的有效焦距F3、所述第五透镜的有效焦距F5、所述第三透镜的折射率温度系数dn/dt(3)以及所述第五透镜的折射率温度系数dn/dt(5)满足:-2×10 6≤(F3+F5)/(dn/dt(3)+dn/dt(5))≤-4×10 5
  33. 根据权利要求1-17中任一项所述的光学镜头,其特征在于,所述光学镜头的最大视场 角的弧度θ、所述光学镜头的总有效焦距F以及所述光学镜头的最大视场角对应的像高H满足:(H-F×θ)/(F×θ)≤-0.1。
  34. 根据权利要求1-17中任一项所述的光学镜头,其特征在于,所述光学镜头的最大视场角对应的所述第六透镜的物侧面的镜片边缘斜率K11满足:arctan(1/K11)≤-4。
  35. 根据权利要求1-17中任一项所述的光学镜头,其特征在于,所述光学镜头的光圈值FNO与所述光学镜头的总有效焦距F满足:FNO/F≥0.1。
  36. 根据权利要求1-17中任一项所述的光学镜头,其特征在于,所述第四透镜的有效焦距F4与所述第五透镜的有效焦距F5满足:0.2≤|F4/F5|≤3。
  37. 根据权利要求1-17中任一项所述的光学镜头,其特征在于,所述第三透镜的有效焦距F3与所述光学镜头的总有效焦距F满足:1≤|F3/F|≤4。
  38. 根据权利要求1-17中任一项所述的光学镜头,其特征在于,所述第六透镜的像侧面的中心至所述光学镜头的成像面在所述光轴上的距离BFL与所述第一透镜的物侧面的中心至所述光学镜头的成像面在所述光轴上的距离TTL满足:BFL/TTL≥0.05。
  39. 根据权利要求1-17中任一项所述的光学镜头,其特征在于,所述第二透镜的像侧面的中心至所述第三透镜的物侧面的中心在所述光轴上的间隔距离d23与所述第一透镜的物侧面的中心至所述光学镜头的成像面在所述光轴上的距离TTL满足:0.04≤d23/TTL≤0.2。
  40. 根据权利要求1-17中任一项所述的光学镜头,其特征在于,所述第六透镜的有效焦距F6与所述光学镜头的总有效焦距F满足:|F6/F|≥3.5。
  41. 根据权利要求1-17中任一项所述的光学镜头,其特征在于,所述第一透镜的有效焦距F1与所述光学镜头的总有效焦距F满足:-2.0≤F1/F≤-1.0。
  42. 根据权利要求1-17中任一项所述的光学镜头,其特征在于,所述第五透镜的像侧面的曲率半径R10与所述光学镜头的总有效焦距F满足:-6.0≤R10/F≤-1.0。
  43. 根据权利要求1-17中任一项所述的光学镜头,其特征在于,所述第二透镜的中心厚度T2与所述第一透镜的物侧面的中心至所述光学镜头的成像面在所述光轴上的距离TTL满足:T2/TTL≥0.15。
  44. 光学镜头,其特征在于,沿着光轴由物侧至像侧依序包括:第一透镜、第二透镜、第三透镜、第四透镜、第五透镜以及第六透镜;
    所述第一透镜具有负光焦度;
    所述第三透镜具有正光焦度;以及
    所述第四透镜的物侧面的中心至所述光学镜头的成像面在所述光轴上的距离d8i与所述第一透镜的物侧面的中心至所述光学镜头的成像面在所述光轴上的距离TTL满足:d8i/TTL≥0.3。
  45. 光学镜头,其特征在于,所述光学镜头沿光轴由物侧至像侧依序包括:
    具有负光焦度的第一透镜,其物侧面为凸面,像侧面为凹面;
    具有光焦度的第二透镜,其物侧面为凹面,像侧面为凸面;
    具有正光焦度的第三透镜,其物侧面为凸面,像侧面为凸面;
    具有正光焦度的第四透镜,其物侧面为凸面,像侧面为凸面;
    具有负光焦度的第五透镜,其物侧面为凹面;以及
    具有正光焦度的第六透镜,其物侧面为凸面。
  46. 根据权利要求45所述的光学镜头,其特征在于,所述第五透镜的像侧面为凸面。
  47. 根据权利要求45所述的光学镜头,其特征在于,所述第五透镜的像侧面为凹面。
  48. 根据权利要求45所述的光学镜头,其特征在于,所述第六透镜的像侧面为凹面。
  49. 根据权利要求45所述的光学镜头,其特征在于,所述第六透镜的像侧面为凸面。
  50. 根据权利要求45所述的光学镜头,其特征在于,所述第四透镜和所述第五透镜胶合形成胶合透镜。
  51. 根据权利要求45所述的光学镜头,其特征在于,所述第一透镜和所述第六透镜具有非球面镜面。
  52. 根据权利要求45-51中任一项所述的光学镜头,其特征在于,所述第一透镜的物侧面的中心至所述光学镜头的成像面在所述光轴上的距离TTL与所述光学镜头的总有效焦距F满足:4.5≤TTL/F≤7。
  53. 根据权利要求45-51中任一项所述的光学镜头,其特征在于,所述第一透镜的物侧面的中心至所述光学镜头的成像面在所述光轴上的距离TTL、所述光学镜头的最大视场角FOV以及所述光学镜头的最大视场角对应的像高H满足:TTL/H/FOV≤0.05。
  54. 根据权利要求45-51中任一项所述的光学镜头,其特征在于,所述光学镜头的最大视场角FOV、所述光学镜头的最大视场角对应的所述第一透镜的物侧面的最大通光口径D以及所述光学镜头的最大视场角对应的像高H满足:D/H/FOV≤0.03。
  55. 根据权利要求45-51中任一项所述的光学镜头,其特征在于,所述光学镜头的最大视场角FOV、所述光学镜头的总有效焦距F以及所述光学镜头的最大视场角对应的像高H满足:(FOV×F)/H≥65。
  56. 根据权利要求45-51中任一项所述的光学镜头,其特征在于,所述第一透镜的有效焦距F1与所述光学镜头的总有效焦距F满足:-2.5≤F1/F≤-1。
  57. 根据权利要求45-51中任一项所述的光学镜头,其特征在于,所述光学镜头的最大视场角对应的所述第一透镜的像侧面的镜片边缘斜率K2满足:arctan(1/K2)≥35。
  58. 根据权利要求45-51中任一项所述的光学镜头,其特征在于,所述第二透镜的物侧面的曲率半径R3与所述第二透镜的像侧面的曲率半径R4满足:0.6≤R3/R4≤1.2。
  59. 根据权利要求45-51中任一项所述的光学镜头,其特征在于,所述第二透镜的物侧面的曲率半径R3、所述第二透镜的像侧面的曲率半径R4以及所述第二透镜在所述光轴上的中心厚度d2满足:1≤R3/(R4+d2)≤2。
  60. 根据权利要求45-51中任一项所述的光学镜头,其特征在于,所述第二透镜在所述光轴上的中心厚度d2与所述第一透镜的物侧面的中心至所述光学镜头的成像面在所述光轴上的距离TTL满足:0.15≤d2/TTL≤0.3。
  61. 根据权利要求45-51中任一项所述的光学镜头,其特征在于,所述第三透镜的有效焦距F3与所述光学镜头的总有效焦距F满足:1.5≤F3/F≤3.5。
  62. 根据权利要求45-51中任一项所述的光学镜头,其特征在于,所述第三透镜的像侧面的曲率半径R7与所述光学镜头的总有效焦距F满足:R7/F≤-2。
  63. 根据权利要求45-51中任一项所述的光学镜头,其特征在于,所述第三透镜的有效焦焦距F3与所述第四透镜的有效焦距F4满足:1≤F3/F4≤2.5。
  64. 根据权利要求45-51中任一项所述的光学镜头,其特征在于,所述第四透镜和所述第五透镜胶合形成的胶合透镜的有效焦距F45与所述光学镜头的总有效焦距F满足:2.5≤F45/F≤13。
  65. 根据权利要求45-51中任一项所述的光学镜头,其特征在于,所述第四透镜的阿贝数Vd4与所述第五透镜的阿贝数Vd5满足:2.6≤Vd4/Vd5≤5.3。
  66. 根据权利要求45-51中任一项所述的光学镜头,其特征在于,所述第四透镜的物侧面的中心至所述光学镜头的成像面在所述光轴上的距离T 8-i与所述第一透镜的物侧面的中心至所述光学镜头的成像面在所述光轴上的距离TTL满足:0.35≤T 8-i/TTL≤0.52。
  67. 根据权利要求45-51中任一项所述的光学镜头,其特征在于,所述第四透镜的物侧面的中心至所述第六透镜的像侧面的中心在所述光轴上的距离T 8-11与所述第四透镜的物侧面的曲率半径R8满足:1≤(T 8-11)/R8≤2。
  68. 根据权利要求45-51中任一项所述的光学镜头,其特征在于,所述光学镜头还包括位于所述第六透镜和所述光学镜头的成像面之间的辅助镜片,
    所述第二透镜的物侧面的中心至所述辅助镜片的像侧面的中心在所述光轴上的距离T 3-13与所述第一透镜的物侧面的中心至所述光学镜头的成像面在所述光轴上的距离TTL满足:0.7≤(T 3-13)/TTL≤0.9。
  69. 根据权利要求45-51中任一项所述的光学镜头,其特征在于,所述光学镜头的最大视场角对应的所述第六透镜的像侧面的镜片边缘斜率K12满足:arctan(1/K12)≤0。
  70. 根据权利要求45-51中任一项所述的光学镜头,其特征在于,所述第六透镜的物侧面的曲率半径R11与所述光学镜头的总有效焦距F满足:2≤R11/F≤6。
  71. 根据权利要求45-51中任一项所述的光学镜头,其特征在于,所述光学镜头的最大视场角对应的所述第六透镜的物侧面的最大通光口径处的矢高SAG11与所述光学镜头的最大视场角对应的所述第六透镜的物侧面的最大通光口径D11满足:|SAG11/D11/2|≤0.22。
  72. 根据权利要求45-51中任一项所述的光学镜头,其特征在于,所述光学镜头的最大视场角对应的像高H、所述光学镜头的总有效焦距F以及以弧度为单位的所述光学镜头的最大视场角θ满足:0.3≤(H/2)/(F×tan(θ/2))≤1.6。
  73. 根据权利要求45-51中任一项所述的光学镜头,其特征在于,其特征在于,所述光学镜头的最大视场角对应的像高H、所述光学镜头的最大视场角对应的所述第一透镜的物侧面的最大通光口径D以及以弧度为单位的所述光学镜头的最大视场角θ满足:D/H/θ≤1.0。
  74. 光学镜头,其特征在于,所述光学镜头沿光轴由物侧至像侧依序包括:
    具有负光焦度的第一透镜;
    具有光焦度的第二透镜;
    具有正光焦度的第三透镜;
    具有正光焦度的第四透镜;
    具有负光焦度的第五透镜;以及
    具有正光焦度的第六透镜;
    所述光学镜头的最大视场角对应的像高H、所述光学镜头的总有效焦距F以及以弧度为单位的所述光学镜头的最大视场角θ满足:0.3≤(H/2)/(F×tan(θ/2))≤1.6。
  75. 一种电子设备,其特征在于,包括根据权利要求1-74中任一项所述的光学镜头及用于将所述光学镜头形成的光学图像转换为电信号的成像元件。
PCT/CN2021/130629 2020-11-13 2021-11-15 光学镜头及电子设备 WO2022100731A1 (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
US18/196,822 US20230333349A1 (en) 2020-11-13 2023-05-12 Optical lens assembly and electronic device

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
CN202011268322.6A CN112305715B (zh) 2020-11-13 2020-11-13 光学镜头及电子设备
CN202011268322.6 2020-11-13
CN202110270238.6A CN113009674B (zh) 2021-03-12 2021-03-12 光学镜头及电子设备
CN202110270238.6 2021-03-12

Related Child Applications (1)

Application Number Title Priority Date Filing Date
US18/196,822 Continuation US20230333349A1 (en) 2020-11-13 2023-05-12 Optical lens assembly and electronic device

Publications (1)

Publication Number Publication Date
WO2022100731A1 true WO2022100731A1 (zh) 2022-05-19

Family

ID=81600795

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2021/130629 WO2022100731A1 (zh) 2020-11-13 2021-11-15 光学镜头及电子设备

Country Status (2)

Country Link
US (1) US20230333349A1 (zh)
WO (1) WO2022100731A1 (zh)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN115236841A (zh) * 2022-09-22 2022-10-25 江西联创电子有限公司 光学镜头
CN116149023A (zh) * 2023-04-17 2023-05-23 江西欧菲光学有限公司 光学镜头、摄像模组及电子设备

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN105044885A (zh) * 2015-06-23 2015-11-11 信华精机有限公司 一种用于车载监控的光学成像系统
CN107817577A (zh) * 2016-09-13 2018-03-20 先进光电科技股份有限公司 光学成像系统
CN108681050A (zh) * 2018-06-19 2018-10-19 江西联创电子有限公司 车载摄像镜头
JP2020046565A (ja) * 2018-09-20 2020-03-26 マクセル株式会社 撮像レンズ系及び撮像装置
CN111443459A (zh) * 2017-10-27 2020-07-24 大立光电股份有限公司 光学成像镜头及取像装置
CN112305715A (zh) * 2020-11-13 2021-02-02 宁波舜宇车载光学技术有限公司 光学镜头及电子设备
CN113009674A (zh) * 2021-03-12 2021-06-22 宁波舜宇车载光学技术有限公司 光学镜头及电子设备

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN105044885A (zh) * 2015-06-23 2015-11-11 信华精机有限公司 一种用于车载监控的光学成像系统
CN107817577A (zh) * 2016-09-13 2018-03-20 先进光电科技股份有限公司 光学成像系统
CN111443459A (zh) * 2017-10-27 2020-07-24 大立光电股份有限公司 光学成像镜头及取像装置
CN108681050A (zh) * 2018-06-19 2018-10-19 江西联创电子有限公司 车载摄像镜头
JP2020046565A (ja) * 2018-09-20 2020-03-26 マクセル株式会社 撮像レンズ系及び撮像装置
CN112305715A (zh) * 2020-11-13 2021-02-02 宁波舜宇车载光学技术有限公司 光学镜头及电子设备
CN113009674A (zh) * 2021-03-12 2021-06-22 宁波舜宇车载光学技术有限公司 光学镜头及电子设备

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN115236841A (zh) * 2022-09-22 2022-10-25 江西联创电子有限公司 光学镜头
CN115236841B (zh) * 2022-09-22 2023-03-24 江西联创电子有限公司 光学镜头
CN116149023A (zh) * 2023-04-17 2023-05-23 江西欧菲光学有限公司 光学镜头、摄像模组及电子设备
CN116149023B (zh) * 2023-04-17 2023-09-05 江西欧菲光学有限公司 光学镜头、摄像模组及电子设备

Also Published As

Publication number Publication date
US20230333349A1 (en) 2023-10-19

Similar Documents

Publication Publication Date Title
WO2021082727A1 (zh) 光学成像镜头
WO2023143239A1 (zh) 光学镜头
WO2022028625A1 (zh) 光学镜头及电子设备
WO2022111523A1 (zh) 光学成像镜头及成像设备
WO2022100731A1 (zh) 光学镜头及电子设备
CN113495342B (zh) 光学镜头及电子设备
CN112305715B (zh) 光学镜头及电子设备
WO2020248877A1 (zh) 光学镜头及成像设备
CN112859289B (zh) 光学镜头及电子设备
CN114509859A (zh) 光学镜头及电子设备
CN113031230A (zh) 超广角镜头及成像设备
CN113009674B (zh) 光学镜头及电子设备
CN115128770A (zh) 光学镜头
CN111352214B (zh) 光学镜头及成像设备
WO2021109677A1 (zh) 光学镜头及电子设备
WO2024046456A1 (zh) 光学镜头
US20230266564A1 (en) Optical lens assembly and electronic device
CN116203699A (zh) 光学镜头及电子设备
CN112748512B (zh) 光学镜头及电子设备
CN114488468A (zh) 光学镜头及电子设备
CN115047585A (zh) 光学镜头及电子设备
CN114690368A (zh) 光学镜头及电子设备
WO2022135103A1 (zh) 光学镜头及电子设备
CN218675459U (zh) 光学镜头及电子设备
WO2022063129A1 (zh) 光学镜头及电子设备

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 21891251

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 21891251

Country of ref document: EP

Kind code of ref document: A1