WO2022028625A1 - 光学镜头及电子设备 - Google Patents

光学镜头及电子设备 Download PDF

Info

Publication number
WO2022028625A1
WO2022028625A1 PCT/CN2021/120752 CN2021120752W WO2022028625A1 WO 2022028625 A1 WO2022028625 A1 WO 2022028625A1 CN 2021120752 W CN2021120752 W CN 2021120752W WO 2022028625 A1 WO2022028625 A1 WO 2022028625A1
Authority
WO
WIPO (PCT)
Prior art keywords
lens
optical
object side
refractive power
convex
Prior art date
Application number
PCT/CN2021/120752
Other languages
English (en)
French (fr)
Inventor
王东方
马奥林
姚波
Original Assignee
宁波舜宇车载光学技术有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 宁波舜宇车载光学技术有限公司 filed Critical 宁波舜宇车载光学技术有限公司
Publication of WO2022028625A1 publication Critical patent/WO2022028625A1/zh
Priority to US18/106,422 priority Critical patent/US20230185061A1/en

Links

Images

Classifications

    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B13/00Optical objectives specially designed for the purposes specified below
    • G02B13/001Miniaturised objectives for electronic devices, e.g. portable telephones, webcams, PDAs, small digital cameras
    • G02B13/0015Miniaturised objectives for electronic devices, e.g. portable telephones, webcams, PDAs, small digital cameras characterised by the lens design
    • G02B13/002Miniaturised objectives for electronic devices, e.g. portable telephones, webcams, PDAs, small digital cameras characterised by the lens design having at least one aspherical surface
    • G02B13/0045Miniaturised objectives for electronic devices, e.g. portable telephones, webcams, PDAs, small digital cameras characterised by the lens design having at least one aspherical surface having five or more lenses
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B13/00Optical objectives specially designed for the purposes specified below
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B13/00Optical objectives specially designed for the purposes specified below
    • G02B13/001Miniaturised objectives for electronic devices, e.g. portable telephones, webcams, PDAs, small digital cameras
    • G02B13/0055Miniaturised objectives for electronic devices, e.g. portable telephones, webcams, PDAs, small digital cameras employing a special optical element
    • G02B13/006Miniaturised objectives for electronic devices, e.g. portable telephones, webcams, PDAs, small digital cameras employing a special optical element at least one element being a compound optical element, e.g. cemented elements
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B13/00Optical objectives specially designed for the purposes specified below
    • G02B13/06Panoramic objectives; So-called "sky lenses" including panoramic objectives having reflecting surfaces
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B13/00Optical objectives specially designed for the purposes specified below
    • G02B13/18Optical objectives specially designed for the purposes specified below with lenses having one or more non-spherical faces, e.g. for reducing geometrical aberration
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B9/00Optical objectives characterised both by the number of the components and their arrangements according to their sign, i.e. + or -
    • G02B9/62Optical objectives characterised both by the number of the components and their arrangements according to their sign, i.e. + or - having six components only
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B9/00Optical objectives characterised both by the number of the components and their arrangements according to their sign, i.e. + or -
    • G02B9/64Optical objectives characterised both by the number of the components and their arrangements according to their sign, i.e. + or - having more than six components

Definitions

  • the present application relates to the field of optical elements, and more particularly, to an optical lens and electronic equipment.
  • the car lens has become the eyes of the car to obtain external information and plays an irreplaceable role.
  • the optical lens needs to be equipped with a larger and higher-resolution chip to improve the resolution quality of the lens.
  • the present application provides an optical lens.
  • the optical lens sequentially includes from the object side to the image side along the optical axis: a first lens with negative refractive power, whose object side is convex, and whose image side is concave; a second lens with negative refractive power, whose object side is concave; The side is concave and the image side is convex; the third lens with positive power has a convex object side; the fourth lens with positive power is convex on the object side and the image side is convex; A fifth lens; a sixth lens having refractive power; and a seventh lens having refractive power; wherein one of the fifth lens and the sixth lens has positive refractive power, and the other of the fifth lens and the sixth lens has positive refractive power It has negative refractive power, and the fifth lens and the sixth lens are cemented to form a cemented lens.
  • the image side surface of the third lens is convex.
  • the image side surface of the third lens is concave.
  • the fifth lens has negative refractive power, the object side is concave, and the image side is concave.
  • the fifth lens has negative refractive power
  • the object side is convex
  • the image side is concave.
  • the fifth lens has positive refractive power, the object side is convex, and the image side is convex.
  • the sixth lens has positive refractive power, the object side surface is convex, and the image side surface is convex.
  • the sixth lens has negative refractive power, the object side is concave, and the image side is concave.
  • the seventh lens has positive refractive power
  • the object side surface is convex in the region close to the optical axis
  • the image side surface is concave in the region close to the optical axis.
  • the seventh lens has negative refractive power
  • the object side surface is concave in the region close to the optical axis
  • the image side surface is convex in the region close to the optical axis.
  • the seventh lens has negative refractive power
  • the object side surface is concave in the region close to the optical axis
  • the image side surface is concave in the region close to the optical axis.
  • the seventh lens has positive refractive power
  • the object side surface is convex in the region close to the optical axis
  • the image side surface is convex in the region close to the optical axis.
  • At least one inflection point exists in the object side of the seventh lens and the image side of the seventh lens.
  • At least two of the second lens, the third lens, the fourth lens, and the seventh lens have aspherical mirror surfaces.
  • the distance TTL from the object side of the first lens to the imaging surface of the optical lens on the optical axis and the total effective focal length F of the optical lens may satisfy: TTL/F ⁇ 9.
  • the distance TTL from the object side of the first lens to the imaging surface of the optical lens on the optical axis, the image height H corresponding to the maximum angle of view of the optical lens, and the maximum angle of view FOV of the optical lens can satisfy: TTL/H/FOV ⁇ 0.1.
  • the maximum clear aperture D of the object side of the first lens corresponding to the maximum field of view of the optical lens, the image height H corresponding to the maximum field of view of the optical lens, and the maximum field of view FOV of the optical lens can be Satisfaction: D/H/FOV ⁇ 0.025.
  • the effective focal length F+ of the lens with positive refractive power in the cemented lens and the effective focal length F- of the lens with negative refractive power in the cemented lens may satisfy: 0.5 ⁇
  • the effective focal length F7 of the seventh lens and the total effective focal length F of the optical lens may satisfy:
  • the separation distance T67 between the sixth lens and the seventh lens on the optical axis and the distance TTL from the object side of the first lens to the imaging surface of the optical lens on the optical axis can satisfy: 0 ⁇ T67/TTL ⁇ 0.2.
  • the radius of curvature R3 of the object side of the second lens, the radius of curvature R4 of the image side of the second lens, and the center thickness d3 of the second lens on the optical axis may satisfy:
  • the central thickness d3 of the second lens on the optical axis and the distance TTL from the object side of the first lens to the imaging surface of the optical lens on the optical axis may satisfy: 0.05 ⁇ d3/TTL ⁇ 0.3.
  • the maximum angle of view FOV of the optical lens, the total effective focal length F of the optical lens, and the image height H corresponding to the maximum angle of view of the optical lens may satisfy: (FOV ⁇ F)/H ⁇ 70.
  • the maximum field angle of the optical lens corresponds to the semi-diameter D3 of the maximum clear aperture of the object side of the second lens, the intersection of the object side of the second lens and the optical axis to the object side of the second lens
  • the distance SAG3 of the maximum clear aperture on the optical axis, the semi-diameter D4 of the maximum clear aperture of the image side of the second lens corresponding to the maximum field angle of the optical lens, the intersection of the image side of the second lens and the optical axis to the first
  • the distance SAG4 on the optical axis of the maximum clear aperture on the image side of the two lenses can satisfy: 0.5 ⁇ arctan(SAG3/D3)/arctan(SAG4/D4) ⁇ 3.
  • the refractive index Nd+ of the lens with positive refractive power in the cemented lens and the Abbe number Vd+ of the lens with positive refractive power in the cemented lens can satisfy: Vd+/Nd+ ⁇ 40.
  • the optical lens sequentially includes from the object side to the image side along the optical axis: a first lens with negative refractive power, whose object side is convex, and whose image side is concave; a second lens with negative refractive power, whose object side is concave; The side is concave and the image side is convex; the third lens with positive power has a convex object side; the fourth lens with positive power is convex on the object side and the image side is convex; Five lenses; a sixth lens with optical power; and a seventh lens with optical power; wherein, the separation distance T67 between the sixth lens and the seventh lens on the optical axis is the same as the distance from the object side of the first lens to the optical lens
  • the distance TTL of the imaging surface on the optical axis can satisfy: 0 ⁇ T67/TTL ⁇ 0.2.
  • one of the fifth and sixth lenses has positive refractive power
  • the other of the fifth and sixth lenses has negative refractive power
  • the fifth and sixth lenses are cemented to form a cemented lens .
  • the image side surface of the third lens is convex.
  • the image side surface of the third lens is concave.
  • the fifth lens has negative refractive power, the object side is concave, and the image side is concave.
  • the fifth lens has negative refractive power
  • the object side is convex
  • the image side is concave.
  • the fifth lens has positive refractive power, the object side is convex, and the image side is convex.
  • the sixth lens has positive refractive power, the object side surface is convex, and the image side surface is convex.
  • the sixth lens has negative refractive power, the object side is concave, and the image side is concave.
  • the seventh lens has positive refractive power
  • the object side surface is convex in the region close to the optical axis
  • the image side surface is concave in the region close to the optical axis.
  • the seventh lens has negative refractive power
  • the object side surface is concave in the region close to the optical axis
  • the image side surface is convex in the region close to the optical axis.
  • the seventh lens has negative refractive power
  • the object side surface is concave in the region close to the optical axis
  • the image side surface is concave in the region close to the optical axis.
  • the seventh lens has positive refractive power
  • the object side surface is convex in the region close to the optical axis
  • the image side surface is convex in the region close to the optical axis.
  • At least one inflection point exists in the object side of the seventh lens and the image side of the seventh lens.
  • At least two of the second lens, the third lens, the fourth lens, and the seventh lens have aspherical mirror surfaces.
  • the distance TTL from the object side of the first lens to the imaging surface of the optical lens on the optical axis and the total effective focal length F of the optical lens may satisfy: TTL/F ⁇ 9.
  • the distance TTL from the object side of the first lens to the imaging surface of the optical lens on the optical axis, the image height H corresponding to the maximum angle of view of the optical lens, and the maximum angle of view FOV of the optical lens can satisfy: TTL/H/FOV ⁇ 0.1.
  • the maximum field of view FOV of the optical lens, the maximum clear aperture D of the object side of the first lens corresponding to the maximum field of view of the optical lens, and the image height H corresponding to the maximum field of view of the optical lens can be Satisfaction: D/H/FOV ⁇ 0.025.
  • the effective focal length F+ of the lens with positive refractive power in the cemented lens and the effective focal length F- of the lens with negative refractive power in the cemented lens may satisfy: 0.5 ⁇
  • the effective focal length F7 of the seventh lens and the total effective focal length F of the optical lens may satisfy:
  • the radius of curvature R3 of the object side of the second lens, the radius of curvature R4 of the image side of the second lens, and the center thickness d3 of the second lens on the optical axis may satisfy:
  • the central thickness d3 of the second lens on the optical axis and the distance TTL from the object side of the first lens to the imaging surface of the optical lens on the optical axis may satisfy: 0.05 ⁇ d3/TTL ⁇ 0.3.
  • the maximum field of view angle FOV of the optical lens, the total effective focal length F of the optical lens, and the image height H corresponding to the maximum field of view angle FOV of the optical lens may satisfy: (FOV ⁇ F)/H ⁇ 70.
  • the maximum field angle of the optical lens corresponds to the semi-diameter D3 of the maximum clear aperture of the object side of the second lens, the intersection of the object side of the second lens and the optical axis to the object side of the second lens
  • the distance SAG3 of the maximum clear aperture on the optical axis, the semi-diameter D4 of the maximum clear aperture of the image side of the second lens corresponding to the maximum field angle of the optical lens, the intersection of the image side of the second lens and the optical axis to the first
  • the distance SAG4 on the optical axis of the maximum clear aperture on the image side of the two lenses can satisfy: 0.5 ⁇ arctan(SAG3/D3)/arctan(SAG4/D4) ⁇ 3.
  • the refractive index Nd+ of the lens with positive refractive power in the cemented lens and the Abbe number Vd+ of the lens with positive refractive power in the cemented lens can satisfy: Vd+/Nd+ ⁇ 40.
  • the electronic device includes an optical lens provided according to the present application and an imaging element for converting an optical image formed by the optical lens into an electrical signal.
  • the present application adopts seven lenses, and by optimizing the shape and power of each lens, the optical lens has at least one beneficial effect, such as high resolution, miniaturization, small distortion, low cost, and good temperature performance.
  • FIG. 1 is a schematic structural diagram illustrating an optical lens according to Embodiment 1 of the present application.
  • FIG. 2 is a schematic structural diagram illustrating an optical lens according to Embodiment 2 of the present application.
  • FIG. 3 is a schematic structural diagram illustrating an optical lens according to Embodiment 3 of the present application.
  • FIG. 4 is a schematic structural diagram illustrating an optical lens according to Embodiment 4 of the present application.
  • FIG. 5 is a schematic structural diagram illustrating an optical lens according to Embodiment 5 of the present application.
  • FIG. 6 is a schematic structural diagram illustrating an optical lens according to Embodiment 6 of the present application.
  • FIG. 7 is a schematic structural diagram illustrating an optical lens according to Embodiment 7 of the present application.
  • FIG. 8 is a schematic structural diagram illustrating an optical lens according to Embodiment 8 of the present application.
  • FIG. 9 is a schematic diagram showing the sag of the object side of the lens according to the present application.
  • first, second, third etc. are only used to distinguish one feature from another feature and do not imply any limitation on the feature. Accordingly, the first lens discussed below may also be referred to as a second lens or a third lens without departing from the teachings of the present application.
  • the thickness, size and shape of the lenses have been slightly exaggerated for convenience of explanation.
  • the spherical or aspherical shapes shown in the figures are shown by way of example. That is, the shape of the spherical or aspherical surface is not limited to the shape of the spherical or aspherical surface shown in the drawings.
  • the drawings are examples only and are not drawn strictly to scale.
  • the paraxial region refers to the region near the optical axis. If the lens surface is convex and the convex position is not defined, it means that the lens surface is convex at least in the paraxial region; if the lens surface is concave and the concave position is not defined, it means that the lens surface is at least in the paraxial region. Concave.
  • the surface of each lens closest to the subject is called the object side of the lens, and the surface of each lens closest to the imaging side is called the image side of the lens.
  • the optical lens includes, for example, seven lenses having optical powers, ie, a first lens, a second lens, a third lens, a fourth lens, a fifth lens, a sixth lens, and a seventh lens.
  • the seven lenses are arranged in sequence from the object side to the image side along the optical axis.
  • the optical lens may further include a photosensitive element disposed on the imaging surface.
  • the photosensitive element disposed on the imaging surface may be a photosensitive coupling element (CCD) or a complementary metal oxide semiconductor element (CMOS).
  • the first lens may have negative refractive power.
  • the first lens may have a convex and concave type.
  • the setting of the optical power of the first lens can prevent the light from the object side from being too divergent, which is beneficial to control the aperture of the rear lens and realize a miniaturized design.
  • the surface configuration of the first lens can collect light with a large field of view as much as possible, enter the rear optical system, and increase the amount of light transmitted.
  • the object side surface of the first lens is designed as a convex surface, which is conducive to the sliding of water droplets and reduces the impact on imaging in an actual use environment such as rain and snow weather.
  • the first lens has a relatively high refractive index (eg, Nd1 ⁇ 1.7) and relatively high hardness, which is beneficial to reducing the aperture of the front end and improving the imaging quality.
  • the second lens may have negative refractive power.
  • the second lens may have a concave-convex surface type.
  • the setting of the optical power of the second lens is beneficial to further divergent the light passing through the first lens.
  • the surface configuration of the second lens facilitates the smooth transition of light to the rear optical system.
  • the second lens has an aspherical mirror surface, which can improve the resolution of the lens.
  • the third lens may have positive refractive power.
  • the third lens may have a convex-convex type or a convex-concave type.
  • the setting of the optical power and the surface shape of the third lens is beneficial to light convergence.
  • the third lens is preferably made of a material with a high refractive index (Nd3 ⁇ 1.65), which is beneficial to reducing the aperture of the front end and improving the imaging quality.
  • the third lens has an aspherical mirror surface, which can improve the resolution of the lens.
  • the fourth lens may have positive refractive power.
  • the fourth lens may have a convex-convex type. This optical power and surface configuration of the fourth lens is conducive to converging light and making the light transition smoothly to the rear optical system.
  • the fourth lens has an aspherical surface
  • the mirror surface can improve the resolution of the lens.
  • the seventh lens may have positive refractive power or negative refractive power.
  • the seventh lens may have a concave-convex, convex-concave, convex-convex, or concave-convex type.
  • the seventh lens has an aspherical mirror surface, which can further improve the resolution quality and correct aberrations.
  • At least two of the second lens, the third lens, the fourth lens, and the seventh lens may have aspherical mirror surfaces, which may improve lens resolution.
  • the optical lens according to the present application can satisfy: TTL/F ⁇ 9, where TTL is the distance on the optical axis from the object side of the first lens to the imaging surface of the optical lens, and F is the distance on the optical axis of the optical lens. total effective focal length. More specifically, TTL and F may further satisfy: TTL/F ⁇ 8.5. Satisfying TTL/F ⁇ 9 is conducive to miniaturization.
  • the optical lens according to the present application can satisfy: TTL/H/FOV ⁇ 0.1, where TTL is the distance from the object side of the first lens to the imaging surface of the optical lens on the optical axis, and H is the optical axis
  • TTL is the distance from the object side of the first lens to the imaging surface of the optical lens on the optical axis
  • H is the optical axis
  • the maximum field of view of the lens corresponds to the image height
  • FOV is the maximum field of view of the optical lens.
  • TTL, H and FOV may further satisfy: TTL/H/FOV ⁇ 0.05. Satisfying TTL/H/FOV ⁇ 0.1 is conducive to miniaturization, and can make the lens size smaller under the same imaging plane and same image height.
  • the optical lens according to the present application may satisfy: D/H/FOV ⁇ 0.025, wherein D is the maximum clear aperture of the object side of the first lens corresponding to the maximum field angle of the optical lens, and H is the image height corresponding to the maximum field of view of the optical lens, and FOV is the maximum field of view of the optical lens. More specifically, D, H and FOV may further satisfy: D/H/FOV ⁇ 0.02. Satisfying D/H/FOV ⁇ 0.025 is beneficial to the small diameter of the front end.
  • the optical lens according to the present application may satisfy: 0.5 ⁇
  • the optical lens according to the present application may satisfy:
  • the optical lens according to the present application may satisfy: 0 ⁇ T67/TTL ⁇ 0.2, wherein T67 is the separation distance between the sixth lens and the seventh lens on the optical axis, and TTL is the object of the first lens The distance from the side to the imaging surface of the optical lens on the optical axis. More specifically, T67 and TTL may further satisfy: 0.01 ⁇ T67/TTL ⁇ 0.1. Satisfying 0 ⁇ T67/TTL ⁇ 0.2 is helpful for the assembly of the optical lens and helps to improve ghost images.
  • the optical lens according to the present application may satisfy:
  • the optical lens according to the present application may satisfy: 0.05 ⁇ d3/TTL ⁇ 0.3, where d3 is the central thickness of the second lens on the optical axis, and TTL is the object side of the first lens to the optical lens The distance of the imaging plane on the optical axis. More specifically, d3 and TTL may further satisfy: 0.1 ⁇ d3/TTL ⁇ 0.25. Satisfying 0.05 ⁇ d3/TTL ⁇ 0.3 helps the light to pass through the second lens smoothly.
  • the optical lens according to the present application may satisfy: (FOV ⁇ F)/H ⁇ 70, where FOV is the maximum field angle of the optical lens, F is the total effective focal length of the optical lens, and H is the optical lens The image height corresponding to the maximum field of view of the lens. More specifically, FOV, F and H may further satisfy: (FOV ⁇ F)/H ⁇ 65. Satisfying (FOV ⁇ F)/H ⁇ 70 is beneficial for the optical lens to have less distortion and to match larger chips.
  • FIG. 9 shows a schematic diagram of the sagittal height SAG of the object side surface S of the lens E of the present application.
  • D is the semi-diameter of the maximum clear aperture of the object side S of the lens E corresponding to the maximum angle of view of the optical lens
  • the sag SAG is the intersection point a of the object side S of the lens E and the optical axis to the maximum of the object side S of the lens E.
  • the optical lens according to the present application may satisfy: 0.5 ⁇ arctan(SAG3/D3)/arctan(SAG4/D4) ⁇ 3, where D3 is the second lens corresponding to the maximum angle of view of the optical lens The semi-aperture of the maximum clear aperture of the object side of the second lens, SAG3 is the distance from the intersection of the object side of the second lens and the optical axis to the maximum clear aperture of the object side of the second lens on the optical axis, D4 is the maximum clear aperture of the optical lens.
  • SAG4 is the intersection of the image side of the second lens and the optical axis to the maximum clear aperture of the image side of the second lens on the optical axis. distance. More specifically, SAG3, D3, SAG4, and D4 may further satisfy: 1 ⁇ arctan(SAG3/D3)/arctan(SAG4/D4) ⁇ 2.5. Satisfying 0.5 ⁇ arctan(SAG3/D3)/arctan(SAG4/D4) ⁇ 3 is conducive to the smooth transition of peripheral light and the reduction of lens sensitivity.
  • the optical lens according to the present application may satisfy: Vd+/Nd+ ⁇ 40, wherein Nd+ is the refractive index of the lens with positive refractive power in the cemented lens, and Vd+ is the lens with positive refractive power in the cemented lens the Abbe number. More specifically, Vd+ and Nd+ may further satisfy: Vd+/Nd+ ⁇ 50. Satisfying Vd+/Nd+ ⁇ 40, the lens with positive refractive power in the cemented part is preferably a material with ultra-low refractive index and ultra-low dispersion, which is conducive to correcting chromatic aberration.
  • a diaphragm for limiting the light beam may be disposed between the third lens and the fourth lens to further improve the imaging quality of the optical lens. Disposing the diaphragm between the third lens and the fourth lens is conducive to increasing the aperture of the diaphragm, effectively converging the light entering the optical lens, and reducing the aperture of the lens.
  • the diaphragm may be disposed near the image side of the third lens or near the object side of the fourth lens.
  • the position of the diaphragm disclosed here is only an example and not a limitation; in alternative embodiments, the diaphragm can also be set at other positions according to actual needs.
  • the optical lens according to the present application may further include a filter disposed between the seventh lens and the imaging surface, so as to filter light with different wavelengths.
  • the optical lens according to the present application may further include a protective glass disposed between the seventh lens and the imaging surface to prevent image-side elements (eg, chips) of the optical lens from being damaged.
  • cemented lenses can be used to minimize or eliminate chromatic aberration.
  • Using a cemented lens in an optical lens can improve the image quality and reduce the reflection loss of light energy, thereby achieving high resolution and improving the clarity of lens imaging.
  • the use of cemented lenses simplifies assembly procedures in the lens manufacturing process.
  • the fifth lens and the sixth lens are cemented to form a cemented lens.
  • the fifth lens and the sixth lens have opposite refractive powers.
  • the sixth lens has negative refractive power; or if the fifth lens has negative refractive power, then the sixth lens has positive refractive power.
  • the lens with positive refractive power is preferably a lens of low refractive index and low dispersion material, which is beneficial to eliminate chromatic aberration.
  • the fifth lens whose image side is concave is cemented with the sixth lens whose object side is convex, or the fifth lens whose image side is convex is cemented with the sixth lens whose object side is concave, which is beneficial to correct various aberrations of the optical system and realize the On the premise of a compact optical system, the system resolution is improved, and the optical properties such as distortion and CRA are optimized.
  • the cementing method between the above-mentioned lenses has at least one of the following advantages: reducing self chromatic aberration, reducing tolerance sensitivity, and balancing the overall chromatic aberration of the system through the residual partial chromatic aberration; reducing the separation distance between the two lenses, thereby reducing the size of the system Overall length; reduce assembly components between lenses, thereby reducing processes and costs; reducing lens units due to tolerance sensitivity issues such as tilt/decentration generated during assembly, improving production yields; reducing the amount of light caused by reflection between lenses Loss, improve illuminance; further reduce field curvature, effectively correct the off-axis point aberration of the optical lens.
  • Such a glued design shares the overall chromatic aberration correction of the system, effectively corrects aberrations to improve resolution, and makes the optical system as a whole compact to meet miniaturization requirements.
  • each of the first lens, the second lens, the third lens, the fourth lens, the fifth lens, the sixth lens and the seventh lens may have aspherical mirror surfaces.
  • the characteristic of aspherical lenses is that the curvature changes continuously from the center of the lens to the periphery. Unlike spherical lenses, which have a constant curvature from the center of the lens to the periphery, aspheric lenses have better curvature radius characteristics, and have the advantages of improving distortion and astigmatism. After the aspherical lens is used, the aberration that occurs during imaging can be eliminated as much as possible, thereby improving the imaging quality of the lens. Aspherical lens settings help correct system aberrations and improve resolution.
  • at least one lens among the first lens, the second lens, the third lens, the fourth lens, the fifth lens, the sixth lens and the seventh lens is an aspherical lens, which is beneficial to improve the resolution quality of the optical system.
  • the optical lens according to the above-mentioned embodiments of the present application realizes the optical system with small chromatic aberration and high resolution (up to 8 million pixels or more) under the condition of using only 7 lenses through the reasonable setting of the shape and power of each lens. ), miniaturization, small distortion, smaller front-end aperture, smaller ghost image, and good imaging quality, etc. at least one beneficial effect.
  • the optical system also takes into account the low-cost requirements of small lens size, low sensitivity, and high production yield.
  • the optical lens also has a long focal length, and the central area has a large angular resolution, which can improve the recognition of environmental objects and increase the detection area of the central part in a targeted manner.
  • the optical lens has good temperature adaptability, little change in imaging effect under high and low temperature environment, and stable image quality.
  • the optical lens according to the above embodiments of the present application is provided with a cemented lens to share the overall chromatic aberration correction of the system, which not only helps to correct the system aberration, improves the system resolution quality, reduces the problem of coordination sensitivity, but also helps to make the overall structure of the optical system compact. , to meet the miniaturization requirements.
  • the first to seventh lenses in the optical lens may all be made of glass.
  • the optical lens made of glass can suppress the shift of the optical lens back focus with temperature changes, so as to improve the system stability.
  • the use of glass material can avoid the blurring of the lens image caused by the high and low temperature temperature changes in the use environment, which affects the normal use of the lens.
  • the first to seventh lenses may all be glass aspherical lenses.
  • the first lens to the seventh lens in the optical lens can also be made of plastic. Using plastic to make the optical lens can effectively reduce the manufacturing cost.
  • the number of lenses constituting the lens can be changed to obtain the various results and advantages described in this specification without departing from the technical solutions claimed in the present application.
  • the optical lens is not limited to including seven lenses. If desired, the optical lens may also include other numbers of lenses.
  • FIG. 1 shows a schematic structural diagram of an optical lens according to Embodiment 1 of the present application.
  • the optical lens includes a first lens L1, a second lens L2, a third lens L3, a fourth lens L4, a fifth lens L5, and a sixth lens L6 in sequence from the object side to the image side along the optical axis and the seventh lens L7.
  • the first lens L1 is a convex-concave lens with negative refractive power, the object side S1 is convex, and the image side S2 is concave.
  • the second lens L2 is a meniscus lens with negative refractive power, the object side S3 is concave, and the image side S4 is convex.
  • the third lens L3 is a biconvex lens with positive refractive power, the object side S5 is convex, and the image side S6 is convex.
  • the fourth lens L4 is a biconvex lens with positive refractive power, the object side S8 is convex, and the image side S9 is convex.
  • the fifth lens L5 is a biconcave lens with negative refractive power
  • the object side S10 is concave
  • the image side S11 is concave
  • the sixth lens L6 is a biconvex lens with positive refractive power
  • the object side S11 is convex
  • the image side S12 is convex
  • the seventh lens L7 has positive refractive power, and is a convex-concave lens in the region close to the optical axis
  • the object side S13 is convex in the region close to the optical axis
  • the image side S14 is concave in the region close to the optical axis.
  • the fifth lens L5 and the sixth lens L6 may be cemented to form a cemented lens.
  • the optical lens may further include a diaphragm STO, and the diaphragm STO may be disposed between the third lens L3 and the fourth lens L4 to improve imaging quality.
  • the stop STO may be disposed close to the image side surface S6 of the third lens L3.
  • the optical lens may further include a filter L8 having an object side S15 and an image side S16, and the filter L8 may be used to correct color deviation.
  • the optical lens may further include a protective glass L9 having an object side surface S17 and an image side surface S18, and the protective glass L9 may be used to protect the image sensor chip IMA located at the imaging surface S19. The light from the object sequentially passes through the surfaces S1 to S18 and is finally imaged on the imaging surface S19.
  • Table 1 shows the radius of curvature R, thickness d/distance T of each lens of the optical lens of Example 1 (it should be understood that the thickness d/distance T of the row where S1 is located is the central thickness d1 of the first lens L1, and the row where S2 is located The thickness d/distance T is the separation distance T12 between the first lens L1 and the second lens L2, and so on), the refractive index Nd, and the Abbe number Vd.
  • the object side S5 and the image side S6 of the third lens L3 and the object side S13 and the image side S14 of the seventh lens L7 can be aspherical, and the surface type x of each aspherical lens can be used but not limited to the following The aspheric formula is limited:
  • x is the distance vector height of the aspheric surface from the vertex of the aspheric surface when the height is h along the optical axis;
  • k is the conic coefficient;
  • Ai is the correction coefficient of the i-th order of the aspheric surface.
  • Table 2 shows the conic coefficient k and higher order coefficients A4, A6, A8, A10, A12, A14 and A16 that can be used for each of the aspheric mirror surfaces S5, S6, S13 and S14 in Example 1.
  • FIG. 2 shows a schematic structural diagram of an optical lens according to Embodiment 2 of the present application.
  • the optical lens includes a first lens L1, a second lens L2, a third lens L3, a fourth lens L4, a fifth lens L5, and a sixth lens L6 in sequence from the object side to the image side along the optical axis and the seventh lens L7.
  • the first lens L1 is a convex-concave lens with negative refractive power, the object side S1 is convex, and the image side S2 is concave.
  • the second lens L2 is a meniscus lens with negative refractive power, the object side S3 is concave, and the image side S4 is convex.
  • the third lens L3 is a biconvex lens with positive refractive power, the object side S5 is convex, and the image side S6 is convex.
  • the fourth lens L4 is a biconvex lens with positive refractive power, the object side S8 is convex, and the image side S9 is convex.
  • the fifth lens L5 is a biconcave lens with negative refractive power
  • the object side S10 is concave
  • the image side S11 is concave
  • the sixth lens L6 is a biconvex lens with positive refractive power
  • the object side S11 is convex
  • the image side S12 is convex
  • the seventh lens L7 has positive refractive power, and is a convex-concave lens in the region close to the optical axis
  • the object side S13 is convex in the region close to the optical axis
  • the image side S14 is concave in the region close to the optical axis.
  • the fifth lens L5 and the sixth lens L6 may be cemented to form a cemented lens.
  • the optical lens may further include a diaphragm STO, and the diaphragm STO may be disposed between the third lens L3 and the fourth lens L4 to improve imaging quality.
  • the stop STO may be disposed close to the image side surface S6 of the third lens L3.
  • the optical lens may further include a filter L8 having an object side S15 and an image side S16, and the filter L8 may be used to correct color deviation.
  • the optical lens may further include a protective glass L9 having an object side surface S17 and an image side surface S18, and the protective glass L9 may be used to protect the image sensor chip IMA located at the imaging surface S19. The light from the object sequentially passes through the surfaces S1 to S18 and is finally imaged on the imaging surface S19.
  • Table 3 shows the curvature radius R, thickness d/distance T, refractive index Nd, and Abbe number Vd of each lens of the optical lens of Example 2.
  • Table 4 shows the conic coefficients and higher-order coefficients that can be used for each aspherical mirror surface in Example 2, where each aspherical surface type can be defined by the formula (1) given in Example 1 above.
  • FIG. 3 shows a schematic structural diagram of an optical lens according to Embodiment 3 of the present application.
  • the optical lens includes a first lens L1, a second lens L2, a third lens L3, a fourth lens L4, a fifth lens L5, and a sixth lens L6 in sequence from the object side to the image side along the optical axis and the seventh lens L7.
  • the first lens L1 is a convex-concave lens with negative refractive power, the object side S1 is convex, and the image side S2 is concave.
  • the second lens L2 is a meniscus lens with negative refractive power, the object side S3 is concave, and the image side S4 is convex.
  • the third lens L3 is a biconvex lens with positive refractive power, the object side S5 is convex, and the image side S6 is convex.
  • the fourth lens L4 is a biconvex lens with positive refractive power, the object side S8 is convex, and the image side S9 is convex.
  • the fifth lens L5 is a convex-concave lens with negative refractive power, and its object side S10 is convex, and its image side S11 is concave.
  • the sixth lens L6 is a biconvex lens with positive refractive power, the object side S11 is convex, and the image side S12 is convex.
  • the seventh lens L7 has a negative refractive power and is a meniscus lens in the region close to the optical axis, its object side S13 is concave in the region close to the optical axis, and the image side S14 is convex in the region close to the optical axis.
  • the fifth lens L5 and the sixth lens L6 may be cemented to form a cemented lens.
  • the optical lens may further include a diaphragm STO, and the diaphragm STO may be disposed between the third lens L3 and the fourth lens L4 to improve imaging quality.
  • the stop STO may be disposed close to the image side surface S6 of the third lens L3.
  • the optical lens may further include a filter L8 having an object side S15 and an image side S16, and the filter L8 may be used to correct color deviation.
  • the optical lens may further include a protective glass L9 having an object side surface S17 and an image side surface S18, and the protective glass L9 may be used to protect the image sensor chip IMA located at the imaging surface S19. The light from the object sequentially passes through the surfaces S1 to S18 and is finally imaged on the imaging surface S19.
  • Table 5 shows the curvature radius R, thickness d/distance T, refractive index Nd, and Abbe number Vd of each lens of the optical lens of Example 3.
  • Table 6 shows the conic coefficients and higher-order coefficients that can be used for each aspherical mirror surface in Example 3, where each aspherical surface type can be defined by the formula (1) given in Example 1 above.
  • FIG. 4 shows a schematic structural diagram of an optical lens according to Embodiment 4 of the present application.
  • the optical lens includes a first lens L1, a second lens L2, a third lens L3, a fourth lens L4, a fifth lens L5, and a sixth lens L6 in sequence from the object side to the image side along the optical axis and the seventh lens L7.
  • the first lens L1 is a convex-concave lens with negative refractive power, the object side S1 is convex, and the image side S2 is concave.
  • the second lens L2 is a meniscus lens with negative refractive power, the object side S3 is concave, and the image side S4 is convex.
  • the third lens L3 is a biconvex lens with positive refractive power, the object side S5 is convex, and the image side S6 is convex.
  • the fourth lens L4 is a biconvex lens with positive refractive power, the object side S8 is convex, and the image side S9 is convex.
  • the fifth lens L5 is a convex-concave lens with negative refractive power, and its object side S10 is convex, and its image side S11 is concave.
  • the sixth lens L6 is a biconvex lens with positive refractive power, the object side S11 is convex, and the image side S12 is convex.
  • the seventh lens L7 has a negative refractive power and is a meniscus lens in the region close to the optical axis, its object side S13 is concave in the region close to the optical axis, and the image side S14 is convex in the region close to the optical axis.
  • the fifth lens L5 and the sixth lens L6 may be cemented to form a cemented lens.
  • the optical lens may further include a diaphragm STO, and the diaphragm STO may be disposed between the third lens L3 and the fourth lens L4 to improve imaging quality.
  • the stop STO may be disposed close to the image side surface S6 of the third lens L3.
  • the optical lens may further include a filter L8 having an object side S15 and an image side S16, and the filter L8 may be used to correct color deviation.
  • the optical lens may further include a protective glass L9 having an object side surface S17 and an image side surface S18, and the protective glass L9 may be used to protect the image sensor chip IMA located at the imaging surface S19. The light from the object sequentially passes through the surfaces S1 to S18 and is finally imaged on the imaging surface S19.
  • Table 7 shows the curvature radius R, thickness d/distance T, refractive index Nd, and Abbe number Vd of each lens of the optical lens of Example 4.
  • Table 8 shows the conic coefficients and higher-order coefficients that can be used for each aspherical mirror surface in Example 4, where each aspherical surface type can be defined by the formula (1) given in Example 1 above.
  • FIG. 5 shows a schematic structural diagram of an optical lens according to Embodiment 5 of the present application.
  • the optical lens includes a first lens L1, a second lens L2, a third lens L3, a fourth lens L4, a fifth lens L5, and a sixth lens L6 in sequence from the object side to the image side along the optical axis and the seventh lens L7.
  • the first lens L1 is a convex-concave lens with negative refractive power, the object side S1 is convex, and the image side S2 is concave.
  • the second lens L2 is a meniscus lens with negative refractive power, the object side S3 is concave, and the image side S4 is convex.
  • the third lens L3 is a biconvex lens with positive refractive power, the object side S5 is convex, and the image side S6 is convex.
  • the fourth lens L4 is a biconvex lens with positive refractive power, the object side S8 is convex, and the image side S9 is convex.
  • the fifth lens L5 is a convex-concave lens with negative refractive power, and its object side S10 is convex, and its image side S11 is concave.
  • the sixth lens L6 is a biconvex lens with positive refractive power, the object side S11 is convex, and the image side S12 is convex.
  • the seventh lens L7 has a negative refractive power and is a biconcave lens near the optical axis.
  • the object side S13 is concave near the optical axis, and the image side S14 is concave near the optical axis.
  • the fifth lens L5 and the sixth lens L6 may be cemented to form a cemented lens.
  • the optical lens may further include a diaphragm STO, and the diaphragm STO may be disposed between the third lens L3 and the fourth lens L4 to improve imaging quality.
  • the stop STO may be disposed close to the image side surface S6 of the third lens L3.
  • the optical lens may further include a filter L8 having an object side S15 and an image side S16, and the filter L8 may be used to correct color deviation.
  • the optical lens may further include a protective glass L9 having an object side surface S17 and an image side surface S18, and the protective glass L9 may be used to protect the image sensor chip IMA located at the imaging surface S19. The light from the object sequentially passes through the surfaces S1 to S18 and is finally imaged on the imaging surface S19.
  • Table 9 shows the curvature radius R, thickness d/distance T, refractive index Nd, and Abbe number Vd of each lens of the optical lens of Example 5.
  • Table 10 shows the conic coefficients and higher-order coefficients that can be used for each aspherical mirror surface in Example 5, where each aspherical surface type can be defined by the formula (1) given in Example 1 above.
  • FIG. 6 shows a schematic structural diagram of an optical lens according to Embodiment 6 of the present application.
  • the optical lens includes a first lens L1, a second lens L2, a third lens L3, a fourth lens L4, a fifth lens L5, and a sixth lens L6 in sequence from the object side to the image side along the optical axis and the seventh lens L7.
  • the first lens L1 is a convex-concave lens with negative refractive power, the object side S1 is convex, and the image side S2 is concave.
  • the second lens L2 is a meniscus lens with negative refractive power, the object side S3 is concave, and the image side S4 is convex.
  • the third lens L3 is a biconvex lens with positive refractive power, the object side S5 is convex, and the image side S6 is convex.
  • the fourth lens L4 is a biconvex lens with positive refractive power, the object side S8 is convex, and the image side S9 is convex.
  • the fifth lens L5 is a convex-concave lens with negative refractive power, and its object side S10 is convex, and its image side S11 is concave.
  • the sixth lens L6 is a biconvex lens with positive refractive power, the object side S11 is convex, and the image side S12 is convex.
  • the seventh lens L7 has a negative refractive power and is a biconcave lens near the optical axis.
  • the object side S13 is concave near the optical axis, and the image side S14 is concave near the optical axis.
  • the fifth lens L5 and the sixth lens L6 may be cemented to form a cemented lens.
  • the optical lens may further include a diaphragm STO, and the diaphragm STO may be disposed between the third lens L3 and the fourth lens L4 to improve imaging quality.
  • the stop STO may be disposed close to the image side surface S6 of the third lens L3.
  • the optical lens may further include a filter L8 having an object side S15 and an image side S16, and the filter L8 may be used to correct color deviation.
  • the optical lens may further include a protective glass L9 having an object side surface S17 and an image side surface S18, and the protective glass L9 may be used to protect the image sensor chip IMA located at the imaging surface S19. The light from the object sequentially passes through the surfaces S1 to S18 and is finally imaged on the imaging surface S19.
  • Table 11 shows the curvature radius R, thickness d/distance T, refractive index Nd, and Abbe number Vd of each lens of the optical lens of Example 6.
  • Table 12 shows that each of the
  • each aspherical surface type can be defined by the formula (1) given in the above-mentioned embodiment 1.
  • FIG. 7 shows a schematic structural diagram of an optical lens according to Embodiment 7 of the present application.
  • the optical lens includes a first lens L1, a second lens L2, a third lens L3, a fourth lens L4, a fifth lens L5, and a sixth lens L6 in sequence from the object side to the image side along the optical axis and the seventh lens L7.
  • the first lens L1 is a convex-concave lens with negative refractive power, the object side S1 is convex, and the image side S2 is concave.
  • the second lens L2 is a meniscus lens with negative refractive power, the object side S3 is concave, and the image side S4 is convex.
  • the third lens L3 is a convex-concave lens with positive refractive power, the object side S5 is convex, and the image side S6 is concave.
  • the fourth lens L4 is a biconvex lens with positive refractive power, the object side S8 is convex, and the image side S9 is convex.
  • the fifth lens L5 is a biconvex lens with positive refractive power, the object side S10 is convex, and the image side S11 is convex.
  • the sixth lens L6 is a biconcave lens with negative refractive power, the object side S11 is concave, and the image side S12 is concave.
  • the seventh lens L7 has positive refractive power and is a biconvex lens in the region close to the optical axis, the object side S13 is convex in the region close to the optical axis, and the image side S14 is convex in the region close to the optical axis.
  • the fifth lens L5 and the sixth lens L6 may be cemented to form a cemented lens.
  • the optical lens may further include a diaphragm STO, and the diaphragm STO may be disposed between the third lens L3 and the fourth lens L4 to improve imaging quality.
  • the stop STO may be disposed close to the object side surface S8 of the fourth lens L4.
  • the optical lens may further include a filter L8 having an object side S15 and an image side S16, and the filter L8 may be used to correct color deviation.
  • the optical lens may further include a protective glass L9 having an object side surface S17 and an image side surface S18, and the protective glass L9 may be used to protect the image sensor chip IMA located at the imaging surface S19. The light from the object sequentially passes through the surfaces S1 to S18 and is finally imaged on the imaging surface S19.
  • Table 13 shows the curvature radius R, thickness d/distance T, refractive index Nd, and Abbe number Vd of each lens of the optical lens of Example 7.
  • Table 14 shows the conic coefficients and higher-order coefficients that can be used for each aspherical mirror surface in Example 7, where each aspherical surface type can be defined by the formula (1) given in Example 1 above.
  • FIG. 8 shows a schematic structural diagram of an optical lens according to Embodiment 8 of the present application.
  • the optical lens includes a first lens L1, a second lens L2, a third lens L3, a fourth lens L4, a fifth lens L5, and a sixth lens L6 in sequence from the object side to the image side along the optical axis and the seventh lens L7.
  • the first lens L1 is a convex-concave lens with negative refractive power, the object side S1 is convex, and the image side S2 is concave.
  • the second lens L2 is a meniscus lens with negative refractive power, the object side S3 is concave, and the image side S4 is convex.
  • the third lens L3 is a convex-concave lens with positive refractive power, the object side S5 is convex, and the image side S6 is concave.
  • the fourth lens L4 is a biconvex lens with positive refractive power, the object side S8 is convex, and the image side S9 is convex.
  • the fifth lens L5 is a biconvex lens with positive refractive power, the object side S10 is convex, and the image side S11 is convex.
  • the sixth lens L6 is a biconcave lens with negative refractive power, the object side S11 is concave, and the image side S12 is concave.
  • the seventh lens L7 has positive refractive power and is a biconvex lens in the region close to the optical axis, the object side S13 is convex in the region close to the optical axis, and the image side S14 is convex in the region close to the optical axis.
  • the fifth lens L5 and the sixth lens L6 may be cemented to form a cemented lens.
  • the optical lens may further include a diaphragm STO, and the diaphragm STO may be disposed between the third lens L3 and the fourth lens L4 to improve imaging quality.
  • the stop STO may be disposed close to the object side surface S8 of the fourth lens L4.
  • the optical lens may further include a filter L8 having an object side S15 and an image side S16, and the filter L8 may be used to correct color deviation.
  • the optical lens may further include a protective glass L9 having an object side surface S17 and an image side surface S18, and the protective glass L9 may be used to protect the image sensor chip IMA located at the imaging surface S19. The light from the object sequentially passes through the surfaces S1 to S18 and is finally imaged on the imaging surface S19.
  • Table 15 shows the curvature radius R, thickness d/distance T, refractive index Nd, and Abbe number Vd of each lens of the optical lens of Example 8.
  • Table 16 shows the conic coefficients and higher-order coefficients that can be used for each aspherical mirror surface in Example 8, where each aspherical surface type can be defined by the formula (1) given in Example 1 above.
  • Examples 1 to 8 satisfy the relationships shown in Table 17-1 and Table 17-2 below, respectively.
  • Table 17-1 and Table 17-2 TTL, F, H, D, F-, F+, F7, F1, F2, F3, F4, T67, R3, R4, d3, D3, D4, SAG3, SAG4
  • the unit is millimeter (mm), and the unit of FOV is degree (°).
  • Example 1 Example 2
  • Example 3 TTL 30.2622 29.6921 29.2070 29.174 F 4.0000 4.0917 4.1496 4.1468 H 9.3000 9.1320 10.0660 10.0520 FOV 140 140 140 D 13.6959 13.7173 13.4106 13.4248 F- -4.7301 -4.6627 -6.6239 -6.6231 F+ 7.0522 6.9561 6.6588 6.6579 F7 59.0309 60.2297 -26.2769 -26.1821 SAG3/D3 -0.2914 -0.3006 -0.3408 -0.3424 SAG4/D4 -0.2169 -0.2126 -0.1787 -0.1786 F1 -7.1279 -7.0366 -7.4568 -7.4566 F2 -79.1759 -80.9175 -19.8473 -20.2327 F3 12.7109 12.5174 13.3259 13.3278 F4 9.9132 9.7727 8.8233 8.
  • the present application also provides an electronic device, which may include the optical lens according to the above-mentioned embodiments of the present application and an imaging element for converting an optical image formed by the optical lens into an electrical signal.
  • the electronic device can be an independent electronic device such as a detection distance camera, or an imaging module integrated on a detection distance device such as a distance detection device.
  • the electronic device may also be an independent imaging device such as a vehicle-mounted camera, or an imaging module integrated in, for example, an assisted driving system.

Landscapes

  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Optics & Photonics (AREA)
  • Lenses (AREA)

Abstract

本申请公开了一种光学镜头和包括该光学镜头的电子设备。该光学镜头沿着光轴由物侧至像侧依序包括:具有负光焦度的第一透镜,其物侧面为凸面,像侧面为凹面;具有负光焦度的第二透镜,其物侧面为凹面,像侧面为凸面;具有正光焦度的第三透镜,其物侧面为凸面;具有正光焦度的第四透镜,其物侧面为凸面,像侧面为凸面;具有光焦度的第五透镜;具有光焦度的第六透镜;以及具有光焦度的第七透镜;第五透镜与第六透镜具有相反的光焦度,并且第五透镜和第六透镜胶合形成胶合透镜。

Description

光学镜头及电子设备
交叉引用
本专利申请要求于2020年08月05日提交的、申请号为202010776133.3、发明名称为“光学镜头及电子设备”的中国专利申请的优先权,该申请的全文以引用的方式并入本申请中。
技术领域
本申请涉及光学元件领域,更具体地,涉及一种光学镜头及电子设备。
背景技术
近年来,随着汽车辅助驾驶系统的高速发展,车载镜头已成为汽车获取外界信息的眼睛,发挥着不可替代的作用。为了使车载镜头能够更精准地获取信息,光学镜头就需要搭配更大、分辨率更高的芯片,以提高镜头解像质量。
通常,市场上为了满足更高的成像质量的要求,往往会选择更多的镜片结构。但这会带来成本的上升,同时也会严重影响镜头的小型化。出于安全性考虑,应用于自动驾驶领域的车载镜头对稳定性的要求较高,需要能应对各种恶劣的环境,以避免在不同环境下导致镜头性能下降明显。特别地,红绿灯识别技术是车载镜头在城市道路探测中的应用之一,为了精准识别不同颜色的信号灯,镜头本身需要有较好的色差。
发明内容
本申请一方面提供了一种光学镜头。该光学镜头沿着光轴由物侧至像侧依序包括:具有负光焦度的第一透镜,其物侧面为凸面,像侧面为凹面;具有负光焦度的第二透镜,其物侧面为凹面,像侧面为凸面;具有正光焦度的第三透镜,其物侧面为凸面;具有正光焦度的第四透镜,其物侧面为凸面,像侧面为凸面;具有光焦度的第五透镜;具有光焦度的第六透镜;以及具有光焦度的第七透镜;其中,第五透镜和第六透镜中的一个具有正光焦度,第五透镜和第六透镜中的另一个具有负光焦度,并且第五透镜和第六透镜胶合形成胶合透镜。
在一个实施方式中,第三透镜的像侧面为凸面。
在一个实施方式中,第三透镜的像侧面为凹面。
在一个实施方式中,第五透镜具有负光焦度,其物侧面为凹面,像侧面为凹面。
在一个实施方式中,第五透镜具有负光焦度,其物侧面为凸面,像侧面为凹面。
在一个实施方式中,第五透镜具有正光焦度,其物侧面为凸面,像侧面为凸面。
在一个实施方式中,第六透镜具有正光焦度,其物侧面为凸面,像侧面为凸面。
在一个实施方式中,第六透镜具有负光焦度,其物侧面为凹面,像侧面为凹面。
在一个实施方式中,第七透镜具有正光焦度,其物侧面在靠近光轴区域为凸面,像侧面在 靠近光轴区域为凹面。
在一个实施方式中,第七透镜具有负光焦度,其物侧面在靠近光轴区域为凹面,像侧面在靠近光轴区域为凸面。
在一个实施方式中,第七透镜具有负光焦度,其物侧面在靠近光轴区域为凹面,像侧面在靠近光轴区域为凹面。
在一个实施方式中,第七透镜具有正光焦度,其物侧面在靠近光轴区域为凸面,像侧面在靠近光轴区域为凸面。
在一个实施方式中,第七透镜的物侧面和第七透镜的像侧面中至少存在一个反曲点。
在一个实施方式中,第二透镜、第三透镜、第四透镜以及第七透镜中的至少两个透镜具有非球面镜面。
在一个实施方式中,第一透镜的物侧面至光学镜头的成像面在光轴上的距离TTL与光学镜头的总有效焦距F可满足:TTL/F≤9。
在一个实施方式中,第一透镜的物侧面至光学镜头的成像面在光轴上的距离TTL、光学镜头的最大视场角对应的像高H以及光学镜头的最大视场角FOV可满足:TTL/H/FOV≤0.1。
在一个实施方式中,光学镜头的最大视场角对应的第一透镜的物侧面的最大通光口径D、光学镜头的最大视场角对应的像高H以及光学镜头的最大视场角FOV可满足:D/H/FOV≤0.025。
在一个实施方式中,胶合透镜中具有正光焦度的透镜的有效焦距F+与胶合透镜中具有负光焦度的透镜的有效焦距F-可满足:0.5≤|F+/F-|≤3。
在一个实施方式中,第七透镜的有效焦距F7与光学镜头的总有效焦距F可满足:|F7/F|≥1.5。
在一个实施方式中,第六透镜和第七透镜在光轴上的间隔距离T67与第一透镜的物侧面至光学镜头的成像面在光轴上的距离TTL可满足:0≤T67/TTL≤0.2。
在一个实施方式中,第二透镜的物侧面的曲率半径R3、第二透镜的像侧面的曲率半径R4以及第二透镜在光轴上的中心厚度d3可满足:|R3-R4-d3|≥1.5mm。
在一个实施方式中,第二透镜在光轴上的中心厚度d3与第一透镜的物侧面至光学镜头的成像面在光轴上的距离TTL可满足:0.05≤d3/TTL≤0.3。
在一个实施方式中,光学镜头的最大视场角FOV、光学镜头的总有效焦距F以及光学镜头的最大视场角对应的像高H可满足:(FOV×F)/H≤70。
在一个实施方式中,光学镜头的最大视场角对应的第二透镜的物侧面的最大通光口径的半口径D3、第二透镜的物侧面与光轴的交点至第二透镜的物侧面的最大通光口径在光轴上的距离SAG3、光学镜头的最大视场角对应的第二透镜的像侧面的最大通光口径的半口径D4、第二透镜的像侧面与光轴的交点至第二透镜的像侧面的最大通光口径在光轴上的距离SAG4可满足:0.5≤arctan(SAG3/D3)/arctan(SAG4/D4)≤3。
在一个实施方式中,胶合透镜中具有正光焦度的透镜的折射率Nd+与胶合透镜中具有正光焦度的透镜的阿贝数Vd+可满足:Vd+/Nd+≥40。
本申请另一方面提供了这样一种光学镜头。该光学镜头沿着光轴由物侧至像侧依序包括:具有负光焦度的第一透镜,其物侧面为凸面,像侧面为凹面;具有负光焦度的第二透镜,其物侧面为凹面,像侧面为凸面;具有正光焦度的第三透镜,其物侧面为凸面;具有正光焦度的第四透 镜,其物侧面为凸面,像侧面为凸面;具有光焦度的第五透镜;具有光焦度的第六透镜;以及具有光焦度的第七透镜;其中,第六透镜和第七透镜在光轴上的间隔距离T67与第一透镜的物侧面至光学镜头的成像面在光轴上的距离TTL可满足:0≤T67/TTL≤0.2。
在一个实施方式中,第五透镜和第六透镜中的一个具有正光焦度,第五透镜和第六透镜中的另一个具有负光焦度,并且第五透镜和第六透镜胶合形成胶合透镜。
在一个实施方式中,第三透镜的像侧面为凸面。
在一个实施方式中,第三透镜的像侧面为凹面。
在一个实施方式中,第五透镜具有负光焦度,其物侧面为凹面,像侧面为凹面。
在一个实施方式中,第五透镜具有负光焦度,其物侧面为凸面,像侧面为凹面。
在一个实施方式中,第五透镜具有正光焦度,其物侧面为凸面,像侧面为凸面。
在一个实施方式中,第六透镜具有正光焦度,其物侧面为凸面,像侧面为凸面。
在一个实施方式中,第六透镜具有负光焦度,其物侧面为凹面,像侧面为凹面。
在一个实施方式中,第七透镜具有正光焦度,其物侧面在靠近光轴区域为凸面,像侧面在靠近光轴区域为凹面。
在一个实施方式中,第七透镜具有负光焦度,其物侧面在靠近光轴区域为凹面,像侧面在靠近光轴区域为凸面。
在一个实施方式中,第七透镜具有负光焦度,其物侧面在靠近光轴区域为凹面,像侧面在靠近光轴区域为凹面。
在一个实施方式中,第七透镜具有正光焦度,其物侧面在靠近光轴区域为凸面,像侧面在靠近光轴区域为凸面。
在一个实施方式中,第七透镜的物侧面和第七透镜的像侧面中至少存在一个反曲点。
在一个实施方式中,第二透镜、第三透镜、第四透镜以及第七透镜中的至少两个透镜具有非球面镜面。
在一个实施方式中,第一透镜的物侧面至光学镜头的成像面在光轴上的距离TTL与光学镜头的总有效焦距F可满足:TTL/F≤9。
在一个实施方式中,第一透镜的物侧面至光学镜头的成像面在光轴上的距离TTL、光学镜头的最大视场角对应的像高H以及光学镜头的最大视场角FOV可满足:TTL/H/FOV≤0.1。
在一个实施方式中,光学镜头的最大视场角FOV、光学镜头的最大视场角对应的第一透镜的物侧面的最大通光口径D以及光学镜头的最大视场角对应的像高H可满足:D/H/FOV≤0.025。
在一个实施方式中,胶合透镜中具有正光焦度的透镜的有效焦距F+与胶合透镜中具有负光焦度的透镜的有效焦距F-可满足:0.5≤|F+/F-|≤3。
在一个实施方式中,第七透镜的有效焦距F7与光学镜头的总有效焦距F可满足:|F7/F|≥1.5。
在一个实施方式中,第二透镜的物侧面的曲率半径R3、第二透镜的像侧面的曲率半径R4以及第二透镜在光轴上的中心厚度d3可满足:|R3-R4-d3|≥1.5mm。
在一个实施方式中,第二透镜在光轴上的中心厚度d3与第一透镜的物侧面至光学镜头的成像面在光轴上的距离TTL可满足:0.05≤d3/TTL≤0.3。
在一个实施方式中,光学镜头的最大视场角FOV、光学镜头的总有效焦距F以及光学镜头 的最大视场角FOV对应的像高H可满足:(FOV×F)/H≤70。
在一个实施方式中,光学镜头的最大视场角对应的第二透镜的物侧面的最大通光口径的半口径D3、第二透镜的物侧面与光轴的交点至第二透镜的物侧面的最大通光口径在光轴上的距离SAG3、光学镜头的最大视场角对应的第二透镜的像侧面的最大通光口径的半口径D4、第二透镜的像侧面与光轴的交点至第二透镜的像侧面的最大通光口径在光轴上的距离SAG4可满足:0.5≤arctan(SAG3/D3)/arctan(SAG4/D4)≤3。
在一个实施方式中,胶合透镜中具有正光焦度的透镜的折射率Nd+与胶合透镜中具有正光焦度的透镜的阿贝数Vd+可满足:Vd+/Nd+≥40。
本申请另一方面提供了一种电子设备。该电子设备包括根据本申请提供的光学镜头及用于将光学镜头形成的光学图像转换为电信号的成像元件。
本申请采用了七片透镜,通过优化设置各透镜的形状、光焦度等,使光学镜头具有高解像、小型化、小畸变、低成本、温度性能佳等至少一个有益效果。
附图说明
结合附图,通过以下非限制性实施方式的详细描述,本申请的其它特征、目的和优点将变得更加明显。在附图中:
图1为示出根据本申请实施例1的光学镜头的结构示意图;
图2为示出根据本申请实施例2的光学镜头的结构示意图;
图3为示出根据本申请实施例3的光学镜头的结构示意图;
图4为示出根据本申请实施例4的光学镜头的结构示意图;
图5为示出根据本申请实施例5的光学镜头的结构示意图;
图6为示出根据本申请实施例6的光学镜头的结构示意图;
图7为示出根据本申请实施例7的光学镜头的结构示意图;
图8为示出根据本申请实施例8的光学镜头的结构示意图;以及
图9为示出根据本申请的透镜的物侧面的矢高的示意图。
具体实施方式
为了更好地理解本申请,将参考附图对本申请的各个方面做出更详细的说明。应理解,这些详细说明只是对本申请的示例性实施方式的描述,而非以任何方式限制本申请的范围。在说明书全文中,相同的附图标号指代相同的元件。表述“和/或”包括相关联的所列项目中的一个或多个的任何和全部组合。
应注意,在本说明书中,第一、第二、第三等的表述仅用于将一个特征与另一个特征区分开来,而不表示对特征的任何限制。因此,在不背离本申请的教导的情况下,下文中讨论的第一透镜也可被称作第二透镜或第三透镜。
在附图中,为了便于说明,已稍微夸大了透镜的厚度、尺寸和形状。具体来讲,附图中所示的球面或非球面的形状通过示例的方式示出。即,球面或非球面的形状不限于附图中示出的球面或非球面的形状。附图仅为示例而并非严格按比例绘制。
在本文中,近轴区域是指光轴附近的区域。若透镜表面为凸面且未界定该凸面位置时,则 表示该透镜表面至少于近轴区域为凸面;若透镜表面为凹面且未界定该凹面位置时,则表示该透镜表面至少于近轴区域为凹面。每个透镜最靠近被摄物的表面称为该透镜的物侧面,每个透镜最靠近成像侧的表面称为该透镜的像侧面。
还应理解的是,用语“包括”、“包括有”、“具有”、“包含”和/或“包含有”,当在本说明书中使用时表示存在所陈述的特征、元件和/或部件,但不排除存在或附加有一个或多个其它特征、元件、部件和/或它们的组合。此外,当诸如“...中的至少一个”的表述出现在所列特征的列表之后时,修饰整个所列特征,而不是修饰列表中的单独元件。此外,当描述本申请的实施方式时,使用“可”表示“本申请的一个或多个实施方式”。并且,用语“示例性的”旨在指代示例或举例说明。
除非另外限定,否则本文中使用的所有用语(包括技术用语和科学用语)均具有与本申请所属领域普通技术人员的通常理解相同的含义。还应理解的是,用语(例如在常用词典中定义的用语)应被解释为具有与它们在相关技术的上下文中的含义一致的含义,并且将不被以理想化或过度形式化意义解释,除非本文中明确如此限定。
需要说明的是,在不冲突的情况下,本申请中的实施例及实施例中的特征可以相互组合。下面将参考附图并结合实施例来详细说明本申请。
以下对本申请的特征、原理和其它方面进行详细描述。
在示例性实施方式中,光学镜头包括例如七片具有光焦度的透镜,即第一透镜、第二透镜、第三透镜、第四透镜、第五透镜、第六透镜和第七透镜。这七片透镜沿着光轴从物侧至像侧依序排列。
在示例性实施方式中,光学镜头还可进一步包括设置于成像面的感光元件。可选地,设置于成像面的感光元件可以是感光耦合元件(CCD)或互补性氧化金属半导体元件(CMOS)。
在示例性实施方式中,第一透镜可具有负光焦度。第一透镜可具有凸凹面型。第一透镜的这种光焦度设置,可以避免物方光线过于发散,有利于控制后方镜片的口径,实现小型化的设计。第一透镜的这种面型设置,可以尽可能地收集大视场光线,进入后方光学系统,增加通光量。将第一透镜的物侧面设计成凸面,在实际使用环境中如雨雪天气等,有利于水滴的滑落,减小对成像的影响。优选地,第一透镜具有较高的折射率,(如Nd1≥1.7)、较高的硬度,这样有利于前端口径的减小和成像质量的提高。
在示例性实施方式中,第二透镜可具有负光焦度。第二透镜可具有凹凸面型。第二透镜的这种光焦度设置,有利于将经过第一透镜的光线进一步发散。第二透镜的这种面型设置,有利于光线平稳过渡到后方光学系统。优选地,第二透镜具有非球面镜面,可以提高镜头解像。
在示例性实施方式中,第三透镜可具有正光焦度。第三透镜可具有凸凸面型或凸凹面型。第三透镜的这种光焦度和面型设置,有利于光线汇聚。第三透镜优选为具有高折射率材料(Nd3≥1.65),有利于前端口径的减小和成像质量的提高。优选地,第三透镜具有非球面镜面,可以提高镜头解像。
在示例性实施方式中,第四透镜可具有正光焦度。第四透镜可具有凸凸面型。第四透镜的这种光焦度和面型设置,有利于汇聚光线,使光线平稳过渡到后方光学系统。通过控制第四透镜的有效焦距,可以控制第一透镜至第四透镜的光线走势,使系统结构紧凑。优选地,第四透镜具有非球面
镜面,可以提高镜头解像。
在示例性实施方式中,第七透镜可具有正光焦度或负光焦度。第七透镜可具有凹凸、凸凹、凸凸或凹凹面型。优选地,第七透镜具有非球面镜面,可以进一步提高解像质量,可以校正像差。
在示例性实施方式中,第二透镜、第三透镜、第四透镜以及第七透镜中的至少两个透镜可具有非球面镜面,可以提高镜头解像。
在示例性实施方式中,根据本申请的光学镜头可满足:TTL/F≤9,其中,TTL是第一透镜的物侧面至光学镜头的成像面在光轴上的距离,F是光学镜头的总有效焦距。更具体地,TTL和F进一步可满足:TTL/F≤8.5。满足TTL/F≤9,有利于实现小型化。
在示例性实施方式中,根据本申请的光学镜头可满足:TTL/H/FOV≤0.1,其中,TTL是第一透镜的物侧面至光学镜头的成像面在光轴上的距离,H是光学镜头的最大视场角对应的像高,FOV是光学镜头的最大视场角。更具体地,TTL、H和FOV进一步可满足:TTL/H/FOV≤0.05。满足TTL/H/FOV≤0.1,有利于小型化,可以使得在相同成像面、相同像高情况下,镜头尺寸更小。
在示例性实施方式中,根据本申请的光学镜头可满足:D/H/FOV≤0.025,其中,D是光学镜头的最大视场角对应的第一透镜的物侧面的最大通光口径,H是光学镜头的最大视场角对应的像高,FOV是光学镜头的最大视场角。更具体地,D、H和FOV进一步可满足:D/H/FOV≤0.02。满足D/H/FOV≤0.025,有利于前端口径较小。
在示例性实施方式中,根据本申请的光学镜头可满足:0.5≤|F+/F-|≤3,其中,F+是胶合透镜中具有正光焦度的透镜的有效焦距,F-是胶合透镜中具有负光焦度的透镜的有效焦距。更具体地,F+和F-进一步可满足:0.8≤|F+/F-|≤2.5。满足0.5≤|F+/F-|≤3,使得胶合件中透镜的焦距值相近,有助于光线平缓过渡,矫正色差。
在示例性实施方式中,根据本申请的光学镜头可满足:|F7/F|≥1.5,其中,F7是第七透镜的有效焦距,F是光学镜头的总有效焦距。更具体地,F7和F进一步可满足:|F7/F|≥2。满足|F7/F|≥1.5,有助于矫正色差。
在示例性实施方式中,根据本申请的光学镜头可满足:0≤T67/TTL≤0.2,其中,T67是第六透镜和第七透镜在光轴上的间隔距离,TTL是第一透镜的物侧面至光学镜头的成像面在光轴上的距离。更具体地,T67和TTL进一步可满足:0.01≤T67/TTL≤0.1。满足0≤T67/TTL≤0.2,有助于光学镜头的组装,有助于改善鬼像。
在示例性实施方式中,根据本申请的光学镜头可满足:|R3-R4-d3|≥1.5mm,其中,R3是第二透镜的物侧面的曲率半径,R4是第二透镜的像侧面的曲率半径,d3是第二透镜在光轴上的中心厚度。更具体地,R3、R4和d3进一步可满足:|R3-R4-d3|≥1.8mm。满足|R3-R4-d3|≥1.5mm,有助于光线平缓过渡,利于加工。
在示例性实施方式中,根据本申请的光学镜头可满足:0.05≤d3/TTL≤0.3,其中,d3是第二透镜在光轴上的中心厚度,TTL是第一透镜的物侧面至光学镜头的成像面在光轴上的距离。更具体地,d3和TTL进一步可满足:0.1≤d3/TTL≤0.25。满足0.05≤d3/TTL≤0.3,有助于光线平缓地经过第二透镜。
在示例性实施方式中,根据本申请的光学镜头可满足:(FOV×F)/H≤70,其中,FOV是光学镜头的最大视场角,F是光学镜头的总有效焦距,H是光学镜头的最大视场角对应的像高。更具体地,FOV、F和H进一步可满足:(FOV×F)/H≤65。满足(FOV×F)/H≤70,有利于光学镜 头具有较小畸变,可以匹配更大的芯片。
如图9示出了本申请的透镜E的物侧面S的矢高SAG的示意图。D是光学镜头的最大视场角对应的透镜E的物侧面S的最大通光口径的半口径,矢高SAG是透镜E的物侧面S与光轴的交点a至透镜E的物侧面S的最大通光口径在光轴上的距离A。在示例性实施方式中,根据本申请的光学镜头可满足:0.5≤arctan(SAG3/D3)/arctan(SAG4/D4)≤3,其中,D3是光学镜头的最大视场角对应的第二透镜的物侧面的最大通光口径的半口径,SAG3是第二透镜的物侧面与光轴的交点至第二透镜的物侧面的最大通光口径在光轴上的距离,D4是光学镜头的最大视场角对应的第二透镜的像侧面的最大通光口径的半口径,SAG4是第二透镜的像侧面与光轴的交点至第二透镜的像侧面的最大通光口径在光轴上的距离。更具体地,SAG3、D3、SAG4和D4进一步可满足:1≤arctan(SAG3/D3)/arctan(SAG4/D4)≤2.5。满足0.5≤arctan(SAG3/D3)/arctan(SAG4/D4)≤3,有利于平缓过渡周边光线,有利于降低镜片敏感度。
在示例性实施方式中,根据本申请的光学镜头可满足:Vd+/Nd+≥40,其中,Nd+是胶合透镜中具有正光焦度的透镜的折射率,Vd+是胶合透镜中具有正光焦度的透镜的阿贝数。更具体地,Vd+和Nd+进一步可满足:Vd+/Nd+≥50。满足Vd+/Nd+≥40,使得胶合件中具有正光焦度的透镜优选超低折射率、超低色散的材料,有利于矫正色差。
在示例性实施方式中,第三透镜与第四透镜之间可设置有用于限制光束的光阑以进一步提高光学镜头的成像质量。将光阑设置在第三透镜和第四透镜之间,有利于增大光阑口径,有利于对进入光学镜头的光线进行有效的收束,减小镜片口径。在本申请实施方式中,光阑可设置在第三透镜的像侧面的附近处,或设置在第四透镜的物侧面的附近处。然而,应注意,此处公开的光阑的位置仅是示例而非限制;在替代的实施方式中,也可根据实际需要将光阑设置在其他位置。
在示例性实施方式中,根据需要,根据本申请的光学镜头还可包括设置在第七透镜与成像面之间的滤光片,以对具有不同波长的光线进行过滤。根据本申请的光学镜头还可包括设置在第七透镜与成像面之间的保护玻璃,以防止光学镜头的像方元件(例如,芯片)被损坏。
如本领域技术人员已知的,胶合透镜可用于最大限度地减少色差或消除色差。在光学镜头中使用胶合透镜能够改善像质、减少光能量的反射损失,从而实现高解像,提升镜头成像的清晰度。另外,胶合透镜的使用还可简化镜头制造过程中的装配程序。
在示例性实施方式中,第五透镜和第六透镜胶合形成胶合透镜。第五透镜和第六透镜具有相反的光焦度。例如第五透镜具有正光焦度,则第六透镜具有负光焦度;或者第五透镜具有负光焦度,则第六透镜具有正光焦度。具有正光焦度的透镜优选为低折射率、低色散材料的透镜,有利于消除色差。像侧面为凹面的第五透镜与物侧面为凸面的第六透镜胶合或像侧面为凸面的第五透镜与物侧面为凹面的第六透镜胶合,有利于矫正光学系统的各种像差,实现在光学系统结构紧凑的前提下,提高系统分辨率、优化畸变及CRA等光学性能。上述透镜间采用胶合方式具有以下优点中的至少一个:减少自身色差,降低公差敏感度,通过残留的部分色差以平衡系统的整体色差;减小两个透镜之间的间隔距离,从而减小系统总长;减少透镜之间的组立部件,从而减少工序,降低成本;降低透镜单元因在组立过程中产生的倾斜/偏芯等公差敏感度问题,提高生产良率;减少透镜间反射引起光量损失,提升照度;进一步减小场曲,有效矫正光学镜头的轴外点像差。这样的胶合设计分担了系统的整体色差矫正,有效校正像差,以提高解像力,且使得光学系统整体紧凑,满足小型化要求。
在示例性实施方式中,第一透镜、第二透镜、第三透镜、第四透镜、第五透镜、第六透镜 和第七透镜中均可具有非球面镜面。非球面透镜的特点是:从透镜中心到周边曲率是连续变化的。与从透镜中心到周边有恒定曲率的球面透镜不同,非球面透镜具有更佳的曲率半径特性,具有改善歪曲像差及改善像散像差的优点。采用非球面透镜后,能够尽可能地消除在成像的时候出现的像差,从而提升镜头的成像质量。非球面透镜的设置有助于矫正系统像差,提升解像力。具体地,第一透镜、第二透镜、第三透镜、第四透镜、第五透镜、第六透镜和第七透镜中至少一片透镜为非球面透镜,有利于提高光学系统的解像质量。
根据本申请的上述实施方式的光学镜头通过各透镜形状和光焦度的合理设置,在仅使用7片透镜的情况下,实现光学系统具有较小色差、高解像(可达到八百万像素以上)、小型化、小畸变、较小前端口径、较小鬼像以及良好的成像质量等至少一个有益效果。同时,光学系统还兼顾镜头体积小、敏感度低、生产良率高的低成本要求。该光学镜头还具有较长的焦距,中心区域具备大角度分辨率,可以提高环境物体辨识度,针对性的增大中心部分探测区域。同时该光学镜头温度适应性能佳、高低温环境下成像效果变化小、像质稳定。
根据本申请的上述实施方式的光学镜头通过设置胶合透镜,分担系统的整体色差矫正,既有利于矫正系统像差,提高系统解像质量,减少配合敏感问题,又有利于使得光学系统结构整体紧凑,满足小型化要求。
在示例性实施方式中,光学镜头中的第一透镜至第七透镜可均由玻璃制成。用玻璃制成的光学透镜可抑制光学镜头后焦随温度变化的偏移,以提高系统稳定性。同时采用玻璃材质可避免因使用环境中高、低温温度变化造成的镜头成像模糊,影响到镜头的正常使用。具体地,在重点关注解像质量和信赖性时,第一透镜至第七透镜可均为玻璃非球面镜片。当然在温度稳定性要求较低的应用场合中,光学镜头中的第一透镜至第七透镜也可均由塑料制成。用塑料制作光学透镜,可有效减小制作成本。
然而,本领域的技术人员应当理解,在未背离本申请要求保护的技术方案的情况下,可改变构成镜头的透镜数量,来获得本说明书中描述的各个结果和优点。例如,虽然在实施方式中以七片透镜为例进行了描述,但是该光学镜头不限于包括七片透镜。如果需要,该光学镜头还可包括其它数量的透镜。
下面参照附图进一步描述可适用于上述实施方式的光学镜头的具体实施例。
实施例1
以下参照图1描述根据本申请实施例1的光学镜头。图1示出了根据本申请实施例1的光学镜头的结构示意图。
如图1所示,光学镜头沿着光轴由物侧至像侧依序包括第一透镜L1、第二透镜L2、第三透镜L3、第四透镜L4、第五透镜L5、第六透镜L6和第七透镜L7。
第一透镜L1为具有负光焦度的凸凹透镜,其物侧面S1为凸面,像侧面S2为凹面。第二透镜L2为具有负光焦度的凹凸透镜,其物侧面S3为凹面,像侧面S4为凸面。第三透镜L3为具有正光焦度的双凸透镜,其物侧面S5为凸面,像侧面S6为凸面。第四透镜L4为具有正光焦度的双凸透镜,其物侧面S8为凸面,像侧面S9为凸面。第五透镜L5为具有负光焦度的双凹透镜,其物侧面S10为凹面,像侧面S11为凹面。第六透镜L6为具有正光焦度的双凸透镜,其物侧面S11为凸面,像侧面S12为凸面。第七透镜L7具有正光焦度,且在靠近光轴区域为凸凹透镜,其物侧面S13在靠近光轴区域为凸面,像侧面S14在靠近光轴区域为凹面。第五透镜L5和第六透镜L6可胶合组成胶合透镜。
光学镜头还可包括光阑STO,光阑STO可设置在第三透镜L3与第四透镜L4之间,以提高成像质量。例如,光阑STO可靠近第三透镜L3的像侧面S6设置。
可选地,该光学镜头还可包括具有物侧面S15和像侧面S16的滤光片L8,该滤光片L8可用于校正色彩偏差。该光学镜头还可包括具有物侧面S17和像侧面S18的保护玻璃L9,该保护玻璃L9可用于保护位于成像面S19处的图像传感芯片IMA。来自物体的光依序穿过各表面S1至S18并最终成像在成像面S19上。
表1示出了实施例1的光学镜头的各透镜的曲率半径R、厚度d/距离T(应理解,S1所在行的厚度d/距离T为第一透镜L1的中心厚度d1,S2所在行的厚度d/距离T为第一透镜L1与第二透镜L2之间的间隔距离T12,以此类推)、折射率Nd以及阿贝数Vd。
Figure PCTCN2021120752-appb-000001
表1
在实施例1中,第三透镜L3的物侧面S5和像侧面S6以及第七透镜L7的物侧面S13和像侧面S14均可以是非球面,各非球面透镜的面型x可利用但不限于以下非球面公式进行限定:
Figure PCTCN2021120752-appb-000002
其中,x为非球面沿光轴方向在高度为h的位置时,距非球面顶点的距离矢高;c为非球面的近轴曲率,c=1/R(即,近轴曲率c为上表1中曲率半径R的倒数);k为圆锥系数;Ai是非球面第i-th阶的修正系数。下表2给出了可用于实施例1中各非球面镜面S5、S6、S13和S14的 圆锥系数k和高次项系数A4、A6、A8、A10、A12、A14和A16。
Figure PCTCN2021120752-appb-000003
表2
实施例2
以下参照图2描述了根据本申请实施例2的光学镜头。图2示出了根据本申请实施例2的光学镜头的结构示意图。
如图2所示,光学镜头沿着光轴由物侧至像侧依序包括第一透镜L1、第二透镜L2、第三透镜L3、第四透镜L4、第五透镜L5、第六透镜L6和第七透镜L7。
第一透镜L1为具有负光焦度的凸凹透镜,其物侧面S1为凸面,像侧面S2为凹面。第二透镜L2为具有负光焦度的凹凸透镜,其物侧面S3为凹面,像侧面S4为凸面。第三透镜L3为具有正光焦度的双凸透镜,其物侧面S5为凸面,像侧面S6为凸面。第四透镜L4为具有正光焦度的双凸透镜,其物侧面S8为凸面,像侧面S9为凸面。第五透镜L5为具有负光焦度的双凹透镜,其物侧面S10为凹面,像侧面S11为凹面。第六透镜L6为具有正光焦度的双凸透镜,其物侧面S11为凸面,像侧面S12为凸面。第七透镜L7具有正光焦度,且在靠近光轴区域为凸凹透镜,其物侧面S13在靠近光轴区域为凸面,像侧面S14在靠近光轴区域为凹面。第五透镜L5和第六透镜L6可胶合组成胶合透镜。
光学镜头还可包括光阑STO,光阑STO可设置在第三透镜L3与第四透镜L4之间,以提高成像质量。例如,光阑STO可靠近第三透镜L3的像侧面S6设置。
可选地,该光学镜头还可包括具有物侧面S15和像侧面S16的滤光片L8,该滤光片L8可用于校正色彩偏差。该光学镜头还可包括具有物侧面S17和像侧面S18的保护玻璃L9,该保护玻璃L9可用于保护位于成像面S19处的图像传感芯片IMA。来自物体的光依序穿过各表面S1至S18并最终成像在成像面S19上。
表3示出了实施例2的光学镜头的各透镜的曲率半径R、厚度d/距离T、折射率Nd以及阿贝数Vd。表4示出了可用于实施例2中各非球面镜面的圆锥系数和高次项系数,其中,各非球面面型可由上述实施例1中给出的公式(1)限定。
Figure PCTCN2021120752-appb-000004
Figure PCTCN2021120752-appb-000005
表3
Figure PCTCN2021120752-appb-000006
表4
实施例3
以下参照图3描述了根据本申请实施例3的光学镜头。图3示出了根据本申请实施例3的光学镜头的结构示意图。
如图3所示,光学镜头沿着光轴由物侧至像侧依序包括第一透镜L1、第二透镜L2、第三透镜L3、第四透镜L4、第五透镜L5、第六透镜L6和第七透镜L7。
第一透镜L1为具有负光焦度的凸凹透镜,其物侧面S1为凸面,像侧面S2为凹面。第二透镜L2为具有负光焦度的凹凸透镜,其物侧面S3为凹面,像侧面S4为凸面。第三透镜L3为具有正光焦度的双凸透镜,其物侧面S5为凸面,像侧面S6为凸面。第四透镜L4为具有正光焦 度的双凸透镜,其物侧面S8为凸面,像侧面S9为凸面。第五透镜L5为具有负光焦度的凸凹透镜,其物侧面S10为凸面,像侧面S11为凹面。第六透镜L6为具有正光焦度的双凸透镜,其物侧面S11为凸面,像侧面S12为凸面。第七透镜L7具有负光焦度,且在靠近光轴区域为凹凸透镜,其物侧面S13在靠近光轴区域为凹面,像侧面S14在靠近光轴区域为凸面。第五透镜L5和第六透镜L6可胶合组成胶合透镜。
光学镜头还可包括光阑STO,光阑STO可设置在第三透镜L3与第四透镜L4之间,以提高成像质量。例如,光阑STO可靠近第三透镜L3的像侧面S6设置。
可选地,该光学镜头还可包括具有物侧面S15和像侧面S16的滤光片L8,该滤光片L8可用于校正色彩偏差。该光学镜头还可包括具有物侧面S17和像侧面S18的保护玻璃L9,该保护玻璃L9可用于保护位于成像面S19处的图像传感芯片IMA。来自物体的光依序穿过各表面S1至S18并最终成像在成像面S19上。
表5示出了实施例3的光学镜头的各透镜的曲率半径R、厚度d/距离T、折射率Nd以及阿贝数Vd。表6示出了可用于实施例3中各非球面镜面的圆锥系数和高次项系数,其中,各非球面面型可由上述实施例1中给出的公式(1)限定。
Figure PCTCN2021120752-appb-000007
表5
Figure PCTCN2021120752-appb-000008
Figure PCTCN2021120752-appb-000009
表6
实施例4
以下参照图4描述了根据本申请实施例4的光学镜头。图4示出了根据本申请实施例4的光学镜头的结构示意图。
如图4所示,光学镜头沿着光轴由物侧至像侧依序包括第一透镜L1、第二透镜L2、第三透镜L3、第四透镜L4、第五透镜L5、第六透镜L6和第七透镜L7。
第一透镜L1为具有负光焦度的凸凹透镜,其物侧面S1为凸面,像侧面S2为凹面。第二透镜L2为具有负光焦度的凹凸透镜,其物侧面S3为凹面,像侧面S4为凸面。第三透镜L3为具有正光焦度的双凸透镜,其物侧面S5为凸面,像侧面S6为凸面。第四透镜L4为具有正光焦度的双凸透镜,其物侧面S8为凸面,像侧面S9为凸面。第五透镜L5为具有负光焦度的凸凹透镜,其物侧面S10为凸面,像侧面S11为凹面。第六透镜L6为具有正光焦度的双凸透镜,其物侧面S11为凸面,像侧面S12为凸面。第七透镜L7具有负光焦度,且在靠近光轴区域为凹凸透镜,其物侧面S13在靠近光轴区域为凹面,像侧面S14在靠近光轴区域为凸面。第五透镜L5和第六透镜L6可胶合组成胶合透镜。
光学镜头还可包括光阑STO,光阑STO可设置在第三透镜L3与第四透镜L4之间,以提高成像质量。例如,光阑STO可靠近第三透镜L3的像侧面S6设置。
可选地,该光学镜头还可包括具有物侧面S15和像侧面S16的滤光片L8,该滤光片L8可用于校正色彩偏差。该光学镜头还可包括具有物侧面S17和像侧面S18的保护玻璃L9,该保护玻璃L9可用于保护位于成像面S19处的图像传感芯片IMA。来自物体的光依序穿过各表面S1至S18并最终成像在成像面S19上。
表7示出了实施例4的光学镜头的各透镜的曲率半径R、厚度d/距离T、折射率Nd以及阿贝数Vd。表8示出了可用于实施例4中各非球面镜面的圆锥系数和高次项系数,其中,各非球面面型可由上述实施例1中给出的公式(1)限定。
Figure PCTCN2021120752-appb-000010
Figure PCTCN2021120752-appb-000011
表7
Figure PCTCN2021120752-appb-000012
表8
实施例5
以下参照图5描述了根据本申请实施例5的光学镜头。图5示出了根据本申请实施例5的光学镜头的结构示意图。
如图5所示,光学镜头沿着光轴由物侧至像侧依序包括第一透镜L1、第二透镜L2、第三透镜L3、第四透镜L4、第五透镜L5、第六透镜L6和第七透镜L7。
第一透镜L1为具有负光焦度的凸凹透镜,其物侧面S1为凸面,像侧面S2为凹面。第二透镜L2为具有负光焦度的凹凸透镜,其物侧面S3为凹面,像侧面S4为凸面。第三透镜L3为具有正光焦度的双凸透镜,其物侧面S5为凸面,像侧面S6为凸面。第四透镜L4为具有正光焦度的双凸透镜,其物侧面S8为凸面,像侧面S9为凸面。第五透镜L5为具有负光焦度的凸凹透镜,其物侧面S10为凸面,像侧面S11为凹面。第六透镜L6为具有正光焦度的双凸透镜,其物侧面S11为凸面,像侧面S12为凸面。第七透镜L7具有负光焦度,且在靠近光轴区域为双凹透镜,其物侧面S13在靠近光轴区域为凹面,像侧面S14在靠近光轴区域为凹面。第五透镜L5和第六透镜L6可胶合组成胶合透镜。
光学镜头还可包括光阑STO,光阑STO可设置在第三透镜L3与第四透镜L4之间,以提高成像质量。例如,光阑STO可靠近第三透镜L3的像侧面S6设置。
可选地,该光学镜头还可包括具有物侧面S15和像侧面S16的滤光片L8,该滤光片L8可用于校正色彩偏差。该光学镜头还可包括具有物侧面S17和像侧面S18的保护玻璃L9,该保护玻璃L9可用于保护位于成像面S19处的图像传感芯片IMA。来自物体的光依序穿过各表面S1 至S18并最终成像在成像面S19上。
表9示出了实施例5的光学镜头的各透镜的曲率半径R、厚度d/距离T、折射率Nd以及阿贝数Vd。表10示出了可用于实施例5中各非球面镜面的圆锥系数和高次项系数,其中,各非球面面型可由上述实施例1中给出的公式(1)限定。
Figure PCTCN2021120752-appb-000013
表9
Figure PCTCN2021120752-appb-000014
表10
实施例6
以下参照图6描述了根据本申请实施例6的光学镜头。图6示出了根据本申请实施例6的光学镜头的结构示意图。
如图6所示,光学镜头沿着光轴由物侧至像侧依序包括第一透镜L1、第二透镜L2、第三 透镜L3、第四透镜L4、第五透镜L5、第六透镜L6和第七透镜L7。
第一透镜L1为具有负光焦度的凸凹透镜,其物侧面S1为凸面,像侧面S2为凹面。第二透镜L2为具有负光焦度的凹凸透镜,其物侧面S3为凹面,像侧面S4为凸面。第三透镜L3为具有正光焦度的双凸透镜,其物侧面S5为凸面,像侧面S6为凸面。第四透镜L4为具有正光焦度的双凸透镜,其物侧面S8为凸面,像侧面S9为凸面。第五透镜L5为具有负光焦度的凸凹透镜,其物侧面S10为凸面,像侧面S11为凹面。第六透镜L6为具有正光焦度的双凸透镜,其物侧面S11为凸面,像侧面S12为凸面。第七透镜L7具有负光焦度,且在靠近光轴区域为双凹透镜,其物侧面S13在靠近光轴区域为凹面,像侧面S14在靠近光轴区域为凹面。第五透镜L5和第六透镜L6可胶合组成胶合透镜。
光学镜头还可包括光阑STO,光阑STO可设置在第三透镜L3与第四透镜L4之间,以提高成像质量。例如,光阑STO可靠近第三透镜L3的像侧面S6设置。
可选地,该光学镜头还可包括具有物侧面S15和像侧面S16的滤光片L8,该滤光片L8可用于校正色彩偏差。该光学镜头还可包括具有物侧面S17和像侧面S18的保护玻璃L9,该保护玻璃L9可用于保护位于成像面S19处的图像传感芯片IMA。来自物体的光依序穿过各表面S1至S18并最终成像在成像面S19上。
表11示出了实施例6的光学镜头的各透镜的曲率半径R、厚度d/距离T、折射率Nd以及阿贝数Vd。表12示出了可用于实施例6中各
镜面的圆锥系数和高次项系数,其中,各非球面面型可由上述实施例1中给出的公式(1)限定。
Figure PCTCN2021120752-appb-000015
Figure PCTCN2021120752-appb-000016
表11
Figure PCTCN2021120752-appb-000017
表12
实施例7
以下参照图7描述了根据本申请实施例7的光学镜头。图7示出了根据本申请实施例7的光学镜头的结构示意图。
如图7所示,光学镜头沿着光轴由物侧至像侧依序包括第一透镜L1、第二透镜L2、第三透镜L3、第四透镜L4、第五透镜L5、第六透镜L6和第七透镜L7。
第一透镜L1为具有负光焦度的凸凹透镜,其物侧面S1为凸面,像侧面S2为凹面。第二透镜L2为具有负光焦度的凹凸透镜,其物侧面S3为凹面,像侧面S4为凸面。第三透镜L3为具有正光焦度的凸凹透镜,其物侧面S5为凸面,像侧面S6为凹面。第四透镜L4为具有正光焦度的双凸透镜,其物侧面S8为凸面,像侧面S9为凸面。第五透镜L5为具有正光焦度的双凸透镜,其物侧面S10为凸面,像侧面S11为凸面。第六透镜L6为具有负光焦度的双凹透镜,其物侧面S11为凹面,像侧面S12为凹面。第七透镜L7具有正光焦度,且在靠近光轴区域为双凸透镜,其物侧面S13在靠近光轴区域为凸面,像侧面S14在靠近光轴区域为凸面。第五透镜L5和第六透镜L6可胶合组成胶合透镜。
光学镜头还可包括光阑STO,光阑STO可设置在第三透镜L3与第四透镜L4之间,以提高成像质量。例如,光阑STO可靠近第四透镜L4的物侧面S8设置。
可选地,该光学镜头还可包括具有物侧面S15和像侧面S16的滤光片L8,该滤光片L8可用于校正色彩偏差。该光学镜头还可包括具有物侧面S17和像侧面S18的保护玻璃L9,该保护玻璃L9可用于保护位于成像面S19处的图像传感芯片IMA。来自物体的光依序穿过各表面S1至S18并最终成像在成像面S19上。
表13示出了实施例7的光学镜头的各透镜的曲率半径R、厚度d/距离T、折射率Nd以及阿贝数Vd。表14示出了可用于实施例7中各非球面镜面的圆锥系数和高次项系数,其中,各非球面面型可由上述实施例1中给出的公式(1)限定。
Figure PCTCN2021120752-appb-000018
Figure PCTCN2021120752-appb-000019
表13
Figure PCTCN2021120752-appb-000020
表14
实施例8
以下参照图8描述了根据本申请实施例8的光学镜头。图8示出了根据本申请实施例8的光学镜头的结构示意图。
如图8所示,光学镜头沿着光轴由物侧至像侧依序包括第一透镜L1、第二透镜L2、第三透镜L3、第四透镜L4、第五透镜L5、第六透镜L6和第七透镜L7。
第一透镜L1为具有负光焦度的凸凹透镜,其物侧面S1为凸面,像侧面S2为凹面。第二透镜L2为具有负光焦度的凹凸透镜,其物侧面S3为凹面,像侧面S4为凸面。第三透镜L3为具有正光焦度的凸凹透镜,其物侧面S5为凸面,像侧面S6为凹面。第四透镜L4为具有正光焦度的双凸透镜,其物侧面S8为凸面,像侧面S9为凸面。第五透镜L5为具有正光焦度的双凸透镜,其物侧面S10为凸面,像侧面S11为凸面。第六透镜L6为具有负光焦度的双凹透镜,其物侧面S11为凹面,像侧面S12为凹面。第七透镜L7具有正光焦度,且在靠近光轴区域为双凸透 镜,其物侧面S13在靠近光轴区域为凸面,像侧面S14在靠近光轴区域为凸面。第五透镜L5和第六透镜L6可胶合组成胶合透镜。
光学镜头还可包括光阑STO,光阑STO可设置在第三透镜L3与第四透镜L4之间,以提高成像质量。例如,光阑STO可靠近第四透镜L4的物侧面S8设置。
可选地,该光学镜头还可包括具有物侧面S15和像侧面S16的滤光片L8,该滤光片L8可用于校正色彩偏差。该光学镜头还可包括具有物侧面S17和像侧面S18的保护玻璃L9,该保护玻璃L9可用于保护位于成像面S19处的图像传感芯片IMA。来自物体的光依序穿过各表面S1至S18并最终成像在成像面S19上。
表15示出了实施例8的光学镜头的各透镜的曲率半径R、厚度d/距离T、折射率Nd以及阿贝数Vd。表16示出了可用于实施例8中各非球面镜面的圆锥系数和高次项系数,其中,各非球面面型可由上述实施例1中给出的公式(1)限定。
Figure PCTCN2021120752-appb-000021
表15
Figure PCTCN2021120752-appb-000022
Figure PCTCN2021120752-appb-000023
表16
综上,实施例1至实施例8分别满足以下表17-1和表17-2所示的关系。在表17-1和表17-2中,TTL、F、H、D、F-、F+、F7、F1、F2、F3、F4、T67、R3、R4、d3、D3、D4、SAG3、SAG4的单位为毫米(mm),FOV的单位为度(°)。
条件式\实施例 实施例1 实施例2 实施例3 实施例4
TTL 30.2622 29.6921 29.2070 29.174
F 4.0000 4.0917 4.1496 4.1468
H 9.3000 9.1320 10.0660 10.0520
FOV 140 140 140 140
D 13.6959 13.7173 13.4106 13.4248
F- -4.7301 -4.6627 -6.6239 -6.6231
F+ 7.0522 6.9561 6.6588 6.6579
F7 59.0309 60.2297 -26.2769 -26.1821
SAG3/D3 -0.2914 -0.3006 -0.3408 -0.3424
SAG4/D4 -0.2169 -0.2126 -0.1787 -0.1786
F1 -7.1279 -7.0366 -7.4568 -7.4566
F2 -79.1759 -80.9175 -19.8473 -20.2327
F3 12.7109 12.5174 13.3259 13.3278
F4 9.9132 9.7727 8.8233 8.8241
TTL/F 7.5656 7.2566 7.0384 7.0352
TTL/H/FOV 0.0232 0.0232 0.0207 0.0207
D/H/FOV 0.0105 0.0107 0.0095 0.0095
|F+/F-| 1.4909 1.4919 1.0053 1.0053
|F7/F| 14.7577 14.7199 6.3323 6.3137
T67/TTL 0.0342 0.0345 0.0103 0.0103
|R3-R4-d3|(mm) 1.9731 2.0107 2.1740 2.1755
d3/TTL 0.1870 0.1879 0.1273 0.1274
(FOV×F)/H 60.2151 62.7291 57.7140 57.7554
arctan(SAG3/D3)/arctan(SAG4/D4) 1.3277 1.3940 1.8570 1.8664
Vd+/Nd+ 54.6150 54.6150 54.5146 54.5146
表17-1
条件式\实施例 实施例5 实施例6 实施例7 实施例8
TTL 29.4396 29.4449 31.4080 30.9504
F 4.1765 4.1768 3.9700 3.9950
H 10.0000 10.0000 9.0740 9.1140
FOV 140 140 140 140
D 13.8885 13.8886 13.1883 12.9191
F- -6.6772 -6.6772 -4.4349 -4.1280
F+ 7.0123 7.0121 9.3589 8.7973
F7 -21.8929 -21.8876 8.5953 8.3430
SAG3/D3 -0.3008 -0.3008 -0.3352 -0.3378
SAG4/D4 -0.1286 -0.1286 -0.2606 -0.2471
F1 -7.7921 -7.7922 -6.8597 -6.8363
F2 -17.6297 -17.6322 -292.3025 -118.2606
F3 11.7055 11.7054 18.4435 18.9288
F4 9.2268 9.2278 12.6592 11.9178
TTL/F 7.0489 7.0497 7.9113 7.7473
TTL/H/FOV 0.0210 0.0210 0.0247 0.0243
D/H/FOV 0.0099 0.0099 0.0104 0.0101
|F+/F-| 1.0502 1.0502 2.1103 2.1311
|F7/F| 5.2420 5.2403 2.1651 2.0884
T67/TTL 0.0500 0.0500 0.0189 0.0181
|R3-R4-d3|(mm) 4.8242 4.8227 2.7747 2.3515
d3/TTL 0.1602 0.1602 0.1764 0.1781
(FOV×F)/H 58.4706 58.4749 61.2519 61.3671
arctan(SAG3/D3)/arctan(SAG4/D4) 2.2846 2.2843 1.2685 1.3446
Vd+/Nd+ 54.5056 54.5056 66.1798 66.1798
表17-2
本申请还提供了一种电子设备,该电子设备可包括根据本申请上述实施方式的光学镜头及用于将所述光学镜头形成的光学图像转换为电信号的成像元件。该电子设备可以是诸如探测距离相机的独立电子设备,也可以是集成在诸如探测距离设备上的成像模块。此外,电子设备还可以是诸如车载相机的独立成像设备,也可以是集成在诸如辅助驾驶系统上的成像模块。
以上描述仅为本申请的较佳实施例以及对所运用技术原理的说明。本领域技术人员应当理解,本申请中所涉及的发明范围,并不限于上述技术特征的特定组合而成的技术方案,同时也应涵盖在不脱离所述发明构思的情况下,由上述技术特征或其等同特征进行任意组合而形成的其它技术方案。例如上述特征与本申请中公开的(但不限于)具有类似功能的技术特征进行互相替换而形成的技术方案。

Claims (51)

  1. 光学镜头,其特征在于,沿着光轴由物侧至像侧依序包括:
    具有负光焦度的第一透镜,其物侧面为凸面,像侧面为凹面;
    具有负光焦度的第二透镜,其物侧面为凹面,像侧面为凸面;
    具有正光焦度的第三透镜,其物侧面为凸面;
    具有正光焦度的第四透镜,其物侧面为凸面,像侧面为凸面;
    具有光焦度的第五透镜;
    具有光焦度的第六透镜;以及
    具有光焦度的第七透镜;
    其中,所述第五透镜和所述第六透镜中的一个具有正光焦度,所述第五透镜和所述第六透镜中的另一个具有负光焦度,并且所述第五透镜和所述第六透镜胶合形成胶合透镜。
  2. 根据权利要求1所述的光学镜头,其特征在于,所述第三透镜的像侧面为凸面。
  3. 根据权利要求1所述的光学镜头,其特征在于,所述第三透镜的像侧面为凹面。
  4. 根据权利要求1所述的光学镜头,其特征在于,所述第五透镜具有负光焦度,其物侧面为凹面,像侧面为凹面。
  5. 根据权利要求1所述的光学镜头,其特征在于,所述第五透镜具有负光焦度,其物侧面为凸面,像侧面为凹面。
  6. 根据权利要求1所述的光学镜头,其特征在于,所述第五透镜具有正光焦度,其物侧面为凸面,像侧面为凸面。
  7. 根据权利要求1所述的光学镜头,其特征在于,所述第六透镜具有正光焦度,其物侧面为凸面,像侧面为凸面。
  8. 根据权利要求1所述的光学镜头,其特征在于,所述第六透镜具有负光焦度,其物侧面为凹面,像侧面为凹面。
  9. 根据权利要求1所述的光学镜头,其特征在于,所述第七透镜具有正光焦度,其物侧面在靠近所述光轴区域为凸面,像侧面在靠近所述光轴区域为凹面。
  10. 根据权利要求1所述的光学镜头,其特征在于,所述第七透镜具有负光焦度,其物侧面在靠近所述光轴区域为凹面,像侧面在靠近所述光轴区域为凸面。
  11. 根据权利要求1所述的光学镜头,其特征在于,所述第七透镜具有负光焦度,其物侧面在靠近所述光轴区域为凹面,像侧面在靠近所述光轴区域为凹面。
  12. 根据权利要求1所述的光学镜头,其特征在于,所述第七透镜具有正光焦度,其物侧面在靠近所述光轴区域为凸面,像侧面在靠近所述光轴区域为凸面。
  13. 根据权利要求1所述的光学镜头,其特征在于,所述第七透镜的物侧面和所述第七透镜的像侧面中至少存在一个反曲点。
  14. 根据权利要求1所述的光学镜头,其特征在于,所述第二透镜、所述第三透镜、所述第四透镜以及所述第七透镜中的至少两个透镜具有非球面镜面。
  15. 根据权利要求1-14中任一项所述的光学镜头,其特征在于,所述第一透镜的物侧面至所述光学镜头的成像面在所述光轴上的距离TTL与所述光学镜头的总有效焦距F满足:TTL/F≤9。
  16. 根据权利要求1-14中任一项所述的光学镜头,其特征在于,所述第一透镜的物侧面至所述光学镜头的成像面在所述光轴上的距离TTL、所述光学镜头的最大视场角FOV对应的像高H以及所述光学镜头的最大视场角FOV满足:TTL/H/FOV≤0.1。
  17. 根据权利要求1-14中任一项所述的光学镜头,其特征在于,所述光学镜头的最大视场角FOV、所述光学镜头的最大视场角对应的所述第一透镜的物侧面的最大通光口径D以及所述光学镜头的最大视场角对应的像高H满足:D/H/FOV≤0.025。
  18. 根据权利要求1-14中任一项所述的光学镜头,其特征在于,所述胶合透镜中具有正光焦度的透镜的有效焦距F+与所述胶合透镜中具有负光焦度的透镜的有效焦距F-满足:0.5≤|F+/F-|≤3。
  19. 根据权利要求1-14中任一项所述的光学镜头,其特征在于,所述第七透镜的有效焦距F7与所述光学镜头的总有效焦距F满足:|F7/F|≥1.5。
  20. 根据权利要求1-14中任一项所述的光学镜头,其特征在于,所述第六透镜和所述第七透镜在所述光轴上的间隔距离T67与所述第一透镜的物侧面至所述光学镜头的成像面在所述光轴上的距离TTL满足:0≤T67/TTL≤0.2。
  21. 根据权利要求1-14中任一项所述的光学镜头,其特征在于,所述第二透镜的物侧面的曲率半径R3、所述第二透镜的像侧面的曲率半径R4以及所述第二透镜在所述光轴上的中心厚度d3满足:|R3-R4-d3|≥1.5mm。
  22. 根据权利要求1-14中任一项所述的光学镜头,其特征在于,所述第二透镜在所述光轴上的中心厚度d3与所述第一透镜的物侧面至所述光学镜头的成像面在所述光轴上的距离TTL满足:0.05≤d3/TTL≤0.3。
  23. 根据权利要求1-14中任一项所述的光学镜头,其特征在于,所述光学镜头的最大视场角FOV、所述光学镜头的总有效焦距F以及所述光学镜头的最大视场角对应的像高H满足:(FOV×F)/H≤70。
  24. 根据权利要求1-14中任一项所述的光学镜头,其特征在于,所述光学镜头的最大视场角对应的所述第二透镜的物侧面的最大通光口径的半口径D3、所述第二透镜的物侧面与所述光轴的交点至所述第二透镜的物侧面的最大通光口径在所述光轴上的距离SAG3、所述光学镜头的最大视场角对应的所述第二透镜的像侧面的最大通光口径的半口径D4、所述第二透镜的像侧面与所述光轴的交点至所述第二透镜的像侧面的最大通光口径在所述光轴上的距离SAG4满足:0.5≤arctan(SAG3/D3)/arctan(SAG4/D4)≤3。
  25. 根据权利要求1-14中任一项所述的光学镜头,其特征在于,所述胶合透镜中具有正光焦度的透镜的折射率Nd+与所述胶合透镜中具有正光焦度的透镜的阿贝数Vd+满足:Vd+/Nd+≥40。
  26. 光学镜头,其特征在于,沿着光轴由物侧至像侧依序包括:
    具有负光焦度的第一透镜,其物侧面为凸面,像侧面为凹面;
    具有负光焦度的第二透镜,其物侧面为凹面,像侧面为凸面;
    具有正光焦度的第三透镜,其物侧面为凸面;
    具有正光焦度的第四透镜,其物侧面为凸面,像侧面为凸面;
    具有光焦度的第五透镜;
    具有光焦度的第六透镜;以及
    具有光焦度的第七透镜;
    其中,所述第六透镜和所述第七透镜在所述光轴上的间隔距离T67与所述第一透镜的物侧面至所述光学镜头的成像面在所述光轴上的距离TTL满足:0≤T67/TTL≤0.2。
  27. 根据权利要求26所述的光学镜头,其特征在于,所述第五透镜和所述第六透镜中的一个具有正光焦度,所述第五透镜和所述第六透镜中的另一个具有负光焦度,并且所述第五透镜和所述第六透镜胶合形成胶合透镜。
  28. 根据权利要求26所述的光学镜头,其特征在于,所述第三透镜的像侧面为凸面。
  29. 根据权利要求26所述的光学镜头,其特征在于,所述第三透镜的像侧面为凹面。
  30. 根据权利要求26所述的光学镜头,其特征在于,所述第五透镜具有负光焦度,其物侧 面为凹面,像侧面为凹面。
  31. 根据权利要求26所述的光学镜头,其特征在于,所述第五透镜具有负光焦度,其物侧面为凸面,像侧面为凹面。
  32. 根据权利要求26所述的光学镜头,其特征在于,所述第五透镜具有正光焦度,其物侧面为凸面,像侧面为凸面。
  33. 根据权利要求26所述的光学镜头,其特征在于,所述第六透镜具有正光焦度,其物侧面为凸面,像侧面为凸面。
  34. 根据权利要求26所述的光学镜头,其特征在于,所述第六透镜具有负光焦度,其物侧面为凹面,像侧面为凹面。
  35. 根据权利要求26所述的光学镜头,其特征在于,所述第七透镜具有正光焦度,其物侧面在靠近所述光轴区域为凸面,像侧面在靠近所述光轴区域为凹面。
  36. 根据权利要求26所述的光学镜头,其特征在于,所述第七透镜具有负光焦度,其物侧面在靠近所述光轴区域为凹面,像侧面在靠近所述光轴区域为凸面。
  37. 根据权利要求26所述的光学镜头,其特征在于,所述第七透镜具有负光焦度,其物侧面在靠近所述光轴区域为凹面,像侧面在靠近所述光轴区域为凹面。
  38. 根据权利要求26所述的光学镜头,其特征在于,所述第七透镜具有正光焦度,其物侧面在靠近所述光轴区域为凸面,像侧面在靠近所述光轴区域为凸面。
  39. 根据权利要求26所述的光学镜头,其特征在于,所述第七透镜的物侧面和所述第七透镜的像侧面中至少存在一个反曲点。
  40. 根据权利要求26所述的光学镜头,其特征在于,所述第二透镜、所述第三透镜、所述第四透镜以及所述第七透镜中的至少两个透镜具有非球面镜面。
  41. 根据权利要求26-40中任一项所述的光学镜头,其特征在于,所述第一透镜的物侧面至所述光学镜头的成像面在所述光轴上的距离TTL与所述光学镜头的总有效焦距F满足:TTL/F≤9。
  42. 根据权利要求26-40中任一项所述的光学镜头,其特征在于,所述第一透镜的物侧面至所述光学镜头的成像面在所述光轴上的距离TTL、所述光学镜头的最大视场角对应的像高H以及所述光学镜头的最大视场角FOV满足:TTL/H/FOV≤0.1。
  43. 根据权利要求26-40中任一项所述的光学镜头,其特征在于,所述光学镜头的最大视场角FOV、所述光学镜头的最大视场角对应的所述第一透镜的物侧面的最大通光口径D以及所述光学镜头的最大视场角对应的像高H满足:D/H/FOV≤0.025。
  44. 根据权利要求26-40中任一项所述的光学镜头,其特征在于,所述胶合透镜中具有正光焦度的透镜的有效焦距F+与所述胶合透镜中具有负光焦度的透镜的有效焦距F-满足:0.5≤|F+/F-|≤3。
  45. 根据权利要求26-40中任一项所述的光学镜头,其特征在于,所述第七透镜的有效焦距F7与所述光学镜头的总有效焦距F满足:|F7/F|≥1.5。
  46. 根据权利要求26-40中任一项所述的光学镜头,其特征在于,所述第二透镜的物侧面的曲率半径R3、所述第二透镜的像侧面的曲率半径R4以及所述第二透镜在所述光轴上的中心厚度d3满足:|R3-R4-d3|≥1.5mm。
  47. 根据权利要求26-40中任一项所述的光学镜头,其特征在于,所述第二透镜在所述光轴上的中心厚度d3与所述第一透镜的物侧面至所述光学镜头的成像面在所述光轴上的距离TTL满足:0.05≤d3/TTL≤0.3。
  48. 根据权利要求26-40中任一项所述的光学镜头,其特征在于,所述光学镜头的最大视场角FOV、所述光学镜头的总有效焦距F以及所述光学镜头的最大视场角FOV对应的像高H满足:(FOV×F)/H≤70。
  49. 根据权利要求26-40中任一项所述的光学镜头,其特征在于,所述光学镜头的最大视场角对应的所述第二透镜的物侧面的最大通光口径的半口径D3、所述第二透镜的物侧面与所述光轴的交点至所述第二透镜的物侧面的最大通光口径在所述光轴上的距离SAG3、所述光学镜头的最大视场角对应的所述第二透镜的像侧面的最大通光口径的半口径D4、所述第二透镜的像侧面与所述光轴的交点至所述第二透镜的像侧面的最大通光口径在所述光轴上的距离SAG4满足:0.5≤arctan(SAG3/D3)/arctan(SAG4/D4)≤3。
  50. 根据权利要求26-40中任一项所述的光学镜头,其特征在于,所述胶合透镜中具有正光焦度的透镜的折射率Nd+与所述胶合透镜中具有正光焦度的透镜的阿贝数Vd+满足:Vd+/Nd+≥40。
  51. 一种电子设备,其特征在于,包括根据权利要求1至50中任一项所述的光学镜头及用于将所述光学镜头形成的光学图像转换为电信号的成像元件。
PCT/CN2021/120752 2020-08-05 2021-09-26 光学镜头及电子设备 WO2022028625A1 (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
US18/106,422 US20230185061A1 (en) 2020-08-05 2023-02-06 Optical lens assembly and electronic device

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN202010776133.3 2020-08-05
CN202010776133.3A CN114063247A (zh) 2020-08-05 2020-08-05 光学镜头及电子设备

Related Child Applications (1)

Application Number Title Priority Date Filing Date
US18/106,422 Continuation US20230185061A1 (en) 2020-08-05 2023-02-06 Optical lens assembly and electronic device

Publications (1)

Publication Number Publication Date
WO2022028625A1 true WO2022028625A1 (zh) 2022-02-10

Family

ID=80117094

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2021/120752 WO2022028625A1 (zh) 2020-08-05 2021-09-26 光学镜头及电子设备

Country Status (3)

Country Link
US (1) US20230185061A1 (zh)
CN (1) CN114063247A (zh)
WO (1) WO2022028625A1 (zh)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN115308887A (zh) * 2022-09-28 2022-11-08 江西联创电子有限公司 光学镜头
EP4231078A1 (en) * 2022-02-17 2023-08-23 Calin Technology Co., Ltd. Optical imaging lens

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2019228039A1 (zh) * 2018-05-30 2019-12-05 宁波舜宇车载光学技术有限公司 光学镜头
WO2021109677A1 (zh) * 2019-12-02 2021-06-10 宁波舜宇车载光学技术有限公司 光学镜头及电子设备
CN111897106A (zh) * 2020-08-28 2020-11-06 东莞市宇瞳光学科技股份有限公司 一种广角镜头
CN117369094B (zh) * 2023-12-07 2024-03-19 联创电子科技股份有限公司 光学镜头

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2016218242A (ja) * 2015-05-20 2016-12-22 キヤノン株式会社 光学系、撮像装置およびレンズ装置
CN108445611A (zh) * 2018-06-07 2018-08-24 嘉兴中润光学科技有限公司 无热化高分辨率的定焦镜头
CN109445068A (zh) * 2018-12-05 2019-03-08 江西联创电子有限公司 车载摄像镜头及成像设备
CN209327655U (zh) * 2017-10-23 2019-08-30 Hoya株式会社 成像光学系统
CN111007656A (zh) * 2019-12-26 2020-04-14 瑞声通讯科技(常州)有限公司 摄像光学镜头

Family Cites Families (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP7020938B2 (ja) * 2018-01-31 2022-02-16 株式会社タムロン 撮像レンズ及び撮像装置
CN110542978B (zh) * 2018-05-28 2021-12-17 宁波舜宇车载光学技术有限公司 光学镜头
CN208488589U (zh) * 2018-05-31 2019-02-12 江西联创电子有限公司 广角镜头
CN110554489B (zh) * 2018-06-04 2021-10-08 佳凌科技股份有限公司 广角镜头
CN109541780B (zh) * 2018-11-16 2020-09-22 江西联创电子有限公司 光学镜头及成像设备
CN110632743B (zh) * 2019-11-20 2020-03-27 江西联创电子有限公司 光学成像镜头及成像设备

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2016218242A (ja) * 2015-05-20 2016-12-22 キヤノン株式会社 光学系、撮像装置およびレンズ装置
CN209327655U (zh) * 2017-10-23 2019-08-30 Hoya株式会社 成像光学系统
CN108445611A (zh) * 2018-06-07 2018-08-24 嘉兴中润光学科技有限公司 无热化高分辨率的定焦镜头
CN109445068A (zh) * 2018-12-05 2019-03-08 江西联创电子有限公司 车载摄像镜头及成像设备
CN111007656A (zh) * 2019-12-26 2020-04-14 瑞声通讯科技(常州)有限公司 摄像光学镜头

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP4231078A1 (en) * 2022-02-17 2023-08-23 Calin Technology Co., Ltd. Optical imaging lens
CN115308887A (zh) * 2022-09-28 2022-11-08 江西联创电子有限公司 光学镜头
CN115308887B (zh) * 2022-09-28 2023-02-28 江西联创电子有限公司 光学镜头

Also Published As

Publication number Publication date
US20230185061A1 (en) 2023-06-15
CN114063247A (zh) 2022-02-18

Similar Documents

Publication Publication Date Title
WO2022028625A1 (zh) 光学镜头及电子设备
US20230258908A1 (en) Optical lens assembly and imaging device
WO2020107759A1 (zh) 光学镜头及成像设备
CN111474673B (zh) 光学镜头及成像设备
CN113495342B (zh) 光学镜头及电子设备
WO2020248877A1 (zh) 光学镜头及成像设备
CN109557644B (zh) 光学镜头及成像设备
WO2019205874A1 (zh) 光学镜头
CN114509859B (zh) 光学镜头及电子设备
WO2021109677A1 (zh) 光学镜头及电子设备
US20230266564A1 (en) Optical lens assembly and electronic device
CN112859289B (zh) 光学镜头及电子设备
WO2022100731A1 (zh) 光学镜头及电子设备
CN116224535A (zh) 光学镜头及电子设备
CN112014945B (zh) 光学镜头及成像设备
WO2022135103A1 (zh) 光学镜头及电子设备
CN112987231B (zh) 光学镜头及电子设备
CN112748512B (zh) 光学镜头及电子设备
CN115047585A (zh) 光学镜头及电子设备
CN114690368A (zh) 光学镜头及电子设备
CN114488468A (zh) 光学镜头及电子设备
CN114442260A (zh) 光学镜头及电子设备
WO2022063129A1 (zh) 光学镜头及电子设备
CN115201997B (zh) 光学镜头及电子设备
CN114721121B (zh) 光学镜头及电子设备

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 21854135

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 21854135

Country of ref document: EP

Kind code of ref document: A1