WO2019205875A1 - 光学镜头 - Google Patents

光学镜头 Download PDF

Info

Publication number
WO2019205875A1
WO2019205875A1 PCT/CN2019/079983 CN2019079983W WO2019205875A1 WO 2019205875 A1 WO2019205875 A1 WO 2019205875A1 CN 2019079983 W CN2019079983 W CN 2019079983W WO 2019205875 A1 WO2019205875 A1 WO 2019205875A1
Authority
WO
WIPO (PCT)
Prior art keywords
lens
optical
object side
image side
optical lens
Prior art date
Application number
PCT/CN2019/079983
Other languages
English (en)
French (fr)
Inventor
王东方
姚波
章鲁栋
Original Assignee
宁波舜宇车载光学技术有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 宁波舜宇车载光学技术有限公司 filed Critical 宁波舜宇车载光学技术有限公司
Publication of WO2019205875A1 publication Critical patent/WO2019205875A1/zh
Priority to US17/081,042 priority Critical patent/US20210063705A1/en

Links

Images

Classifications

    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B9/00Optical objectives characterised both by the number of the components and their arrangements according to their sign, i.e. + or -
    • G02B9/62Optical objectives characterised both by the number of the components and their arrangements according to their sign, i.e. + or - having six components only
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B1/00Optical elements characterised by the material of which they are made; Optical coatings for optical elements
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B13/00Optical objectives specially designed for the purposes specified below
    • G02B13/001Miniaturised objectives for electronic devices, e.g. portable telephones, webcams, PDAs, small digital cameras
    • G02B13/0015Miniaturised objectives for electronic devices, e.g. portable telephones, webcams, PDAs, small digital cameras characterised by the lens design
    • G02B13/002Miniaturised objectives for electronic devices, e.g. portable telephones, webcams, PDAs, small digital cameras characterised by the lens design having at least one aspherical surface
    • G02B13/0045Miniaturised objectives for electronic devices, e.g. portable telephones, webcams, PDAs, small digital cameras characterised by the lens design having at least one aspherical surface having five or more lenses

Definitions

  • the present application relates to an optical lens, and more particularly, to an optical lens comprising six lenses.
  • the present application provides an optical lens that can be adapted for in-vehicle installation that overcomes or at least partially overcomes at least one of the above-discussed deficiencies of the prior art.
  • An aspect of the present application provides an optical lens that includes, in order from the object side to the image side along the optical axis, a first lens, a second lens, a third lens, a fourth lens, and a fifth lens. And a sixth lens.
  • the first lens may have a negative refractive power
  • the object side surface is a convex surface
  • the image side surface is a concave surface
  • the second lens may have a negative refractive power
  • the object side surface is a convex surface
  • the image side surface is a concave surface
  • the third lens may have a positive light
  • the focal length, the object side and the image side are both convex
  • the fourth lens may have a positive power, and the object side and the image side are both convex
  • the fifth lens may have a negative power
  • both the object side and the image side are The concave surface
  • the sixth lens may have positive refractive power, and both the object side and the image side surface are convex.
  • the fourth lens, the fifth lens, and the sixth lens may be glued to form a triplet lens.
  • any or all of the first to sixth lenses may be glass lenses.
  • At least one of the second lens, the third lens, and the sixth lens may be an aspherical lens.
  • it can satisfy: D/H/FOV ⁇ 0.025, wherein the FOV is the maximum angle of view of the optical lens; and D is the maximum clear aperture of the first lens side corresponding to the maximum angle of view of the optical lens. And H is the image height corresponding to the maximum angle of view of the optical lens.
  • the BFL/TTL ⁇ 0.15 can be satisfied, wherein the BFL is the distance from the center of the image side of the sixth lens to the imaging surface of the optical lens on the optical axis; and the TTL is the center of the object side of the first lens The distance to the optical axis of the imaging surface of the optical lens.
  • TTL/F ⁇ 7.5 can be satisfied, where TTL is the distance from the center of the object side of the first lens to the imaging surface of the optical lens on the optical axis, and F is the entire set of focal length values of the optical lens. .
  • an optical lens that includes, in order from the object side to the image side along the optical axis, a first lens, a second lens, a third lens, a fourth lens, and a fifth Lens and sixth lens.
  • the first lens, the second lens and the fifth lens may each have a negative power
  • the third lens, the fourth lens and the sixth lens may each have a positive power
  • the lens can be glued to form a triplet lens, wherein the distance between the center of the object side of the first lens and the imaging surface of the optical lens on the optical axis and the entire set of focal length value F of the optical lens can be satisfied: TTL/F ⁇ 7.5 .
  • the object side of the first lens may be a convex surface, and the image side may be a concave surface.
  • the object side of the second lens may be convex, and the image side may be concave.
  • the object side and the image side of the third lens may both be convex.
  • the object side and the image side of the fourth lens may both be convex.
  • the object side and the image side of the fifth lens may both be concave.
  • the object side and the image side of the sixth lens may both be convex.
  • any or all of the first to sixth lenses may be glass lenses.
  • At least one of the second lens, the third lens, and the sixth lens may be an aspherical lens.
  • it can satisfy: D/H/FOV ⁇ 0.025, wherein the FOV is the maximum angle of view of the optical lens; and D is the maximum clear aperture of the first lens side corresponding to the maximum angle of view of the optical lens. And H is the image height corresponding to the maximum angle of view of the optical lens.
  • BFL/TTL 0.15
  • the BFL is the distance from the center of the image side of the sixth lens to the imaging plane of the optical lens on the optical axis
  • the TTL is the object side of the first lens The distance from the center to the imaging surface of the optical lens on the optical axis.
  • the optical lens is miniaturized, high in pixel, low in cost, long in back focus, and excellent in temperature performance by optimizing the shape of the lens, rationally distributing the power of each lens, and forming a cemented lens. At least one beneficial effect, such as low sensitivity and ease of assembly.
  • FIG. 1 is a schematic structural view showing an optical lens according to Embodiment 1 of the present application.
  • FIG. 2 is a schematic structural view showing an optical lens according to Embodiment 2 of the present application.
  • FIG. 3 is a schematic structural view showing an optical lens according to Embodiment 3 of the present application.
  • first, second, third, etc. are used to distinguish one feature from another, and do not represent any limitation of the feature.
  • first lens discussed below may also be referred to as a second lens or a third lens without departing from the teachings of the present application, and the first cemented lens may also be referred to as a second cemented lens.
  • the thickness, size, and shape of the lens have been somewhat exaggerated for convenience of explanation.
  • the spherical or aspherical shape shown in the drawings is shown by way of example. That is, the shape of the spherical surface or the aspherical surface is not limited to the spherical or aspherical shape shown in the drawings.
  • the drawings are only examples and are not to scale.
  • a paraxial region refers to a region near the optical axis. If the surface of the lens is convex and the position of the convex surface is not defined, it indicates that the surface of the lens is convex at least in the paraxial region; if the surface of the lens is concave and the position of the concave surface is not defined, it indicates that the surface of the lens is at least in the paraxial region. Concave.
  • the surface closest to the object in each lens is referred to as the object side, and the surface of each lens closest to the image plane is referred to as the image side.
  • An optical lens according to an exemplary embodiment of the present application includes, for example, six lenses having powers, that is, a first lens, a second lens, a third lens, a fourth lens, a fifth lens, and a sixth lens.
  • the six lenses are sequentially arranged from the object side to the image side along the optical axis.
  • the optical lens according to an exemplary embodiment of the present application may further include a photosensitive element disposed on the imaging surface.
  • the photosensitive element disposed on the imaging surface may be a photosensitive coupling element (CCD) or a complementary oxidized metal semiconductor element (CMOS).
  • CCD photosensitive coupling element
  • CMOS complementary oxidized metal semiconductor element
  • the first lens may have a negative power
  • the object side may be a convex surface
  • the image side may be a concave surface.
  • the meniscus shape of the first lens convex toward the object side can collect large field of view light as much as possible, so that the light enters the rear optical system. In practical applications, considering the outdoor installation environment of the vehicle lens, it will be in bad weather such as rain and snow, so that the shape of the meniscus convex toward the object side is conducive to the falling of water droplets, and can reduce the impact on imaging.
  • the first lens may be a glass aspherical lens to further improve the image quality and reduce the front port diameter.
  • a high refractive index material for example, Nd1 ⁇ 1.7
  • the second lens may have a negative power, the object side may be a convex surface, and the image side may be a concave surface.
  • the second lens can diverge light, allowing the light to move smoothly, while collecting large angles of light as much as possible to improve system illumination.
  • the third lens may have a positive power, and both the object side and the image side may be convex.
  • the third lens converges the light so that the divergent light enters the rear optical system smoothly.
  • the power of the third lens is positive, which is beneficial to compensate for the spherical aberration introduced by the first two sets of lenses.
  • the fourth lens may have a positive power, and both the object side and the image side may be convex.
  • the fifth lens may have a negative power, and both the object side and the image side may be concave.
  • the sixth lens may have a positive power, and both the object side and the image side may be convex.
  • a cemented lens can be used to minimize chromatic aberration or to eliminate chromatic aberration.
  • the use of a cemented lens in an optical lens improves the image quality and reduces the reflection loss of light energy, thereby improving the sharpness of the lens image.
  • the use of cemented lenses also simplifies assembly procedures during lens manufacturing.
  • the fourth lens and the fifth lens may be bonded by bonding the image side of the fourth lens to the object side of the fifth lens and the image side of the fifth lens to the object side of the sixth lens.
  • the lens and the sixth lens are combined into a triple cemented lens.
  • the cemented lens can also retain part of the chromatic aberration to balance the overall chromatic aberration of the optical system. Gluing of the lens can also omit the air gap between the three lenses, reducing the overall length of the system, making the optical system as compact as possible, meeting the system miniaturization needs.
  • the gluing of the lens reduces the number of components between the three lenses, reducing costs, and reducing the tolerance of the lens unit due to tilt/eccentricity during assembly. Moreover, the gluing of the lens is advantageous for reducing the amount of light loss caused by reflection between the lenses.
  • a stop for limiting the light beam may be disposed between, for example, the third lens and the fourth lens to further improve the imaging quality of the lens.
  • the aperture is disposed between the third lens and the triplet lens, and can converge the front and rear light, shorten the total length of the optical system, and reduce the aperture of the front and rear lens groups.
  • the maximum angle of view FOV of the optical lens, the maximum clear aperture D of the first lens side corresponding to the maximum angle of view of the optical lens, and the image height H corresponding to the maximum angle of view of the optical lens The ratio can be satisfied: D/H/FOV ⁇ 0.025, and more desirably, D, H, and FOV can further satisfy D/H/FOV ⁇ 0.02.
  • the conditional formula D/H/FOV ⁇ 0.025 is satisfied, and the front end of the lens is small.
  • the optical back focus BFL of the optical lens and the optical total length TTL of the optical lens may satisfy BFL/TTL ⁇ 0.15, and more desirably, the BFL and TTL may further satisfy BFL/TTL ⁇ 0.18.
  • the BFL/TTL ⁇ 0.15 back focus setting can be used to facilitate the assembly of the optical lens.
  • the optical total length TTL of the optical lens and the entire set of focal length values F of the optical lens can satisfy TTL/F ⁇ 7.5, and more desirably, TTL and F can further satisfy TTL/F ⁇ 7.
  • TTL and F can further satisfy TTL/F ⁇ 7.
  • the conditionality TTL/F ⁇ 7.5 is satisfied, and the miniaturization characteristic of the lens can be further realized.
  • the lens used in the optical lens may be a plastic lens or a glass lens. Since the thermal expansion coefficient of the plastic material lens is large, when the ambient temperature used by the lens changes greatly, the plastic lens has a great influence on the overall performance of the lens.
  • the use of glass lenses reduces the effect of temperature on lens performance.
  • the first to sixth lenses of the optical lens according to the present application may employ a glass lens to enhance the performance of the lens under high and low temperature conditions, reduce the influence of the environment on the overall system, and improve the overall performance of the optical lens.
  • At least one of the second lens, the third lens, and the sixth lens may be an aspherical lens.
  • Aspherical lenses are characterized by a continuous change in curvature from the center of the lens to the periphery. Unlike spherical lenses that have a constant curvature from the center of the lens to the periphery, aspherical lenses have better curvature radius characteristics, have the advantage of improving distortion and improving astigmatic aberrations. With the aspherical lens, the aberrations that occur during imaging can be eliminated as much as possible, thereby improving the image quality of the lens.
  • the rear focal length can be realized by the reasonable matching of the lens shape and the power, and the assembly is easy to be assembled; and the application of the aspheric surface can further improve the resolution quality.
  • the optical lens can make the optical system as a whole compact structure, and can effectively reduce system chromatic aberration, reduce tolerance sensitivity, and facilitate assembly.
  • the use of glass material in the lens enhances the performance of the lens at high and low temperatures and improves the temperature stability of the lens.
  • optical lens is not limited to including six lenses.
  • the optical lens can also include other numbers of lenses if desired.
  • FIG. 1 is a view showing the structure of an optical lens according to Embodiment 1 of the present application.
  • the optical lens sequentially includes a first lens L1, a second lens L2, a third lens L3, a fourth lens L4, a fifth lens L5, and a sixth lens L6 from the object side to the imaging side along the optical axis. .
  • the first lens L1 is a meniscus lens having a negative refractive power
  • the object side surface S1 is a convex surface
  • the image side surface S2 is a concave surface.
  • the second lens L2 is a meniscus lens having a negative refractive power, and the object side surface S3 is a convex surface, and the image side surface S4 is a concave surface. Further, the second lens L2 is an aspherical lens, and both the object side surface S3 and the image side surface S4 are aspherical.
  • the third lens L3 is a lenticular lens having positive refractive power, and the object side surface S5 is a convex surface, and the image side surface S6 is a convex surface. Further, the third lens L3 is an aspherical lens, and both the object side surface S5 and the image side surface S6 are aspherical.
  • the fourth lens L4 is a lenticular lens having positive refractive power, and the object side surface S8 is a convex surface, and the image side surface S9 is a convex surface.
  • the fifth lens L5 is a biconcave lens having a negative refractive power, and the object side surface S9 is a concave surface, and the image side surface S10 is a concave surface.
  • the sixth lens L6 is a lenticular lens having positive refractive power, and the object side surface S10 is a convex surface, and the image side surface S11 is a convex surface. Further, the sixth lens L6 is an aspherical lens, and the image side surface S11 is aspherical.
  • the fourth lens L4, the fifth lens L5, and the sixth lens L6 are glued to form a triplet lens.
  • the optical lens may further include a filter L7 having an object side S12 and an image side S13 and a protective lens L8 having an object side S14 and an image side S15.
  • Filter L7 can be used to correct color deviations.
  • the protective lens L8 can be used to protect the image sensing chip located on the imaging surface IMA. Light from the object sequentially passes through the respective surfaces S1 to S15 and is finally imaged on the image plane IMA.
  • the stop STO can be provided between the third lens L3 and the fourth lens L4 to improve the image quality.
  • Table 1 shows the curvature radius R, the thickness T, the refractive index Nd, and the Abbe number Vd of each lens of the optical lens of Example 1, wherein the units of the radius of curvature R and the thickness T are all millimeters (mm).
  • This embodiment uses six lenses as an example.
  • the lens can be miniaturized, balanced, and low-sensitive. At least one beneficial effect, such as degree, high pixel, low cost, long back focus, and good temperature performance.
  • Each aspherical surface type Z is defined by the following formula:
  • Z is the position of the aspherical surface at height H in the direction of the optical axis, the distance from the aspherical vertex is high;
  • k is the conic coefficient conic;
  • A, B, C, D, E are high order coefficients.
  • Table 2 shows the conic coefficient k and the high order coefficient A, B, C, D, and E which can be used for the aspherical lens surfaces S3, S4, S5, S6, and S11 in Embodiment 1.
  • Table 3 below shows the optical back focus BFL of the optical lens of Embodiment 1 (i.e., the distance from the center of the image side S11 of the last lens sixth lens L6 to the imaging plane S16), and the entire focal length of the optical lens.
  • the value F the total optical length TTL of the optical lens (that is, the distance from the center of the object side surface S1 of the first lens L1 to the axial direction of the imaging plane S16), the maximum field of view angle FOV of the optical lens, and the maximum angle of view of the optical lens.
  • FIG. 2 is a schematic view showing the structure of an optical lens according to Embodiment 2 of the present application.
  • the optical lens sequentially includes a first lens L1, a second lens L2, a third lens L3, a fourth lens L4, a fifth lens L5, and a sixth lens L6 from the object side to the imaging side along the optical axis. .
  • the first lens L1 is a meniscus lens having a negative refractive power
  • the object side surface S1 is a convex surface
  • the image side surface S2 is a concave surface.
  • the second lens L2 is a meniscus lens having a negative refractive power, and the object side surface S3 is a convex surface, and the image side surface S4 is a concave surface. Further, the second lens L2 is an aspherical lens, and both the object side surface S3 and the image side surface S4 are aspherical.
  • the third lens L3 is a lenticular lens having positive refractive power, and the object side surface S5 is a convex surface, and the image side surface S6 is a convex surface. Further, the third lens L3 is an aspherical lens, and both the object side surface S5 and the image side surface S6 are aspherical.
  • the fourth lens L4 is a lenticular lens having positive refractive power, and the object side surface S8 is a convex surface, and the image side surface S9 is a convex surface.
  • the fifth lens L5 is a biconcave lens having a negative refractive power, and the object side surface S9 is a concave surface, and the image side surface S10 is a concave surface.
  • the sixth lens L6 is a lenticular lens having positive refractive power, and the object side surface S10 is a convex surface, and the image side surface S11 is a convex surface. Further, the sixth lens L6 is an aspherical lens, and the image side surface S11 is aspherical.
  • the fourth lens L4, the fifth lens L5, and the sixth lens L6 are glued to form a triplet lens.
  • the optical lens may further include a filter L7 having an object side S12 and an image side S13 and a protective lens L8 having an object side S14 and an image side S15.
  • Filter L7 can be used to correct color deviations.
  • the protective lens L8 can be used to protect the image sensing chip located on the imaging surface IMA. Light from the object sequentially passes through the respective surfaces S1 to S15 and is finally imaged on the image plane IMA.
  • the stop STO can be provided between the third lens L3 and the fourth lens L4 to improve the image quality.
  • Table 4 below shows the radius of curvature R, the thickness T, the refractive index Nd, and the Abbe number Vd of each lens of the optical lens of Example 2, wherein the units of the radius of curvature R and the thickness T are both millimeters (mm).
  • Table 5 below shows the conic coefficient k and the high order coefficient A, B, C, D, and E which can be used for the aspherical lens surfaces S3, S4, S5, S6, and S11 in Embodiment 2.
  • Table 6 below shows the optical back focus BFL of the optical lens of Embodiment 2 (i.e., the distance from the center of the image side S11 of the last lens sixth lens L6 to the imaging plane S16), and the entire focal length of the optical lens.
  • the value F the total optical length TTL of the optical lens (that is, the distance from the center of the object side surface S1 of the first lens L1 to the axial direction of the imaging plane S16), the maximum field of view angle FOV of the optical lens, and the maximum angle of view of the optical lens
  • FIG. 3 is a schematic view showing the structure of an optical lens according to Embodiment 3 of the present application.
  • the optical lens sequentially includes a first lens L1, a second lens L2, a third lens L3, a fourth lens L4, a fifth lens L5, and a sixth lens L6 from the object side to the imaging side along the optical axis. .
  • the first lens L1 is a meniscus lens having a negative refractive power
  • the object side surface S1 is a convex surface
  • the image side surface S2 is a concave surface.
  • the second lens L2 is a meniscus lens having a negative refractive power, and the object side surface S3 is a convex surface, and the image side surface S4 is a concave surface. Further, the second lens L2 is an aspherical lens, and both the object side surface S3 and the image side surface S4 are aspherical.
  • the third lens L3 is a lenticular lens having positive refractive power, and the object side surface S5 is a convex surface, and the image side surface S6 is a convex surface. Further, the third lens L3 is an aspherical lens, and both the object side surface S5 and the image side surface S6 are aspherical.
  • the fourth lens L4 is a lenticular lens having positive refractive power, and the object side surface S8 is a convex surface, and the image side surface S9 is a convex surface.
  • the fifth lens L5 is a biconcave lens having a negative refractive power, and the object side surface S9 is a concave surface, and the image side surface S10 is a concave surface.
  • the sixth lens L6 is a lenticular lens having positive refractive power, and the object side surface S10 is a convex surface, and the image side surface S11 is a convex surface. Further, the sixth lens L6 is an aspherical lens, and the image side surface S11 is aspherical.
  • the fourth lens L4, the fifth lens L5, and the sixth lens L6 are glued to form a triplet lens.
  • the optical lens may further include a filter L7 having an object side S12 and an image side S13 and a protective lens L8 having an object side S14 and an image side S15.
  • Filter L7 can be used to correct color deviations.
  • the protective lens L8 can be used to protect the image sensing chip located on the imaging surface IMA. Light from the object sequentially passes through the respective surfaces S1 to S15 and is finally imaged on the image plane IMA.
  • the stop STO can be provided between the third lens L3 and the fourth lens L4 to improve the image quality.
  • Table 7 below shows the radius of curvature R, the thickness T, the refractive index Nd, and the Abbe number Vd of each lens of the optical lens of Example 3, wherein the units of the radius of curvature R and the thickness T are all millimeters (mm).
  • Table 8 below shows the conic coefficient k and the high order coefficient A, B, C, D, and E which can be used for the aspherical lens surfaces S3, S4, S5, S6, and S11 in Embodiment 3.
  • Table 9 below shows the optical back focus BFL of the optical lens of Embodiment 3 (i.e., the distance from the center of the image side S11 of the last lens sixth lens L6 to the imaging plane S16), and the entire focal length of the optical lens.
  • the value F the total optical length TTL of the optical lens (that is, the distance from the center of the object side surface S1 of the first lens L1 to the axial direction of the imaging plane S16), the maximum field of view angle FOV of the optical lens, and the maximum angle of view of the optical lens
  • Embodiments 1 to 3 respectively satisfy the relationships shown in Table 10 below.

Landscapes

  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Optics & Photonics (AREA)
  • Lenses (AREA)

Abstract

本申请公开了一种光学镜头,该光学镜头沿着光轴由物侧至像侧依序可包括:第一透镜、第二透镜、第三透镜、第四透镜、第五透镜、和第六透镜。其中,第一透镜可具有负光焦度,其物侧面为凸面,像侧面为凹面;第二透镜可具有负光焦度,其物侧面为凸面,像侧面为凹面;第三透镜可具有正光焦度,其物侧面和像侧面均为凸面;第四透镜可具有正光焦度,其物侧面和像侧面均为凸面;第五透镜可具有负光焦度,其物侧面和像侧面均为凹面;以及第六透镜可具有正光焦度,其物侧面和像侧面均为凸面。根据本申请的光学镜头,可实现高像素、小型化、低成本、长后焦等效果。

Description

光学镜头
相关申请的交叉引用
本申请要求于2018年4月28日提交于中国国家知识产权局(CNIPA)的、专利申请号为201810397943.0的中国专利申请的优先权和权益,该专利申请通过引用整体并入本文。
技术领域
本申请涉及一种光学镜头,更具体地,本申请涉及一种包括六片透镜的光学镜头。
背景技术
随着科技的发展,对光学镜头的性能要求越来越高,监控镜头或车载镜头通常需要满足高解像、低像差的要求。一般可通过透镜的数量增加来提高分辨率,通常采用非球面镜片来矫正像差。在现有技术中,可通过将透镜数量增加至6-7枚或以上来获得高解像,但这会影响小型化、低成本效果的实现。采用非球面矫正像差时,若为塑料非球面,由于塑料热膨胀系数较大,存在温度变化引起失焦像面模糊的问题;若采用玻璃非球面,则成本过高。
因此,需要设计一种满足小型化、高像素、长后焦、低成本等性能的光学镜头,以更好的适用监控或车载环境的使用需求。
发明内容
本申请提供了可适用于车载安装的、可至少克服或部分克服现有技术中的上述至少一个缺陷的光学镜头。
本申请的一个方面提供了这样一种光学镜头,该光学镜头沿着光轴由物侧至像侧依序可包括:第一透镜、第二透镜、第三透镜、第四透镜、第五透镜和第六透镜。其中,第一透镜可具有负光焦度,其物 侧面为凸面,像侧面为凹面;第二透镜可具有负光焦度,其物侧面为凸面,像侧面为凹面;第三透镜可具有正光焦度,其物侧面和像侧面均为凸面;第四透镜可具有正光焦度,其物侧面和像侧面均为凸面;第五透镜可具有负光焦度,其物侧面和像侧面均为凹面;以及第六透镜可具有正光焦度,其物侧面和像侧面均为凸面。
在一个实施方式中,第四透镜、第五透镜和第六透镜可胶合组成三胶合透镜。
在一个实施方式中,第一透镜至第六透镜中的任何一个或所有可以是玻璃镜片。
在一个实施方式中,第二透镜、第三透镜和第六透镜中的至少一个可以是非球面镜片。
在一个实施方式中,可满足:D/H/FOV≤0.025,其中,FOV为光学镜头的最大视场角;D为光学镜头最大视场角所对应的第一透镜物侧面的最大通光口径;以及H为光学镜头最大视场角所对应的像高。
在一个实施方式中,可满足BFL/TTL≥0.15,其中,BFL为第六透镜的像侧面的中心至光学镜头的成像面在光轴上的距离;以及TTL为第一透镜的物侧面的中心至光学镜头的成像面在光轴上的距离。
在一个实施方式中,可满足TTL/F≤7.5,其中,TTL为第一透镜的物侧面的中心至光学镜头的成像面在光轴上的距离,F为所述光学镜头的整组焦距值。
本申请的另一方面提供了这样一种光学镜头,该光学镜头沿着光轴由物侧至像侧依序可包括:第一透镜、第二透镜、第三透镜、第四透镜、第五透镜和第六透镜。其中,第一透镜、第二透镜和第五透镜均可具有负光焦度;第三透镜、第四透镜和第六透镜均可具有正光焦度;以及第四透镜、第五透镜和第六透镜可胶合组成三胶合透镜,其中,第一透镜的物侧面的中心至光学镜头的成像面在光轴上的距离TTL与光学镜头的整组焦距值F之间可满足:TTL/F≤7.5。
在一个实施方式中,第一透镜的物侧面可为凸面,像侧面可为凹面。
在一个实施方式中,第二透镜的物侧面可为凸面,像侧面可为凹面。
在一个实施方式中,第三透镜的物侧面和像侧面均可为凸面。
在一个实施方式中,第四透镜的物侧面和像侧面均可为凸面。
在一个实施方式中,第五透镜的物侧面和像侧面均可为凹面。
在一个实施方式中,第六透镜的物侧面和像侧面均可为凸面。
在一个实施方式中,第一透镜至第六透镜中的任何一个或所有可以是玻璃镜片。
在一个实施方式中,第二透镜、第三透镜和第六透镜中的至少一个可以是非球面镜片。
在一个实施方式中,可满足:D/H/FOV≤0.025,其中,FOV为光学镜头的最大视场角;D为光学镜头最大视场角所对应的第一透镜物侧面的最大通光口径;以及H为光学镜头最大视场角所对应的像高。
在一个实施方式中,可满足:BFL/TTL≥0.15,其中,BFL为第六透镜的像侧面的中心至光学镜头的成像面在光轴上的距离;以及TTL为第一透镜的物侧面的中心至光学镜头的成像面在光轴上的距离。
本申请采用了例如六片透镜,通过优化设置镜片的形状,合理分配各镜片的光焦度以及形成胶合透镜等,实现光学镜头的小型化、高像素、低成本、长后焦、温度性能佳、低敏感度、便于组立等至少一个有益效果。
附图说明
结合附图,通过以下非限制性实施方式的详细描述,本申请的其他特征、目的和优点将变得更加明显。在附图中:
图1为示出根据本申请实施例1的光学镜头的结构示意图;
图2为示出根据本申请实施例2的光学镜头的结构示意图;以及
图3为示出根据本申请实施例3的光学镜头的结构示意图。
具体实施方式
为了更好地理解本申请,将参考附图对本申请的各个方面做出更详细的说明。应理解,这些详细说明只是对本申请的示例性实施方式的描述,而非以任何方式限制本申请的范围。在说明书全文中,相同的附图标号指代相同的元件。表述“和/或”包括相关联的所列项目中的一个或多个的任何和全部组合。
应注意,在本说明书中,第一、第二、第三等的表述仅用于将一个特征与另一个特征区分开来,而不表示对特征的任何限制。因此,在不背离本申请的教导的情况下,下文中讨论的第一透镜也可被称作第二透镜或第三透镜,第一胶合透镜也可被称作第二胶合透镜。
在附图中,为了便于说明,已稍微夸大了透镜的厚度、尺寸和形状。具体来讲,附图中所示的球面或非球面的形状通过示例的方式示出。即,球面或非球面的形状不限于附图中示出的球面或非球面的形状。附图仅为示例而并非严格按比例绘制。
在本文中,近轴区域是指光轴附近的区域。若透镜表面为凸面且未界定该凸面位置时,则表示该透镜表面至少于近轴区域为凸面;若透镜表面为凹面且未界定该凹面位置时,则表示该透镜表面至少于近轴区域为凹面。每个透镜中最靠近物体的表面称为物侧面,每个透镜中最靠近成像面的表面称为像侧面。
还应理解的是,用语“包括”、“包括有”、“具有”、“包含”和/或“包含有”,当在本说明书中使用时表示存在所陈述的特征、元件和/或部件,但不排除存在或附加有一个或多个其它特征、元件、部件和/或它们的组合。此外,当诸如“...中的至少一个”的表述出现在所列特征的列表之后时,修饰整个所列特征,而不是修饰列表中的单独元件。此外,当描述本申请的实施方式时,使用“可”表示“本申请的一个或多个实施方式”。并且,用语“示例性的”旨在指代示例或举例说明。
除非另外限定,否则本文中使用的所有用语(包括技术用语和科学用语)均具有与本申请所属领域普通技术人员的通常理解相同的含义。还应理解的是,用语(例如在常用词典中定义的用语)应被解释为具有与它们在相关技术的上下文中的含义一致的含义,并且将不被以理想化 或过度正式意义解释,除非本文中明确如此限定。
需要说明的是,在不冲突的情况下,本申请中的实施例及实施例中的特征可以相互组合。下面将参考附图并结合实施例来详细说明本申请。
以下对本申请的特征、原理和其他方面进行详细描述。
根据本申请示例性实施方式的光学镜头包括例如六个具有光焦度的透镜,即第一透镜、第二透镜、第三透镜、第四透镜、第五透镜和第六透镜。这六个透镜沿着光轴从物侧至像侧依序排列。
根据本申请示例性实施方式的光学镜头还可进一步包括设置于成像面的感光元件。可选地,设置于成像面的感光元件可以是感光耦合元件(CCD)或互补性氧化金属半导体元件(CMOS)。
第一透镜可具有负光焦度,其物侧面可为凸面,像侧面可为凹面。第一透镜凸向物方的弯月形状设计,能够尽可能得收集大视场光线,使光线进入后方光学系统。在实际应用中,考虑到车载镜头室外安装使用环境,会处于雨雪等恶劣天气,这样凸向物方的弯月形状设计,有利于水滴的滑落,可减小对成像的影响。进一步的,第一透镜可采用玻璃非球面镜片,进一步提升成像质量及减小前端口径。同时可采用高折射率材料(例如,Nd1≥1.7),可有利于前端口径的减小,提高成像质量。
第二透镜可具有负光焦度,其物侧面可为凸面,像侧面可为凹面。第二透镜可发散光线,使光线走势平稳过渡,同时尽可能收集大角度光线,可提升系统照度。
第三透镜可具有正光焦度,其物侧面和像侧面均可为凸面。第三透镜可会聚光线,使发散的光线顺利进入后方光学系统。第三透镜的光焦度为正,有利于补偿前两组镜片引入的球差。
第四透镜可具有正光焦度,其物侧面和像侧面均可为凸面。
第五透镜可具有负光焦度,其物侧面和像侧面均可为凹面。
第六透镜可具有正光焦度,其物侧面和像侧面均可为凸面。
如本领域技术人员已知的,胶合透镜可用于最大限度地减少色差 或消除色差。在光学镜头中使用胶合透镜能够改善像质、减少光能量的反射损失,从而提升镜头成像的清晰度。另外,胶合透镜的使用还可简化镜头制造过程中的装配程序。
在示例性实施方式中,可通过将第四透镜的像侧面与第五透镜的物侧面胶合,以及将第五透镜的像侧面与第六透镜的物侧面胶合,而将第四透镜、第五透镜和第六透镜组合成三胶合透镜。通过引入三胶合透镜,可有助于消除色差影响,减小系统的公差敏感度,实现高解像;同时,胶合透镜还可以残留部分色差以平衡光学系统的整体色差。镜片的胶合还可省略三个透镜之间的空气间隔,减小系统总长,使得光学系统整体紧凑,满足系统小型化需求。另外,镜片的胶合会减小这三个镜片之间的组立部件,降低成本,降低镜片单元因在组立过程中产生的倾斜/偏芯等公差敏感度问题。并且,镜片的胶合有利于减小镜片间反射引起的光量损失。
在示例性实施方式中,可在例如第三透镜与第四透镜之间设置用于限制光束的光阑,以进一步提高镜头的成像质量。光阑设置在第三透镜与三胶合透镜之间,可收束前后光线,缩短光学系统总长,减小前后镜片组口径。
在示例性实施方式中,光学镜头的最大视场角FOV、光学镜头最大视场角所对应的第一透镜物侧面的最大通光口径D以及光学镜头最大视场角所对应的像高H之间可满足:D/H/FOV≤0.025,更理想地,D、H和FOV进一步可满足D/H/FOV≤0.02。满足条件式D/H/FOV≤0.025,可保证镜头的前端小口径。
在示例性实施方式中,光学镜头的光学后焦BFL与光学镜头的光学总长度TTL之间可满足BFL/TTL≥0.15,更理想地,BFL和TTL进一步可满足BFL/TTL≥0.18。结合该光学镜头的整体架构,满足BFL/TTL≥0.15的后焦设置,可有利于光学镜头的组装。
在示例性实施方式中,光学镜头的光学总长度TTL与光学镜头的整组焦距值F之间可满足TTL/F≤7.5,更理想地,TTL和F进一步可满足TTL/F≤7。满足条件式TTL/F≤7.5,可进一步实现镜头的小型化特性。
在示例性实施方式中,光学镜头所采用的镜片可以是塑料材质的镜片,还可以是玻璃材质的镜片。由于塑料材质的镜片热膨胀系数较大,当镜头所使用的环境温度变化较大时,塑料材质的透镜会对镜头的整体性能造成较大影响。而采用玻璃材质的镜片,可减小温度对镜头性能的影响。理想地,根据本申请的光学镜头的第一透镜至第六透镜可采用玻璃镜片,以增强镜头在高低温情况下的表现,减小环境对系统整体的影响,提升光学镜头的整体性能。
在示例性实施方式中,第二透镜、第三透镜和第六透镜中的至少一个可以是非球面镜片。非球面镜片的特点是:从镜片中心到周边曲率是连续变化的。与从镜片中心到周边有恒定曲率的球面镜片不同,非球面镜片具有更佳的曲率半径特性,具有改善歪曲像差及改善像散像差的优点。采用非球面镜片后,能够尽可能地消除在成像的时候出现的像差,从而提升镜头的成像质量。
根据本申请的上述实施方式的光学镜头,通过对透镜形状、光焦度的合理搭配,可实现后焦长,便于组装的特性;以及非球面的应用,可进一步提升解像质量。该光学镜头通过使用三胶合透镜,可使得光学系统整体结构紧凑,同时可有效减小系统色差,减小公差敏感度,便于组立。镜头中玻璃材料的使用,可增强镜头在高低温情况下的表现,提高镜头的温度稳定性。
然而,本领域的技术人员应当理解,在未背离本申请要求保护的技术方案的情况下,可改变构成镜头的透镜数量,来获得本说明书中描述的各个结果和优点。例如,虽然在实施方式中以六个透镜为例进行了描述,但是该光学镜头不限于包括六个透镜。如果需要,该光学镜头还可包括其它数量的透镜。
下面参照附图进一步描述可适用于上述实施方式的光学镜头的具体实施例。
实施例1
以下参照图1描述根据本申请实施例1的光学镜头。图1示出了 根据本申请实施例1的光学镜头的结构示意图。
如图1所示,光学镜头沿着光轴从物侧至成像侧依序包括第一透镜L1、第二透镜L2、第三透镜L3、第四透镜L4、第五透镜L5和第六透镜L6。
第一透镜L1为具有负光焦度的弯月透镜,其物侧面S1为凸面,像侧面S2为凹面。
第二透镜L2为具有负光焦度的弯月透镜,其物侧面S3为凸面,像侧面S4为凹面。另外,第二透镜L2是非球面镜片,其物侧面S3和像侧面S4均为非球面。
第三透镜L3为具有正光焦度的双凸透镜,其物侧面S5为凸面,像侧面S6为凸面。另外,第三透镜L3是非球面镜片,其物侧面S5和像侧面S6均为非球面。
第四透镜L4为具有正光焦度的双凸透镜,其物侧面S8为凸面,像侧面S9为凸面。第五透镜L5为具有负光焦度的双凹透镜,其物侧面S9为凹面,像侧面S10为凹面。第六透镜L6为具有正光焦度的双凸透镜,其物侧面S10为凸面,像侧面S11为凸面。另外,第六透镜L6是非球面镜片,其像侧面S11为非球面。其中,第四透镜L4、第五透镜L5和第六透镜L6胶合组成三胶合透镜。
可选地,该光学镜头还可包括具有物侧面S12和像侧面S13的滤光片L7和具有物侧面S14和像侧面S15的保护透镜L8。滤光片L7可用于校正色彩偏差。保护透镜L8可用于保护位于成像面IMA的图像传感芯片。来自物体的光依序穿过各表面S1至S15并最终成像在成像面IMA上。
在本实施例的光学镜头中,可在第三透镜L3与第四透镜L4之间设置光阑STO以提高成像质量。
表1示出了实施例1的光学镜头的各透镜的曲率半径R、厚度T、折射率Nd以及阿贝数Vd,其中,曲率半径R和厚度T的单位均为毫米(mm)。
表1
面号 曲率半径R 厚度T 折射率Nd 阿贝数Vd
1 17.0643 1.5000 1.80 46.6
2 4.9924 2.6072    
3 6.5000 2.1808 1.81 41.0
4 3.7016 5.5863    
5 14.2912 3.2000 1.74 49.3
6 -9.6682 0.1300    
STO 无穷 0.0141    
8 8.5000 5.0000 1.50 81.6
9 -8.5000 0.8000 1.81 22.7
10 8.8181 1.9125 1.52 64.2
11 -11.5649 1.8000    
12 无穷 0.5500 1.52 64.2
13 无穷 1.5131    
14 无穷 0.4000 1.52 64.2
15 无穷 2.8194    
IMA 无穷      
本实施例采用了六片透镜作为示例,通过合理分配各个透镜的光焦度与面型,各透镜的中心厚度以及各透镜间的空气间隔,可使镜头具有小型化、平衡像差、低敏感度、高像素、低成本、长后焦、温度性能良好等至少一个有益效果。各非球面面型Z由以下公式限定:
Figure PCTCN2019079983-appb-000001
其中,Z为非球面沿光轴方向在高度为H的位置时,距非球面顶点的距离矢高;c为非球面的近轴曲率,c=1/R(即,近轴曲率c为上表1中曲率半径R的倒数);k为圆锥系数conic;A、B、C、D、E均为高次项系数。下表2示出了可用于实施例1中的非球面透镜表面S3、S4、S5、S6和S11的圆锥系数k以及高次项系数A、B、C、D和E。
表2
面号 K A B C D E
3 -1.0118 4.0232E-04 -3.52E-05 9.29E-07 -1.15E-07 1.92E-09
4 -0.9914 2.1622E-03 -3.4690E-05 -4.6042E-06 -4.5633E-07 2.1895E-08
5 2.7259 2.7601E-04 2.3606E-05 -8.9983E-07 6.3617E-08 3.4559E-10
6 -8.8025 -7.6491E-04 3.3367E-05 3.7240E-06 -3.7230E-07 1.4745E-08
11 -0.2369 1.3997E-03 -7.1431E-05 1.3586E-05 -9.9700E-07 2.8015E-08
下表3给出了实施例1的光学镜头的光学后焦BFL(即,从最后一个透镜第六透镜L6的像侧面S11的中心至成像面S16的轴上距离)、光学镜头的整组焦距值F、光学镜头的光学总长度TTL(即,从第一透镜L1的物侧面S1的中心至成像面S16的轴上距离)、光学镜头的最大视场角FOV、光学镜头最大视场角所对应的第一透镜L1的物侧面S1的最大通光口径D以及光学镜头最大视场角所对应的像高H。
表3
参数 BFL(mm) F(mm) TTL(mm) FOV(°) D(mm) H(mm)
数值 7.082 4.941 30.013 120.6 14.972 9.196
在本实施例中,光学镜头的最大视场角度FOV、光学镜头最大视场角所对应的第一透镜L1的物侧面S1的最大通光口径D以及光学镜头最大视场角所对应的像高H之间满足D/H/FOV=0.014。光学镜头的光学后焦BFL与光学镜头的光学总长度TTL之间满足BFL/TTL=0.236;以及光学镜头的光学总长度TTL与光学镜头的整组焦距值F之间满足TTL/F=6.074。
实施例2
以下参照图2描述了根据本申请实施例2的光学镜头。在本实施例及以下实施例中,为简洁起见,将省略部分与实施例1相似的描述。图2示出了根据本申请实施例2的光学镜头的结构示意图。
如图2所示,光学镜头沿着光轴从物侧至成像侧依序包括第一透镜L1、第二透镜L2、第三透镜L3、第四透镜L4、第五透镜L5和第六透镜L6。
第一透镜L1为具有负光焦度的弯月透镜,其物侧面S1为凸面,像侧面S2为凹面。
第二透镜L2为具有负光焦度的弯月透镜,其物侧面S3为凸面,像侧面S4为凹面。另外,第二透镜L2是非球面镜片,其物侧面S3 和像侧面S4均为非球面。
第三透镜L3为具有正光焦度的双凸透镜,其物侧面S5为凸面,像侧面S6为凸面。另外,第三透镜L3是非球面镜片,其物侧面S5和像侧面S6均为非球面。
第四透镜L4为具有正光焦度的双凸透镜,其物侧面S8为凸面,像侧面S9为凸面。第五透镜L5为具有负光焦度的双凹透镜,其物侧面S9为凹面,像侧面S10为凹面。第六透镜L6为具有正光焦度的双凸透镜,其物侧面S10为凸面,像侧面S11为凸面。另外,第六透镜L6是非球面镜片,其像侧面S11为非球面。其中,第四透镜L4、第五透镜L5和第六透镜L6胶合组成三胶合透镜。
可选地,该光学镜头还可包括具有物侧面S12和像侧面S13的滤光片L7和具有物侧面S14和像侧面S15的保护透镜L8。滤光片L7可用于校正色彩偏差。保护透镜L8可用于保护位于成像面IMA的图像传感芯片。来自物体的光依序穿过各表面S1至S15并最终成像在成像面IMA上。
在本实施例的光学镜头中,可在第三透镜L3与第四透镜L4之间设置光阑STO以提高成像质量。
下表4示出了实施例2的光学镜头的各透镜的曲率半径R、厚度T、折射率Nd以及阿贝数Vd,其中,曲率半径R和厚度T的单位均为毫米(mm)。下表5示出了可用于实施例2中非球面透镜表面S3、S4、S5、S6和S11的圆锥系数k以及高次项系数A、B、C、D和E。下表6给出了实施例2的光学镜头的光学后焦BFL(即,从最后一个透镜第六透镜L6的像侧面S11的中心至成像面S16的轴上距离)、光学镜头的整组焦距值F、光学镜头的光学总长度TTL(即,从第一透镜L1的物侧面S1的中心至成像面S16的轴上距离)、光学镜头的最大视场角FOV、光学镜头最大视场角所对应的第一透镜L1的物侧面S1的最大通光口径D以及光学镜头最大视场角所对应的像高H。
表4
面号 曲率半径R 厚度T 折射率Nd 阿贝数Vd
1 17.0643 1.5000 1.80 46.57
2 4.9924 2.2908    
3 6.5000 2.1808 1.81 41.00
4 3.7016 5.9783    
5 11.4340 3.2988 1.74 49.34
6 -11.4340 0.1214    
STO 无穷 0.2641    
8 8.5000 5.0000 1.50 81.59
9 -8.5000 0.8000 1.81 22.69
10 8.8181 1.9125 1.52 64.21
11 -11.5649 1.0035    
12 无穷 0.5500 1.62 63.42
13 无穷 1.5131    
14 无穷 0.4000 1.52 64.21
15 无穷 3.5594    
IMA 无穷      
表5
面号 K A B C D E
3 -1.0118 4.02E-04 -3.52E-05 9.29E-07 -1.15E-07 1.82E-09
4 -0.9914 2.16E-03 -3.47E-05 -4.60E-06 -4.56E-07 2.69E-08
5 6.4835 -4.07E-05 6.76E-05 -9.86E-06 7.38E-07 -2.29E-08
6 -8.8025 1.35E-04 -2.68E-05 1.77E-05 -1.86E-06 7.75E-08
11 0.4949 1.33E-03 -6.90E-05 1.36E-05 -1.17E-06 3.10E-08
表6
参数 BFL(mm) F(mm) TTL(mm) FOV(°) D(mm) H(mm)
数值 7.026 4.881 30.373 120.2 14.756 8.978
在本实施例中,光学镜头的最大视场角度FOV、光学镜头最大视场角所对应的第一透镜L1的物侧面S1的最大通光口径D以及光学镜头最大视场角所对应的像高H之间满足D/H/FOV=0.014。光学镜头的光学后焦BFL与光学镜头的光学总长度TTL之间满足BFL/TTL=0.231;以及光学镜头的光学总长度TTL与光学镜头的整组焦距值F之间满足TTL/F=6.222。
实施例3
以下参照图3描述了根据本申请实施例3的光学镜头。在本实施例及以下实施例中,为简洁起见,将省略部分与实施例1相似的描述。 图3示出了根据本申请实施例3的光学镜头的结构示意图。
如图3所示,光学镜头沿着光轴从物侧至成像侧依序包括第一透镜L1、第二透镜L2、第三透镜L3、第四透镜L4、第五透镜L5和第六透镜L6。
第一透镜L1为具有负光焦度的弯月透镜,其物侧面S1为凸面,像侧面S2为凹面。
第二透镜L2为具有负光焦度的弯月透镜,其物侧面S3为凸面,像侧面S4为凹面。另外,第二透镜L2是非球面镜片,其物侧面S3和像侧面S4均为非球面。
第三透镜L3为具有正光焦度的双凸透镜,其物侧面S5为凸面,像侧面S6为凸面。另外,第三透镜L3是非球面镜片,其物侧面S5和像侧面S6均为非球面。
第四透镜L4为具有正光焦度的双凸透镜,其物侧面S8为凸面,像侧面S9为凸面。第五透镜L5为具有负光焦度的双凹透镜,其物侧面S9为凹面,像侧面S10为凹面。第六透镜L6为具有正光焦度的双凸透镜,其物侧面S10为凸面,像侧面S11为凸面。另外,第六透镜L6是非球面镜片,其像侧面S11为非球面。其中,第四透镜L4、第五透镜L5和第六透镜L6胶合组成三胶合透镜。
可选地,该光学镜头还可包括具有物侧面S12和像侧面S13的滤光片L7和具有物侧面S14和像侧面S15的保护透镜L8。滤光片L7可用于校正色彩偏差。保护透镜L8可用于保护位于成像面IMA的图像传感芯片。来自物体的光依序穿过各表面S1至S15并最终成像在成像面IMA上。
在本实施例的光学镜头中,可在第三透镜L3与第四透镜L4之间设置光阑STO以提高成像质量。
下表7示出了实施例3的光学镜头的各透镜的曲率半径R、厚度T、折射率Nd以及阿贝数Vd,其中,曲率半径R和厚度T的单位均为毫米(mm)。下表8示出了可用于实施例3中非球面透镜表面S3、S4、S5、S6和S11的圆锥系数k以及高次项系数A、B、C、D和E。下表9给出了实施例3的光学镜头的光学后焦BFL(即,从最后一个 透镜第六透镜L6的像侧面S11的中心至成像面S16的轴上距离)、光学镜头的整组焦距值F、光学镜头的光学总长度TTL(即,从第一透镜L1的物侧面S1的中心至成像面S16的轴上距离)、光学镜头的最大视场角FOV、光学镜头最大视场角所对应的第一透镜L1的物侧面S1的最大通光口径D以及光学镜头最大视场角所对应的像高H。
表7
面号 曲率半径R 厚度T 折射率Nd 阿贝数Vd
1 17.0643 1.5000 1.80 46.57
2 4.9924 2.6072    
3 6.5000 2.1808 1.80 46.57
4 3.7016 5.5775    
5 14.2912 3.2000 1.74 49.34
6 -9.6682 0.2000    
STO 无穷 0.0141    
8 8.6441 5.0745 1.52 64.21
9 -8.6441 0.8000 1.81 22.69
10 8.6441 1.9125 1.62 63.42
11 -11.5649 1.5664    
12 无穷 0.5500 1.52 64.21
13 无穷 1.5131    
14 无穷 0.4000 1.52 64.21
15 无穷 1.8837    
IMA 无穷      
表8
面号 K A B C D E
3 -1.0118 4.02E-04 -3.52E-05 9.29E-07 -1.15E-07 1.82E-09
4 -0.9914 2.16E-03 -3.47E-05 -4.60E-06 -4.56E-07 2.59E-08
5 2.7259 2.76E-04 2.36E-05 -9.00E-07 6.36E-08 3.26E-10
6 -8.8025 -7.65E-04 3.34E-05 3.72E-06 -3.72E-07 1.87E-08
11 -2.3134 1.05E-03 -1.60E-06 1.11E-06 3.84E-08 -5.38E-09
表9
参数 BFL(mm) F(mm) TTL(mm) FOV(°) D(mm) H(mm)
数值 5.913 4.184 28.980 113.7 14.301 8.738
在本实施例中,光学镜头的最大视场角度FOV、光学镜头最大视 场角所对应的第一透镜L1的物侧面S1的最大通光口径D以及光学镜头最大视场角所对应的像高H之间满足D/H/FOV=0.014。光学镜头的光学后焦BFL与光学镜头的光学总长度TTL之间满足BFL/TTL=0.204;以及光学镜头的光学总长度TTL与光学镜头的整组焦距值F之间满足TTL/F=6.926。
综上,实施例1至实施例3分别满足以下表10所示的关系。
表10
条件式/实施例 1 2 3
D/H/FOV 0.014 0.014 0.014
BFL/TTL 0.236 0.231 0.204
TTL/F 6.074 6.222 6.926
以上描述仅为本申请的较佳实施例以及对所运用技术原理的说明。本领域技术人员应当理解,本申请中所涉及的发明范围,并不限于上述技术特征的特定组合而成的技术方案,同时也应涵盖在不脱离所述发明构思的情况下,由上述技术特征或其等同特征进行任意组合而形成的其它技术方案。例如上述特征与本申请中公开的(但不限于)具有类似功能的技术特征进行互相替换而形成的技术方案。

Claims (18)

  1. 光学镜头,沿着光轴由物侧至像侧依序包括:第一透镜、第二透镜、第三透镜、第四透镜、第五透镜和第六透镜,
    其特征在于,
    所述第一透镜具有负光焦度,其物侧面为凸面,像侧面为凹面;
    所述第二透镜具有负光焦度,其物侧面为凸面,像侧面为凹面;
    所述第三透镜具有正光焦度,其物侧面和像侧面均为凸面;
    所述第四透镜具有正光焦度,其物侧面和像侧面均为凸面;
    所述第五透镜具有负光焦度,其物侧面和像侧面均为凹面;以及
    所述第六透镜具有正光焦度,其物侧面和像侧面均为凸面。
  2. 根据权利要求1所述的光学镜头,其特征在于,所述第四透镜、所述第五透镜和所述第六透镜胶合组成三胶合透镜。
  3. 根据权利要求1所述的光学镜头,其特征在于,所述第一透镜至所述第六透镜中的任何一个或所有为玻璃镜片。
  4. 根据权利要求1所述的光学镜头,其特征在于,所述第二透镜、所述第三透镜和所述第六透镜中的至少一个为非球面镜片。
  5. 根据权利要求1-4中任一项所述的光学镜头,其特征在于,满足:D/H/FOV≤0.025,
    其中,FOV为所述光学镜头的最大视场角;
    D为所述光学镜头最大视场角所对应的所述第一透镜物侧面的最大通光口径;以及
    H为所述光学镜头最大视场角所对应的像高。
  6. 根据权利要求1-4中任一项所述的光学镜头,其特征在于,满足:BFL/TTL≥0.15,
    其中,BFL为所述第六透镜的像侧面的中心至所述光学镜头的成像面在所述光轴上的距离;以及
    TTL为所述第一透镜的物侧面的中心至所述光学镜头的成像面在所述光轴上的距离。
  7. 根据权利要求1-4中任一项所述的光学镜头,其特征在于,所述第一透镜的物侧面的中心至所述光学镜头的成像面在所述光轴上的距离TTL与所述光学镜头的整组焦距值F之间满足:TTL/F≤7.5。
  8. 光学镜头,沿着光轴由物侧至像侧依序包括:第一透镜、第二透镜、第三透镜、第四透镜、第五透镜和第六透镜,
    其特征在于,
    所述第一透镜、所述第二透镜和所述第五透镜均具有负光焦度;
    所述第三透镜、所述第四透镜和所述第六透镜均具有正光焦度;以及
    所述第四透镜、所述第五透镜和所述第六透镜胶合组成三胶合透镜,
    其中,所述第一透镜的物侧面的中心至所述光学镜头的成像面在所述光轴上的距离TTL与所述光学镜头的整组焦距值F之间满足:TTL/F≤7.5。
  9. 根据权利要求8所述的光学镜头,其特征在于,所述第一透镜的物侧面为凸面,像侧面为凹面。
  10. 根据权利要求8所述的光学镜头,其特征在于,所述第二透镜的物侧面为凸面,像侧面为凹面。
  11. 根据权利要求8所述的光学镜头,其特征在于,所述第三透镜的物侧面和像侧面均为凸面。
  12. 根据权利要求8所述的光学镜头,其特征在于,所述第四透镜的物侧面和像侧面均为凸面。
  13. 根据权利要求8所述的光学镜头,其特征在于,所述第五透镜的物侧面和像侧面均为凹面。
  14. 根据权利要求8所述的光学镜头,其特征在于,所述第六透镜的物侧面和像侧面均为凸面。
  15. 根据权利要求8-14中任一项所述的光学镜头,其特征在于,所述第一透镜至所述第六透镜中的任何一个或所有为玻璃镜片。
  16. 根据权利要求8-14中任一项所述的光学镜头,其特征在于,所述第二透镜、所述第三透镜和所述第六透镜中的至少一个为非球面镜片。
  17. 根据权利要求8-14中任一项所述的光学镜头,其特征在于,满足:D/H/FOV≤0.025,
    其中,FOV为所述光学镜头的最大视场角;
    D为所述光学镜头最大视场角所对应的所述第一透镜物侧面的最大通光口径;以及
    H为所述光学镜头最大视场角所对应的像高。
  18. 根据权利要求8-14中任一项所述的光学镜头,其特征在于,满足:BFL/TTL≥0.15,
    其中,BFL为所述第六透镜的像侧面的中心至所述光学镜头的成像面在所述光轴上的距离;以及
    TTL为所述第一透镜的物侧面的中心至所述光学镜头的成像面在所述光轴上的距离。
PCT/CN2019/079983 2018-04-28 2019-03-28 光学镜头 WO2019205875A1 (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
US17/081,042 US20210063705A1 (en) 2018-04-28 2020-10-27 Optical lens assembly

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201810397943.0A CN110412721B (zh) 2018-04-28 2018-04-28 光学镜头
CN201810397943.0 2018-04-28

Related Child Applications (1)

Application Number Title Priority Date Filing Date
US17/081,042 Continuation US20210063705A1 (en) 2018-04-28 2020-10-27 Optical lens assembly

Publications (1)

Publication Number Publication Date
WO2019205875A1 true WO2019205875A1 (zh) 2019-10-31

Family

ID=68293748

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2019/079983 WO2019205875A1 (zh) 2018-04-28 2019-03-28 光学镜头

Country Status (3)

Country Link
US (1) US20210063705A1 (zh)
CN (1) CN110412721B (zh)
WO (1) WO2019205875A1 (zh)

Families Citing this family (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN114815148A (zh) * 2019-06-13 2022-07-29 玉晶光电(厦门)有限公司 光学成像镜头
JP6907433B1 (ja) * 2020-03-27 2021-07-21 エスゼット ディージェイアイ テクノロジー カンパニー リミテッドSz Dji Technology Co.,Ltd レンズ系、撮像装置、及び移動体
CN114594568A (zh) * 2020-12-07 2022-06-07 宁波舜宇车载光学技术有限公司 光学镜头及电子设备
CN112666685B (zh) * 2020-12-25 2023-05-16 玉晶光电(厦门)有限公司 光学成像镜头
CN112612118A (zh) * 2021-01-05 2021-04-06 协益电子(苏州)有限公司 一种车载光学镜头
CN114089512B (zh) * 2022-01-24 2022-07-05 江西联益光学有限公司 光学镜头及成像设备

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP1734393A1 (en) * 2005-06-15 2006-12-20 Ricoh Company, Ltd. Photographic optical system, photocographic lens unit, camera and mobile information terminal
CN102369471A (zh) * 2009-04-03 2012-03-07 株式会社理光 广角镜头和成像设备
CN107065147A (zh) * 2017-05-26 2017-08-18 东莞市宇瞳光学科技股份有限公司 一种广角超大光圈高清定焦镜头
CN107436476A (zh) * 2017-06-22 2017-12-05 玉晶光电(厦门)有限公司 光学成像镜头
CN107577030A (zh) * 2016-07-05 2018-01-12 信泰光学(深圳)有限公司 广角镜头

Family Cites Families (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4855042B2 (ja) * 2005-10-17 2012-01-18 株式会社リコー 撮影光学系,撮影レンズユニットおよびカメラ
TW201037354A (en) * 2009-04-15 2010-10-16 Young Optics Inc Fixed-focus lens
KR101917228B1 (ko) * 2011-08-17 2019-01-29 엘지이노텍 주식회사 촬상 렌즈
JP2013073160A (ja) * 2011-09-29 2013-04-22 Fujifilm Corp 撮像レンズおよび撮像装置
US9784956B2 (en) * 2012-10-25 2017-10-10 Young Optics Inc. Wide-angle projection system
EP2990847A4 (en) * 2013-04-22 2016-11-30 Olympus Corp OPTICAL WIDE-ANGLE LENS SYSTEM
US10877251B2 (en) * 2015-11-20 2020-12-29 Sony Corporation Imaging lens
CN107329241B (zh) * 2016-04-29 2020-02-28 信泰光学(深圳)有限公司 广角镜头
CN108957709B (zh) * 2017-05-18 2021-01-26 信泰光学(深圳)有限公司 广角镜头

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP1734393A1 (en) * 2005-06-15 2006-12-20 Ricoh Company, Ltd. Photographic optical system, photocographic lens unit, camera and mobile information terminal
CN102369471A (zh) * 2009-04-03 2012-03-07 株式会社理光 广角镜头和成像设备
CN107577030A (zh) * 2016-07-05 2018-01-12 信泰光学(深圳)有限公司 广角镜头
CN107065147A (zh) * 2017-05-26 2017-08-18 东莞市宇瞳光学科技股份有限公司 一种广角超大光圈高清定焦镜头
CN107436476A (zh) * 2017-06-22 2017-12-05 玉晶光电(厦门)有限公司 光学成像镜头

Also Published As

Publication number Publication date
CN110412721A (zh) 2019-11-05
US20210063705A1 (en) 2021-03-04
CN110412721B (zh) 2021-01-08

Similar Documents

Publication Publication Date Title
WO2019205875A1 (zh) 光学镜头
WO2020024599A1 (zh) 光学镜头
WO2019228127A1 (zh) 广角镜头
CN112180538B (zh) 光学镜头及成像设备
WO2019205944A1 (zh) 光学镜头及成像设备
CN110412727B (zh) 光学镜头
CN110646919B (zh) 鱼眼镜头
WO2019205874A1 (zh) 光学镜头
WO2020107759A1 (zh) 光学镜头及成像设备
CN110542978B (zh) 光学镜头
CN111474673B (zh) 光学镜头及成像设备
CN109445077A (zh) 光学镜头及成像设备
WO2020248877A1 (zh) 光学镜头及成像设备
CN114509859A (zh) 光学镜头及电子设备
CN109683291B (zh) 光学镜头及成像设备
CN111103672B (zh) 光学镜头
CN112444938A (zh) 光学镜头及电子设备
CN111090168B (zh) 光学镜头
CN108663773A (zh) 光学镜头和成像设备
CN112987232A (zh) 光学镜头及电子设备
CN110412728B (zh) 光学镜头
CN109975952B (zh) 光学镜头
CN114252981B (zh) 光学镜头
CN110488471A (zh) 光学镜头
CN112748512B (zh) 光学镜头及电子设备

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 19791775

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 19791775

Country of ref document: EP

Kind code of ref document: A1