WO2019205874A1 - 光学镜头 - Google Patents

光学镜头 Download PDF

Info

Publication number
WO2019205874A1
WO2019205874A1 PCT/CN2019/079981 CN2019079981W WO2019205874A1 WO 2019205874 A1 WO2019205874 A1 WO 2019205874A1 CN 2019079981 W CN2019079981 W CN 2019079981W WO 2019205874 A1 WO2019205874 A1 WO 2019205874A1
Authority
WO
WIPO (PCT)
Prior art keywords
lens
optical
object side
optical lens
image side
Prior art date
Application number
PCT/CN2019/079981
Other languages
English (en)
French (fr)
Inventor
王东方
姚波
周宝
Original Assignee
宁波舜宇车载光学技术有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority claimed from CN201810400442.3A external-priority patent/CN110412724A/zh
Priority claimed from CN201811249721.0A external-priority patent/CN111103672B/zh
Application filed by 宁波舜宇车载光学技术有限公司 filed Critical 宁波舜宇车载光学技术有限公司
Publication of WO2019205874A1 publication Critical patent/WO2019205874A1/zh
Priority to US17/081,191 priority Critical patent/US12007624B2/en

Links

Images

Classifications

    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B13/00Optical objectives specially designed for the purposes specified below
    • G02B13/001Miniaturised objectives for electronic devices, e.g. portable telephones, webcams, PDAs, small digital cameras
    • G02B13/0015Miniaturised objectives for electronic devices, e.g. portable telephones, webcams, PDAs, small digital cameras characterised by the lens design
    • G02B13/002Miniaturised objectives for electronic devices, e.g. portable telephones, webcams, PDAs, small digital cameras characterised by the lens design having at least one aspherical surface
    • G02B13/0045Miniaturised objectives for electronic devices, e.g. portable telephones, webcams, PDAs, small digital cameras characterised by the lens design having at least one aspherical surface having five or more lenses
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B13/00Optical objectives specially designed for the purposes specified below
    • G02B13/18Optical objectives specially designed for the purposes specified below with lenses having one or more non-spherical faces, e.g. for reducing geometrical aberration
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B9/00Optical objectives characterised both by the number of the components and their arrangements according to their sign, i.e. + or -
    • G02B9/62Optical objectives characterised both by the number of the components and their arrangements according to their sign, i.e. + or - having six components only

Definitions

  • the present application relates to an optical lens, and more particularly, to an optical lens comprising six lenses.
  • ADAS advanced driver assistance system
  • the resolution of the vehicle lens is getting higher and higher, especially the forward-looking lens. From the original megapixel, it is now increasing in popularity towards 2M, even pursuing higher resolution of 4M and 8M. ;
  • the external light is insufficient, and it is necessary to increase the light passing diameter of the lens to increase the amount of light entering, thereby improving the night vision effect of the vehicle lens, which also causes the lens to increase in caliber.
  • the present application provides an optical lens that can be adapted for in-vehicle installation that overcomes or at least partially overcomes at least one of the above-discussed deficiencies of the prior art.
  • the present application provides an optical lens that includes, in order from the object side to the image side along the optical axis, a first lens, a second lens, a third lens, a fourth lens, and a fifth Lens and sixth lens.
  • the first lens may have a positive power
  • the object side may be a convex surface
  • the image side may be a concave surface
  • the second lens and the third lens may be glued to form a first cemented lens
  • the fourth lens may have a positive power
  • the object side And the image side surface may be convex
  • the fifth lens and the sixth lens are glued to form a second cemented lens.
  • the second lens in the first cemented lens may have a negative power, both the object side and the image side may be concave; and the third lens in the first cemented lens may have positive power, Both the object side and the image side may be convex.
  • the fifth lens of the second cemented lens may have a positive power
  • the object side may be a convex surface
  • the image side may be a concave surface
  • the sixth lens of the second cemented lens may have a negative power
  • the side of the object may be convex
  • the side may be concave.
  • the first lens can be an aspherical lens.
  • the first lens may be a glass aspheric lens.
  • the fourth lens can be an aspherical lens.
  • the radius of curvature R1 of the object side surface of the first lens, the radius of curvature R2 of the image side surface of the first lens, and the center thickness d1 of the first lens on the optical axis may satisfy 0.6 ⁇ R1/(R2+d1). ⁇ 1.1.
  • the maximum angle of view FOV of the optical lens, the maximum aperture diameter D of the object side of the first lens corresponding to the maximum angle of view of the optical lens, and the image height H corresponding to the maximum angle of view of the optical lens. Can meet D / H / FOV ⁇ 0.08.
  • the optical total length TTL of the optical lens and the entire set of focal length values F of the optical lens can satisfy TTL/F ⁇ 3.
  • the optical lens may further include an aperture that may be disposed between the object side and the second lens.
  • the diaphragm may be disposed between the object side and the first lens.
  • the diaphragm may be disposed between the first lens and the second lens.
  • the present application provides an optical lens that includes, in order from the object side to the image side along the optical axis, a first lens, a second lens, a third lens, a fourth lens, and a fifth Lens and sixth lens.
  • the first lens may have a positive power
  • the object side may be a convex surface
  • the image side may be a concave surface
  • the second lens may have a negative power, and both the object side and the image side may be concave
  • the third lens may have The positive power can be convex on the object side and the image side
  • the fourth lens can have positive power, and both the object side and the image side can be convex
  • the fifth lens can have positive power
  • the object side can be convex
  • the image side may be a concave surface
  • the sixth lens may have a negative power
  • the object side may be a convex surface
  • the image side may be a concave surface
  • the second lens and the third lens may be glued to form a first cemented lens.
  • the fifth lens and the sixth lens may be glued to form a second cemented lens.
  • the first lens can be an aspherical lens.
  • the first lens may be a glass aspheric lens.
  • the fourth lens can be an aspherical lens.
  • the radius of curvature R1 of the object side surface of the first lens, the radius of curvature R2 of the image side surface of the first lens, and the center thickness d1 of the first lens on the optical axis may satisfy 0.6 ⁇ R1/(R2+d1). ⁇ 1.1.
  • the maximum angle of view FOV of the optical lens, the maximum aperture diameter D of the object side of the first lens corresponding to the maximum angle of view of the optical lens, and the image height H corresponding to the maximum angle of view of the optical lens. Can meet D / H / FOV ⁇ 0.08.
  • the optical lens may further include an aperture that may be disposed between the object side and the second lens.
  • the diaphragm may be disposed between the object side and the first lens.
  • the diaphragm may be disposed between the first lens and the second lens.
  • the present application provides an optical lens that includes, in order from the object side to the image side along the optical axis, a first lens, a second lens, a third lens, a fourth lens, and a fifth Lens and sixth lens.
  • the first lens may have a negative refractive power, the object side is a convex surface, and the image side surface is a concave surface
  • the second lens may have a negative refractive power, the object side surface and the image side surface are both concave surfaces
  • the third lens may have a positive optical focus Degree, the object side and the image side are convex
  • the fourth lens may have a positive power
  • the fifth lens may have a positive power
  • the object side is a convex surface
  • the image side is a concave surface
  • the sixth lens may have a negative optical focus Degree, the side of the object is convex, and the side is concave.
  • the object side and the image side of the fourth lens may both be convex.
  • the first lens and the fourth lens may each be an aspherical lens.
  • the optical lens may further include an aperture disposed between the first lens and the second lens.
  • the second lens and the third lens may be glued to each other to form a first cemented lens.
  • the fifth lens and the sixth lens may be glued to each other to form a second cemented lens.
  • the optical back focus BFL of the optical lens and the lens group length TL of the optical lens may satisfy: BFL/TL ⁇ 0.20.
  • the optical total length TTL of the optical lens and the entire set of focal length values F of the optical lens can be satisfied: TTL/F ⁇ 3.5.
  • the maximum angle of view FOV of the optical lens, the maximum aperture diameter D of the object side of the first lens corresponding to the maximum angle of view of the optical lens, and the image height H corresponding to the maximum angle of view of the optical lens. Can be satisfied: D / H / FOV ⁇ 0.07.
  • the focal length value F3 of the third lens and the focal length value F2 of the second lens may satisfy: ⁇ F3/F2 ⁇ 1.25.
  • the combined focal length value F23 of the second lens and the third lens and the entire set of focal length values F of the optical lens may satisfy: 4 ⁇ F23/F ⁇ 7.
  • the present application provides an optical lens that includes, in order from the object side to the image side along the optical axis, a first lens, a second lens, a third lens, a fourth lens, and a fifth Lens and sixth lens.
  • the first lens, the second lens and the sixth lens may each have a negative power
  • the third lens, the fourth lens and the fifth lens may each have a positive power
  • the second lens and the third lens may be glued together to form a first cemented lens
  • the fifth lens and the sixth lens may be glued to each other to form a second cemented lens
  • the optical total length TTL of the optical lens and the entire set of focal length values F of the optical lens may satisfy: TTL/F ⁇ 3.5.
  • the object side of the first lens may be a convex surface, and the image side may be a concave surface.
  • both the object side and the image side of the second lens may be concave.
  • the object side and the image side of the third lens may both be convex.
  • the object side and the image side of the fourth lens may both be convex.
  • the object side of the fifth lens may be convex, and the image side may be concave.
  • the object side of the sixth lens may be convex, and the image side may be concave.
  • the first lens and the fourth lens may each be an aspherical lens.
  • the optical lens may further include an aperture disposed between the first lens and the second lens.
  • the optical back focus BFL of the optical lens and the lens group length TL of the optical lens may satisfy: BFL/TL ⁇ 0.20.
  • the maximum angle of view FOV of the optical lens, the maximum aperture diameter D of the object side of the first lens corresponding to the maximum angle of view of the optical lens, and the image height H corresponding to the maximum angle of view of the optical lens. Can be satisfied: D / H / FOV ⁇ 0.07.
  • the focal length value F3 of the third lens and the focal length value F2 of the second lens may satisfy: ⁇ F3/F2 ⁇ 1.25.
  • the combined focal length value F23 of the second lens and the third lens and the entire set of focal length values F of the optical lens may satisfy: 4 ⁇ F23/F ⁇ 7.
  • Some embodiments of the present application employ, for example, six lenses.
  • the optical lens can be miniaturized, large aperture, high pixel, etc. by optimizing the shape of the lens, rationally assigning the power of each lens, and gluing to form a cemented lens. At least one of the effects.
  • the above-described embodiments or other embodiments of the present application can also achieve at least one of miniaturization, small aperture, high resolution, low cost, and back focal length.
  • FIG. 1 is a schematic structural view showing an optical lens according to Embodiment 1 of the present application.
  • FIG. 2 is a schematic structural view showing an optical lens according to Embodiment 2 of the present application.
  • FIG. 3 is a schematic structural view showing an optical lens according to Embodiment 3 of the present application.
  • FIG. 4 is a schematic structural view showing an optical lens according to Embodiment 4 of the present application.
  • FIG. 5 is a schematic structural view showing an optical lens according to Embodiment 5 of the present application.
  • FIG. 6 is a schematic structural view showing an optical lens according to Embodiment 6 of the present application.
  • first, second, third, etc. are used to distinguish one feature from another, and do not represent any limitation of the feature.
  • first lens discussed below may also be referred to as a second lens or a third lens without departing from the teachings of the present application, and the first cemented lens may also be referred to as a second cemented lens.
  • the thickness, size, and shape of the lens have been somewhat exaggerated for convenience of explanation.
  • the spherical or aspherical shape shown in the drawings is shown by way of example. That is, the shape of the spherical surface or the aspherical surface is not limited to the spherical or aspherical shape shown in the drawings.
  • the drawings are only examples and are not to scale.
  • a paraxial region refers to a region near the optical axis. If the surface of the lens is convex and the position of the convex surface is not defined, it indicates that the surface of the lens is convex at least in the paraxial region; if the surface of the lens is concave and the position of the concave surface is not defined, it indicates that the surface of the lens is at least in the paraxial region. Concave. The surface of each lens that is closer to the object side is referred to as the object side of the lens, and the surface of each lens that is closer to the image side is referred to as the image side of the lens.
  • An optical lens according to an exemplary embodiment of the present application includes, for example, six lenses having powers, that is, a first lens, a second lens, a third lens, a fourth lens, a fifth lens, and a sixth lens.
  • the six lenses are sequentially arranged from the object side to the image side along the optical axis.
  • the optical lens according to an exemplary embodiment of the present application may further include a photosensitive element disposed on the imaging surface.
  • the photosensitive element disposed on the imaging surface may be a photosensitive coupling element (CCD) or a complementary oxidized metal semiconductor element (CMOS).
  • CCD photosensitive coupling element
  • CMOS complementary oxidized metal semiconductor element
  • the first lens may have a positive power
  • the object side may be a convex surface
  • the image side may be a concave surface.
  • the first lens is designed as a meniscus lens on the convex object side and has a shape close to a concentric circle, which is advantageous for collecting large field of view light as much as possible, so that more light enters the rear optical system and increases the amount of light passing through.
  • the first lens can be a glass aspheric lens to enhance resolution and to avoid limitations in the fabrication of spherical concentric lenses.
  • the object side of the first lens is arranged to be convex, which also facilitates the falling of water droplets on the side of the object, thereby reducing the bad weather due to rain and snow.
  • the impact on the quality of the lens image is arranged to be convex, which also facilitates the falling of water droplets on the side of the object, thereby reducing the bad weather due to rain and snow. The impact on the quality of the lens image.
  • the radius of curvature R1 of the object side surface of the first lens, the radius of curvature R2 of the image side surface, and the center thickness d1 of the first lens on the optical axis may satisfy the conditional expression 0.6 ⁇ R1/(R2+d1) ⁇ 1.1, R1, R2 and d1 further satisfy 0.75 ⁇ R1/(R2+d1) ⁇ 1.05, for example, 0.84 ⁇ R1/(R2+d1) ⁇ 0.93.
  • the second lens may have a negative power, and both the object side and the image side may be concave.
  • the third lens may have a positive power, and both the object side and the image side may be convex.
  • the fourth lens may have a positive power, and both the object side and the image side may be convex. Arranging the fourth lens as a lenticular lens facilitates a smooth transition of the front light to the rear optical system.
  • aspherical lenses have better curvature radius characteristics, which in turn have the advantages of improving distortion and improving astigmatic aberration, and can improve image quality.
  • at least one of the object side and the image side of the fourth lens may be arranged as an aspherical mirror to further enhance the resolution quality of the lens.
  • the fifth lens may have a positive power
  • the object side may be a convex surface
  • the image side may be a concave surface
  • the sixth lens may have a negative power, the object side may be a convex surface, and the image side may be a concave surface.
  • discrete lenses at the corners of the light are susceptible to susceptibility due to machining errors and/or set errors, and the use of cemented lenses can effectively reduce the sensitivity of the system.
  • the use of a cemented lens not only can effectively reduce the sensitivity of the system, shorten the overall length of the system, but also can share the overall chromatic aberration and aberration correction of the system, and improve the resolution of the optical lens.
  • the use of a cemented lens can make the system easy to assemble, and can effectively reduce the tolerance sensitivity of the lens unit due to the tilt/eccentricity generated during the assembly process.
  • the second lens and the third lens may be combined into a first cemented lens by gluing the image side of the second lens with the object side of the third lens.
  • the first cemented lens can be designed with a material having a high refractive index and a low Abbe number in combination with a material having a low refractive index and a high Abbe number (relative to a high refractive index, low Abbe number lens).
  • the refractive index of the second lens is higher than the refractive index of the third lens, and the Abbe number of the second lens is lower than the Abbe number of the third lens.
  • the combination of high and low refractive index of the lens facilitates the rapid transition of the front light, which is beneficial to increase the aperture diameter, so that the lens meets the night vision requirements.
  • the combination of high and low refractive index of the lens is also beneficial to eliminate the chromatic aberration, reduce the tolerance sensitivity, and residual part of the chromatic aberration to balance the chromatic aberration of the system.
  • the air gap is reduced by gluing, which is beneficial to shorten the total length of the system.
  • the fifth lens and the sixth lens may be combined into a second cemented lens by gluing the image side of the fifth lens with the object side of the sixth lens.
  • the second cemented lens can adopt a lens with positive positive power and a lens with negative optical power in the back, thereby facilitating the smooth transition of the light passing through the fourth lens to the sixth lens, which is advantageous for shortening the optical
  • the total length of the system and the reduced port diameter or rear end size of the lens is also beneficial to eliminate their own chromatic aberration, reduce tolerance sensitivity, and residual part of the chromatic aberration to balance the chromatic aberration of the system.
  • a stop for limiting the light beam may be disposed between, for example, the object side and the second lens to further improve the imaging quality of the lens.
  • the diaphragm is disposed between the first lens and the second lens, the front port diameter and the front end size of the lens can be effectively reduced, and at the same time, a large aperture is also facilitated.
  • the aperture can be disposed between the object side and the first lens, and such an arrangement is more advantageous for reducing the lens front diameter of the lens.
  • the pupil position is not limited to the above position, and may be set at any other position as needed.
  • the optical total length TTL of the optical lens ie, from the center of the object side of the first lens to the distance of the imaging surface of the optical lens on the optical axis
  • TTL and F can further satisfy TTL / F ⁇ 2.5, for example, 2.12 ⁇ TTL / F ⁇ 2.25.
  • the conditional TTL/F ⁇ 3 is satisfied, which can reflect the miniaturization characteristics of the lens.
  • the maximum angle of view FOV of the optical lens, the maximum aperture aperture D of the object side of the first lens corresponding to the maximum angle of view of the optical lens, and the image height corresponding to the maximum angle of view of the optical lens D/H/FOV ⁇ 0.08 may be satisfied between H, and more specifically, D, H, and FOV may further satisfy D/H/FOV ⁇ 0.07, for example, 0.05 ⁇ D / H / FOV ⁇ 0.06.
  • the conditional formula D/H/FOV ⁇ 0.08 is satisfied, which can reflect the small diameter of the front end of the lens.
  • the optical lens according to the above embodiment of the present application can achieve high resolution (up to 8 M pixels) by reasonable lens shape design and material matching. Properly matching the shape and power of the lens helps to reduce the total optical length of the lens and achieve lens miniaturization.
  • the use of two sets of cemented lenses can make the overall structure of the optical system more compact, facilitate lens assembly, reduce tolerance sensitivity, and effectively reduce system chromatic aberration.
  • the optical lens has a large aperture performance, can effectively increase the amount of light entering, and enhance the brightness of the image surface, thereby having a better night vision effect, so as to meet the needs of the vehicle lens in a special scene at night or other insufficient light.
  • the optical lens has the characteristics of miniaturization, large aperture, high pixel, and the like, and can better meet the requirements of the application of the vehicle lens in a specific scene.
  • the first lens may have a negative power
  • the object side may be a convex surface
  • the image side may be a concave surface.
  • the first lens is arranged such that the meniscus shape with the convex surface facing the object side can collect the large field of view light as much as possible, so that the light enters the rear optical system, which is beneficial to reduce the front port diameter and increase the amount of light passing through.
  • the second lens may have a negative power, and both the object side and the image side may be concave.
  • the third lens may have a positive power, and both the object side and the image side may be convex.
  • the fourth lens may have a positive power, and both the object side and the image side may be convex.
  • the fourth lens is arranged as a lenticular lens to facilitate the convergence of light, reduce the aperture, and facilitate the smooth transition of light.
  • the fifth lens may have a positive power
  • the object side may be a convex surface
  • the image side may be a concave surface
  • the sixth lens may have a negative power, the object side may be a convex surface, and the image side may be a concave surface.
  • a stop for limiting the light beam may be disposed between, for example, the first lens and the second lens to further improve the imaging quality of the lens.
  • the diaphragm When the diaphragm is disposed between the first lens and the second lens, the light entering the optical system can be effectively contracted, and the aperture of the optical system lens is reduced.
  • the position of the aperture disclosed herein is merely an example and not a limitation; in an alternative embodiment, the aperture may be placed at other locations as desired.
  • the optical lens according to the present application may further include a filter disposed between the sixth lens and the imaging surface to filter light having different wavelengths, as needed, and may further include A protective glass between the filter and the imaging surface to prevent damage to internal components (eg, chips) of the optical lens.
  • a cemented lens can be used to minimize chromatic aberration or eliminate chromatic aberration.
  • the use of a cemented lens in an optical lens improves the image quality and reduces the reflection loss of light energy, thereby improving the sharpness of the lens image.
  • the use of cemented lenses also simplifies assembly procedures during lens manufacturing.
  • the second lens and the third lens may be combined into a first cemented lens by gluing the image side of the second lens with the object side of the third lens.
  • the first cemented lens is composed of a negative lens (ie, a second lens) and a positive lens (ie, a third lens).
  • the combination of high and low refractive index of the positive and negative lens is beneficial to the rapid transition of the front light.
  • the adoption of the first cemented lens effectively reduces the system chromatic aberration, and makes the optical system overall compact, meets the requirements of miniaturization, and at the same time reduces the sensitivity of the single lens.
  • the second lens near the object side has a negative power
  • the third lens near the image side has a positive power.
  • the fifth lens and the sixth lens may be combined into a second cemented lens by gluing the image side of the fifth lens with the object side of the sixth lens.
  • the use of the second cemented lens can itself achromatic, reduce tolerance sensitivity, and can also partially chromatic aberration to balance the chromatic aberration of the system.
  • the fifth lens near the object side can converge the light and further converge, adjust the light to reduce the rear port diameter; the sixth lens near the image side can diverge the light, which is advantageous for expanding the image surface.
  • the optical back focus BFL of the optical lens and the lens group length TL of the optical lens may satisfy: BFL/TL ⁇ 0.20, and more desirably, BFL/TL ⁇ 0.22 may be further satisfied.
  • BFL/TL ⁇ 0.20 the characteristics of the back focus length can be satisfied on the basis of miniaturization, which is advantageous for assembly of the optical lens.
  • the optical total length TTL of the optical lens and the entire set of focal length values F of the optical lens may satisfy: TTL/F ⁇ 3.5, and more desirably, TTL/F ⁇ 3 may be further satisfied.
  • TTL/F ⁇ 3.5 is satisfied, which ensures the miniaturization of the system.
  • the maximum angle of view FOV of the optical lens the maximum aperture diameter D of the first lens side corresponding to the maximum angle of view of the optical lens, and the image height H corresponding to the maximum angle of view of the optical lens. It can be satisfied that D/H/FOV ⁇ 0.07, and more desirably, D/H/FOV ⁇ 0.065 can be further satisfied.
  • the conditional formula D/H/FOV ⁇ 0.07 is satisfied, and the small-diameter characteristic of the lens front end can be realized.
  • the focal length value F3 of the third lens and the focal length value F2 of the second lens may satisfy: ⁇ F3/F2 ⁇ 1.25, and more desirably, ⁇ F3/F2 ⁇ 1.1 may be further satisfied.
  • the combined focal length value F23 of the second lens and the third lens and the entire set of focal length value F of the optical lens may satisfy: 4 ⁇ F23/F ⁇ 7, and more desirably, 4.3 ⁇ may be further satisfied.
  • the first lens and the fourth lens in the optical lens according to the present application may employ an aspherical lens.
  • Aspherical lenses are characterized by a continuous change in curvature from the center of the lens to the periphery. Unlike spherical lenses that have a constant curvature from the center of the lens to the periphery, aspherical lenses have better curvature radius characteristics, have the advantage of improving distortion and improving astigmatic aberrations. With the aspherical lens, the aberrations that occur during imaging can be eliminated as much as possible, thereby improving the image quality of the lens.
  • the first lens can be an aspherical lens to enhance resolution and correct chromatic aberration.
  • the fourth lens may be an aspherical lens to improve resolution, reduce distortion, correct coma and field curvature and the like. It should be understood that in order to improve image quality, the optical lens according to the present application may increase the number of aspherical lenses.
  • the lens used in the optical lens may be a plastic lens or a glass lens.
  • the lens of plastic material has a large thermal expansion coefficient. When the ambient temperature used by the lens changes greatly, the lens of plastic material causes a large amount of optical back focus change of the lens.
  • the use of glass lenses reduces the effect of temperature on the optical back focus of the lens, but at a higher cost.
  • the optical lens of the above-described embodiment of the present application only a six-piece structure is used by a reasonable lens shape setting and power setting, and the cost can be reduced while achieving high resolution requirements.
  • the lens by satisfying the requirement of the clear aperture, the lens can be small in diameter by controlling the shape of the first lens; and by placing the aperture between the first lens and the second lens.
  • the method further reduces the front port diameter of the lens; the optical lens according to the above embodiment of the present application can ensure the resolution of the image, make the image clear, provide the driver with accurate information, and reduce the risk of software misjudgment. Therefore, the optical lens according to the above embodiment of the present application can have at least one of miniaturization, small aperture, high resolution, low cost, large aperture, back focal length, and the like, which can better meet the requirements of the vehicle lens. .
  • the optical total length TTL of the optical lens used herein refers to the distance from the center of the side of the first lens to the center of the imaging surface; the optical back focus BFL of the optical lens refers to the last lens The on-axis distance from the center of the side surface of the sixth lens to the center of the imaging surface; and the lens group length TL of the optical lens means the on-axis distance from the center of the side surface of the first lens to the center of the side surface of the sixth lens image.
  • the number of lenses that make up the lens can be varied to achieve the various results and advantages described in this specification without departing from the technical solutions claimed herein.
  • the optical lens is not limited to including six lenses.
  • the optical lens can also include other numbers of lenses if desired.
  • FIG. 1 is a schematic view showing the structure of an optical lens according to Embodiment 1 of the present application.
  • the optical lens sequentially includes a first lens L1, a second lens L2, a third lens L3, a fourth lens L4, a fifth lens L5, and a sixth lens L6 from the object side to the image side along the optical axis. .
  • the first lens L1 is a meniscus lens having positive refractive power
  • the object side surface S1 is a convex surface
  • the image side surface S2 is a concave surface
  • the object side surface S1 and the image side surface S2 of the first lens L1 are aspherical surfaces.
  • the second lens L2 is a biconcave lens having a negative refractive power
  • both the object side surface S4 and the image side surface S5 are concave surfaces
  • the object side surface S4 and the image side surface S5 of the second lens L2 are spherical surfaces.
  • the third lens L3 is a lenticular lens having positive refractive power, and both the object side surface S5 and the image side surface S6 are convex surfaces, and the object side surface S5 and the image side surface S6 of the third lens L3 are spherical surfaces.
  • the fourth lens L4 is a lenticular lens having positive refractive power, and both the object side surface S7 and the image side surface S8 are convex surfaces, and the object side surface S7 and the image side surface S8 of the fourth lens L4 are aspherical surfaces.
  • the fifth lens L5 is a meniscus lens having positive refractive power
  • the object side surface S9 is a convex surface
  • the image side surface S10 is a concave surface
  • the object side surface S9 and the image side surface S10 of the fifth lens L5 are both spherical surfaces.
  • the sixth lens L6 is a meniscus lens having a negative refractive power
  • the object side surface S10 is a convex surface
  • the image side surface S11 is a concave surface
  • the object side surface S10 and the image side surface S11 of the sixth lens L6 are both spherical surfaces.
  • the second lens L2 and the third lens L3 are glued to constitute a first cemented lens.
  • the fifth lens L5 and the sixth lens L6 are glued to constitute a second cemented lens.
  • the optical lens may further include a filter having an object side S12 and an image side S13 and/or a cover glass L7. Filters can be used to correct color deviations.
  • the protective glass can be used to protect the image sensing chip located on the imaging surface IMA. Light from the object sequentially passes through the respective surfaces S1 to S13 and is finally imaged on the image plane IMA.
  • a stop STO may be provided between the first lens L1 and the second lens L2 to improve image quality.
  • Table 1 shows the curvature radius R, the thickness T, the refractive index Nd, and the Abbe number Vd of each lens of the optical lens of Example 1, wherein the units of the radius of curvature R and the thickness T are all millimeters (mm).
  • each lens is used as an example, and the advantages of miniaturization, large aperture, high pixel, etc. can be achieved by rationally distributing the power and surface of each lens, the center thickness of each lens, and the air gap between the lenses. one of the.
  • Each aspherical surface type Z is defined by the following formula:
  • Z is the position of the aspherical surface at height h in the optical axis direction, the distance vector from the aspherical vertex is high;
  • k is the conic coefficient conic;
  • A, B, C, D, E are high order coefficients.
  • Table 2 shows the conic coefficient k and the high order coefficient A, B, C, D, and E which can be used for the aspherical lens surfaces S1, S2, S7, and S8 in Embodiment 1.
  • Table 3 below shows the maximum aperture diameter D of the object side surface S1 of the first lens L1 corresponding to the maximum angle of view of the optical lens of Embodiment 1, the image height H corresponding to the maximum angle of view of the optical lens, and the optical The maximum angle of view FOV of the lens, the optical total length TTL of the optical lens (ie, the distance from the center of the object side S1 of the first lens L1 to the on-axis of the imaging plane IMA), and the entire set of focal length values F of the optical lens.
  • FIG. 2 is a schematic view showing the structure of an optical lens according to Embodiment 2 of the present application.
  • the optical lens sequentially includes a first lens L1, a second lens L2, a third lens L3, a fourth lens L4, a fifth lens L5, and a sixth lens L6 from the object side to the image side along the optical axis. .
  • the first lens L1 is a meniscus lens having positive refractive power
  • the object side surface S1 is a convex surface
  • the image side surface S2 is a concave surface
  • the object side surface S1 and the image side surface S2 of the first lens L1 are aspherical surfaces.
  • the second lens L2 is a biconcave lens having a negative refractive power
  • both the object side surface S4 and the image side surface S5 are concave surfaces
  • the object side surface S4 and the image side surface S5 of the second lens L2 are spherical surfaces.
  • the third lens L3 is a lenticular lens having positive refractive power, and both the object side surface S5 and the image side surface S6 are convex surfaces, and the object side surface S5 and the image side surface S6 of the third lens L3 are spherical surfaces.
  • the fourth lens L4 is a lenticular lens having positive refractive power, and both the object side surface S7 and the image side surface S8 are convex surfaces, and the object side surface S7 and the image side surface S8 of the fourth lens L4 are aspherical surfaces.
  • the fifth lens L5 is a meniscus lens having positive refractive power
  • the object side surface S9 is a convex surface
  • the image side surface S10 is a concave surface
  • the object side surface S9 and the image side surface S10 of the fifth lens L5 are both spherical surfaces.
  • the sixth lens L6 is a meniscus lens having a negative refractive power
  • the object side surface S10 is a convex surface
  • the image side surface S11 is a concave surface
  • the object side surface S10 and the image side surface S11 of the sixth lens L6 are both spherical surfaces.
  • the second lens L2 and the third lens L3 are glued to constitute a first cemented lens.
  • the fifth lens L5 and the sixth lens L6 are glued to constitute a second cemented lens.
  • the optical lens may further include a filter having an object side S12 and an image side S13 and/or a cover glass L7. Filters can be used to correct color deviations.
  • the protective glass can be used to protect the image sensing chip located on the imaging surface IMA. Light from the object sequentially passes through the respective surfaces S1 to S13 and is finally imaged on the image plane IMA.
  • a stop STO may be provided between the first lens L1 and the second lens L2 to improve image quality.
  • six lenses are used as an example, and the advantages of miniaturization, large aperture, high pixel, etc. can be achieved by rationally distributing the power and surface of each lens, the center thickness of each lens, and the air gap between the lenses. one of the.
  • Table 4 below shows the radius of curvature R, the thickness T, the refractive index Nd, and the Abbe number Vd of each lens of the optical lens of Example 2, wherein the units of the radius of curvature R and the thickness T are both millimeters (mm).
  • Table 5 below shows the conic coefficient k and the high order coefficient A, B, C, D and E which can be used for the aspherical lens surfaces S1, S2, S7 and S8 in the embodiment 2, wherein each aspherical surface type can be The formula (1) given in the above embodiment 1 is defined.
  • Table 6 below shows the maximum aperture diameter D of the object side surface S1 of the first lens L1 corresponding to the maximum angle of view of the optical lens of the second embodiment, and the image height H corresponding to the maximum angle of view of the optical lens.
  • FIG. 3 is a schematic view showing the structure of an optical lens according to Embodiment 3 of the present application.
  • the optical lens sequentially includes a first lens L1, a second lens L2, a third lens L3, a fourth lens L4, a fifth lens L5, and a sixth lens L6 from the object side to the image side along the optical axis. .
  • the first lens L1 is a meniscus lens having positive refractive power
  • the object side surface S1 is a convex surface
  • the image side surface S2 is a concave surface
  • the object side surface S1 and the image side surface S2 of the first lens L1 are aspherical surfaces.
  • the second lens L2 is a biconcave lens having a negative refractive power
  • both the object side surface S4 and the image side surface S5 are concave surfaces
  • the object side surface S4 and the image side surface S5 of the second lens L2 are spherical surfaces.
  • the third lens L3 is a lenticular lens having positive refractive power, and both the object side surface S5 and the image side surface S6 are convex surfaces, and the object side surface S5 and the image side surface S6 of the third lens L3 are spherical surfaces.
  • the fourth lens L4 is a lenticular lens having positive refractive power, and both the object side surface S7 and the image side surface S8 are convex surfaces, and the object side surface S7 and the image side surface S8 of the fourth lens L4 are aspherical surfaces.
  • the fifth lens L5 is a meniscus lens having positive refractive power
  • the object side surface S9 is a convex surface
  • the image side surface S10 is a concave surface
  • the object side surface S9 and the image side surface S10 of the fifth lens L5 are both spherical surfaces.
  • the sixth lens L6 is a meniscus lens having a negative refractive power
  • the object side surface S10 is a convex surface
  • the image side surface S11 is a concave surface
  • the object side surface S10 and the image side surface S11 of the sixth lens L6 are both spherical surfaces.
  • the second lens L2 and the third lens L3 are glued to constitute a first cemented lens.
  • the fifth lens L5 and the sixth lens L6 are glued to constitute a second cemented lens.
  • the optical lens may further include a filter having an object side S12 and an image side S13 and/or a cover glass L7. Filters can be used to correct color deviations.
  • the protective glass can be used to protect the image sensing chip located on the imaging surface IMA. Light from the object sequentially passes through the respective surfaces S1 to S13 and is finally imaged on the image plane IMA.
  • a stop STO may be provided between the first lens L1 and the second lens L2 to improve image quality.
  • six lenses are used as an example, and the advantages of miniaturization, large aperture, high pixel, etc. can be achieved by rationally distributing the power and surface of each lens, the center thickness of each lens, and the air gap between the lenses. one of the.
  • Table 7 below shows the radius of curvature R, the thickness T, the refractive index Nd, and the Abbe number Vd of each lens of the optical lens of Example 3, wherein the units of the radius of curvature R and the thickness T are all millimeters (mm).
  • Table 8 below shows the conic coefficient k and the higher order coefficients A, B, C, D and E which can be used for the aspherical lens surfaces S1, S2, S7 and S8 in the embodiment 3, wherein each aspherical surface type can be The formula (1) given in the above embodiment 1 is defined.
  • each aspherical surface type can be defined by the formula (1) given in the above embodiment 1.
  • Table 9 below shows the maximum aperture diameter D of the object side surface S1 of the first lens L1 corresponding to the maximum angle of view of the optical lens of Embodiment 3, and the image height H corresponding to the maximum angle of view of the optical lens.
  • FIG. 4 is a schematic view showing the structure of an optical lens according to Embodiment 4 of the present application.
  • the optical lens sequentially includes a first lens L1, a second lens L2, a third lens L3, a fourth lens L4, a fifth lens L5, and a sixth lens L6 from the object side to the image side along the optical axis. .
  • the first lens L1 is a meniscus lens having positive refractive power
  • the object side surface S1 is a convex surface
  • the image side surface S2 is a concave surface
  • the object side surface S1 and the image side surface S2 of the first lens L1 are aspherical surfaces.
  • the second lens L2 is a biconcave lens having a negative refractive power
  • both the object side surface S4 and the image side surface S5 are concave surfaces
  • the object side surface S4 and the image side surface S5 of the second lens L2 are spherical surfaces.
  • the third lens L3 is a lenticular lens having positive refractive power, and both the object side surface S5 and the image side surface S6 are convex surfaces, and the object side surface S5 and the image side surface S6 of the third lens L3 are spherical surfaces.
  • the fourth lens L4 is a lenticular lens having positive refractive power, and both the object side surface S7 and the image side surface S8 are convex surfaces, and the object side surface S7 and the image side surface S8 of the fourth lens L4 are aspherical surfaces.
  • the fifth lens L5 is a meniscus lens having positive refractive power
  • the object side surface S9 is a convex surface
  • the image side surface S10 is a concave surface
  • the object side surface S9 and the image side surface S10 of the fifth lens L5 are both spherical surfaces.
  • the sixth lens L6 is a meniscus lens having a negative refractive power
  • the object side surface S10 is a convex surface
  • the image side surface S11 is a concave surface
  • the object side surface S10 and the image side surface S11 of the sixth lens L6 are both spherical surfaces.
  • the second lens L2 and the third lens L3 are glued to constitute a first cemented lens.
  • the fifth lens L5 and the sixth lens L6 are glued to constitute a second cemented lens.
  • the optical lens may further include a filter having an object side S12 and an image side S13 and/or a cover glass L7. Filters can be used to correct color deviations.
  • the protective glass can be used to protect the image sensing chip located on the imaging surface IMA. Light from the object sequentially passes through the respective surfaces S1 to S13 and is finally imaged on the image plane IMA.
  • a stop STO may be provided between the first lens L1 and the second lens L2 to improve image quality.
  • six lenses are used as an example, and the advantages of miniaturization, large aperture, high pixel, etc. can be achieved by rationally distributing the power and surface of each lens, the center thickness of each lens, and the air gap between the lenses. one of the.
  • Table 10 below shows the radius of curvature R, the thickness T, the refractive index Nd, and the Abbe number Vd of each lens of the optical lens of Example 4, wherein the units of the radius of curvature R and the thickness T are all millimeters (mm).
  • Table 11 below shows the conic coefficient k and the higher order coefficients A, B, C, D and E which can be used for the aspherical lens surfaces S1, S2, S7 and S8 in the embodiment 4, wherein each aspherical surface type can be The formula (1) given in the above embodiment 1 is defined.
  • each aspherical surface type can be defined by the formula (1) given in the above embodiment 1.
  • Table 12 below shows the maximum aperture diameter D of the object side surface S1 of the first lens L1 corresponding to the maximum angle of view of the optical lens of Embodiment 4, the image height H corresponding to the maximum angle of view of the optical lens, and the optical The maximum field of view angle FOV of the lens, the optical total length TTL of the optical lens, and the entire set of focal length value F of the optical lens.
  • FIG. 5 is a block diagram showing the structure of an optical lens according to Embodiment 5 of the present application.
  • the optical lens sequentially includes a first lens L1, a second lens L2, a third lens L3, a fourth lens L4, a fifth lens L5, and a sixth lens L6 from the object side to the imaging side along the optical axis. .
  • the first lens L1 is a meniscus lens having a negative refractive power
  • the object side surface S1 is a convex surface
  • the image side surface S2 is a concave surface.
  • the second lens L2 is a biconcave lens having a negative refractive power
  • both the object side surface S4 and the image side surface S5 are concave surfaces.
  • the third lens L3 is a lenticular lens having positive refractive power, and both the object side surface S5 and the image side surface S6 are convex.
  • the second lens L2 and the third lens L3 are glued to each other to form a first cemented lens.
  • the fourth lens L4 is a lenticular lens having positive refractive power, and both the object side surface S7 and the image side surface S8 are convex.
  • the fifth lens L5 is a meniscus lens having positive refractive power, and the object side surface S9 is a convex surface, and the image side surface S10 is a concave surface.
  • the sixth lens L6 is a meniscus lens having a negative refractive power, and the object side surface S10 is a convex surface, and the image side surface S11 is a concave surface.
  • the fifth lens L5 and the sixth lens L6 are glued to each other to form a second cemented lens.
  • the first lens L1 and the fourth lens L4 are both aspherical lenses, and their respective object side faces and image side faces are aspherical surfaces.
  • the optical lens may further include a filter L7 and/or a protective lens L7' having an object side S12 and an image side S13.
  • Filter L7 can be used to correct color deviations.
  • the protective lens L7' can be used to protect the image sensing chip located on the imaging surface IMA. Light from the object sequentially passes through the respective surfaces S1 to S13 and is finally imaged on the image plane IMA.
  • a stop STO may be provided between the first lens L1 and the second lens L2 to improve image quality.
  • Table 13 shows the curvature radius R, the thickness T, the refractive index Nd, and the Abbe number Vd of each lens of the optical lens of Example 5, wherein the units of the radius of curvature R and the thickness T are each mm (mm).
  • the lens By properly distributing the power and surface of each lens, the center thickness of each lens, and the air gap between the lenses, the lens can be miniaturized, small-diameter, and high-resolution. At least one of the beneficial effects of low cost, large aperture, and back focal length.
  • Table 14 below shows the conic coefficient k and the high order coefficient A, B, C, D, and E which can be used for the aspherical lens surfaces S1-S2 and S7-S8 in the fifth embodiment.
  • each aspherical surface type can be defined by the formula (1) given in the above embodiment 1.
  • Table 15 below shows the entire set of focal length value F of the optical lens of Example 5, the optical total length TTL of the optical lens (i.e., the distance from the center of the object side S1 of the first lens L1 to the on-axis of the imaging plane IMA), The maximum aperture aperture D of the object side surface S1 of the first lens L1 corresponding to the maximum angle of view of the optical lens, the image height H corresponding to the maximum angle of view of the optical lens, the maximum angle of view FOV of the optical lens, and the second The combined focal length value F23 of the lens L2 and the third lens L3 (ie, the focal length value of the first cemented lens), the focal length value F2 of the second lens L2, the focal length value F3 of the third lens L3, and the optical back focus BFL of the optical lens ( That is, the axial distance from the center of the image side surface S11 of the last lens sixth lens L6 to the imaging plane IMA, and the lens group length TL of the optical lens (that is, from the center of the object side S1 of
  • FIG. Fig. 6 is a view showing the structure of an optical lens according to Embodiment 6 of the present application.
  • the optical lens sequentially includes a first lens L1, a second lens L2, a third lens L3, a fourth lens L4, a fifth lens L5, and a sixth lens L6 from the object side to the imaging side along the optical axis. .
  • the first lens L1 is a meniscus lens having a negative refractive power
  • the object side surface S1 is a convex surface
  • the image side surface S2 is a concave surface.
  • the second lens L2 is a biconcave lens having a negative refractive power
  • both the object side surface S4 and the image side surface S5 are concave surfaces.
  • the third lens L3 is a lenticular lens having positive refractive power, and both the object side surface S5 and the image side surface S6 are convex.
  • the second lens L2 and the third lens L3 are glued to each other to form a first cemented lens.
  • the fourth lens L4 is a lenticular lens having positive refractive power, and both the object side surface S7 and the image side surface S8 are convex.
  • the fifth lens L5 is a meniscus lens having positive refractive power, and the object side surface S9 is a convex surface, and the image side surface S10 is a concave surface.
  • the sixth lens L6 is a meniscus lens having a negative refractive power, and the object side surface S10 is a convex surface, and the image side surface S11 is a concave surface.
  • the fifth lens L5 and the sixth lens L6 are glued to each other to form a second cemented lens.
  • the first lens L1 and the fourth lens L4 are both aspherical lenses, and their respective object side faces and image side faces are aspherical surfaces.
  • the optical lens may further include a filter L7 and/or a protective lens L7' having an object side S12 and an image side S13.
  • Filter L7 can be used to correct color deviations.
  • the protective lens L7' can be used to protect the image sensing chip located on the imaging surface IMA. Light from the object sequentially passes through the respective surfaces S1 to S13 and is finally imaged on the image plane IMA.
  • a stop STO may be provided between the first lens L1 and the second lens L2 to improve image quality.
  • the lens By properly distributing the power and surface of each lens, the center thickness of each lens, and the air gap between the lenses, the lens can be miniaturized, small-diameter, and high-resolution. At least one of the beneficial effects of low cost, large aperture, and back focal length.
  • Table 16 below shows the radius of curvature R, the thickness T, the refractive index Nd, and the Abbe number Vd of each lens of the optical lens of Example 6, wherein the units of the radius of curvature R and the thickness T are all millimeters (mm).
  • Table 17 below shows the conic coefficient k and the higher order coefficients A, B, C, D and E which can be used for the aspherical lens surfaces S1-S2 and S7-S8 in the embodiment 6.
  • each aspherical surface type can be defined by the formula (1) given in the above embodiment 1.
  • Table 18 below shows the maximum light-passing aperture of the object side S1 of the first lens L1 corresponding to the entire set of focal length value F of the optical lens of Example 6, the optical total length TTL of the optical lens, and the maximum angle of view of the optical lens.
  • D The image height H corresponding to the maximum angle of view of the optical lens, the maximum angle of view FOV of the optical lens, the combined focal length value F23 of the second lens L2 and the third lens L3, and the focal length value F2 of the second lens L2.
  • Embodiments 1 to 6 respectively satisfy the relationships shown in Table 19 below.

Landscapes

  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Optics & Photonics (AREA)
  • Lenses (AREA)

Abstract

一种光学镜头,沿着光轴由物侧至像侧依序包括:第一透镜(L1)、第二透镜(L2)、第三透镜(L3)、第四透镜(L4)、第五透镜(L5)和第六透镜(L6)。其中,第一透镜具有正光焦度,其物侧面为凸面,像侧面为凹面。第二透镜与第三透镜胶合组成第一胶合透镜。第四透镜具有正光焦度,其物侧面和像侧面均为凸面。第五透镜与第六透镜胶合组成第二胶合透镜。由此实现小型化、大光圈、高像素等有益效果中至少一个。

Description

光学镜头
相关申请的交叉引用
本申请要求于2018年4月28日向中国专利局提交的、发明名称为“光学镜头”的第201810400442.3号发明专利申请以及于2018年10月25日向中国专利局提交的、发明名称为“光学镜头”的第201811249721.0号发明专利申请的优先权,上述专利申请的全部内容通过引用整体并入本文中。
技术领域
本申请涉及一种光学镜头,更具体地,本申请涉及一种包括六片透镜的光学镜头。
背景技术
随着科学发展,越来越多的领域需要用相机镜头来充当“眼睛”,比如车载、监控、投影、工业领域等。需求的增长和技术的发展,随之而来的是对相机镜头的性能要求也越来越高,特别是相机镜头的像素要求。尤其是近年来,先进驾驶辅助系统(ADAS)市场发展迅速,车载镜头作为其重要组成部分,各项性能要求日益提升,其主要体现在如下方面:
1、对车载镜头的解像力要求越来越高,尤其是前视类镜头,从原来的百万像素,目前朝着2M方向不断提升普及,甚至于追求更高的4M、8M的解像清晰度;
2、随着解像的提高,芯片的尺寸随之增大,致使镜头体积随之增大。然而,对于一些应用在有限安装位置中的镜头,实现镜头小型化尤为重要。例如需安装在挡风玻璃内侧的车载前视镜头,镜头尺寸过大则会干扰挡风玻璃的透视效果。而现有镜头总长约为45mm,从小型化的角度来讲并不占优势。因而需要使用特殊的镜头设计来满足小尺寸镜头的需求。
3、随着镜头的像素要求越来越高,芯片的尺寸也随之增大,镜片数目逐步增多,导致整个镜头的尺寸也随之增加,成本升高。
4、在诸如车辆夜间行驶的特殊应用环境中,外界光线不足,需要增加镜头的通光口径来增加进光量,从而提升车载镜头的夜视效果,这样也会导致镜头的口径增加。
发明内容
本申请提供了可适用于车载安装的、可至少克服或部分克服现有技术中的上述至少一个缺陷的光学镜头。
第一方面,本申请提供了这样一种光学镜头,该光学镜头沿着光轴由物侧至像侧依序可包括:第一透镜、第二透镜、第三透镜、第四透镜、第五透镜和第六透镜。其中,第一透 镜可具有正光焦度,其物侧面可为凸面,像侧面可为凹面;第二透镜与第三透镜胶合组成第一胶合透镜;第四透镜可具有正光焦度,其物侧面和像侧面均可为凸面;以及第五透镜与第六透镜胶合组成第二胶合透镜。
在一个实施方式中,第一胶合透镜中的第二透镜可具有负光焦度,其物侧面和像侧面均可为凹面;以及第一胶合透镜中的第三透镜可具有正光焦度,其物侧面和像侧面均可为凸面。
在一个实施方式中,第二胶合透镜中第五透镜可具有正光焦度,其物侧面可为凸面,像侧面可为凹面;以及第二胶合透镜中第六透镜可具有负光焦度,其物侧面可为凸面,像侧面可为凹面。
在一个实施方式中,第一透镜可为非球面透镜。可选地,第一透镜可为玻璃材质的非球面透镜。
在一个实施方式中,第四透镜可为非球面透镜。
在一个实施方式中,第一透镜的物侧面的曲率半径R1、第一透镜的像侧面的曲率半径R2以及第一透镜于光轴上的中心厚度d1可满足0.6≤R1/(R2+d1)≤1.1。
在一个实施方式中,光学镜头的最大视场角FOV、光学镜头的最大视场角所对应的第一透镜的物侧面的最大通光口径D以及光学镜头最大视场角所对应的像高H可满足D/H/FOV≤0.08。
在一个实施方式中,光学镜头的光学总长度TTL与光学镜头的整组焦距值F可满足TTL/F≤3。
在一个实施方式中,光学透镜还可包括光阑,该光阑可设置于物侧与第二透镜之间。可选地,该光阑可设置于物侧与第一透镜之间。可选地,该光阑可设置于第一透镜与第二透镜之间。
第二方面,本申请提供了这样一种光学镜头,该光学镜头沿着光轴由物侧至像侧依序可包括:第一透镜、第二透镜、第三透镜、第四透镜、第五透镜和第六透镜。其中,第一透镜可具有正光焦度,其物侧面可为凸面,像侧面可为凹面;第二透镜可具有负光焦度,其物侧面和像侧面均可为凹面;第三透镜可具有正光焦度,其物侧面和像侧面均可为凸面;第四透镜可具有正光焦度,其物侧面和像侧面均可为凸面;第五透镜可具有正光焦度,其物侧面可为凸面,像侧面可为凹面;以及第六透镜可具有负光焦度,其物侧面可为凸面,像侧面可为凹面,其中,光学镜头的光学总长度TTL与光学镜头的整组焦距值F可满足TTL/F≤3。
在一个实施方式中,第二透镜与第三透镜可胶合组成第一胶合透镜。
在一个实施方式中,第五透镜与第六透镜可胶合组成第二胶合透镜。
在一个实施方式中,第一透镜可为非球面透镜。可选地,第一透镜可为玻璃材质的非球面透镜。
在一个实施方式中,第四透镜可为非球面透镜。
在一个实施方式中,第一透镜的物侧面的曲率半径R1、第一透镜的像侧面的曲率半径R2以及第一透镜于光轴上的中心厚度d1可满足0.6≤R1/(R2+d1)≤1.1。
在一个实施方式中,光学镜头的最大视场角FOV、光学镜头的最大视场角所对应的第一透镜的物侧面的最大通光口径D以及光学镜头最大视场角所对应的像高H可满足D/H/FOV≤0.08。
在一个实施方式中,光学透镜还可包括光阑,该光阑可设置于物侧与第二透镜之间。可选地,该光阑可设置于物侧与第一透镜之间。可选地,该光阑可设置于第一透镜与第二透镜之间。
第三方面,本申请提供了这样一种光学镜头,该光学镜头沿着光轴由物侧至像侧依序可包括:第一透镜、第二透镜、第三透镜、第四透镜、第五透镜和第六透镜。其中,第一透镜可具有负光焦度,其物侧面为凸面,像侧面为凹面;第二透镜可具有负光焦度,其物侧面和像侧面均为凹面;第三透镜可具有正光焦度,其物侧面和像侧面均为凸面;第四透镜可具有正光焦度;第五透镜可具有正光焦度,其物侧面为凸面,像侧面为凹面;以及第六透镜可具有负光焦度,其物侧面为凸面,像侧面为凹面。
在一个实施方式中,第四透镜的物侧面和像侧面均可为凸面。
在一个实施方式中,第一透镜和第四透镜均可为非球面镜片。
在一个实施方式中,该光学镜头还可包括设置在第一透镜与第二透镜之间的光阑。
在一个实施方式中,第二透镜和第三透镜可互相胶合形成第一胶合透镜。
在一个实施方式中,第五透镜和第六透镜可互相胶合形成第二胶合透镜。
在一个实施方式中,光学镜头的光学后焦BFL与光学镜头的透镜组长度TL之间可满足:BFL/TL≥0.20。
在一个实施方式中,光学镜头的光学总长度TTL与光学镜头的整组焦距值F之间可满足:TTL/F≤3.5。
在一个实施方式中,光学镜头的最大视场角FOV、光学镜头的最大视场角所对应的第一透镜的物侧面的最大通光口径D以及光学镜头最大视场角所对应的像高H之间可满足:D/H/FOV≤0.07。
在一个实施方式中,第三透镜的焦距值F3与第二透镜的焦距值F2之间可满足:︱F3/F2︱≤1.25。
在一个实施方式中,第二透镜和第三透镜的组合焦距值F23与光学镜头的整组焦距值F之间可满足:4≤F23/F≤7。
第四方面,本申请提供了这样一种光学镜头,该光学镜头沿着光轴由物侧至像侧依序 可包括:第一透镜、第二透镜、第三透镜、第四透镜、第五透镜和第六透镜。其中,第一透镜、第二透镜和第六透镜均可具有负光焦度;第三透镜、第四透镜和第五透镜均可具有正光焦度;第二透镜和第三透镜可互相胶合形成第一胶合透镜;第五透镜和第六透镜可互相胶合形成第二胶合透镜;以及光学镜头的光学总长度TTL与光学镜头的整组焦距值F之间可满足:TTL/F≤3.5。
在一个实施方式中,第一透镜的物侧面可为凸面,像侧面可为凹面。
在一个实施方式中,第二透镜的物侧面和像侧面均可为凹面。
在一个实施方式中,第三透镜的物侧面和像侧面均可为凸面。
在一个实施方式中,第四透镜的物侧面和像侧面均可为凸面。
在一个实施方式中,第五透镜的物侧面可为凸面,像侧面可为凹面。
在一个实施方式中,第六透镜的物侧面可为凸面,像侧面可为凹面。
在一个实施方式中,第一透镜和第四透镜均可为非球面镜片。
在一个实施方式中,该光学镜头还可包括设置在第一透镜与第二透镜之间的光阑。
在一个实施方式中,光学镜头的光学后焦BFL与光学镜头的透镜组长度TL之间可满足:BFL/TL≥0.20。
在一个实施方式中,光学镜头的最大视场角FOV、光学镜头的最大视场角所对应的第一透镜的物侧面的最大通光口径D以及光学镜头最大视场角所对应的像高H之间可满足:D/H/FOV≤0.07。
在一个实施方式中,第三透镜的焦距值F3与第二透镜的焦距值F2之间可满足:︱F3/F2︱≤1.25。
在一个实施方式中,第二透镜和第三透镜的组合焦距值F23与光学镜头的整组焦距值F之间可满足:4≤F23/F≤7。
本申请的一些实施方式采用了例如六片透镜,可通过优化设置镜片的形状,合理分配各镜片的光焦度以及胶合形成胶合透镜等,使光学镜头具有小型化、大光圈、高像素等有益效果中的至少一个。此外,本申请的上述实施方式或其它的一些实施方式还可实现小型化、小口径、高解像、低成本、后焦长等有益效果中的至少一个。
附图说明
结合附图,通过以下非限制性实施方式的详细描述,本申请的其它特征、目的和优点将变得更加明显。在附图中:
图1为示出根据本申请实施例1的光学镜头的结构示意图;
图2为示出根据本申请实施例2的光学镜头的结构示意图;
图3为示出根据本申请实施例3的光学镜头的结构示意图;
图4为示出根据本申请实施例4的光学镜头的结构示意图;
图5为示出根据本申请实施例5的光学镜头的结构示意图;以及
图6为示出根据本申请实施例6的光学镜头的结构示意图。
具体实施方式
为了更好地理解本申请,将参考附图对本申请的各个方面做出更详细的说明。应理解,这些详细说明只是对本申请的示例性实施方式的描述,而非以任何方式限制本申请的范围。在说明书全文中,相同的附图标号指代相同的元件。表述“和/或”包括相关联的所列项目中的一个或多个的任何和全部组合。
应注意,在本说明书中,第一、第二、第三等的表述仅用于将一个特征与另一个特征区分开来,而不表示对特征的任何限制。因此,在不背离本申请的教导的情况下,下文中讨论的第一透镜也可被称作第二透镜或第三透镜,第一胶合透镜也可被称作第二胶合透镜。
在附图中,为了便于说明,已稍微夸大了透镜的厚度、尺寸和形状。具体来讲,附图中所示的球面或非球面的形状通过示例的方式示出。即,球面或非球面的形状不限于附图中示出的球面或非球面的形状。附图仅为示例而并非严格按比例绘制。
在本文中,近轴区域是指光轴附近的区域。若透镜表面为凸面且未界定该凸面位置时,则表示该透镜表面至少于近轴区域为凸面;若透镜表面为凹面且未界定该凹面位置时,则表示该透镜表面至少于近轴区域为凹面。每个透镜中较靠近物侧的表面称为该透镜的物侧面,每个透镜中较靠近像侧的表面称为该透镜的像侧面。
还应理解的是,用语“包括”、“包括有”、“具有”、“包含”和/或“包含有”,当在本说明书中使用时表示存在所陈述的特征、元件和/或部件,但不排除存在或附加有一个或多个其它特征、元件、部件和/或它们的组合。此外,当诸如“...中的至少一个”的表述出现在所列特征的列表之后时,修饰整个所列特征,而不是修饰列表中的单独元件。此外,当描述本申请的实施方式时,使用“可”表示“本申请的一个或多个实施方式”。并且,用语“示例性的”旨在指代示例或举例说明。
除非另外限定,否则本文中使用的所有用语(包括技术用语和科学用语)均具有与本申请所属领域普通技术人员的通常理解相同的含义。还应理解的是,用语(例如在常用词典中定义的用语)应被解释为具有与它们在相关技术的上下文中的含义一致的含义,并且将不被以理想化或过度正式意义解释,除非本文中明确如此限定。
需要说明的是,在不冲突的情况下,本申请中的实施例及实施例中的特征可以相互组合。下面将参考附图并结合实施例来详细说明本申请。
以下对本申请的特征、原理和其它方面进行详细描述。
根据本申请示例性实施方式的光学镜头包括例如六个具有光焦度的透镜,即第一透镜、 第二透镜、第三透镜、第四透镜、第五透镜和第六透镜。这六个透镜沿着光轴从物侧至像侧依序排列。
根据本申请示例性实施方式的光学镜头还可进一步包括设置于成像面的感光元件。可选地,设置于成像面的感光元件可以是感光耦合元件(CCD)或互补性氧化金属半导体元件(CMOS)。
一方面,根据本申请的实施方式,第一透镜可具有正光焦度,其物侧面可为凸面,像侧面可为凹面。将第一透镜设计为凸向物侧的弯月透镜,并具有接近于同心圆的形状,有利于尽可能地收集大视场光线,使更多地光线进入后方光学系统,增加通光量。在一些实施方式中,第一透镜可为玻璃非球面透镜,以提高解像,并有利于避免球面同心圆镜片在加工制造上的限制。在实际应用中,考虑到车载镜头室外安装和使用的环境可能较为恶劣,将第一透镜的物侧面配置为凸面,还有利于物侧面上的水滴的滑落,从而减小由于雨雪等恶劣天气对镜头成像品质的影响。
在示例性实施方式中,第一透镜的物侧面的曲率半径R1、像侧面的曲率半径R2与第一透镜于光轴上的中心厚度d1可满足条件式0.6≤R1/(R2+d1)≤1.1,R1、R2和d1进一步可满足0.75≤R1/(R2+d1)≤1.05,例如,0.84≤R1/(R2+d1)≤0.93。
第二透镜可具有负光焦度,其物侧面和像侧面均可为凹面。
第三透镜可具有正光焦度,其物侧面和像侧面均可为凸面。
第四透镜可具有正光焦度,其物侧面和像侧面均可为凸面。将第四透镜布置为双凸透镜,有利于前方光线平稳过渡至后方光学系统。如本领域技术人员已知的,非球面透镜具有较佳的曲率半径特性,进而具有改善歪曲像差及改善像散像差的优点,能够改善成像质量。在使用中,可将第四透镜的物侧面和像侧面中的至少一个布置为非球面镜面,以进一步提升镜头的解像质量。
第五透镜可具有正光焦度,其物侧面可为凸面,像侧面可为凹面。
第六透镜可具有负光焦度,其物侧面可为凸面,像侧面可为凹面。
如本领域技术人员已知的,在光线转折处的离散透镜,容易因加工误差和/或组立误差造成敏感,而胶合透镜的使用可有效地降低系统的敏感度。使用胶合透镜,不仅能够有效地降低系统的敏感度、缩短系统的整体长度,还能够分担系统的整体色差、像差的矫正,提高光学镜头的解像力。另外,采用胶合透镜可使得系统组装便利,可有效降低镜片单元因在组立过程中产生的倾斜/偏芯等公差敏感度问题。
在示例性实施方式中,可通过将第二透镜的像侧面与第三透镜的物侧面胶合,而将第二透镜和第三透镜组合成第一胶合透镜。第一胶合透镜可采用高折射率、低阿贝数的材料与低折射率、高阿贝数(相对于高折射率、低阿贝数的透镜而言)的材料搭配使用的设计。具体而言,在示例性实施例中,第二透镜的折射率比第三透镜的折射率高,且第二透镜的阿贝数比第三透镜的阿贝数低。透镜的高低折射率的搭配有利于前方光线的快速过渡,有利于增大 光阑口径,从而使镜头满足夜视要求。另外,透镜的高低折射率的搭配还有利于消除自身色差,减小公差敏感度,并残留部分色差以平衡系统的色差。并且,通过胶合的方式减少了空气间隔,有利于缩短系统总长。
在示例性实施方式中,可通过将第五透镜的像侧面与第六透镜的物侧面胶合,而将第五透镜和第六透镜组合成第二胶合透镜。第二胶合透镜可采用具有正光焦度的透镜在前、具有负光焦度的透镜在后的胶合方式,从而有利于将经过第四透镜的光线进一步平缓过渡至第六透镜,有利于缩短光学系统的总长,并可减小镜头后端口径或后端尺寸。另外,胶合件的使用还有利于消除自身色差,减小公差敏感度,并残留部分色差以平衡系统的色差。
在示例性实施方式中,可在例如物侧与第二透镜之间设置用于限制光束的光阑,以进一步提高镜头的成像质量。当将光阑设置于第一透镜与第二透镜之间时,可有效地减小镜头的前端口径与前端尺寸,同时还有利于实现大孔径。进一步地,光阑可设置于物侧与第一透镜之间,这样的设置更有利于减小镜头前端镜片口径。应理解的是,光阑位置不限于上述位置,还可根据需要设置在任何其它位置。
在示例性实施方式中,光学镜头的光学总长度TTL(即,从第一透镜的物侧面的中心至光学镜头的成像面在光轴上的距离)与光学镜头的整组焦距值F之间可满足TTL/F≤3,更具体地,TTL和F进一步可满足TTL/F≤2.5,例如,2.12≤TTL/F≤2.25。满足条件式TTL/F≤3,可体现镜头的小型化特性。
在示例性实施方式中,光学镜头的最大视场角FOV、光学镜头的最大视场角所对应的第一透镜的物侧面的最大通光口径D以及光学镜头最大视场角所对应的像高H之间可满足D/H/FOV≤0.08,更具体地,D、H和FOV进一步可满足D/H/FOV≤0.07,例如,0.05≤D/H/FOV≤0.06。满足条件式D/H/FOV≤0.08,可体现镜头的前端小口径。
根据本申请的上述实施方式的光学镜头通过合理的镜片形状设计及材料搭配,可实现高解像(可达8M像素)。合理搭配透镜的形状和光焦度,有助于缩减镜头的光学总长度,实现镜头小型化。两组胶合透镜的使用,可在使得光学系统整体结构更加紧凑的同时,有利于镜头组立,减小公差敏感度,并且还可有效减小系统色差。另外,该光学镜头具有大光圈的性能,可有效增加入光量,提高像面亮度,从而具有较佳的夜视效果,以满足车载镜头在夜间或其它光线不足的特殊场景中的使用需求。该光学镜头能够兼顾具有小型化、大光圈、高像素等特性,能够较好地符合车载镜头在特定场景中应用的要求。
另一方面,根据本申请的实施方式,第一透镜可具有负光焦度,其物侧面可为凸面,像侧面可为凹面。第一透镜设置为凸面朝向物侧的弯月形状能够尽可能地收集大视场光线,使光线进入后方光学系统,有利于减小前端口径,增加通光量。
第二透镜可具有负光焦度,其物侧面和像侧面均可为凹面。
第三透镜可具有正光焦度,其物侧面和像侧面均可为凸面。
第四透镜可具有正光焦度,其物侧面和像侧面均可为凸面。第四透镜设置为双凸镜片可有利于汇聚光线,减小口径,有利于光线的平稳过渡。
第五透镜可具有正光焦度,其物侧面可为凸面,像侧面可为凹面。
第六透镜可具有负光焦度,其物侧面可为凸面,像侧面可为凹面。
在示例性实施方式中,可在例如第一透镜与第二透镜之间设置用于限制光束的光阑,以进一步提高镜头的成像质量。当将光阑设置于第一透镜与第二透镜之间时,可有效收缩进入光学系统的光线,减小光学系统镜片的口径。然而,应注意,此处公开的光阑的位置仅是示例而非限制;在替代的实施方式中,也可根据实际需要将光阑设置在其他位置。
在示例性实施方式中,根据需要,根据本申请的光学镜头还可包括设置在第六透镜与成像面之间的滤光片,以对具有不同波长的光线进行过滤;以及还可包括设置在滤光片与成像面之间的保护玻璃,以防止光学镜头的内部元件(例如,芯片)被损坏。
如本领域技术人员已知的,胶合透镜可用于最大限度地减少色差或消除色差。在光学镜头中使用胶合透镜能够改善像质、减少光能量的反射损失,从而提升镜头成像的清晰度。另外,胶合透镜的使用还可简化镜头制造过程中的装配程序。
在示例性实施方式中,可通过将第二透镜的像侧面与第三透镜的物侧面胶合,而将第二透镜和第三透镜组合成第一胶合透镜。第一胶合透镜由一枚负透镜(即第二透镜)与一枚正透镜(即第三透镜)组成。正负透镜高低折射率的搭配,有利于前方光线的快速过渡。另外,第一胶合透镜的采用,有效减小了系统色差,且使得光学系统整体结构紧凑,满足小型化要求,同时降低单镜片敏感性。
在第一胶合透镜中,靠近物侧的第二透镜具有负光焦度,靠近像侧的第三透镜具有正光焦度,通过负片在前,正片在后的排布,可以将前方光线发散后经快速汇聚后再过渡到后方,更有利于减小后方光线光程,实现短TTL。
在示例性实施方式中,可通过将第五透镜的像侧面与第六透镜的物侧面胶合,而将第五透镜和第六透镜组合成第二胶合透镜。第二胶合透镜的采用,本身可以自身消色差,减小公差敏感度,也可以残留部分色差以平衡系统的色差。在第二胶合透镜中,靠近物侧的第五透镜可收束光线并进行进一步的汇聚,调整光线,减小后端口径;靠近像侧的第六透镜可发散光线,有利于扩大像面。
在示例性实施方式中,光学镜头的光学后焦BFL与光学镜头的透镜组长度TL之间可满足:BFL/TL≥0.20,更理想地,可进一步满足BFL/TL≥0.22。通过满足条件式BFL/TL≥0.20,可在实现小型化的基础上,满足后焦长的特性,有利于光学镜头的组装。
在示例性实施方式中,光学镜头的光学总长度TTL与光学镜头的整组焦距值F之间可满足:TTL/F≤3.5,更理想地,可进一步满足TTL/F≤3。满足条件式TTL/F≤3.5,可保证系统的小型化特性。
在示例性实施方式中,光学镜头的最大视场角FOV、光学镜头的最大视场角所对应的 第一透镜物侧面的最大通光口径D以及光学镜头最大视场角所对应的像高H之间可满足:D/H/FOV≤0.07,更理想地,可进一步满足D/H/FOV≤0.065。满足条件式D/H/FOV≤0.07,可实现镜头前端小口径特性。
在示例性实施方式中,第三透镜的焦距值F3与第二透镜的焦距值F2之间可满足:︱F3/F2︱≤1.25,更理想地,可进一步满足︱F3/F2︱≤1.1。通过设置使得相邻的第二透镜和第三透镜的焦距相近,可有助于光线的平缓过渡。
在示例性实施方式中,第二透镜和第三透镜的组合焦距值F23与光学镜头的整组焦距值F之间可满足:4≤F23/F≤7,更理想地,可进一步满足4.3≤F23/F≤6.8。通过控制第一透镜与第四透镜之间的光线走势,可减小由于经第一透镜进入的大角度光线引起的像差,同时使镜片结构紧凑,从而有利于实现小型化特性。
在示例性实施方式中,根据本申请的光学镜头中的第一透镜和第四透镜可采用非球面镜片。非球面镜片的特点是:从镜片中心到周边曲率是连续变化的。与从镜片中心到周边有恒定曲率的球面镜片不同,非球面镜片具有更佳的曲率半径特性,具有改善歪曲像差及改善像散像差的优点。采用非球面镜片后,能够尽可能地消除在成像的时候出现的像差,从而提升镜头的成像质量。例如,第一透镜可为非球面镜片,以提升解像,矫正色差。第四透镜可为非球面镜片,以提高解像,减小畸变,矫正彗差及场曲等像差。应理解的是,为了提高成像质量,根据本申请的光学镜头可增加非球面镜片的数量。
在示例性实施方式中,光学镜头所采用的镜片可以是塑料材质的镜片,还可以是玻璃材质的镜片。塑料材质的镜片热膨胀系数较大,当镜头所使用的环境温度变化较大时,塑料材质的透镜会引起镜头的光学后焦变化量较大。采用玻璃材质的镜片,可减小温度对镜头光学后焦的影响,但是成本较高。
根据本申请的上述实施方式的光学镜头通过合理的镜片形状的设置及光焦度的设置,仅使用6片架构,降低成本的同时且能够实现高解像要求。另外,根据本申请上述实施方式的光学镜头在满足通光孔径的要求下,通过控制第一透镜的形状,能够实现镜头小口径;同时通过将光阑放置在第一透镜与第二透镜之间的方法,进一步缩小镜头前端口径;根据本申请上述实施方式的光学镜头可保证解像清晰度,使影像清晰,同时给驾驶员提供准确的信息,并降低软件误判风险。因此,根据本申请的上述实施方式的光学镜头能够具有小型化、小口径、高解像、低成本、大光圈、后焦长等有益效果中的至少一个,可更好地符合车载镜头的要求。
本领域技术人员应当理解,上文中使用的光学镜头的光学总长度TTL是指从第一透镜物侧面的中心至成像面中心的轴上距离;光学镜头的光学后焦BFL是指从最后一个透镜第六透镜像侧面的中心至成像面中心的轴上距离;以及光学镜头的透镜组长度TL是指从第一透镜物侧面的中心至第六透镜像侧面中心的轴上距离。
本领域的技术人员应当理解,在未背离本申请要求保护的技术方案的情况下,可改变构 成镜头的透镜数量,来获得本说明书中描述的各个结果和优点。例如,虽然在实施方式中以六个透镜为例进行了描述,但是该光学镜头不限于包括六个透镜。如果需要,该光学镜头还可包括其它数量的透镜。
下面参照附图进一步描述可适用于上述实施方式的光学镜头的具体实施例。
实施例1
以下参照图1描述根据本申请实施例1的光学镜头。图1示出了根据本申请实施例1的光学镜头的结构示意图。
如图1所示,光学镜头沿着光轴从物侧至像侧依序包括第一透镜L1、第二透镜L2、第三透镜L3、第四透镜L4、第五透镜L5和第六透镜L6。
第一透镜L1为具有正光焦度的弯月透镜,其物侧面S1为凸面,像侧面S2为凹面,且第一透镜L1的物侧面S1和像侧面S2均为非球面。第二透镜L2为具有负光焦度的双凹透镜,其物侧面S4和像侧面S5均为凹面,且第二透镜L2的物侧面S4和像侧面S5均为球面。第三透镜L3为具有正光焦度的双凸透镜,其物侧面S5和像侧面S6均为凸面,且第三透镜L3的物侧面S5和像侧面S6均为球面。第四透镜L4为具有正光焦度的双凸透镜,其物侧面S7和像侧面S8均为凸面,且第四透镜L4的物侧面S7和像侧面S8均为非球面。第五透镜L5为具有正光焦度的弯月透镜,其物侧面S9为凸面,像侧面S10为凹面,且第五透镜L5的物侧面S9和像侧面S10均为球面。第六透镜L6为具有负光焦度的弯月透镜,其物侧面S10为凸面,像侧面S11为凹面,且第六透镜L6的物侧面S10和像侧面S11均为球面。
在本实施例中,第二透镜L2和第三透镜L3胶合组成第一胶合透镜。第五透镜L5和第六透镜L6胶合组成第二胶合透镜。
可选地,该光学镜头还可包括具有物侧面S12和像侧面S13的滤光片和/或保护玻璃L7。滤光片可用于校正色彩偏差。保护玻璃可用于保护位于成像面IMA的图像传感芯片。来自物体的光依序穿过各表面S1至S13并最终成像在成像面IMA上。
在本实施例的光学镜头中,可在第一透镜L1与第二透镜L2之间设置光阑STO,以提高成像质量。
表1示出了实施例1的光学镜头的各透镜的曲率半径R、厚度T、折射率Nd以及阿贝数Vd,其中,曲率半径R和厚度T的单位均为毫米(mm)。
表1
面号 曲率半径R 厚度T 折射率Nd 阿贝数Vd
S1 15.4959 4.9860 1.81 32.00
S2 13.3889 2.8819    
STO 无穷 3.3938    
S4 -23.8787 0.9000 1.85 32.30
S5 42.0103 4.7316 1.62 54.00
S6 -13.5653 0.1500    
S7 23.1403 4.0529 1.59 61.20
S8 -21.6504 0.1500    
S9 9.0342 3.7397 1.50 65.00
S10 28.6906 2.2803 1.64 35.70
S11 5.9845 3.5000    
S12 无穷 0.9500 1.52 64.17
S13 无穷 3.4969    
IMA 无穷      
本实施例采用了六片透镜作为示例,通过合理分配各个透镜的光焦度与面型、各透镜的中心厚度以及各透镜间的空气间隔,可实现小型化、大光圈、高像素等有益效果中的一个。各非球面面型Z由以下公式限定:
Figure PCTCN2019079981-appb-000001
其中,Z为非球面沿光轴方向在高度为h的位置时,距非球面顶点的距离矢高;c为非球面的近轴曲率,c=1/R(即,近轴曲率c为上表1中曲率半径R的倒数);k为圆锥系数conic;A、B、C、D、E均为高次项系数。下表2示出了可用于实施例1中非球面透镜表面S1、S2、S7和S8的圆锥系数k以及高次项系数A、B、C、D和E。
表2
面号 k A B C D E
S1 -1.2528 -1.9487E-05 -2.6375E-07 -2.4481E-09 -3.1091E-11 -5.3115E-14
S2 0.1072 1.2436E-05 1.3728E-07 -4.3608E-09 -1.3093E-10 8.872847-E13
S7 -1.7194 -4.8597E-05 -1.2513E-07 -5.9151E-09 1.3829E-10 -9.0245E-13
S8 4.4790 4.5741E-07 -6.9083E-08 -1.5000E-09 8.2123E-11 -5.6514E-13
下表3给出了实施例1的光学镜头的最大视场角所对应的第一透镜L1的物侧面S1的最大通光口径D、光学镜头的最大视场角所对应的像高H、光学镜头的最大视场角FOV、光学镜头的光学总长度TTL(即,从第一透镜L1的物侧面S1的中心至成像面IMA的轴上距离)以及光学镜头的整组焦距值F。
表3
参数 D(mm) H(mm) FOV(°) TTL(mm) F(mm)
数值 16.79 9.16 31.2 35.21 16.55
在本实施例中,第一透镜L1的物侧面S1的曲率半径R1、第一透镜L1的像侧面S2的曲率半径R2及第一透镜L1于光轴上的中心厚度d1之间满足R1/(R2+d1)=0.843;光学镜头的最大视场角FOV、光学镜头的最大视场角所对应的第一透镜L1的物侧面S1的最大通光口径D及光学镜头最大视场角所对应的像高H之间满足D/H/FOV=0.059;以及光学镜头的 光学总长度TTL与光学镜头的整组焦距值F之间满足TTL/F=2.128。
实施例2
以下参照图2描述了根据本申请实施例2的光学镜头。在本实施例及以下实施例中,为简洁起见,将省略部分与实施例1相似的描述。图2示出了根据本申请实施例2的光学镜头的结构示意图。
如图2所示,光学镜头沿着光轴从物侧至像侧依序包括第一透镜L1、第二透镜L2、第三透镜L3、第四透镜L4、第五透镜L5和第六透镜L6。
第一透镜L1为具有正光焦度的弯月透镜,其物侧面S1为凸面,像侧面S2为凹面,且第一透镜L1的物侧面S1和像侧面S2均为非球面。第二透镜L2为具有负光焦度的双凹透镜,其物侧面S4和像侧面S5均为凹面,且第二透镜L2的物侧面S4和像侧面S5均为球面。第三透镜L3为具有正光焦度的双凸透镜,其物侧面S5和像侧面S6均为凸面,且第三透镜L3的物侧面S5和像侧面S6均为球面。第四透镜L4为具有正光焦度的双凸透镜,其物侧面S7和像侧面S8均为凸面,且第四透镜L4的物侧面S7和像侧面S8均为非球面。第五透镜L5为具有正光焦度的弯月透镜,其物侧面S9为凸面,像侧面S10为凹面,且第五透镜L5的物侧面S9和像侧面S10均为球面。第六透镜L6为具有负光焦度的弯月透镜,其物侧面S10为凸面,像侧面S11为凹面,且第六透镜L6的物侧面S10和像侧面S11均为球面。
在本实施例中,第二透镜L2和第三透镜L3胶合组成第一胶合透镜。第五透镜L5和第六透镜L6胶合组成第二胶合透镜。
可选地,该光学镜头还可包括具有物侧面S12和像侧面S13的滤光片和/或保护玻璃L7。滤光片可用于校正色彩偏差。保护玻璃可用于保护位于成像面IMA的图像传感芯片。来自物体的光依序穿过各表面S1至S13并最终成像在成像面IMA上。
在本实施例的光学镜头中,可在第一透镜L1与第二透镜L2之间设置光阑STO,以提高成像质量。
本实施例采用了六片透镜作为示例,通过合理分配各个透镜的光焦度与面型、各透镜的中心厚度以及各透镜间的空气间隔,可实现小型化、大光圈、高像素等有益效果中的一个。
下表4示出了实施例2的光学镜头的各透镜的曲率半径R、厚度T、折射率Nd以及阿贝数Vd,其中,曲率半径R和厚度T的单位均为毫米(mm)。
表4
面号 曲率半径R 厚度T 折射率Nd 阿贝数Vd
S1 12.2860 3.5019 1.81 41.00
S2 9.7264 3.4446    
STO 无穷 1.9422    
S4 -42.4117 0.9500 1.72 25.30
S5 25.3226 5.0210 1.62 55.00
S6 -18.4814 0.1500    
S7 24.5971 5.5007 1.59 61.20
S8 -15.7097 0.1500    
S9 9.4900 5.3176 1.50 72.00
S10 74.0837 0.9500 1.63 40.00
S11 6.1057 3.5000    
S12 无穷 0.9500 1.52 64.17
S13 无穷 3.3590    
IMA 无穷      
下表5示出了可用于实施例2中非球面透镜表面S1、S2、S7和S8的圆锥系数k以及高次项系数A、B、C、D和E,其中,各非球面面型可由上述实施例1中给出的公式(1)限定。
表5
面号 k A B C D E
S1 -1.0289 -3.3392E-05 -1.1255E-06 -8.2248E-09 -6.1424E-11 6.6353-E13
S2 -0.5664 -3.8888E-04 -1.7530E-06 -2.4985E-08 1.3835E-10 1.9454E-12
S7 -8.1736 -3.3951E-05 -8.0724E-08 1.3923E-09 -1.5267E-11 4.2385E-14
S8 0.0452 3.5933E-05 1.5786E-08 1.7594E-09 -1.0932E-11 4.3212E-14
下表6给出了实施例2的光学镜头的最大视场角所对应的第一透镜L1的物侧面S1的最大通光口径D、光学镜头的最大视场角所对应的像高H、光学镜头的最大视场角FOV、光学镜头的光学总长度TTL、光学镜头的整组焦距值F。
表6
参数 D(mm) H(mm) FOV(°) TTL(mm) F(mm)
数值 15.50 9.04 31.2 34.73 15.44
在本实施例中,第一透镜L1的物侧面S1的曲率半径R1、第一透镜L1的像侧面S2的曲率半径R2及第一透镜L1于光轴上的中心厚度d1之间满足R1/(R2+d1)=0.929;光学镜头的最大视场角FOV、光学镜头的最大视场角所对应的第一透镜L1的物侧面S1的最大通光口径D及光学镜头最大视场角所对应的像高H之间满足D/H/FOV=0.055;以及光学镜头的光学总长度TTL与光学镜头的整组焦距值F之间满足TTL/F=2.249。
实施例3
以下参照图3描述了根据本申请实施例3的光学镜头。图3示出了根据本申请实施例3的光学镜头的结构示意图。
如图3所示,光学镜头沿着光轴从物侧至像侧依序包括第一透镜L1、第二透镜L2、第三透镜L3、第四透镜L4、第五透镜L5和第六透镜L6。
第一透镜L1为具有正光焦度的弯月透镜,其物侧面S1为凸面,像侧面S2为凹面,且 第一透镜L1的物侧面S1和像侧面S2均为非球面。第二透镜L2为具有负光焦度的双凹透镜,其物侧面S4和像侧面S5均为凹面,且第二透镜L2的物侧面S4和像侧面S5均为球面。第三透镜L3为具有正光焦度的双凸透镜,其物侧面S5和像侧面S6均为凸面,且第三透镜L3的物侧面S5和像侧面S6均为球面。第四透镜L4为具有正光焦度的双凸透镜,其物侧面S7和像侧面S8均为凸面,且第四透镜L4的物侧面S7和像侧面S8均为非球面。第五透镜L5为具有正光焦度的弯月透镜,其物侧面S9为凸面,像侧面S10为凹面,且第五透镜L5的物侧面S9和像侧面S10均为球面。第六透镜L6为具有负光焦度的弯月透镜,其物侧面S10为凸面,像侧面S11为凹面,且第六透镜L6的物侧面S10和像侧面S11均为球面。
在本实施例中,第二透镜L2和第三透镜L3胶合组成第一胶合透镜。第五透镜L5和第六透镜L6胶合组成第二胶合透镜。
可选地,该光学镜头还可包括具有物侧面S12和像侧面S13的滤光片和/或保护玻璃L7。滤光片可用于校正色彩偏差。保护玻璃可用于保护位于成像面IMA的图像传感芯片。来自物体的光依序穿过各表面S1至S13并最终成像在成像面IMA上。
在本实施例的光学镜头中,可在第一透镜L1与第二透镜L2之间设置光阑STO,以提高成像质量。
本实施例采用了六片透镜作为示例,通过合理分配各个透镜的光焦度与面型、各透镜的中心厚度以及各透镜间的空气间隔,可实现小型化、大光圈、高像素等有益效果中的一个。
下表7示出了实施例3的光学镜头的各透镜的曲率半径R、厚度T、折射率Nd以及阿贝数Vd,其中,曲率半径R和厚度T的单位均为毫米(mm)。
表7
面号 曲率半径R 厚度T 折射率Nd 阿贝数Vd
S1 12.5436 3.7869 1.81 41.00
S2 9.9300 3.4294    
STO 无穷 1.7586    
S4 -39.7055 0.9500 1.85 23.00
S5 24.4760 5.0672 1.62 57.00
S6 -17.9424 0.1500    
S7 25.3715 5.4673 1.59 55.00
S8 -15.5242 0.1500    
S9 9.3452 5.2608 1.50 61.00
S10 55.3539 0.9500 1.63 35.70
S11 6.0617 3.5000    
S12 无穷 0.9500 1.52 64.17
S13 无穷 3.6102    
IMA 无穷      
下表8示出了可用于实施例3中非球面透镜表面S1、S2、S7和S8的圆锥系数k以及高次项系数A、B、C、D和E,其中,各非球面面型可由上述实施例1中给出的公式(1)限定。其中,各非球面面型可由上述实施例1中给出的公式(1)限定。
表8
面号 k A B C D E
S1 -2.9421 -2.7746E-05 -9.5168E-07 -6.1404E-09 -8.5528E-11 6.4854E-13
S2 -3.3719 -2.4279E-05 -1.4894E-06 -1.8092E-08 -8.8118E-11 3.6200E-12
S7 -0.4170 -8.6229E-05 -8.9364E-08 1.6333E-09 -1.6762E-11 4.3791E-14
S8 0.0049 8.5305E-05 1.4644E-08 1.9477E-09 -1.2161E-11 5.1340E-14
下表9给出了实施例3的光学镜头的最大视场角所对应的第一透镜L1的物侧面S1的最大通光口径D、光学镜头的最大视场角所对应的像高H、光学镜头的最大视场角FOV、光学镜头的光学总长度TTL、光学镜头的整组焦距值F。
表9
参数 D(mm) H(mm) FOV(°) TTL(mm) F(mm)
数值 16.20 9.04 31.2 35.03 16.31
在本实施例中,第一透镜L1的物侧面S1的曲率半径R1、第一透镜L1的像侧面S2的曲率半径R2及第一透镜L1于光轴上的中心厚度d1之间满足R1/(R2+d1)=0.914;光学镜头的最大视场角FOV、光学镜头的最大视场角所对应的第一透镜L1的物侧面S1的最大通光口径D及光学镜头最大视场角所对应的像高H之间满足D/H/FOV=0.057;以及光学镜头的光学总长度TTL与光学镜头的整组焦距值F之间满足TTL/F=2.148。
实施例4
以下参照图4描述了根据本申请实施例4的光学镜头。图4示出了根据本申请实施例4的光学镜头的结构示意图。
如图4所示,光学镜头沿着光轴从物侧至像侧依序包括第一透镜L1、第二透镜L2、第三透镜L3、第四透镜L4、第五透镜L5和第六透镜L6。
第一透镜L1为具有正光焦度的弯月透镜,其物侧面S1为凸面,像侧面S2为凹面,且第一透镜L1的物侧面S1和像侧面S2均为非球面。第二透镜L2为具有负光焦度的双凹透镜,其物侧面S4和像侧面S5均为凹面,且第二透镜L2的物侧面S4和像侧面S5均为球面。第三透镜L3为具有正光焦度的双凸透镜,其物侧面S5和像侧面S6均为凸面,且第三透镜L3的物侧面S5和像侧面S6均为球面。第四透镜L4为具有正光焦度的双凸透镜,其物侧面S7和像侧面S8均为凸面,且第四透镜L4的物侧面S7和像侧面S8均为非球面。第五透镜L5为具有正光焦度的弯月透镜,其物侧面S9为凸面,像侧面S10为凹面,且第五透镜L5的物侧面S9和像侧面S10均为球面。第六透镜L6为具有负光焦度的弯月透镜,其物侧面S10为凸面,像侧面S11为凹面,且第六透镜L6的物侧面S10和像侧面S11均为球面。
在本实施例中,第二透镜L2和第三透镜L3胶合组成第一胶合透镜。第五透镜L5和第六透镜L6胶合组成第二胶合透镜。
可选地,该光学镜头还可包括具有物侧面S12和像侧面S13的滤光片和/或保护玻璃L7。滤光片可用于校正色彩偏差。保护玻璃可用于保护位于成像面IMA的图像传感芯片。来自物体的光依序穿过各表面S1至S13并最终成像在成像面IMA上。
在本实施例的光学镜头中,可在第一透镜L1与第二透镜L2之间设置光阑STO,以提高成像质量。
本实施例采用了六片透镜作为示例,通过合理分配各个透镜的光焦度与面型、各透镜的中心厚度以及各透镜间的空气间隔,可实现小型化、大光圈、高像素等有益效果中的一个。
下表10示出了实施例4的光学镜头的各透镜的曲率半径R、厚度T、折射率Nd以及阿贝数Vd,其中,曲率半径R和厚度T的单位均为毫米(mm)。
表10
面号 曲率半径R 厚度T 折射率Nd 阿贝数Vd
S1 12.4843 3.8120 1.81 41.00
S2 10.0405 3.3900    
STO 无穷 1.6980    
S4 -36.0351 0.9500 1.85 28.30
S5 24.7750 5.0900 1.62 55.50
S6 -17.7366 0.1500    
S7 25.8358 5.6200 1.59 61.20
S8 -15.3185 0.1500    
S9 9.1487 5.1600 1.50 64.00
S10 47.8223 0.9500 1.63 30.70
S11 6.0200 3.5000    
S12 无穷 0.9500 1.52 64.17
S13 无穷 4.1000    
IMA 无穷      
下表11示出了可用于实施例4中非球面透镜表面S1、S2、S7和S8的圆锥系数k以及高次项系数A、B、C、D和E,其中,各非球面面型可由上述实施例1中给出的公式(1)限定。其中,各非球面面型可由上述实施例1中给出的公式(1)限定。
表11
面号 k A B C D E
S1 -4.8739 -4.3210E-05 -9.0268E-07 -3.8833E-09 -1.1919E-10 7.5380E-13
S2 -1.3323 -1.0460E-04 -1.4299E-06 -8.5481E-09 -3.3189E-10 5.3462E-12
S7 -0.6865 -5.8408E-05 -1.0418E-07 1.9624E-09 -1.9554E-11 5.3093E-14
S8 1.4328 1.1649E-05 -2.1344E-08 2.4572E-09 -1.8437E-11 7.5619E-14
下表12给出了实施例4的光学镜头的最大视场角所对应的第一透镜L1的物侧面S1的最大通光口径D、光学镜头的最大视场角所对应的像高H、光学镜头的最大视场角FOV、光学镜头的光学总长度TTL、光学镜头的整组焦距值F。
表12
参数 D(mm) H(mm) FOV(°) TTL(mm) F(mm)
数值 16.14 8.97 31.2 35.50 16.31
在本实施例中,第一透镜L1的物侧面S1的曲率半径R1、第一透镜L1的像侧面S2的曲率半径R2及第一透镜L1于光轴上的中心厚度d1之间满足R1/(R2+d1)=0.901;光学镜头的最大视场角FOV、光学镜头的最大视场角所对应的第一透镜L1的物侧面S1的最大通光口径D及光学镜头最大视场角所对应的像高H之间满足D/H/FOV=0.058;以及光学镜头的光学总长度TTL与光学镜头的整组焦距值F之间满足TTL/F=2.177。
实施例5
以下参照图5描述根据本申请实施例5的光学镜头。图5示出了根据本申请实施例5的光学镜头的结构示意图。
如图5所示,光学镜头沿着光轴从物侧至成像侧依序包括第一透镜L1、第二透镜L2、第三透镜L3、第四透镜L4、第五透镜L5和第六透镜L6。
第一透镜L1为具有负光焦度的弯月透镜,其物侧面S1为凸面,像侧面S2为凹面。第二透镜L2为具有负光焦度的双凹透镜,其物侧面S4和像侧面S5均为凹面。第三透镜L3为具有正光焦度的双凸透镜,其物侧面S5和像侧面S6均为凸面。其中,第二透镜L2和第三透镜L3互相胶合形成第一胶合透镜。第四透镜L4为具有正光焦度的双凸透镜,其物侧面S7和像侧面S8均为凸面。第五透镜L5为具有正光焦度的弯月透镜,其物侧面S9为凸面,像侧面S10为凹面。第六透镜L6为具有负光焦度的弯月透镜,其物侧面S10为凸面,像侧面S11为凹面。其中,第五透镜L5和第六透镜L6互相胶合形成第二胶合透镜。
其中,第一透镜L1和第四透镜L4均为非球面镜片,它们各自的物侧面和像侧面均为非球面。
可选地,该光学镜头还可包括具有物侧面S12和像侧面S13的滤光片L7和/或保护透镜L7’。滤光片L7可用于校正色彩偏差。保护透镜L7’可用于保护位于成像面IMA的图像传感芯片。来自物体的光依序穿过各表面S1至S13并最终成像在成像面IMA上。
在本实施例的光学镜头中,可在第一透镜L1与第二透镜L2之间设置光阑STO以提高成像质量。
表13示出了实施例5的光学镜头的各透镜的曲率半径R、厚度T、折射率Nd以及阿贝数Vd,其中,曲率半径R和厚度T的单位均为毫米(mm)。
表13
面号 曲率半径R 厚度T 折射率Nd 阿贝数Vd
1 38.9373 4.0043 1.66 55.15
2 26.3933 3.5457    
STO 无穷 1.0000    
4 -34.3400 6.3057 1.63 35.02
5 24.9839 5.9481 1.64 61.67
6 -24.9839 0.1000    
7 22.0182 8.3801 1.53 60.71
8 -24.5845 0.1000    
9 10.2581 5.0007 1.72 50.59
10 39.2369 1.0000 1.79 24.59
11 6.9667 3.0000    
12 无穷 0.9500 1.52 64.21
13 无穷 5.0019    
IMA 无穷      
本实施例采用了六片透镜作为示例,通过合理分配各个透镜的光焦度与面型,各透镜的中心厚度以及各透镜间的空气间隔,可使镜头具有小型化、小口径、高解像、低成本、大光圈、后焦长等有益效果中的至少一个。
下表14示出了可用于实施例5中的非球面透镜表面S1-S2和S7-S8的圆锥系数k以及高次项系数A、B、C、D和E。其中,各非球面面型可由上述实施例1中给出的公式(1)限定。
表14
面号 K A B C D E
1 -4.7283 -7.9324E-05 -2.2682E-07 1.3575E-09 -2.8901E-11 1.8624E-13
2 1.1454 -8.6828E-05 -7.5943E-08 5.6449E-09 -8.4400E-11 6.5528E-13
7 -1.3587 -2.7444E-05 -7.4029E-08 -9.5866E-10 9.3217E-12 -6.9403E-14
8 0.5546 1.8019E-05 -1.1792E-07 2.4916E-10 -1.7044E-12 -2.1114E-14
下表15给出了实施例5的光学镜头的整组焦距值F、光学镜头的光学总长度TTL(即,从第一透镜L1的物侧面S1的中心至成像面IMA的轴上距离)、光学镜头的最大视场角所对应的第一透镜L1的物侧面S1的最大通光口径D、光学镜头的最大视场角所对应的像高H、光学镜头的最大视场角FOV、第二透镜L2和第三透镜L3的组合焦距值F23(即,第一胶合透镜的焦距值)、第二透镜L2的焦距值F2、第三透镜L3的焦距值F3、光学镜头的光学后焦BFL(即,最后一个透镜第六透镜L6的像侧面S11的中心至成像面IMA的轴上距离)、以及光学镜头的透镜组长度TL(即,从第一透镜L1的物侧面S1中心至第六透镜L6的像侧面S11中心的轴上距离)。
表15
F(mm) 16.06 F2(mm) -21.89
TTL(mm) 44.34 F3(mm) 20.33
D(mm) 16.60 BFL(mm) 8.95
H(mm) 8.80 TL(mm) 38.38
FOV(°) 32.00    
F23(mm) 88.70    
在本实施例中,光学镜头的光学后焦BFL与光学镜头的透镜组长度TL之间满足BFL/TL=0.2332;第三透镜L3的焦距值F3与第二透镜L2的焦距值F2之间满足︱F3/F2︱=0.9287;光学镜头的光学总长度TTL与光学镜头的整组焦距值F之间满足TTL/F=2.7609;光学镜头的最大视场角FOV、光学镜头的最大视场角所对应的第一透镜L1的物侧面S1的最大通光口径D以及光学镜头最大视场角所对应的像高H之间满足D/H/FOV=0.0590;以及第二透镜L2和第三透镜L3的组合焦距值F23与光学镜头的整组焦距值F之间满足F23/F=5.5230。
实施例6
以下参照图6描述了根据本申请实施例6的光学镜头。图6示出了根据本申请实施例6的光学镜头的结构示意图。
如图6所示,光学镜头沿着光轴从物侧至成像侧依序包括第一透镜L1、第二透镜L2、第三透镜L3、第四透镜L4、第五透镜L5和第六透镜L6。
第一透镜L1为具有负光焦度的弯月透镜,其物侧面S1为凸面,像侧面S2为凹面。第二透镜L2为具有负光焦度的双凹透镜,其物侧面S4和像侧面S5均为凹面。第三透镜L3为具有正光焦度的双凸透镜,其物侧面S5和像侧面S6均为凸面。其中,第二透镜L2和第三透镜L3互相胶合形成第一胶合透镜。第四透镜L4为具有正光焦度的双凸透镜,其物侧面S7和像侧面S8均为凸面。第五透镜L5为具有正光焦度的弯月透镜,其物侧面S9为凸面,像侧面S10为凹面。第六透镜L6为具有负光焦度的弯月透镜,其物侧面S10为凸面,像侧面S11为凹面。其中,第五透镜L5和第六透镜L6互相胶合形成第二胶合透镜。
其中,第一透镜L1和第四透镜L4均为非球面镜片,它们各自的物侧面和像侧面均为非球面。
可选地,该光学镜头还可包括具有物侧面S12和像侧面S13的滤光片L7和/或保护透镜L7’。滤光片L7可用于校正色彩偏差。保护透镜L7’可用于保护位于成像面IMA的图像传感芯片。来自物体的光依序穿过各表面S1至S13并最终成像在成像面IMA上。
在本实施例的光学镜头中,可在第一透镜L1与第二透镜L2之间设置光阑STO以提高成像质量。
本实施例采用了六片透镜作为示例,通过合理分配各个透镜的光焦度与面型,各透镜的中心厚度以及各透镜间的空气间隔,可使镜头具有小型化、小口径、高解像、低成本、大光圈、后焦长等有益效果中的至少一个。
下表16示出了实施例6的光学镜头的各透镜的曲率半径R、厚度T、折射率Nd以及阿贝数Vd,其中,曲率半径R和厚度T的单位均为毫米(mm)。下表17示出了可用于实施 例6中非球面透镜表面S1-S2和S7-S8的圆锥系数k以及高次项系数A、B、C、D和E。其中,各非球面面型可由上述实施例1中给出的公式(1)限定。下表18给出了实施例6的光学镜头的整组焦距值F、光学镜头的光学总长度TTL、光学镜头的最大视场角所对应的第一透镜L1的物侧面S1的最大通光口径D、光学镜头的最大视场角所对应的像高H、光学镜头的最大视场角FOV、第二透镜L2和第三透镜L3的组合焦距值F23、第二透镜L2的焦距值F2、第三透镜L3的焦距值F3、光学镜头的光学后焦BFL以及光学镜头的透镜组长度TL。
表16
面号 曲率半径R 厚度T 折射率Nd 阿贝数Vd
1 16.0000 4.0000 1.60 50.32
2 15.3424 2.7000    
STO 无穷 1.8000    
4 -32.3424 6.7149 1.64 33.54
5 23.3424 5.7961 1.60 66.45
6 -21.0256 0.1000    
7 24.0000 8.4947 1.59 61.16
8 -22.0000 0.1002    
9 11.0324 4.6441 1.66 56.35
10 37.0000 1.0000 1.73 27.03
11 6.7000 3.0000    
12 无穷 0.9500 1.52 64.21
13 无穷 5.0013    
IMA 无穷      
表17
面号 K A B C D E
1 -0.3014 -4.2310E-05 -3.4466E-07 -1.4862E-09 -2.4181E-11 2.6748E-13
2 1.2609 -7.5900E-05 -7.0746E-07 -6.8779E-09 -2.1829E-11 -6.0048E-13
7 -1.6181 -1.9665E-05 -7.3386E-08 -1.5727E-09 3.7507E-11 -1.9899E-13
8 0.6513 1.1418E-05 -9.8801E-08 1.0749E-10 -8.0087E-13 -4.4503E-14
表18
F(mm) 17.07 F2(mm) -19.99
TTL(mm) 44.30 F3(mm) 19.45
D(mm) 16.80 BFL(mm) 8.95
H(mm) 9.82 TL(mm) 38.35
FOV(°) 31.20    
F23(mm) 93.07    
在本实施例中,光学镜头的光学后焦BFL与光学镜头的透镜组长度TL之间满足BFL/TL=0.2334;第三透镜L3的焦距值F3与第二透镜L2的焦距值F2之间满足︱F3/F2︱ =0.9730;光学镜头的光学总长度TTL与光学镜头的整组焦距值F之间满足TTL/F=2.5952;光学镜头的最大视场角FOV、光学镜头的最大视场角所对应的第一透镜L1的物侧面S1的最大通光口径D以及光学镜头最大视场角所对应的像高H之间满足D/H/FOV=0.0548;以及第二透镜L2和第三透镜L3的组合焦距值F23与光学镜头的整组焦距值F之间满足F23/F=5.4523。
综上,实施例1至实施例6分别满足以下表19所示的关系。
表19
条件式\实施例 1 2 3 4 5 6
R1/(R2+d1) 0.843 0.929 0.914 0.901 / /
D/H/FOV 0.059 0.055 0.057 0.058 0.0590 0.0548
TTL/F 2.128 2.249 2.148 2.177 2.7609 2.5952
BFL/TL / / / / 0.2332 0.2334
|F3/F2| / / / / 0.9287 0.9730
F23/F / / / / 5.5230 5.4523
以上描述仅为本申请的较佳实施例以及对所运用技术原理的说明。本领域技术人员应当理解,本申请中所涉及的发明范围,并不限于上述技术特征的特定组合而成的技术方案,同时也应涵盖在不脱离所述发明构思的情况下,由上述技术特征或其等同特征进行任意组合而形成的其它技术方案。例如上述特征与本申请中公开的(但不限于)具有类似功能的技术特征进行互相替换而形成的技术方案。

Claims (45)

  1. 光学镜头,沿着光轴由物侧至像侧依序包括:第一透镜、第二透镜、第三透镜、第四透镜、第五透镜和第六透镜,其特征在于,
    所述第一透镜具有正光焦度,其物侧面为凸面,像侧面为凹面;
    所述第二透镜与所述第三透镜胶合组成第一胶合透镜;
    所述第四透镜具有正光焦度,其物侧面和像侧面均为凸面;以及
    所述第五透镜与所述第六透镜胶合组成第二胶合透镜。
  2. 根据权利要求1所述的光学镜头,其特征在于,
    所述第一胶合透镜中的所述第二透镜具有负光焦度,其物侧面和像侧面均为凹面;以及
    所述第一胶合透镜中的所述第三透镜具有正光焦度,其物侧面和像侧面均为凸面。
  3. 根据权利要求1或2所述的光学镜头,其特征在于,
    所述第二胶合透镜中所述第五透镜具有正光焦度,其物侧面为凸面,像侧面为凹面;以及
    所述第二胶合透镜中所述第六透镜具有负光焦度,其物侧面为凸面,像侧面为凹面。
  4. 根据权利要求1所述的光学镜头,其特征在于,所述第一透镜为非球面透镜。
  5. 根据权利要求1或4所述的光学镜头,其特征在于,所述第四透镜为非球面透镜。
  6. 根据权利要求1至5中任一项所述的光学镜头,其特征在于,所述第一透镜的物侧面的曲率半径R1、所述第一透镜的像侧面的曲率半径R2以及所述第一透镜于所述光轴上的中心厚度d1满足0.6≤R1/(R2+d1)≤1.1。
  7. 根据权利要求1至5中任一项所述的光学镜头,其特征在于,满足D/H/FOV≤0.08,
    FOV为所述光学镜头的最大视场角;
    D为所述光学镜头的最大视场角所对应的所述第一透镜的物侧面的最大通光口径;以及
    H为所述光学镜头最大视场角所对应的像高。
  8. 根据权利要求1至5中任一项所述的光学镜头,其特征在于,所述光学镜头的光学总长度TTL与所述光学镜头的整组焦距值F满足TTL/F≤3。
  9. 根据权利要求1至5中任一项所述的光学镜头,其特征在于,所述光学镜头还包括光阑,所述光阑设置于所述物侧与所述第二透镜之间。
  10. 根据权利要求9所述的光学镜头,其特征在于,所述光阑设置于所述物侧与所述第一透镜之间。
  11. 根据权利要求9所述的光学镜头,其特征在于,所述光阑设置于所述第一透镜与所述第二透镜之间。
  12. 光学镜头,沿着光轴由物侧至像侧依序包括:第一透镜、第二透镜、第三透镜、第 四透镜、第五透镜和第六透镜,其特征在于,
    所述第一透镜具有正光焦度,其物侧面为凸面,像侧面为凹面;
    所述第二透镜具有负光焦度,其物侧面和像侧面均为凹面;
    所述第三透镜具有正光焦度,其物侧面和像侧面均为凸面;
    所述第四透镜具有正光焦度,其物侧面和像侧面均为凸面;
    所述第五透镜具有正光焦度,其物侧面为凸面,像侧面为凹面;以及
    所述第六透镜具有负光焦度,其物侧面为凸面,像侧面为凹面;
    其中,所述光学镜头的光学总长度TTL与所述光学镜头的整组焦距值F满足TTL/F≤3。
  13. 根据权利要求12所述的光学镜头,其特征在于,所述第二透镜与所述第三透镜胶合组成第一胶合透镜。
  14. 根据权利要求12或13所述的光学镜头,其特征在于,所述第五透镜与所述第六透镜胶合组成第二胶合透镜。
  15. 根据权利要求12所述的光学镜头,其特征在于,所述第一透镜为非球面透镜。
  16. 根据权利要求12或15所述的光学镜头,其特征在于,所述第四透镜为非球面透镜。
  17. 根据权利要求12至16中任一项所述的光学镜头,其特征在于,所述第一透镜的物侧面的曲率半径R1、所述第一透镜的像侧面的曲率半径R2以及所述第一透镜于所述光轴上的中心厚度d1满足0.6≤R1/(R2+d1)≤1.1。
  18. 根据权利要求12至16中任一项所述的光学镜头,其特征在于,满足D/H/FOV≤0.08,
    FOV为所述光学镜头的最大视场角;
    D为所述光学镜头的最大视场角所对应的所述第一透镜的物侧面的最大通光口径;以及
    H为所述光学镜头最大视场角所对应的像高。
  19. 根据权利要求12至16中任一项所述的光学镜头,其特征在于,所述光学透镜还包括光阑,所述光阑设置于所述物侧与所述第二透镜之间。
  20. 根据权利要求19所述的光学镜头,其特征在于,所述光阑设置于所述物侧与所述第一透镜之间。
  21. 根据权利要求19所述的光学镜头,其特征在于,所述光阑设置于所述第一透镜与所述第二透镜之间。
  22. 光学镜头,沿着光轴由物侧至像侧依序包括:第一透镜、第二透镜、第三透镜、第四透镜、第五透镜和第六透镜,其特征在于,
    所述第一透镜具有负光焦度,其物侧面为凸面,像侧面为凹面;
    所述第二透镜具有负光焦度,其物侧面和像侧面均为凹面;
    所述第三透镜具有正光焦度,其物侧面和像侧面均为凸面;
    所述第四透镜具有正光焦度;
    所述第五透镜具有正光焦度,其物侧面为凸面,像侧面为凹面;以及
    所述第六透镜具有负光焦度,其物侧面为凸面,像侧面为凹面。
  23. 根据权利要求22所述的光学镜头,其特征在于,所述第四透镜的物侧面和像侧面均为凸面。
  24. 根据权利要求22所述的光学镜头,其特征在于,所述第一透镜和所述第四透镜均为非球面镜片。
  25. 根据权利要求22所述的光学镜头,其特征在于,所述光学镜头还包括设置在所述第一透镜与所述第二透镜之间的光阑。
  26. 根据权利要求22所述的光学镜头,其特征在于,所述第二透镜和所述第三透镜互相胶合形成第一胶合透镜。
  27. 根据权利要求22所述的光学镜头,其特征在于,所述第五透镜和所述第六透镜互相胶合形成第二胶合透镜。
  28. 根据权利要求22-27中任一项所述的光学镜头,其特征在于,所述光学镜头的光学后焦BFL与所述光学镜头的透镜组长度TL之间满足:BFL/TL≥0.20。
  29. 根据权利要求22-27中任一项所述的光学镜头,其特征在于,所述光学镜头的光学总长度TTL与所述光学镜头的整组焦距值F之间满足:TTL/F≤3.5。
  30. 根据权利要求22-27中任一项所述的光学镜头,其特征在于,所述光学镜头的最大视场角FOV、所述光学镜头的最大视场角所对应的所述第一透镜的物侧面的最大通光口径D以及所述光学镜头最大视场角所对应的像高H之间满足:D/H/FOV≤0.07。
  31. 根据权利要求22-27中任一项所述的光学镜头,其特征在于,所述第三透镜的焦距值F3与所述第二透镜的焦距值F2之间满足:︱F3/F2︱≤1.25。
  32. 根据权利要求22-27中任一项所述的光学镜头,其特征在于,所述第二透镜和所述第三透镜的组合焦距值F23与所述光学镜头的整组焦距值F之间满足:4≤F23/F≤7。
  33. 光学镜头,沿着光轴由物侧至像侧依序包括:第一透镜、第二透镜、第三透镜、第四透镜、第五透镜和第六透镜,其特征在于,
    所述第一透镜、所述第二透镜和所述第六透镜均具有负光焦度;
    所述第三透镜、所述第四透镜和所述第五透镜均具有正光焦度;
    所述第二透镜和所述第三透镜互相胶合形成第一胶合透镜;
    所述第五透镜和所述第六透镜互相胶合形成第二胶合透镜;以及
    所述光学镜头的光学总长度TTL与所述光学镜头的整组焦距值F之间满足:TTL/F≤3.5。
  34. 根据权利要求33所述的光学镜头,其特征在于,所述第一透镜的物侧面为凸面, 像侧面为凹面。
  35. 根据权利要求33所述的光学镜头,其特征在于,所述第二透镜的物侧面和像侧面均为凹面。
  36. 根据权利要求33所述的光学镜头,其特征在于,所述第三透镜的物侧面和像侧面均为凸面。
  37. 根据权利要求33所述的光学镜头,其特征在于,所述第四透镜的物侧面和像侧面均为凸面。
  38. 根据权利要求33所述的光学镜头,其特征在于,所述第五透镜的物侧面为凸面,像侧面为凹面。
  39. 根据权利要求33所述的光学镜头,其特征在于,所述第六透镜的物侧面为凸面,像侧面为凹面。
  40. 根据权利要求33-39中任一项所述的光学镜头,其特征在于,所述第一透镜和所述第四透镜均为非球面镜片。
  41. 根据权利要求33-39中任一项所述的光学镜头,其特征在于,所述光学镜头还包括设置在所述第一透镜与所述第二透镜之间的光阑。
  42. 根据权利要求33-39中任一项所述的光学镜头,其特征在于,所述光学镜头的光学后焦BFL与所述光学镜头的透镜组长度TL之间满足:BFL/TL≥0.20。
  43. 根据权利要求33-39中任一项所述的光学镜头,其特征在于,所述光学镜头的最大视场角FOV、所述光学镜头的最大视场角所对应的所述第一透镜的物侧面的最大通光口径D以及所述光学镜头最大视场角所对应的像高H之间满足:D/H/FOV≤0.07。
  44. 根据权利要求33-39中任一项所述的光学镜头,其特征在于,所述第三透镜的焦距值F3与所述第二透镜的焦距值F2之间满足:︱F3/F2︱≤1.25。
  45. 根据权利要求33-39中任一项所述的光学镜头,其特征在于,所述第二透镜和所述第三透镜的组合焦距值F23与所述光学镜头的整组焦距值F之间满足:4≤F23/F≤7。
PCT/CN2019/079981 2018-04-28 2019-03-28 光学镜头 WO2019205874A1 (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
US17/081,191 US12007624B2 (en) 2018-04-28 2020-10-27 Optical lens assembly

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
CN201810400442.3A CN110412724A (zh) 2018-04-28 2018-04-28 光学镜头
CN201810400442.3 2018-04-28
CN201811249721.0 2018-10-25
CN201811249721.0A CN111103672B (zh) 2018-10-25 2018-10-25 光学镜头

Related Child Applications (1)

Application Number Title Priority Date Filing Date
US17/081,191 Continuation US12007624B2 (en) 2018-04-28 2020-10-27 Optical lens assembly

Publications (1)

Publication Number Publication Date
WO2019205874A1 true WO2019205874A1 (zh) 2019-10-31

Family

ID=68294887

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2019/079981 WO2019205874A1 (zh) 2018-04-28 2019-03-28 光学镜头

Country Status (2)

Country Link
US (1) US12007624B2 (zh)
WO (1) WO2019205874A1 (zh)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN111025604A (zh) * 2020-01-14 2020-04-17 福建福光股份有限公司 一种大孔径玻塑混合超广角镜头及其工作方法
CN114200640A (zh) * 2020-09-18 2022-03-18 三星电机株式会社 光学成像系统
US11391928B2 (en) 2020-08-14 2022-07-19 Largan Precision Co., Ltd. Optical image lens assembly, image capturing unit and electronic device

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN113376801B (zh) * 2021-06-04 2022-11-29 江西凤凰光学科技有限公司 一种大视场大景深低畸变扫描镜头
CN114690384B (zh) * 2022-06-01 2022-10-11 江西联创电子有限公司 光学镜头

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN201955535U (zh) * 2010-12-30 2011-08-31 大立光电股份有限公司 成像用光学镜片组
CN103676104A (zh) * 2012-08-28 2014-03-26 索尼公司 摄像镜头和摄像单元
CN105319688A (zh) * 2014-07-29 2016-02-10 先进光电科技股份有限公司 光学成像系统
US20160124192A1 (en) * 2014-11-04 2016-05-05 Hoya Corporation Imaging optical system
CN106997086A (zh) * 2016-01-26 2017-08-01 三星电机株式会社 光学成像系统
CN207020385U (zh) * 2017-08-17 2018-02-16 浙江舜宇光学有限公司 光学成像镜头

Family Cites Families (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3944337A (en) * 1974-10-18 1976-03-16 Eastman Kodak Company Three element objective lens with ellipsoidal, hyperbolic, and parabolic surfaces
JP4999078B2 (ja) 2007-04-09 2012-08-15 富士フイルム株式会社 内視鏡用対物レンズおよび内視鏡
JP6313241B2 (ja) 2015-02-17 2018-04-18 富士フイルム株式会社 内視鏡用対物レンズおよび内視鏡
TWI565965B (zh) 2015-06-04 2017-01-11 Optical camera lens
TWI612322B (zh) 2015-12-01 2018-01-21 先進光電科技股份有限公司 光學成像系統
CN106918890B (zh) * 2015-12-24 2020-08-07 宁波舜宇车载光学技术有限公司 光学成像镜头及其透镜组
JP2017173347A (ja) 2016-03-18 2017-09-28 富士フイルム株式会社 撮像レンズおよび撮像装置
CN107783252B (zh) * 2016-08-29 2020-08-11 信泰光学(深圳)有限公司 成像镜头

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN201955535U (zh) * 2010-12-30 2011-08-31 大立光电股份有限公司 成像用光学镜片组
CN103676104A (zh) * 2012-08-28 2014-03-26 索尼公司 摄像镜头和摄像单元
CN105319688A (zh) * 2014-07-29 2016-02-10 先进光电科技股份有限公司 光学成像系统
US20160124192A1 (en) * 2014-11-04 2016-05-05 Hoya Corporation Imaging optical system
CN106997086A (zh) * 2016-01-26 2017-08-01 三星电机株式会社 光学成像系统
CN207020385U (zh) * 2017-08-17 2018-02-16 浙江舜宇光学有限公司 光学成像镜头

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN111025604A (zh) * 2020-01-14 2020-04-17 福建福光股份有限公司 一种大孔径玻塑混合超广角镜头及其工作方法
US11391928B2 (en) 2020-08-14 2022-07-19 Largan Precision Co., Ltd. Optical image lens assembly, image capturing unit and electronic device
CN114200640A (zh) * 2020-09-18 2022-03-18 三星电机株式会社 光学成像系统
CN114200640B (zh) * 2020-09-18 2023-03-21 三星电机株式会社 光学成像系统

Also Published As

Publication number Publication date
US20210041664A1 (en) 2021-02-11
US12007624B2 (en) 2024-06-11

Similar Documents

Publication Publication Date Title
WO2020024599A1 (zh) 光学镜头
WO2019205874A1 (zh) 光学镜头
WO2019205944A1 (zh) 光学镜头及成像设备
CN112180538B (zh) 光学镜头及成像设备
CN110646919B (zh) 鱼眼镜头
CN111239961B (zh) 光学镜头及成像设备
JP6631770B2 (ja) 撮像光学系、ステレオカメラ装置、車載カメラ装置および各種装置
WO2019205875A1 (zh) 光学镜头
CN110542978B (zh) 光学镜头
CN111474673B (zh) 光学镜头及成像设备
WO2022028625A1 (zh) 光学镜头及电子设备
CN110858028A (zh) 光学镜头
CN109445077A (zh) 光学镜头及成像设备
WO2020248877A1 (zh) 光学镜头及成像设备
CN114509859A (zh) 光学镜头及电子设备
CN111830672A (zh) 光学镜头及成像设备
CN111103672B (zh) 光学镜头
CN111239962B (zh) 光学镜头及成像设备
CN109932807B (zh) 光学镜头
WO2021109677A1 (zh) 光学镜头及电子设备
CN111090168B (zh) 光学镜头
CN109581635B (zh) 光学镜头
WO2022089603A1 (zh) 光学镜头及电子设备
CN110412726B (zh) 光学镜头
CN115047585A (zh) 光学镜头及电子设备

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 19791857

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 19791857

Country of ref document: EP

Kind code of ref document: A1