CN115308887A - 光学镜头 - Google Patents

光学镜头 Download PDF

Info

Publication number
CN115308887A
CN115308887A CN202211186652.XA CN202211186652A CN115308887A CN 115308887 A CN115308887 A CN 115308887A CN 202211186652 A CN202211186652 A CN 202211186652A CN 115308887 A CN115308887 A CN 115308887A
Authority
CN
China
Prior art keywords
lens
optical lens
optical
image
convex
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
CN202211186652.XA
Other languages
English (en)
Other versions
CN115308887B (zh
Inventor
凌兵兵
鲍宇旻
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Jiangxi Lianchuang Electronic Co Ltd
Original Assignee
Jiangxi Lianchuang Electronic Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Jiangxi Lianchuang Electronic Co Ltd filed Critical Jiangxi Lianchuang Electronic Co Ltd
Priority to CN202211186652.XA priority Critical patent/CN115308887B/zh
Publication of CN115308887A publication Critical patent/CN115308887A/zh
Application granted granted Critical
Publication of CN115308887B publication Critical patent/CN115308887B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B13/00Optical objectives specially designed for the purposes specified below
    • G02B13/001Miniaturised objectives for electronic devices, e.g. portable telephones, webcams, PDAs, small digital cameras
    • G02B13/0015Miniaturised objectives for electronic devices, e.g. portable telephones, webcams, PDAs, small digital cameras characterised by the lens design
    • G02B13/002Miniaturised objectives for electronic devices, e.g. portable telephones, webcams, PDAs, small digital cameras characterised by the lens design having at least one aspherical surface
    • G02B13/0045Miniaturised objectives for electronic devices, e.g. portable telephones, webcams, PDAs, small digital cameras characterised by the lens design having at least one aspherical surface having five or more lenses
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B13/00Optical objectives specially designed for the purposes specified below
    • G02B13/06Panoramic objectives; So-called "sky lenses" including panoramic objectives having reflecting surfaces
    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03BAPPARATUS OR ARRANGEMENTS FOR TAKING PHOTOGRAPHS OR FOR PROJECTING OR VIEWING THEM; APPARATUS OR ARRANGEMENTS EMPLOYING ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ACCESSORIES THEREFOR
    • G03B30/00Camera modules comprising integrated lens units and imaging units, specially adapted for being embedded in other devices, e.g. mobile phones or vehicles

Landscapes

  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Optics & Photonics (AREA)
  • Lenses (AREA)

Abstract

本发明提供了一种光学镜头,共七片透镜,沿光轴从物侧到成像面依次为:具有负光焦度的第一透镜,其物侧面和像侧面均为凹面;具有正光焦度的第二透镜,其物侧面和像侧面均为凸面;光阑;具有正光焦度的第三透镜,其像侧面为凸面;具有光焦度的第四透镜;具有光焦度的第五透镜,其像侧面为凸面;具有光焦度的第六透镜,其像侧面为凸面;具有光焦度的第七透镜,其物侧面为凸面,像侧面为凹面;光学镜头的最大视场角FOV、最大视场角所对应的真实像高IH和第一透镜物侧面通光口径D1满足:0.5<D1/IH/tan(FOV/2)<0.8。该光学镜头具备大视场、大光圈以及小型化的优点。

Description

光学镜头
技术领域
本发明涉及成像镜头的技术领域,特别涉及一种光学镜头。
背景技术
随着汽车智能化发展,车辆的驾驶辅助功能逐渐增强,其中视觉信息采集是核心工具。随着自动驾驶级别的提升,对车载摄像头的要求也逐步提高,尤其是前置摄像头。前置摄像头可增强主动安全和驾驶员辅助功能,如自动紧急制动(AEB)、自适应巡航控制(ACC)、车道保持辅助系统(LKAS)和交通堵塞辅助(TJA)等,前置摄像头在满足高分辨率、大的视场角、良好的环境适应性等优点的同时,也存在着镜片数量多,光学总长过长等缺点,不利于电子系统的小型化。
发明内容
针对上述问题,本发明的目的在于提出一种光学镜头,具备大视场、大光圈以及小型化的优点。
为实现上述目的,本发明的技术方案如下:
一种光学镜头,共七片透镜,沿光轴从物侧到成像面依次为:
具有负光焦度的第一透镜,其物侧面和像侧面均为凹面;
具有正光焦度的第二透镜,其物侧面和像侧面均为凸面;
光阑;
具有正光焦度的第三透镜,其像侧面为凸面;
具有光焦度的第四透镜;
具有光焦度的第五透镜,其像侧面为凸面;
具有光焦度的第六透镜,其像侧面为凸面;
具有光焦度的第七透镜,其物侧面为凸面,像侧面为凹面;
光学镜头的最大视场角FOV、最大视场角所对应的真实像高IH和第一透镜物侧面通光口径D1满足:0.5<D1/IH/tan(FOV/2)<0.8。
较佳地,所述光学镜头的光学总长TTL与有效焦距f满足:TTL/f<5.0。
较佳地,所述光学镜头的光学总长TTL与最大视场角所对应的真实像高IH满足:1.5<TTL/IH<3.0。
较佳地,所述光学镜头的光学后焦BFL与有效焦距f满足:0.6<BFL/f。
较佳地,所述光学镜头的入瞳直径EPD与最大视场角所对应的真实像高IH满足:2.5<IH/EPD<2.9。
较佳地,所述光学镜头的最大视场角FOV与最大视场角主光线在像面上的入射角CRA满足:3.0<(FOV/2)/CRA<5.5。
较佳地,所述光学镜头的有效焦距f、最大视场角FOV和最大视场角所对应的真实像高IH满足:0.6<(IH/2)/(f×tan(FOV/2))。
较佳地,所述光学镜头的有效焦距f与所述第一透镜的焦距f1和所述第二透镜的焦距f2分别满足:-1.5<f1/f<0,0<f2/f<7.0。
较佳地,所述光学镜头的有效焦距f与所述第一透镜和所述第二透镜的组合焦距f12满足:|f12/f|<5.0。
较佳地,所述光学镜头的光学总长TTL与所述第一透镜至所述第七透镜分别沿光轴的中心厚度的总和∑CT满足:0.5<∑CT/TTL<0.7。
相较于现有技术,本发明的有益效果是:本申请的光学镜头通过合理的搭配各透镜之间的镜片形状与光焦度组合,实现了同时具备大视场、大光圈以及小型化的优点。
本发明的附加方面与优点将在下面的描述中部分给出,部分将从下面的描述中变得明显,或通过本发明的实践了解到。
附图说明
本发明的上述与/或附加的方面与优点从结合下面附图对实施例的描述中将变得明显与容易理解,其中:
图1为本发明实施例1的光学镜头的结构示意图;
图2为本发明实施例1中光学镜头的F-tanθ畸变曲线图;
图3为本发明实施例1中光学镜头的MTF曲线图;
图4为本发明实施例1中光学镜头的MTF离焦曲线图;
图5为本发明实施例2的光学镜头的结构示意图;
图6为本发明实施例2中光学镜头的F-tanθ畸变曲线图;
图7为本发明实施例2中光学镜头的MTF曲线图;
图8为本发明实施例2中光学镜头的MTF离焦曲线图;
图9为本发明实施例3的光学镜头的结构示意图;
图10为本发明实施例3中光学镜头的F-tanθ畸变曲线图;
图11为本发明实施例3中光学镜头的MTF曲线图;
图12为本发明实施例3中光学镜头的MTF离焦曲线图;
图13为本发明实施例4的光学镜头的结构示意图;
图14为本发明实施例4中光学镜头的F-tanθ畸变曲线图;
图15为本发明实施例4中光学镜头的MTF曲线图;
图16为本发明实施例4中光学镜头的MTF离焦曲线图;
图17为本发明实施例5的光学镜头的结构示意图;
图18为本发明实施例5中光学镜头的F-tanθ畸变曲线图;
图19为本发明实施例5中光学镜头的MTF曲线图;
图20为本发明实施例5中光学镜头的MTF离焦曲线图;
图21为本发明实施例6的光学镜头的结构示意图;
图22为本发明实施例6中光学镜头的F-tanθ畸变曲线图;
图23为本发明实施例6中光学镜头的MTF曲线图;
图24为本发明实施例6中光学镜头的MTF离焦曲线图;
图25为本发明实施例7的光学镜头的结构示意图;
图26为本发明实施例7中光学镜头的F-tanθ畸变曲线图;
图27为本发明实施例7中光学镜头的MTF曲线图;
图28为本发明实施例7中光学镜头的MTF离焦曲线图;
图29为本发明实施例8的光学镜头的结构示意图;
图30为本发明实施例8中光学镜头的F-tanθ畸变曲线图;
图31为本发明实施例8中光学镜头的MTF曲线图;
图32为本发明实施例8中光学镜头的MTF离焦曲线图;
图33为本发明实施例9的光学镜头的结构示意图;
图34为本发明实施例9中光学镜头的F-tanθ畸变曲线图;
图35为本发明实施例9中光学镜头的MTF曲线图;
图36为本发明实施例9中光学镜头的MTF离焦曲线图。
如下具体实施方式将结合上述附图进一步说明本发明。
具体实施方式
为了更好地理解本申请,将参考附图对本申请的各个方面做出更详细的说明。应理解,这些详细说明只是对本申请的实施例的描述,而非以任何方式限制本申请的范围。在说明书全文中,相同的附图标号指代相同的元件。表述“和/或”包括相关联的所列项目中的一个或多个的任何和全部组合。
应注意,在本说明书中,第一、第二、第三等的表述仅用于将一个特征与另一个特征区分开来,而不表示对特征的任何限制。因此,在不背离本发明的教导的情况下,下文中讨论的第一透镜也可被称作第二透镜或第三透镜。
在附图中,为了便于说明,已稍微夸大了透镜的厚度、尺寸和形状。具体来讲,附图中所示的球面或非球面的形状通过示例的方式示出。即,球面或非球面的形状不限于附图中示出的球面或非球面的形状。附图仅为示例而并非严格按比例绘制。
在本文中,近轴区域是指光轴附近的区域。若透镜表面为凸面且未界定该凸面位置时,则表示该透镜表面至少于近轴区域为凸面;若透镜表面为凹面且未界定该凹面位置时,则表示该透镜表面至少于近轴区域为凹面。每个透镜最靠近被摄物体的表面称为该透镜的物侧面,每个透镜最靠近成像面的表面称为该透镜的像侧面。
还应理解的是,用语“包括”、“包括有”、“具有”、“包含”和/或“包含有”,当在本说明书中使用时表示存在所陈述的特征、元件和/或部件,但不排除存在或附加有一个或多个其它特征、元件、部件和/或它们的组合。此外,当诸如“...中的至少一个”的表述出现在所列特征的列表之后时,修饰整个所列特征,而不是修饰列表中的单独元件。此外,当描述本申请的实施方式时,使用“可”表示“本申请的一个或多个实施方式”。并且,用语“示例性的”旨在指代示例或举例说明。
除非另外限定,否则本文中使用的所有用语(包括技术用语和科学用语)均具有与本申请所属领域普通技术人员的通常理解相同的含义。还应理解的是,用语(例如在常用词典中定义的用语)应被解释为具有与它们在相关技术的上下文中的含义一致的含义,并且将不被以理想化或过度正式意义解释,除非本文中明确如此限定。
需要说明的是,在不冲突的情况下,本申请中的实施例及实施例中的特征可以相互组合。下面将参考附图并结合实施例来详细说明本申请。
根据本发明实施例的光学镜头从物侧到像侧依次包括:第一透镜、第二透镜、光阑、第三透镜、第四透镜、第五透镜、第六透镜和第七透镜。
在一些实施例中,第一透镜可具有负光焦度,有利于减小入射光线的倾角,从而对物方大视场实现有效分担。第一透镜的物侧面和像侧面均为凹面,能够缩小第一透镜的有效工作口径,同时避免光线过于发散导致光学镜头后方透镜的口径过大。
在一些实施例中,第二透镜可具有正光焦度,有利于汇聚光线的同时降低光线偏折角度,让光线走势平稳过渡。第二透镜的物侧面和像侧面均为凸面,能够降低第二透镜自身产生的慧差,提升光学镜头的成像品质。
在一些实施例中,第三透镜可具有正光焦度,有利于汇聚光线的同时降低光线偏折角度,让光线走势平稳过渡。第三透镜的像侧面为凸面,能够控制光线在第三透镜像侧面的出射角范围,减小第四透镜物侧面光线反射的鬼影能量,提升光学镜头的成像品质。
在一些实施例中,第七透镜的物侧面为凸面,像侧面为凹面,能够降低第七透镜自身产生的场曲,提升光学镜头的成像品质。
在一些实施例中,第四透镜和第五透镜可胶合组成胶合透镜,可以有效矫正光学镜头的色差、降低光学镜头的偏心敏感度,还可以平衡光学镜头的像差,提升光学镜头的成像品质;还可以降低光学镜头的组装敏感度,进而降低光学镜头的加工工艺难度,提高光学镜头的组装良率。
在一些实施例中,第二透镜和第三透镜之间可设置用于限制光束的光阑,光阑可设置在第二透镜的像侧面的附近处,能够减少光学镜头鬼影的产生,并且有利于收束进入光学系统的光线,降低光学镜头后端口径。
在一些实施例中,光学镜头的光圈值FNO满足:FNO≤1.64。满足上述范围,有利于实现大光圈特性,在弱光环境或夜晚时,也能保证图像的清晰。
在一些实施例中,光学镜头的最大视场角FOV满足:100°<FOV。满足上述范围,有利于实现广角特性,从而能够获取更多的场景信息,满足大范围探测的需求。
在一些实施例中,光学镜头的最大视场角主光线在像面上的入射角CRA满足:10°<CRA<17°。满足上述范围,可以使光学镜头的CRA与芯片感光元件的CRA之间的容许误差数值较大,提升光学镜头对于图像传感器的适配能力。
在一些实施例中,光学镜头的光学总长TTL与有效焦距f满足:TTL/f<5.0。满足上述范围,可以有效地限制镜头的长度,实现光学镜头小型化。
在一些实施例中,光学镜头的光学总长TTL与最大视场角所对应的真实像高IH满足:1.5<TTL/IH<3.0。满足上述范围,在兼顾良好的成像品质的同时有利于缩短光学镜头的总长,实现光学镜头小型化。
在一些实施例中,光学镜头的光学后焦BFL与有效焦距f满足:0.6<BFL/f。满足上述范围,有利于在取得良好地成像品质与易于装配地光学后焦距长度之间取得平衡,保证光学镜头成像品质的同时,降低摄像头模组装配工艺难度。
在一些实施例中,光学镜头的入瞳直径EPD与最大视场角所对应的真实像高IH满足:2.5<IH/EPD<2.9。满足上述范围,能够增大射入光学镜头的光线束的宽度,使得光学镜头在像面处亮度得到提升避免暗角产生。
在一些实施例中,光学镜头的最大视场角FOV与最大视场角主光线在像面上的入射角CRA满足:3.0<(FOV/2)/CRA<5.5。满足上述范围,可以使得光学镜头在实现大视场的同时入射光线能够以合适的角度射入到图像传感器上,进而提高图像传感器的感光性能,提高光学镜头的成像品质。
在一些实施例钟,光学镜头的有效焦距f、最大视场角FOV和最大视场角所对应的真实像高IH满足:0.6<(IH/2)/(f×tan(FOV/2))。满足上述范围,有利于控制理想像高与实际像高接近,实现小畸变。
在一些实施例中,光学镜头的有效焦距f与第一透镜的焦距f1满足:-1.5<f1/f<0。满足上述范围,可以使第一透镜具有适当的负光焦度,有利于入射光折射角度变化较为缓和,避免折射变化过于强烈而产生过多像差,同时有助于更多的光线进入后方光学系统,增加照度提升光学镜头的成像品质。
在一些实施例中,光学镜头的有效焦距f与第二透镜的焦距f2满足:0<f2/f<7.0。满足上述范围,可以使第二透镜具有适当的正光焦度,有利于汇聚光线的同时降低光线偏折角度,让光线走势平稳过渡,提升光学镜头的成像品质。
在一些实施例中,光学镜头的有效焦距f与第三透镜的焦距f3满足:0<f3/f<5.0。满足上述范围,可以使第三透镜具有适当的正光焦度,有利于汇聚光线的同时降低光线偏折角度,让光线走势平稳过渡,提升光学镜头的成像品质。
在一些实施例中,光学镜头的有效焦距f与第四透镜的焦距f4满足:|f4/f|<3.0。满足上述范围,可以使第四透镜具有适当的光焦度,有利于平衡光学镜头的各类像差,提升光学镜头的成像品质。
在一些实施例中,光学镜头的有效焦距f与第五透镜的焦距f5满足:|f5/f|<3.0。满足上述范围,可以使第五透镜具有适当的光焦度,有利于平衡光学镜头的各类像差,提升光学镜头的成像品质。
在一些实施例中,光学镜头的有效焦距f与第六透镜的焦距f6满足:|f6/f|<6.0。满足上述范围,可以使第六透镜具有适当的光焦度,有利于平衡光学镜头的各类像差,提升光学镜头的成像品质。
在一些实施例中,光学镜头的有效焦距f与第七透镜的焦距f7满足:|f7/f|<15.0。满足上述范围,可以使第七透镜具有适当的光焦度,有利于平衡光学镜头的各类像差,提升光学镜头的成像品质。
在一些实施例中,光学镜头的有效焦距f与第一透镜和第二透镜的组合焦距f12满足:|f12/f|<5.0。满足上述范围,通过合理分配第一透镜和第二透镜的焦距,有利于平衡各类像差,提升光学镜头的成像品质。
在一些实施例中,第一透镜物侧面的曲率半径R1和像侧面的曲率半径R2满足:-10.0<R1/R2<0。满足上述范围,可以使第一透镜物侧面与像侧面取得对称面型,有利于降低第一透镜的慧差,提升光学镜头的成像品质。
在一些实施例中,第一透镜像侧面的曲率半径R2与第二透镜物侧面的曲率半径R3满足:0<R2/R3<0.8。满足上述范围,可以校正光学镜头的各类像差,同时保证从第一透镜出射的光线入射到第二透镜物侧面时,入射光线较为平缓,从而降低光学镜头的公差敏感度,提升光学镜头的成像品质。
在一些实施例中,光学镜头的最大视场角FOV、最大视场角所对应的真实像高IH和第一透镜物侧面通光口径D1满足:0.5<D1/IH/tan(FOV/2)<0.8。满足上述范围,可以在满足光学镜头具有大视场角与大像面的同时前端口径小,有利于光学镜头的小型化。
在一些实施例中,光学镜头的光学总长TTL与第一透镜至第七透镜分别沿光轴的中心厚度的总和∑CT满足:0.5<∑CT/TTL<0.7。满足上述范围,可以有效压缩光学镜头的总长,同时有利于光学镜头的结构设计和生产工艺。
为使系统具有更好的光学性能,镜头中采用多片非球面透镜,所述光学镜头的各非球面表面形状满足下列方程:
Figure 416691DEST_PATH_IMAGE001
其中,z为曲面与曲面顶点在光轴方向的距离,h为光轴到曲面的距离,c为曲面顶点的曲率,K为二次曲面系数,A、B、C、D、E、F分别为二阶、四阶、六阶、八阶、十阶、十二阶曲面系数。
下面分多个实施例对本发明进行进一步的说明。在各个实施例中,光学镜头中的各个透镜的厚度、曲率半径、材料选择部分有所不同,具体不同可参见各实施例的参数表。下述实施例仅为本发明的较佳实施方式,但本发明的实施方式并不仅仅受下述实施例的限制,其他的任何未背离本发明创新点所作的改变、替代、组合或简化,都应视为等效的置换方式,都包含在本发明的保护范围之内。
实施例1
请参阅图1,所示为本发明实施例1中提供的光学镜头的结构示意图,该光学镜头沿光轴从物侧到成像面依次包括:第一透镜L1、第二透镜L2、光阑ST、第三透镜L3、第四透镜L4、第五透镜L5、第六透镜L6、第七透镜L7以及滤光片G1和保护玻璃G2。
第一透镜L1具有负光焦度,其物侧面S1和像侧面S2均为凹面;
第二透镜L2具有正光焦度,其物侧面S3和像侧面S4均为凸面;
光阑ST;
第三透镜L3具有正光焦度,其物侧面S5为凹面,像侧面S6为凸面;
第四透镜L4具有正光焦度,其物侧面S7和像侧面S8均为凸面;
第五透镜L5具有负光焦度,其物侧面S9为凹面,像侧面S10为凸面;
第六透镜L6具有负光焦度,其物侧面S11为凹面,像侧面S12为凸面;
第七透镜L7具有正光角度,其物侧面S13为凸面,像侧面S14为凹面;
第四透镜L4与第五透镜L5可胶合组成胶合透镜;
滤光片G1的物侧面S15、像侧面S16均为平面;
保护玻璃G2的物侧面S17、像侧面S18均为平面;
成像面S19为平面。
实施例1中的光学镜头中各透镜的相关参数如表1-1所示。
表 1-1
Figure 888123DEST_PATH_IMAGE002
实施例1中的光学镜头的非球面透镜的面型参数如表1-2所示。
表 1-2
Figure 208246DEST_PATH_IMAGE003
在本实施例中,光学镜头的F-tanθ畸变曲线图、MTF曲线图、MTF离焦曲线图分别如图2、图3、图4所示。
图2示出了实施例1的F-tanθ畸变曲线,其表示不同波长的光线在成像面上不同像高处的F-tanθ畸变,横轴表示F-tanθ畸变(单位:%),纵轴表示半视场角(单位:°)。从图中可以看出,光学镜头的F-tanθ畸变控制在±40%以内,说明光学镜头能够较好地矫正F-tanθ畸变。
图3示出了实施例1的MTF(调制传递函数)曲线图,其表示各视场下不同空间频率的镜头成像调制度,横轴表示空间频率(单位:lp/mm),纵轴表示MTF值。从图中可以看出,本实施例的MTF值在全视场内均在0.4以上,在0~160lp/mm的范围内,从中心至边缘视场的过程中MTF曲线均匀平滑下降,在低频和高频情况下都具有良好的成像品质和良好的细节分辨能力。
图4示出了实施例1的MTF(调制传递函数)离焦曲线图,其表示不同视场的光线在成像面上不同像高处的MTF值,横轴表示离焦偏移量(单位:mm),纵轴表示MTF值。从图中可以看出,中心视场在焦点处的MTF值大于90%;边缘视场在焦点处子午方向和弧矢方向的MTF值均大于90%;说明该镜头有良好的解像力。
实施例2
请参阅图5,所示为本发明实施例2中提供的光学镜头的结构示意图,该光学镜头沿光轴从物侧到成像面依次包括:第一透镜L1、第二透镜L2、光阑ST、第三透镜L3、第四透镜L4、第五透镜L5、第六透镜L6、第七透镜L7以及滤光片G1和保护玻璃G2。
第一透镜L1具有负光焦度,其物侧面S1和像侧面S2均为凹面;
第二透镜L2具有正光焦度,其物侧面S3和像侧面S4均为凸面;
光阑ST;
第三透镜L3具有正光焦度,其物侧面S5为凹面,像侧面S6为凸面;
第四透镜L4具有正光焦度,其物侧面S7和像侧面S8均为凸面;
第五透镜L5具有负光焦度,其物侧面S9为凹面,像侧面S10为凸面;
第六透镜L6具有负光焦度,其物侧面S11为凹面,像侧面S12为凸面;
第七透镜L7具有正光角度,其物侧面S13为凸面,像侧面S14为凹面;
第四透镜L4与第五透镜L5可胶合组成胶合透镜。
实施例2中的光学镜头中各透镜的相关参数如表2-1所示。
表 2-1
Figure 638090DEST_PATH_IMAGE004
实施例2中的光学镜头的非球面透镜的面型参数如表2-2所示。
表 2-2
Figure 879716DEST_PATH_IMAGE005
在本实施例中,光学镜头的F-tanθ畸变曲线、MTF曲线图、MTF离焦曲线图分别如图6、图7、图8所示。
图6示出了实施例2的F-tanθ畸变曲线,其表示不同波长的光线在成像面上不同像高处的F-tanθ畸变,横轴表示F-tanθ畸变(单位:%),纵轴表示半视场角(单位:°)。从图中可以看出,光学镜头的F-tanθ畸变控制在±40%以内,说明光学镜头能够较好地矫正F-tanθ畸变。
图7示出了实施例2的MTF(调制传递函数)曲线图,其表示各视场下不同空间频率的镜头成像调制度,横轴表示空间频率(单位:lp/mm),纵轴表示MTF值。从图中可以看出,本实施例的MTF值在全视场内均在0.3以上,在0~160lp/mm的范围内,从中心至边缘视场的过程中MTF曲线均匀平滑下降,在低频和高频情况下都具有较好的成像品质和较好的细节分辨能力。
图8示出了实施例2的MTF(调制传递函数)离焦曲线图,其表示不同视场的光线在成像面上不同像高处的MTF值,横轴表示离焦偏移量(单位:mm),纵轴表示MTF值。从图中可以看出,中心视场在焦点处的MTF值大于90%;边缘视场在焦点处子午方向和弧矢方向的MTF值均大于90%;说明该镜头有良好的解像力。
实施例3
请参阅图9,所示为本发明实施例3中提供的光学镜头的结构示意图,该光学镜头沿光轴从物侧到成像面依次包括:第一透镜L1、第二透镜L2、光阑ST、第三透镜L3、第四透镜L4、第五透镜L5、第六透镜L6、第七透镜L7以及滤光片G1和保护玻璃G2。
第一透镜L1具有负光焦度,其物侧面S1和像侧面S2均为凹面;
第二透镜L2具有正光焦度,其物侧面S3和像侧面S4均为凸面;
光阑ST;
第三透镜L3具有正光焦度,其物侧面S5为凹面,像侧面S6为凸面;
第四透镜L4具有正光焦度,其物侧面S7为凹面,像侧面S8为凸面;
第五透镜L5具有负光焦度,其物侧面S9为凹面,像侧面S10为凸面;
第六透镜L6具有正光焦度,其物侧面S11为凹面,像侧面S12为凸面;
第七透镜L7具有负光角度,其物侧面S13为凸面,像侧面S14为凹面;
第四透镜L4与第五透镜L5可胶合组成胶合透镜。
实施例3中的光学镜头中各透镜的相关参数如表3-1所示。
表 3-1
Figure 889260DEST_PATH_IMAGE006
实施例3中的光学镜头的非球面透镜的面型参数如表3-2所示。
表 3-2
Figure 329469DEST_PATH_IMAGE007
在本实施例中,光学镜头的F-tanθ畸变曲线、MTF曲线图、MTF离焦曲线分别如图10、图11、图12所示。
图10示出了实施例3的F-tanθ畸变曲线,其表示不同波长的光线在成像面上不同像高处的F-tanθ畸变,横轴表示F-tanθ畸变(单位:%),纵轴表示半视场角(单位:°)。从图中可以看出,光学镜头的F-tanθ畸变控制在±40%以内,说明光学镜头能够较好地矫正F-tanθ畸变。
图11示出了实施例3的MTF(调制传递函数)曲线图,其表示各视场下不同空间频率的镜头成像调制度,横轴表示空间频率(单位:lp/mm),纵轴表示MTF值。从图中可以看出,本实施例的MTF值在全视场内均在0.4以上,在0~160lp/mm的范围内,从中心至边缘视场的过程中MTF曲线均匀平滑下降,在低频和高频情况下都具有良好的成像品质和良好的细节分辨能力。
图12示出了实施例3的调制传递函数(MTF)离焦曲线图,其表示不同视场的光线在成像面上不同像高处的MTF值,横轴表示离焦偏移量(单位:mm),纵轴表示MTF值。从图中可以看出,中心视场在焦点处的MTF值大于90%;边缘视场在焦点处子午方向和弧矢方向的MTF值均大于90%;说明该镜头有良好的解像力。
实施例4
请参阅图13,所示为本发明实施例4中提供的光学镜头的结构示意图,该光学镜头沿光轴从物侧到成像面依次包括:第一透镜L1、第二透镜L2、光阑ST、第三透镜L3、第四透镜L4、第五透镜L5、第六透镜L6、第七透镜L7以及滤光片G1和保护玻璃G2。
第一透镜L1具有负光焦度,其物侧面S1和像侧面S2均为凹面;
第二透镜L2具有正光焦度,其物侧面S3和像侧面S4均为凸面;
光阑ST;
第三透镜L3具有正光焦度,其物侧面S5为凹面,像侧面S6为凸面;
第四透镜L4具有正光焦度,其物侧面S7为凹面,像侧面S8为凸面;
第五透镜L5具有负光焦度,其物侧面S9为凹面,像侧面S10为凸面;
第六透镜L6具有正光焦度,其物侧面S11为凹面,像侧面S12为凸面;
第七透镜L7具有负光角度,其物侧面S13为凸面,像侧面S14为凹面;
第四透镜L4与第五透镜L5可胶合组成胶合透镜。
实施例4中的光学镜头中各透镜的相关参数如表4-1所示。
表 4-1
Figure 664635DEST_PATH_IMAGE008
实施例4中的光学镜头的非球面透镜的面型参数如表4-2所示。
表 4-2
Figure 127978DEST_PATH_IMAGE009
在本实施例中,光学镜头的F-tanθ畸变曲线、MTF曲线图、MTF离焦曲线分别如图14、图15、图16所示。
图14示出了实施例4的F-tanθ畸变曲线,其表示不同波长的光线在成像面上不同像高处的F-tanθ畸变,横轴表示F-tanθ畸变(单位:%),纵轴表示半视场角(单位:°)。从图中可以看出,光学镜头的F-tanθ畸变控制在±40%以内,说明光学镜头能够较好地矫正F-tanθ畸变。
图15示出了实施例4的MTF(调制传递函数)曲线图,其表示各视场下不同空间频率的镜头成像调制度,横轴表示空间频率(单位:lp/mm),纵轴表示MTF值。从图中可以看出,本实施例的MTF值在全视场内均在0.4以上,在0~160lp/mm的范围内,从中心至边缘视场的过程中MTF曲线均匀平滑下降,在低频和高频情况下都具有良好地成像品质和良好地细节分辨能力。
图16示出了实施例4的MTF(调制传递函数)离焦曲线图,其表示不同视场的光线在成像面上不同像高处的MTF值,横轴表示离焦偏移量(单位:mm),纵轴表示MTF值。从图中可以看出,中心视场在焦点处的MTF值大于90%;边缘视场在焦点处子午方向和弧矢方向的MTF值均大于90%。说明该镜头有良好的解像力。
实施例5
请参阅图17,所示为本发明实施例5中提供的光学镜头的结构示意图,该光学镜头沿光轴从物侧到成像面依次包括:第一透镜L1、第二透镜L2、光阑ST、第三透镜L3、第四透镜L4、第五透镜L5、第六透镜L6、第七透镜L7以及滤光片G1。
第一透镜L1具有负光焦度,其物侧面S1和像侧面S2均为凹面;
第二透镜L2具有正光焦度,其物侧面S3和像侧面S4均为凸面;
光阑ST;
第三透镜L3具有正光焦度,其物侧面S5和像侧面S6均为凸面;
第四透镜L4具有负光焦度,其物侧面S7为凸面,像侧面S8为凹面;
第五透镜L5具有正光焦度,其物侧面S9和像侧面S10均为凸面;
第六透镜L6具有正光焦度,其物侧面S11和像侧面S12均为凸面;
第七透镜L7具有负光角度,其物侧面S13为凸面,像侧面S14为凹面;
第四透镜L4与第五透镜L5可胶合组成胶合透镜;
滤光片G1的物侧面S15、像侧面S16均为平面;
成像面S17为平面。
实施例5中的光学镜头中各透镜的相关参数如表5-1所示。
表 5-1
Figure 206792DEST_PATH_IMAGE010
实施例5中的光学镜头的非球面透镜的面型参数如表5-2所示。
表 5-2
Figure 501507DEST_PATH_IMAGE011
在本实施例中,光学镜头的F-tanθ畸变曲线图、MTF曲线图、MTF离焦曲线分别如图18、图19、图20所示。
图18示出了实施例5的F-tanθ畸变曲线,其表示不同波长的光线在成像面上不同像高处的F-tanθ畸变,横轴表示F-tanθ畸变(单位:%),纵轴表示半视场角(单位:°)。从图中可以看出,光学镜头的F-tanθ畸变控制在±40%以内,说明光学镜头能够较好地矫正F-tanθ畸变。
图19示出了实施例5的MTF(调制传递函数)曲线图,其表示各视场下不同空间频率的镜头成像调制度,横轴表示空间频率(单位:lp/mm),纵轴表示MTF值。从图中可以看出,本实施例的MTF值在全视场内均在0.4以上,在0~160lp/mm的范围内,从中心至边缘视场的过程中MTF曲线均匀平滑下降,在低频和高频情况下都具有良好的成像品质和良好的细节分辨能力。
图20示出了实施例5的调制传递函数(MTF)离焦曲线图,其表示不同视场的光线在成像面上不同像高处的MTF值,横轴表示离焦偏移量(单位:mm),纵轴表示MTF值。从图中可以看出,中心视场在焦点处的MTF值大于90%;边缘视场在焦点处子午方向和弧矢方向的MTF值均大于90%;说明该镜头有良好的解像力。
实施例6
请参阅图21,所示为本发明实施例6中提供的光学镜头的结构示意图,该光学镜头沿光轴从物侧到成像面依次包括:第一透镜L1、第二透镜L2、光阑ST、第三透镜L3、第四透镜L4、第五透镜L5、第六透镜L6、第七透镜L7以及滤光片G1。
第一透镜L1具有负光焦度,其物侧面S1和像侧面S2均为凹面;
第二透镜L2具有正光焦度,其物侧面S3和像侧面S4均为凸面;
光阑ST;
第三透镜L3具有正光焦度,其物侧面S5和像侧面S6均为凸面;
第四透镜L4具有负光焦度,其物侧面S7为凸面,像侧面S8为凹面;
第五透镜L5具有正光焦度,其物侧面S9和像侧面S10均为凸面;
第六透镜L6具有正光焦度,其物侧面S11为凹面,像侧面S12为凸面;
第七透镜L7具有负光角度,其物侧面S13为凸面,像侧面S14为凹面;
第四透镜L4与第五透镜L5可胶合组成胶合透镜。
实施例6中的光学镜头中各透镜的相关参数如表6-1所示。
表 6-1
Figure 273154DEST_PATH_IMAGE012
实施例6中的光学镜头的非球面透镜的面型参数如表6-2所示。
表 6-2
Figure 958213DEST_PATH_IMAGE013
在本实施例中,光学镜头的F-tanθ畸变曲线、MTF曲线图、MTF离焦曲线分别如图22、图23、图24所示。
图22示出了实施例6的F-tanθ畸变曲线,其表示不同波长的光线在成像面上不同像高处的F-tanθ畸变,横轴表示F-tanθ畸变(单位:%),纵轴表示半视场角(单位:°)。从图中可以看出,光学镜头的F-tanθ畸变控制在±40%以内,说明光学镜头能够较好地矫正F-tanθ畸变。
图23示出了实施例6的MTF(调制传递函数)曲线图,其表示各视场下不同空间频率的镜头成像调制度,横轴表示空间频率(单位:lp/mm),纵轴表示MTF值。从图中可以看出,本实施例的MTF值在全视场内均在0.4以上,在0~160lp/mm的范围内,从中心至边缘视场的过程中MTF曲线均匀平滑下降,在低频和高频情况下都具有良好的成像品质和良好的细节分辨能力。
图24示出了实施例6的MTF(调制传递函数)离焦曲线图,其表示不同视场的光线在成像面上不同像高处的MTF值,横轴表示离焦偏移量(单位:mm),纵轴表示MTF值。从图中可以看出,中心视场在焦点处的MTF值大于90%;边缘视场在焦点处子午方向和弧矢方向的MTF值均大于90%;说明该镜头有良好的解像力。
实施例7
请参阅图25,所示为本发明实施例7中提供的光学镜头的结构示意图,该光学镜头沿光轴从物侧到成像面依次包括:第一透镜L1、第二透镜L2、光阑ST、第三透镜L3、第四透镜L4、第五透镜L5、第六透镜L6、第七透镜L7以及滤光片G1。
第一透镜L1具有负光焦度,其物侧面S1和像侧面S2均为凹面;
第二透镜L2具有正光焦度,其物侧面S3和像侧面S4均为凸面;
光阑ST;
第三透镜L3具有正光焦度,其物侧面S5和像侧面S6均为凸面;
第四透镜L4具有负光焦度,其物侧面S7为凸面,像侧面S8为凹面;
第五透镜L5具有正光焦度,其物侧面S9和像侧面S10均为凸面;
第六透镜L6具有负光焦度,其物侧面S11为凹面,像侧面S12为凸面;
第七透镜L7具有正光角度,其物侧面S13为凸面,像侧面S14为凹面;
第四透镜L4与第五透镜L5可胶合组成胶合透镜。
实施例7中的光学镜头中各透镜的相关参数如表7-1所示。
表 7-1
Figure 840719DEST_PATH_IMAGE014
实施例7中的光学镜头的非球面透镜的面型参数如表7-2所示。
表 7-2
Figure 989940DEST_PATH_IMAGE015
在本实施例中,光学镜头的F-tanθ畸变曲线、MTF曲线图、MTF离焦曲线分别如图26、图27、图28所示。
图26示出了实施例7的F-tanθ畸变曲线,其表示不同波长的光线在成像面上不同像高处的F-tanθ畸变,横轴表示F-tanθ畸变(单位:%),纵轴表示半视场角(单位:°)。从图中可以看出,光学镜头的F-tanθ畸变控制在±40%以内,说明光学镜头能够较好地矫正F-tanθ畸变。
图27示出了实施例7的MTF(调制传递函数)曲线图,其表示各视场下不同空间频率的镜头成像调制度,横轴表示空间频率(单位:lp/mm),纵轴表示MTF值。从图中可以看出,本实施例的MTF值在全视场内均在0.4以上,在0~160lp/mm的范围内,从中心至边缘视场的过程中MTF曲线均匀平滑下降,在低频和高频情况下都具有良好的成像品质和良好的细节分辨能力。
图28示出了实施例7的MTF(调制传递函数)离焦曲线图,其表示不同视场的光线在成像面上不同像高处的MTF值,横轴表示离焦偏移量(单位:mm),纵轴表示MTF值。从图中可以看出,中心视场在焦点处的MTF值大于90%;边缘视场在焦点处子午方向和弧矢方向的MTF值均大于90%;说明该镜头有良好的解像力。
实施例8
请参阅图29,所示为本发明实施例8中提供的光学镜头的结构示意图,该光学镜头沿光轴从物侧到成像面依次包括:第一透镜L1、第二透镜L2、光阑ST、第三透镜L3、第四透镜L4、第五透镜L5、第六透镜L6、第七透镜L7以及滤光片G1。
第一透镜L1具有负光焦度,其物侧面S1和像侧面S2均为凹面;
第二透镜L2具有正光焦度,其物侧面S3和像侧面S4均为凸面;
光阑ST;
第三透镜L3具有正光焦度,其物侧面S5和像侧面S6均为凸面;
第四透镜L4具有负光焦度,其物侧面S7为凸面,像侧面S8为凹面;
第五透镜L5具有正光焦度,其物侧面S9和像侧面S10均为凸面;
第六透镜L6具有正光焦度,其物侧面S11为凹面,像侧面S12为凸面;
第七透镜L7具有负光角度,其物侧面S13为凸面,像侧面S14为凹面;
第四透镜L4与第五透镜L5可胶合组成胶合透镜。
实施例8中的光学镜头中各透镜的相关参数如表8-1所示。
表 8-1
Figure 932489DEST_PATH_IMAGE016
实施例8中的光学镜头的非球面透镜的面型参数如表8-2所示。
表 4-2
Figure 104844DEST_PATH_IMAGE017
在本实施例中,光学镜头的F-tanθ畸变曲线、MTF曲线图、MTF离焦曲线分别如图30、图31、图32所示。
图30示出了实施例8的F-tanθ畸变曲线,其表示不同波长的光线在成像面上不同像高处的F-tanθ畸变,横轴表示F-tanθ畸变(单位:%),纵轴表示半视场角(单位:°)。从图中可以看出,光学镜头的F-tanθ畸变控制在±40%以内,说明光学镜头能够较好地矫正F-tanθ畸变。
图31示出了实施例8的MTF(调制传递函数)曲线图,其表示各视场下不同空间频率的镜头成像调制度,横轴表示空间频率(单位:lp/mm),纵轴表示MTF值。从图中可以看出,本实施例的MTF值在全视场内均在0.4以上,在0~160lp/mm的范围内,从中心至边缘视场的过程中MTF曲线均匀平滑下降,在低频和高频情况下都具有良好地成像品质和良好地细节分辨能力。
图32示出了实施例8的MTF(调制传递函数)离焦曲线图,其表示不同视场的光线在成像面上不同像高处的MTF值,横轴表示离焦偏移量(单位:mm),纵轴表示MTF值。从图中可以看出,中心视场在焦点处的MTF值大于90%;边缘视场在焦点处子午方向和弧矢方向的MTF值均大于90%;说明该镜头有良好的解像力。
实施例9
请参阅图33,所示为本发明实施例9中提供的光学镜头的结构示意图,该光学镜头沿光轴从物侧到成像面依次包括:第一透镜L1、第二透镜L2、光阑ST、第三透镜L3、第四透镜L4、第五透镜L5、第六透镜L6、第七透镜L7以及滤光片G1。
第一透镜L1具有负光焦度,其物侧面S1和像侧面S2均为凹面;
第二透镜L2具有正光焦度,其物侧面S3和像侧面S4均为凸面;
光阑ST;
第三透镜L3具有正光焦度,其物侧面S5和像侧面S6均为凸面;
第四透镜L4具有负光焦度,其物侧面S7为凸面,像侧面S8为凹面;
第五透镜L5具有正光焦度,其物侧面S9和像侧面S10均为凸面;
第六透镜L6具有负光焦度,其物侧面S11为凹面,像侧面S12为凸面;
第七透镜L7具有正光角度,其物侧面S13为凸面,像侧面S14为凹面;
第四透镜L4与第五透镜L5可胶合组成胶合透镜。
实施例9中的光学镜头中各透镜的相关参数如表9-1所示。
表 9-1
Figure 525461DEST_PATH_IMAGE018
实施例9中的光学镜头的非球面透镜的面型参数如表9-2所示。
表 9-2
Figure 794768DEST_PATH_IMAGE019
在本实施例中,光学镜头的F-tanθ畸变曲线、MTF曲线图、MTF离焦曲线分别如图34、图35、图36所示。
图34示出了实施例9的F-tanθ畸变曲线,其表示不同波长的光线在成像面上不同像高处的F-tanθ畸变,横轴表示F-tanθ畸变(单位:%),纵轴表示半视场角(单位:°)。从图中可以看出,光学镜头的F-tanθ畸变控制在±40%以内,说明光学镜头能够较好地矫正F-tanθ畸变。
图35示出了实施例9的MTF(调制传递函数)曲线图,其表示各视场下不同空间频率的镜头成像调制度,横轴表示空间频率(单位:lp/mm),纵轴表示MTF值。从图中可以看出,本实施例的MTF值在全视场内均在0.4以上,在0~160lp/mm的范围内,从中心至边缘视场的过程中MTF曲线均匀平滑下降,在低频和高频情况下都具有良好地成像品质和良好地细节分辨能力。
图36示出了实施例9的调制传递函数(MTF)离焦曲线图,其表示不同视场的光线在成像面上不同像高处的MTF值,横轴表示离焦偏移量(单位:mm),纵轴表示MTF值。从图中可以看出,中心视场在焦点处的MTF值大于90%;边缘视场在焦点处子午方向和弧矢方向的MTF值均大于90%;说明该镜头有良好的解像力。
请参阅表10-1及表10-2,为上述各实施例对应的光学特性,包括所述光学镜头的有效焦距f、光学总长TTL、光圈值FNO、真实像高IH以及最大视场角FOV以及与各实施例中每个条件式对应的数值。
表 10-1
Figure 908218DEST_PATH_IMAGE020
表 10-2
Figure 567869DEST_PATH_IMAGE021
综上所述,本发明实施例的光学镜头通过合理的搭配各透镜之间的镜片形状与光焦度组合,实现了同时具备大视场、大光圈以及小型化的优点。
在本说明书的描述中,参考术语“一个实施例”、“一些实施例”、“示例”、“具体示例”、或“一些示例”等的描述意指结合该实施例或示例描述的具体特征、结构、材料或者特点包含于本发明的至少一个实施例或示例中。在本说明书中,对上述术语的示意性表述不一定指的是相同的实施例或示例。而且,描述的具体特征、结构、材料或者特点可以在任何的一个或多个实施例或示例中以合适的方式结合。
以上所述实施例仅表达了本发明的几种实施方式,其描述较为具体与详细,但并不能因此而理解为对本发明范围的限制。应当指出的是,对于本领域的普通技术人员来说,在不脱离本发明构思的前提下,还可以做出若干变形与改进,这些都属于本发明的保护范围。因此,本发明的保护范围应以所附权利要求为准。

Claims (10)

1.一种光学镜头,共七片透镜,其特征在于,沿光轴从物侧到成像面依次为:
具有负光焦度的第一透镜,其物侧面和像侧面均为凹面;
具有正光焦度的第二透镜,其物侧面和像侧面均为凸面;
光阑;
具有正光焦度的第三透镜,其像侧面为凸面;
具有光焦度的第四透镜;
具有光焦度的第五透镜,其像侧面为凸面;
具有光焦度的第六透镜,其像侧面为凸面;
具有光焦度的第七透镜,其物侧面为凸面,像侧面为凹面;
光学镜头的最大视场角FOV、最大视场角所对应的真实像高IH和第一透镜物侧面通光口径D1满足:0.5<D1/IH/tan(FOV/2)<0.8。
2.根据权利要求1所述的光学镜头,其特征在于,所述光学镜头的光学总长TTL与有效焦距f满足:TTL/f<5.0。
3.根据权利要求1所述的光学镜头,其特征在于,所述光学镜头的光学总长TTL与最大视场角所对应的真实像高IH满足:1.5<TTL/IH<3.0。
4.根据权利要求1所述的光学镜头,其特征在于,所述光学镜头的光学后焦BFL与有效焦距f满足:0.6<BFL/f。
5.根据权利要求1所述的光学镜头,其特征在于,所述光学镜头的入瞳直径EPD与最大视场角所对应的真实像高IH满足:2.5<IH/EPD<2.9。
6.根据权利要求1所述的光学镜头,其特征在于,所述光学镜头的最大视场角FOV与最大视场角主光线在像面上的入射角CRA满足:3.0<(FOV/2)/CRA<5.5。
7.根据权利要求1所述的光学镜头,其特征在于,所述光学镜头的有效焦距f、最大视场角FOV和最大视场角所对应的真实像高IH满足:0.6<(IH/2)/(f×tan(FOV/2))。
8.根据权利要求1所述的光学镜头,其特征在于,所述光学镜头的有效焦距f与所述第一透镜的焦距f1和所述第二透镜的焦距f2分别满足:-1.5<f1/f<0,0<f2/f<7.0。
9.根据权利要求1所述的光学镜头,其特征在于,所述光学镜头的有效焦距f与所述第一透镜和所述第二透镜的组合焦距f12满足:|f12/f|<5.0。
10.根据权利要求1所述的光学镜头,其特征在于,所述光学镜头的光学总长TTL与所述第一透镜至所述第七透镜分别沿光轴的中心厚度的总和∑CT满足:0.5<∑CT/TTL<0.7。
CN202211186652.XA 2022-09-28 2022-09-28 光学镜头 Active CN115308887B (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN202211186652.XA CN115308887B (zh) 2022-09-28 2022-09-28 光学镜头

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN202211186652.XA CN115308887B (zh) 2022-09-28 2022-09-28 光学镜头

Publications (2)

Publication Number Publication Date
CN115308887A true CN115308887A (zh) 2022-11-08
CN115308887B CN115308887B (zh) 2023-02-28

Family

ID=83866098

Family Applications (1)

Application Number Title Priority Date Filing Date
CN202211186652.XA Active CN115308887B (zh) 2022-09-28 2022-09-28 光学镜头

Country Status (1)

Country Link
CN (1) CN115308887B (zh)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN115951483A (zh) * 2023-03-15 2023-04-11 江西联创电子有限公司 光学镜头

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2017116913A (ja) * 2015-12-24 2017-06-29 エーエーシー テクノロジーズ ピーティーイー リミテッドAac Technologies Pte.Ltd. 撮影光学系
CN110426819A (zh) * 2019-08-12 2019-11-08 浙江舜宇光学有限公司 光学成像镜头
CN113759497A (zh) * 2020-05-27 2021-12-07 宁波舜宇车载光学技术有限公司 光学镜头及电子设备
WO2022028625A1 (zh) * 2020-08-05 2022-02-10 宁波舜宇车载光学技术有限公司 光学镜头及电子设备
CN114415345A (zh) * 2022-03-30 2022-04-29 江西联创电子有限公司 光学镜头

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2017116913A (ja) * 2015-12-24 2017-06-29 エーエーシー テクノロジーズ ピーティーイー リミテッドAac Technologies Pte.Ltd. 撮影光学系
CN110426819A (zh) * 2019-08-12 2019-11-08 浙江舜宇光学有限公司 光学成像镜头
CN113759497A (zh) * 2020-05-27 2021-12-07 宁波舜宇车载光学技术有限公司 光学镜头及电子设备
WO2022028625A1 (zh) * 2020-08-05 2022-02-10 宁波舜宇车载光学技术有限公司 光学镜头及电子设备
CN114415345A (zh) * 2022-03-30 2022-04-29 江西联创电子有限公司 光学镜头

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN115951483A (zh) * 2023-03-15 2023-04-11 江西联创电子有限公司 光学镜头

Also Published As

Publication number Publication date
CN115308887B (zh) 2023-02-28

Similar Documents

Publication Publication Date Title
CN115268039B (zh) 光学镜头
CN115494623B (zh) 光学镜头
CN115951484B (zh) 光学镜头
CN115236840B (zh) 光学镜头
CN115576084B (zh) 光学镜头
CN115128769B (zh) 光学镜头
CN115079384B (zh) 光学镜头
CN115128771B (zh) 光学镜头
CN115128770B (zh) 光学镜头
CN115308887B (zh) 光学镜头
CN115469439B (zh) 光学镜头
CN115308886B (zh) 光学镜头
CN115291372B (zh) 光学镜头
CN115236842B (zh) 光学镜头
CN115097615B (zh) 光学镜头
CN115016105B (zh) 光学镜头
CN116449540A (zh) 光学镜头
CN115826195A (zh) 光学镜头
CN115291371A (zh) 光学镜头
CN115327746A (zh) 光学镜头
CN115236841B (zh) 光学镜头
CN115113378B (zh) 光学镜头
CN115128781B (zh) 光学镜头
CN115113379B (zh) 光学镜头
CN115980984B (zh) 光学镜头

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant