WO2018010246A1 - 摄像镜头 - Google Patents

摄像镜头 Download PDF

Info

Publication number
WO2018010246A1
WO2018010246A1 PCT/CN2016/095334 CN2016095334W WO2018010246A1 WO 2018010246 A1 WO2018010246 A1 WO 2018010246A1 CN 2016095334 W CN2016095334 W CN 2016095334W WO 2018010246 A1 WO2018010246 A1 WO 2018010246A1
Authority
WO
WIPO (PCT)
Prior art keywords
lens
aspherical
imaging
imaging lens
image
Prior art date
Application number
PCT/CN2016/095334
Other languages
English (en)
French (fr)
Inventor
戴付建
Original Assignee
浙江舜宇光学有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 浙江舜宇光学有限公司 filed Critical 浙江舜宇光学有限公司
Priority to US15/552,230 priority Critical patent/US10345555B2/en
Publication of WO2018010246A1 publication Critical patent/WO2018010246A1/zh

Links

Images

Classifications

    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B13/00Optical objectives specially designed for the purposes specified below
    • G02B13/001Miniaturised objectives for electronic devices, e.g. portable telephones, webcams, PDAs, small digital cameras
    • G02B13/0015Miniaturised objectives for electronic devices, e.g. portable telephones, webcams, PDAs, small digital cameras characterised by the lens design
    • G02B13/002Miniaturised objectives for electronic devices, e.g. portable telephones, webcams, PDAs, small digital cameras characterised by the lens design having at least one aspherical surface
    • G02B13/0045Miniaturised objectives for electronic devices, e.g. portable telephones, webcams, PDAs, small digital cameras characterised by the lens design having at least one aspherical surface having five or more lenses
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B27/00Optical systems or apparatus not provided for by any of the groups G02B1/00 - G02B26/00, G02B30/00
    • G02B27/0025Optical systems or apparatus not provided for by any of the groups G02B1/00 - G02B26/00, G02B30/00 for optical correction, e.g. distorsion, aberration
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B9/00Optical objectives characterised both by the number of the components and their arrangements according to their sign, i.e. + or -
    • G02B9/62Optical objectives characterised both by the number of the components and their arrangements according to their sign, i.e. + or - having six components only

Definitions

  • the present invention relates to optical imaging technology, and more particularly to an imaging lens.
  • the photosensitive elements of the optical imaging system include either a photosensitive coupling element (CCD) or a complementary oxidized metal semiconductor element (CMOS).
  • CCD photosensitive coupling element
  • CMOS complementary oxidized metal semiconductor element
  • the pixel size of the photosensitive element is reduced, and the optical imaging system tends to have higher pixels and higher image quality.
  • image pickup lenses applied to portable electronic products are further required to have high image quality, miniaturization, and wide angle.
  • the mainstream camera lens is generally composed of five lenses, and it has been difficult to meet the requirements of higher image quality, so it is necessary to increase the number of lenses.
  • the increase in the number of lenses is not conducive to miniaturization of the imaging lens, and the cost is correspondingly increased.
  • the present invention aims to solve at least one of the technical problems existing in the prior art. To this end, the present invention needs to provide an imaging lens.
  • the imaging lens of the embodiment of the present invention includes, in order from the object side to the image side, in order:
  • a second lens having positive power the image side is convex, and the material is glass
  • a sixth lens having a negative power, the object side surface being a convex surface, and the image side surface being a concave surface;
  • the camera lens satisfies the conditional expression:
  • f2 is the effective focal length of the second lens
  • f4 is the effective focal length of the fourth lens
  • the camera lens satisfies a conditional expression:
  • f2 is the effective focal length of the second lens
  • f is the effective focal length of the imaging lens
  • the camera lens satisfies a conditional expression:
  • CT1 is the center thickness of the first lens on the optical axis
  • CT2 is the center thickness of the second lens on the optical axis.
  • the camera lens satisfies a conditional expression:
  • SAG11 is an on-axis distance between an intersection of an object side surface and an optical axis of the first lens to an effective radius vertex of an object side surface of the first lens
  • TTL is an object side surface of the first lens to an imaging surface Distance on the shaft.
  • the camera lens satisfies a conditional expression:
  • SAG12 is an on-axis distance between an intersection of an image side surface and an optical axis of the first lens to an effective radius vertex of an image side of the first lens
  • TTL is an object side of the first lens to an imaging surface Distance on the shaft.
  • the image side of the fifth lens is convex.
  • the camera lens satisfies a conditional expression:
  • DT11 is the effective radius of the object side surface of the first lens
  • DT62 is the effective radius of the image side surface of the sixth lens.
  • the camera lens satisfies a conditional expression:
  • DT11 is the effective radius of the object side surface of the first lens
  • DT52 is the effective radius of the image side surface of the fifth lens.
  • the camera lens satisfies a conditional expression:
  • ImgH is half of the diagonal length of the effective pixel area on the imaging surface; f is the effective focal length of the imaging lens.
  • the image side of the first lens is concave.
  • the imaging lens of the embodiment of the present invention has the advantages of miniaturization, wide angle, and high image quality.
  • FIG. 1 is a schematic structural view of an image pickup lens of Embodiment 1;
  • FIG. 2 is an axial chromatic aberration diagram (mm) of the imaging lens of Embodiment 1
  • FIG. 3 is an astigmatism diagram (mm) of the imaging lens of Embodiment 1
  • FIG. 4 is a distortion diagram (%) of the imaging lens of Embodiment 1.
  • Figure 5 is a magnification chromatic aberration diagram ( ⁇ m) of the imaging lens of Embodiment 1;
  • FIG. 6 is a schematic structural view of an image pickup lens of Embodiment 2;
  • FIG. 7 is an axial chromatic aberration diagram (mm) of the imaging lens of Example 2;
  • FIG. 8 is an astigmatism diagram (mm) of the imaging lens of Embodiment 2; and
  • FIG. 9 is a distortion diagram (%) of the imaging lens of Embodiment 2.
  • Figure 10 is a magnification chromatic aberration diagram ( ⁇ m) of the imaging lens of Embodiment 2;
  • FIG. 11 is a schematic structural view of an image pickup lens of Embodiment 3.
  • FIG. 12 is an axial chromatic aberration diagram (mm) of the imaging lens of Embodiment 3;
  • FIG. 13 is an astigmatism diagram (mm) of the imaging lens of Embodiment 3;
  • FIG. 14 is a distortion diagram (%) of the imaging lens of Embodiment 3.
  • 15 is a magnification chromatic aberration diagram ( ⁇ m) of the imaging lens of Embodiment 3;
  • FIG. 16 is a schematic structural view of an image pickup lens of Embodiment 4.
  • FIG. 17 is an axial chromatic aberration diagram (mm) of the imaging lens of Example 4;
  • FIG. 18 is an astigmatism diagram (mm) of the imaging lens of Example 4; and
  • FIG. 19 is a distortion diagram (%) of the imaging lens of Embodiment 4.
  • 20 is a magnification chromatic aberration diagram ( ⁇ m) of the imaging lens of Embodiment 4;
  • FIG. 21 is a schematic structural diagram of an image pickup lens of Embodiment 5.
  • FIG. 22 is an axial chromatic aberration diagram (mm) of the five imaging lens of the embodiment
  • FIG. 23 is an astigmatism diagram (mm) of the imaging lens of the fifth embodiment
  • FIG. 24 is a distortion diagram (%) of the imaging lens of the fifth embodiment.
  • 25 is a magnification chromatic aberration diagram ( ⁇ m) of the imaging lens of Embodiment 5;
  • Figure 26 is a schematic structural view of an image pickup lens of Embodiment 6;
  • FIG. 27 is an axial chromatic aberration diagram (mm) of the imaging lens of Example 6
  • FIG. 28 is an astigmatism diagram (mm) of the imaging lens of Example 6
  • FIG. 29 is a distortion diagram (%) of the imaging lens of Example 6.
  • 30 is a magnification chromatic aberration diagram ( ⁇ m) of the imaging lens of Embodiment 6;
  • Figure 31 is a schematic structural view of an image pickup lens of Embodiment 7.
  • FIG. 32 is an axial chromatic aberration diagram (mm) of the imaging lens of Embodiment 7
  • FIG. 33 is an astigmatism diagram (mm) of the imaging lens of Embodiment 7
  • FIG. 34 is a distortion diagram (%) of the imaging lens of Embodiment 7.
  • 35 is a magnification chromatic aberration diagram ( ⁇ m) of the imaging lens of Embodiment 7;
  • FIG. 36 is a schematic structural diagram of an image pickup lens of Embodiment 8.
  • FIG. 37 is an axial chromatic aberration diagram (mm) of the imaging lens of Example 8, and FIG. 38 is an image of the imaging lens of Embodiment 8.
  • FIG. 39 is a distortion diagram (%) of the imaging lens of Embodiment 8;
  • FIG. 40 is a magnification chromatic aberration diagram ( ⁇ m) of the imaging lens of Embodiment 8;
  • FIG. 42 is an axial chromatic aberration diagram (mm) of the imaging lens of Example 9
  • FIG. 43 is an astigmatism diagram (mm) of the imaging lens of Example 9
  • FIG. 44 is a distortion diagram (%) of the imaging lens of Example 9.
  • 45 is a magnification chromatic aberration diagram ( ⁇ m) of the imaging lens of Example 9.
  • Figure 46 is a schematic structural view of an image pickup lens of Embodiment 10.
  • FIG. 47 is an axial chromatic aberration diagram (mm) of the imaging lens of Example 10;
  • FIG. 48 is an astigmatism diagram (mm) of the imaging lens of Embodiment 10; and
  • FIG. 49 is a distortion diagram (%) of the imaging lens of Embodiment 10.
  • Fig. 50 is a magnification chromatic aberration diagram ( ⁇ m) of the image pickup lens of Example 10.
  • Figure 51 is a schematic structural view of an image pickup lens of Embodiment 11;
  • FIG. 52 is an axial chromatic aberration diagram (mm) of the imaging lens of Example 11
  • FIG. 53 is an astigmatism diagram (mm) of the imaging lens of Example 11
  • FIG. 54 is a distortion diagram (%) of the imaging lens of Embodiment 11.
  • Fig. 55 is a magnification chromatic aberration diagram ( ⁇ m) of the image pickup lens of the eleventh embodiment.
  • Figure 56 is a schematic structural view of an image pickup lens of Embodiment 12.
  • FIG. 57 is an axial chromatic aberration diagram (mm) of the imaging lens of Example 12;
  • FIG. 58 is an astigmatism diagram (mm) of the imaging lens of Example 12;
  • FIG. 59 is a distortion diagram (%) of the imaging lens of Embodiment 12.
  • Fig. 60 is a magnification chromatic aberration diagram ( ⁇ m) of the imaging lens of Example 12.
  • first and second are used for descriptive purposes only and are not to be construed as indicating or implying a relative importance or implicitly indicating the number of technical features indicated.
  • features defining “first” or “second” may include one or more of the described features either explicitly or implicitly.
  • the meaning of "a plurality” is two or more unless specifically and specifically defined otherwise.
  • connection should be understood in a broad sense. For example, it may be a fixed connection, a detachable connection, or an integral connection; it may be a mechanical connection, or it may be an electrical connection or may communicate with each other; it may be directly connected. It can also be indirectly connected through an intermediate medium, which can be the internal communication of two elements or the interaction relationship of two elements. For those skilled in the art, the specific meaning of the above terms in the present invention can be understood according to the specific situation.
  • the first feature "on” or “under” the second feature may include direct contact of the first and second features, and may also include first and second features, unless otherwise specifically defined and defined. It is not in direct contact but through additional features between them.
  • the first feature "above”, “above” and “above” the second feature includes the first feature directly above and above the second feature, or merely indicating that the first feature level is higher than the second feature.
  • the first feature “below”, “below” and “below” the second feature includes the first feature directly below and below the second feature, or merely the first feature level being less than the second feature.
  • an imaging lens includes, in order from the object side to the image side, a first lens L1 having a negative refractive power, a second lens L2 having a positive refractive power, and a third lens L3 having a positive refractive power.
  • the first lens L1 has an object side surface S1 and an image side surface S2.
  • the material of the second lens L2 is glass, which has an object side surface S3 and an image side surface S4, and the image side surface S4 is a convex surface.
  • the third lens L3 has an object side surface S5 and an image side surface S6, and the image side surface S6 is a convex surface.
  • the fourth lens L4 has an object side surface S7 and an image side surface S8.
  • the fifth lens L5 has an object side surface S9 and an image side surface S10.
  • the sixth lens L6 has an object side surface S11 and an image side surface S12, and the object side surface S11 is a convex surface, and the image side surface S12 is a concave surface.
  • the imaging lens further includes a stop STO disposed between the second lens L2 and the third lens L3.
  • the light emitted or reflected by the subject OBJ enters the imaging lens from the first lens L1 and passes through the filter L7 having the object side surface S13 and the image side surface S14, and is finally imaged on the imaging surface S15.
  • the camera lens satisfies the conditional expression:
  • f2 is the effective focal length of the second lens L2; f4 is the effective focal length of the fourth lens L4.
  • the angle of view of the imaging lens can be effectively increased, and at the same time, sufficient brightness is ensured at the edge of the imaging surface S15, which is advantageous for widening the angle of the imaging lens.
  • the above conditional expression is satisfied, so that the powers of the second lens L2 and the fourth lens L4 are properly distributed, so that the imaging lens can effectively correct various aberrations, such as distortion, so that the imaging lens is distorted with a large angle of view. Still gaining effective control.
  • the material of the second lens L2 is glass, which eliminates the thermal difference, making the imaging lens suitable for different ambient temperatures.
  • the camera lens also satisfies the conditional expression:
  • f2 is the effective focal length of the second lens L2; f is the effective focal length of the imaging lens.
  • Satisfying the above conditional expression can reasonably distribute the power of the image pickup lens, so that the second lens L2 has a relatively good power, thereby effectively eliminating the heat difference.
  • the camera lens also satisfies the conditional expression:
  • CT1 is the center thickness of the first lens L1 on the optical axis; and CT2 is the center thickness of the second lens L2 on the optical axis.
  • the ratio is too large, it is not conducive to unidirectional assembly of the imaging lens. Too small is not conducive to correcting the aberration. Satisfying the above conditional condition is beneficial to rationally arranging the center thickness of the first lens L1 and the second lens L2, and balancing the images of the imaging lens. Poor, improve the imaging quality of the camera lens, while ensuring assembly processability.
  • the camera lens also satisfies the conditional expression:
  • the SAG 11 is an on-axis distance between the intersection of the object side surface S1 of the first lens L1 and the optical axis to the apex of the effective radius of the object side surface S1 of the first lens L1; the TTL is the object side surface S1 to the imaging surface S15 of the first lens L1. The distance on the axis.
  • the first lens L1 plays a large role in correcting the off-axis aberration. If the ratio is too large, the balance aberration and the angle of view cannot be satisfied at the same time. Too small will increase the incident angle of the edge light, Conducive to the edge brightness guarantee.
  • the camera lens also satisfies the conditional expression:
  • the SAG 12 is an on-axis distance between the intersection of the image side surface S2 of the first lens L1 and the optical axis to the apex of the effective radius of the image side surface S2 of the first lens L1.
  • the TTL is the on-axis distance from the object side S1 of the first lens L1 to the imaging plane S15.
  • the above conditional expression is satisfied such that the shape of the image side surface S2 of the first lens L1 is relatively uniform, and the processability of the first lens L1 can be further improved. At the same time, the thickness of the first lens L1 is made uniform, thereby reducing the sensitivity of the image pickup lens.
  • the image side S10 of the fifth lens L5 is convex.
  • the camera lens also satisfies the conditional expression:
  • DT11 is the effective radius of the object side surface S1 of the first lens L1;
  • DT62 is the effective radius of the image side surface S12 of the sixth lens L6.
  • Satisfying the above conditional expression can ensure the uniformity of the lateral dimensions of the first lens L1 and the sixth lens L6, thereby ensuring the processability of the camera lens assembly, and at the same time, correcting the distortion by the optimized design of the lens.
  • the camera lens also satisfies the conditional expression:
  • DT11 is the effective radius of the object side surface S1 of the first lens L1;
  • DT52 is the effective radius of the image side surface S10 of the fifth lens L5.
  • the diopter of the first lens L1 and the fifth lens L5 can be reasonably distributed by satisfying the above conditional expression, thereby effectively correcting the distortion while eliminating the aberration.
  • the camera lens also satisfies the conditional expression:
  • ImgH is half of the diagonal length of the effective pixel area on the imaging surface S15; f is the effective focal length of the imaging lens.
  • the camera lens has a suitable focal length to have a long depth of field.
  • the image side S2 of the first lens L1 is concave.
  • Satisfying the above conditions is advantageous for ensuring the negative power of the first lens L1, ensuring sufficient back focus, and simultaneously compressing the chief ray angle of the second lens L2, thereby facilitating an increase in the angle of view.
  • the incident angle of the light on the side S1 of the object can be reduced, which is beneficial to ensure sufficient brightness at the edge of the image plane S15.
  • the first lens L1, the third lens L3, the fourth lens L4, the fifth lens L5, and the sixth lens L6 may each adopt a plastic aspherical lens.
  • the aspherical shape is determined by the following formula:
  • h is the height from any point on the aspheric surface to the optical axis
  • c is the curvature of the vertex
  • k is the cone constant
  • Ai is the correction coefficient of the i-th order of the aspheric surface.
  • the camera lens satisfies the conditions of the following table:
  • the camera lens satisfies the conditions of the following table:
  • the camera lens satisfies the conditions of the following table:
  • the camera lens satisfies the conditions of the following table:
  • the camera lens satisfies the conditions of the following table:
  • the camera lens satisfies the conditions of the following table:
  • the camera lens satisfies the conditions of the following table:
  • the camera lens satisfies the conditions of the following table:
  • the camera lens satisfies the conditions of the following table:
  • the camera lens satisfies the conditions of the following table:
  • the camera lens satisfies the conditions of the following table:
  • the camera lens satisfies the conditions of the following table:
  • the angle of view of the imaging lens can be effectively increased, and at the same time, sufficient brightness is ensured at the edge of the imaging surface S15, which is advantageous for widening the angle of the imaging lens.
  • the above conditional expressions are satisfied, so that the power of the camera lens is properly distributed, so that the camera lens can effectively correct various aberrations, so that the camera lens has a large angle of view.
  • the material of the second lens L2 is glass, which eliminates the thermal difference, making the imaging lens suitable for different ambient temperatures.

Abstract

一种摄像镜头,其从物侧至像侧依次包括:具有负光焦度的第一透镜(L1);具有正光焦度的第二透镜(L2),其像侧面(S4)为凸面,材料为玻璃;具有正光焦度的第三透镜(L3),其像侧面(S6)为凸面;具有负光焦度的第四透镜(L4);具有正光焦度的第五透镜(L5);及具有负光焦度的第六透镜(L6),其物侧面(S11)为凸面,像侧面(S12)为凹面。所述摄像镜头满足条件式:-1.7<f2/f4<-0.7;其中,f2为所述第二透镜(L2)的有效焦距,f4为所述第四透镜(L4)的有效焦距。摄像镜头在保证小型化的同时,能有效消除像差,满足高像素需求,并降低成本。

Description

摄像镜头
优先权信息
本申请请求2016年7月12日向中国国家知识产权局提交的、专利申请号为201610551455.1的专利申请的优先权和权益,并且通过参照将其全文并入此处。
技术领域
本发明涉及光学成像技术,特别涉及一种摄像镜头。
背景技术
随着科技的发展,便携式电子产品逐步兴起,特别是具有摄像功能的便携式电子产品得到人们更多的青睐。光学成像系统的感光元件包括感光耦合元件(CCD)或互补性氧化金属半导体元件(CMOS)两种。随着半导体制程技术的发展,感光元件的像素尺寸缩小,光学成像系统趋向于更高像素、更高成像质量。为了满足该趋势,对于应用在便携式电子产品上的摄像镜头也进一步要求高成像质量、小型化及广角化。
目前主流的摄像镜头一般由五片透镜组成,已经很难满足更高成像质量的要求,因此势必要增加透镜数量。但是,透镜数量的增加,不利于摄像镜头的小型化,成本也会相应提高。
发明内容
本发明旨在至少解决现有技术中存在的技术问题之一。为此,本发明需要提供一种摄像镜头。
本发明实施方式的摄像镜头从物侧至像侧依次包括:
具有负光焦度的第一透镜;
具有正光焦度的第二透镜,其像侧面为凸面,材料为玻璃;
具有正光焦度的第三透镜,其像侧面为凸面;
具有负光焦度的第四透镜;
具有正光焦度的第五透镜;及
具有负光焦度的第六透镜,其物侧面为凸面,像侧面为凹面;
所述摄像镜头满足条件式:
-1.7<f2/f4<-0.7;
其中,f2为所述第二透镜的有效焦距;f4为所述第四透镜的有效焦距。
在某些实施方式中,所述摄像镜头满足条件式:
1<f2/f<3;
其中,f2为所述第二透镜的有效焦距;f为所述摄像镜头的有效焦距。
在某些实施方式中,所述摄像镜头满足条件式:
0.3<CT1/CT2<0.9;
其中,CT1为所述第一透镜在光轴上的中心厚度;CT2为所述第二透镜在光轴上的中心厚度。
在某些实施方式中,所述摄像镜头满足条件式:
0.03<SAG11/TTL<0.08;
其中,SAG11为所述第一透镜的物侧面和光轴的交点至所述第一透镜的物侧面的有效半径顶点之间的轴上距离;TTL为所述第一透镜的物侧面至成像面的轴上距离。
在某些实施方式中,所述摄像镜头满足条件式:
0.05<SAG12/TTL<0.1;
其中,SAG12为所述第一透镜的像侧面和光轴的交点至所述第一透镜的像侧面的有效半径顶点之间的轴上距离;TTL为所述第一透镜的物侧面至成像面的轴上距离。
在某些实施方式中,所述第五透镜的像侧面为凸面。
在某些实施方式中,所述摄像镜头满足条件式:
0.5<DT11/DT62<1;
其中,DT11为所述第一透镜的物侧面的有效半径;DT62为所述第六透镜的像侧面的有效半径。
在某些实施方式中,所述摄像镜头满足条件式:
1.1<DT11/DT52<1.5;
其中,DT11为所述第一透镜的物侧面的有效半径;DT52为所述第五透镜的像侧面的有效半径。
在某些实施方式中,所述摄像镜头满足条件式:
1<ImgH/f<1.5;
其中,ImgH为成像面上有效像素区域对角线长的一半;f为所述摄像镜头的有效焦距。
在某些实施方式中,所述第一透镜的像侧面为凹面。
本发明实施方式的摄像镜头具有小型化、广角化、高成像品质的优点。
本发明的附加方面和优点将在下面的描述中部分给出,部分将从下面的描述中变得明显,或通过本发明的实践了解到。
附图说明
本发明的上述和/或附加的方面和优点从结合下面附图对实施方式的描述中将变得明显和容易理解,其中:
图1是实施例1的摄像镜头的结构示意图;
图2是实施例1的摄像镜头的轴上色差图(mm);图3是实施例1的摄像镜头的象散图(mm);图4是实施例1的摄像镜头的畸变图(%);图5是实施例1的摄像镜头的倍率色差图(μm);
图6是实施例2的摄像镜头的结构示意图;
图7是实施例2的摄像镜头的轴上色差图(mm);图8是实施例2的摄像镜头的象散图(mm);图9是实施例2的摄像镜头的畸变图(%);图10是实施例2的摄像镜头的倍率色差图(μm);
图11是实施例3的摄像镜头的结构示意图;
图12是实施例3的摄像镜头的轴上色差图(mm);图13是实施例3的摄像镜头的象散图(mm);图14是实施例3的摄像镜头的畸变图(%);图15是实施例3的摄像镜头的倍率色差图(μm);
图16是实施例4的摄像镜头的结构示意图;
图17是实施例4的摄像镜头的轴上色差图(mm);图18是实施例4的摄像镜头的象散图(mm);图19是实施例4的摄像镜头的畸变图(%);图20是实施例4的摄像镜头的倍率色差图(μm);
图21是实施例5的摄像镜头的结构示意图;
图22是实施例的5摄像镜头的轴上色差图(mm);图23是实施例5的摄像镜头的象散图(mm);图24是实施例5的摄像镜头的畸变图(%);图25是实施例5的摄像镜头的倍率色差图(μm);
图26是实施例6的摄像镜头的结构示意图;
图27是实施例6的摄像镜头的轴上色差图(mm);图28是实施例6的摄像镜头的象散图(mm);图29是实施例6的摄像镜头的畸变图(%);图30是实施例6的摄像镜头的倍率色差图(μm);
图31是实施例7的摄像镜头的结构示意图;
图32是实施例7的摄像镜头的轴上色差图(mm);图33是实施例7的摄像镜头的象散图(mm);图34是实施例7的摄像镜头的畸变图(%);图35是实施例7的摄像镜头的倍率色差图(μm);
图36是实施例8的摄像镜头的结构示意图;
图37是实施例8的摄像镜头的轴上色差图(mm);图38是实施例8的摄像镜头的象 散图(mm);图39是实施例8的摄像镜头的畸变图(%);图40是实施例8的摄像镜头的倍率色差图(μm);
图41是实施例9的摄像镜头的结构示意图;
图42是实施例9的摄像镜头的轴上色差图(mm);图43是实施例9的摄像镜头的象散图(mm);图44是实施例9的摄像镜头的畸变图(%);图45是实施例9的摄像镜头的倍率色差图(μm)。
图46是实施例10的摄像镜头的结构示意图;
图47是实施例10的摄像镜头的轴上色差图(mm);图48是实施例10的摄像镜头的象散图(mm);图49是实施例10的摄像镜头的畸变图(%);图50是实施例10的摄像镜头的倍率色差图(μm)。
图51是实施例11的摄像镜头的结构示意图;
图52是实施例11的摄像镜头的轴上色差图(mm);图53是实施例11的摄像镜头的象散图(mm);图54是实施例11的摄像镜头的畸变图(%);图55是实施例11的摄像镜头的倍率色差图(μm)。
图56是实施例12的摄像镜头的结构示意图;
图57是实施例12的摄像镜头的轴上色差图(mm);图58是实施例12的摄像镜头的象散图(mm);图59是实施例12的摄像镜头的畸变图(%);图60是实施例12的摄像镜头的倍率色差图(μm)。
具体实施方式
下面详细描述本发明的实施方式,所述实施方式的示例在附图中示出,其中自始至终相同或类似的标号表示相同或类似的元件或具有相同或类似功能的元件。下面通过参考附图描述的实施方式是示例性的,仅用于解释本发明,而不能理解为对本发明的限制。
在本发明的描述中,需要理解的是,术语“中心”、“纵向”、“横向”、“长度”、“宽度”、“厚度”、“上”、“下”、“前”、“后”、“左”、“右”、“竖直”、“水平”、“顶”、“底”、“内”、“外”、“顺时针”、“逆时针”等指示的方位或位置关系为基于附图所示的方位或位置关系,仅是为了便于描述本发明和简化描述,而不是指示或暗示所指的装置或元件必须具有特定的方位、以特定的方位构造和操作,因此不能理解为对本发明的限制。此外,术语“第一”、“第二”仅用于描述目的,而不能理解为指示或暗示相对重要性或者隐含指明所指示的技术特征的数量。由此,限定有“第一”、“第二”的特征可以明示或者隐含地包括一个或者更多个所述特征。在本发明的描述中,“多个”的含义是两个或两个以上,除非另有明确具体的限定。
在本发明的描述中,需要说明的是,除非另有明确的规定和限定,术语“安装”、“相 连”、“连接”应做广义理解,例如,可以是固定连接,也可以是可拆卸连接,或一体地连接;可以是机械连接,也可以是电连接或可以相互通讯;可以是直接相连,也可以通过中间媒介间接相连,可以是两个元件内部的连通或两个元件的相互作用关系。对于本领域的普通技术人员而言,可以根据具体情况理解上述术语在本发明中的具体含义。
在本发明中,除非另有明确的规定和限定,第一特征在第二特征之“上”或之“下”可以包括第一和第二特征直接接触,也可以包括第一和第二特征不是直接接触而是通过它们之间的另外的特征接触。而且,第一特征在第二特征“之上”、“上方”和“上面”包括第一特征在第二特征正上方和斜上方,或仅仅表示第一特征水平高度高于第二特征。第一特征在第二特征“之下”、“下方”和“下面”包括第一特征在第二特征正下方和斜下方,或仅仅表示第一特征水平高度小于第二特征。
下文的公开提供了许多不同的实施方式或例子用来实现本发明的不同结构。为了简化本发明的公开,下文中对特定例子的部件和设置进行描述。当然,它们仅仅为示例,并且目的不在于限制本发明。此外,本发明可以在不同例子中重复参考数字和/或参考字母,这种重复是为了简化和清楚的目的,其本身不指示所讨论各种实施方式和/或设置之间的关系。此外,本发明提供了的各种特定的工艺和材料的例子,但是本领域普通技术人员可以意识到其他工艺的应用和/或其他材料的使用。
请参阅图1,本发明实施方式的摄像镜头从物侧到像侧依次包括具有负光焦度的第一透镜L1、具有正光焦度的第二透镜L2、具有正光焦度的第三透镜L3、具有负光焦度的第四透镜L4、具有正光焦度的第五透镜L5及具有负光焦度的第六透镜L6。
第一透镜L1具有物侧面S1及像侧面S2。第二透镜L2的材料为玻璃,其具有物侧面S3及像侧面S4,且像侧面S4为凸面。第三透镜L3具有物侧面S5及像侧面S6,且像侧面S6为凸面。第四透镜L4具有物侧面S7及像侧面S8。第五透镜L5具有物侧面S9及像侧面S10。第六透镜L6具有物侧面S11及像侧面S12,且物侧面S11为凸面,像侧面S12为凹面。
在某些实施方式中,摄像镜头还包括设置在第二透镜L2及第三透镜L3之间的光阑STO。
成像时,被摄物体OBJ发出或者反射的光线从第一透镜L1进入摄像镜头并穿过具有物侧面S13及像侧面S14的滤光片L7,最终成像于成像面S15。
在某些实施方式中,摄像镜头满足条件式:
-1.7<f2/f4<-0.7;
其中,f2为第二透镜L2的有效焦距;f4为第四透镜L4的有效焦距。
本发明实施方式的摄像镜头中,由于第一透镜L1具有负光焦度,可有效增加摄像镜头的视场角,同时保证成像面S15边缘有足够的亮度,有利于摄像镜头的广角化。而 满足上面的条件式,使得第二透镜L2及第四透镜L4的光焦度合理分配,使得摄像镜头可以有效校正各种像差,例如畸变,使得摄像镜头在具有较大视场角情况下畸变仍然得到有效控制。第二透镜L2的材料为玻璃,可消除热差,使得摄像镜头适用于不同环境温度。
在某些实施方式中,摄像镜头还满足条件式:
1<f2/f<3;
其中,f2为第二透镜L2的有效焦距;f为摄像镜头的有效焦距。
满足上面的条件式可以合理分配摄像镜头的光焦度,使得第二透镜L2具有比较合适的光焦度,从而有效消除热差。
在某些实施方式中,摄像镜头还满足条件式:
0.3<CT1/CT2<0.9;
其中,CT1为第一透镜L1在光轴上的中心厚度;CT2为第二透镜L2在光轴上的中心厚度。
该比值太大则不利于实现摄像镜头单向组装,太小则不利于矫正像差,满足上面的条件式有利于合理配置第一透镜L1与第二透镜L2的中心厚度,平衡摄像镜头各像差,提高摄像镜头的成像质量,同时保证组装工艺性。
在某些实施方式中,摄像镜头还满足条件式:
0.03<SAG11/TTL<0.08;
其中,SAG11为第一透镜L1的物侧面S1和光轴的交点至第一透镜L1的物侧面S1的有效半径顶点之间的轴上距离;TTL为第一透镜L1的物侧面S1至成像面S15的轴上距离。
第一透镜L1在矫正轴外像差中承担了较大的作用,该比值太大则不能同时满足平衡像差和增大视角两方面的需求,太小则会增加边缘光线的入射角度,不利于边缘亮度的保证。
在某些实施方式中,摄像镜头还满足条件式:
0.05<SAG12/TTL<0.1;
其中,SAG12为第一透镜L1的像侧面S2和光轴的交点至第一透镜L1的像侧面S2的有效半径顶点之间的轴上距离。TTL为第一透镜L1的物侧面S1至成像面S15的轴上距离。
满足上面的条件式使得第一透镜L1的像侧面S2的形状比较均匀,可以进一步改善第一透镜L1的工艺性。同时使第一透镜L1的厚度均匀,从而降低摄像镜头的敏感性。
在某些实施方式中,第五透镜L5的像侧面S10为凸面。
满足上面的条件有利于保证第五透镜L5的正光焦度。
在某些实施方式中,摄像镜头还满足条件式:
0.5<DT11/DT62<1;
其中,DT11为第一透镜L1的物侧面S1的有效半径;DT62为第六透镜L6的像侧面S12的有效半径。
满足上面的条件式可以保证第一透镜L1及第六透镜L6的横向尺寸的均匀性,从而保证摄像镜头组立的工艺性,同时通过透镜的优化设计,有效矫正畸变。
在某些实施方式中,摄像镜头还满足条件式:
1.1<DT11/DT52<1.5;
其中,DT11为第一透镜L1的物侧面S1的有效半径;DT52为第五透镜L5的像侧面S10的有效半径。
满足上面的条件式可以合理分配第一透镜L1和第五透镜L5的屈光度,从而有效矫正畸变,同时消除像差。
在某些实施方式中,摄像镜头还满足条件式:
1<ImgH/f<1.5;
其中,ImgH为成像面S15上有效像素区域对角线长的一半;f为摄像镜头的有效焦距。
满足上面的条件式有利于减小摄像镜头的体积并扩大视场角,从而使拍摄范围较广。同时使摄像镜头具有合适的焦距,从而具有较长的景深。
在某些实施方式中,第一透镜L1的像侧面S2为凹面。
满足上面的条件有利于保证第一透镜L1的负光焦度,保证足够的后焦,同时压缩进去第二透镜L2的主光线角度,从而有利于增大视场角。同时可以降低物侧面S1上的光线入射角度,有利于保证成像面S15边缘有足够的亮度。
在某些实施方式中,第一透镜L1、第三透镜L3、第四透镜L4、第五透镜L5及第六透镜L6都可以采用塑料非球面透镜。非球面的面型由以下公式决定:
Figure PCTCN2016095334-appb-000001
其中,h是非球面上任一点到光轴的高度,c是顶点曲率,k是锥形常数,Ai是非球面第i-th阶的修正系数。
由于采用塑料非球面透镜,在保证小型化的同时可以有效消除像差,满足高像素需求,并降低成本。
实施例1
请参阅图1-5,实施例1中,摄像镜头满足下面表格的条件:
表1
面号 表面类型 曲率半径 厚度 材料 圆锥系数
OBJ 球面 无穷 无穷    
S1 非球面 -7.7148 0.7015 1.535/55.78 -87.6627
S2 非球面 26.4563 1.1057   -99.9900
S3 球面 无穷 1.3200 1.755/52.32  
S4 球面 -5.9748 0.0960    
STO 球面 无穷 0.1180    
S5 非球面 11.1540 1.0901 1.535/55.78 -74.2030
S6 非球面 -3.8765 0.2529   6.0089
S7 非球面 10.5335 0.4000 1.640/23.53 46.5584
S8 非球面 3.6644 0.5124   -9.3315
S9 非球面 -50.0000 1.5523 1.535/55.78 -99.9900
S10 非球面 -1.5300 0.1084   -2.1876
S11 非球面 6.7287 1.0000 1.640/23.53 -99.9900
S12 非球面 1.3399 0.5927   -4.4422
S13 球面 无穷 0.2100 1.517/64.17  
S14 球面 无穷 0.5870    
S15 球面 无穷      
表2
Figure PCTCN2016095334-appb-000002
表3
f1(mm) -11.05 f(mm) 3.47
f2(mm) 7.89 Fno 2.44
f3(mm) 5.50 TTL(mm) 9.65
f4(mm) -8.92    
f5(mm) 2.91    
f6(mm) -2.80    
实施例2
请参阅图6-10,实施例2中,摄像镜头满足下面表格的条件:
表4
面号 表面类型 曲率半径 厚度 材料 圆锥系数
OBJ 球面 无穷 无穷    
S1 非球面 -8.5881 0.7000 1.535/55.78 -99.9900
S2 非球面 14.8963 1.0732   -21.6949
S3 球面 254.2299 1.3200 1.754/52.43  
S4 球面 -6.0626 0.1723    
STO 球面 无穷 0.0976    
S5 非球面 10.7570 1.1203 1.535/55.78 -48.9231
S6 非球面 -3.8732 0.2519   6.0525
S7 非球面 10.5893 0.4739 1.640/23.53 45.3901
S8 非球面 3.6535 0.4714   -9.0167
S9 非球面 -57.1356 1.5363 1.535/55.78 -99.9900
S10 非球面 -1.6981 0.2185   -2.0629
S11 非球面 7.1252 1.0000 1.640/23.53 -99.9900
S12 非球面 1.4907 0.5647   -4.7883
S13 球面 无穷 0.2100 1.517/64.17  
S14 球面 无穷 0.5900    
S15 球面 无穷      
表5
Figure PCTCN2016095334-appb-000003
表6
f1(mm) -10.04 f(mm) 3.55
f2(mm) 7.84 Fno 2.41
f3(mm) 5.45 TTL(mm) 9.80
f4(mm) -8.89    
f5(mm) 3.23    
f6(mm) -3.14    
实施例3
请参阅图11-15,实施例3中,摄像镜头满足下面表格的条件:
表7
面号 表面类型 曲率半径 厚度 材料 圆锥系数
OBJ 球面 无穷 无穷    
S1 非球面 -8.7466 0.7095 1.535/55.78 -99.9900
S2 非球面 14.6280 1.0615   -21.8005
S3 球面 -134.1816 1.3200 1.754/52.43  
S4 球面 -6.0489 0.2580    
STO 球面 无穷 0.0576    
S5 非球面 9.1272 1.0576 1.535/55.78 -55.3265
S6 非球面 -3.8289 0.2397   6.2426
S7 非球面 10.4414 0.4824 1.640/23.53 45.2233
S8 非球面 3.6251 0.4777   -8.5609
S9 非球面 -46.0621 1.5822 1.535/55.78 50.0000
S10 非球面 -1.5760 0.0767   -2.0476
S11 非球面 4.8920 1.0000 1.640/23.53 -71.1816
S12 非球面 1.2677 0.5954   -4.9153
S13 球面 无穷 0.2100 1.517/64.17  
S14 球面 无穷 0.5900    
S15 球面 无穷      
表8
Figure PCTCN2016095334-appb-000004
表9
f1(mm) -10.09 f(mm) 3.38
f2(mm) 8.34 Fno 2.46
f3(mm) 5.17 TTL(mm) 9.72
f4(mm) -8.86    
f5(mm) 3.00    
f6(mm) -2.98    
实施例4
请参阅图16-20,实施例4中,摄像镜头满足下面表格的条件:
表10
面号 表面类型 曲率半径 厚度 材料 圆锥系数
OBJ 球面 无穷 无穷    
S1 非球面 -7.6418 0.7001 1.535/55.78 -90.1669
S2 非球面 14.0464 1.2477   12.1492
S3 球面 79.8892 1.3200 1.807/43.42  
S4 球面 -6.5034 0.1726    
STO 球面 无穷 0.0811    
S5 非球面 6.0436 1.5502 1.535/55.78 -47.1271
S6 非球面 -4.9373 0.0732   9.0378
S7 非球面 4.8184 0.4075 1.640/23.53 -26.0873
S8 非球面 2.5033 0.4301   -8.1831
S9 球面 7.7673 0.7761 1.535/55.78  
S10 球面 -76.7151 0.0519    
S11 非球面 3.8238 1.7612 1.640/23.53 -8.0174
S12 非球面 3.0605 0.4405   -5.1550
S13 球面 无穷 0.2100 1.517/64.17  
S14 球面 无穷 0.5900    
S15 球面 无穷      
表11
Figure PCTCN2016095334-appb-000005
表12
f1(mm) -9.12 f(mm) 3.38
f2(mm) 7.47 Fno 2.47
f3(mm) 5.32 TTL(mm) 9.71
f4(mm) -8.86    
f5(mm) 13.18    
f6(mm) -248.66    
实施例5
请参阅图21-25,实施例5中,摄像镜头满足下面表格的条件:
表13
面号 表面类型 曲率半径 厚度 材料 圆锥系数
OBJ 球面 无穷 无穷    
S1 非球面 -8.1579 0.7364 1.535/55.78 -95.4549
S2 非球面 12.9310 1.2598   20.1337
S3 球面 -40.9789 1.3200 1.804/46.57 0.0000
S4 球面 -5.6800 0.1331   0.0000
STO 球面 无穷 0.1193   0.0000
S5 非球面 5.5011 1.5794 1.535/55.78 -34.6177
S6 非球面 -5.5371 0.0798   11.7607
S7 非球面 4.7877 0.4000 1.640/23.53 -2.22E+01
S8 非球面 2.7031 0.5800   -7.4686
S9 非球面 13.0031 0.9482 1.535/55.78 0.0000
S10 非球面 -6.4307 0.2000   0.0000
S11 非球面 3.0690 1.2035 1.640/23.53 -9.7783
S12 非球面 1.8386 0.4755   -5.2308
S13 球面 无穷 0.2100 1.517/64.17  
S14 球面 无穷 0.5900    
S15 球面 无穷      
表14
Figure PCTCN2016095334-appb-000006
表15
f1(mm) -9.21 f(mm) 3.34
f2(mm) 8.04 Fno 2.49
f3(mm) 5.41 TTL(mm) 9.84
f4(mm) -10.41    
f5(mm) 8.15    
f6(mm) -11.54    
实施例6
请参阅图26-30,实施例6中,摄像镜头满足下面表格的条件:
表16
面号 表面类型 曲率半径 厚度 材料 圆锥系数
OBJ 球面 无穷 100000.0000    
S1 非球面 67.8996 0.7040 1.535/55.78 -99.9900
S2 非球面 4.5321 1.5602   -6.1571
S3 球面 11.5248 1.4493 1.755/52.32  
S4 球面 -11.5248 0.0746    
STO 球面 无穷 0.1140    
S5 非球面 6.9663 0.9005 1.535/55.78 -84.4451
S6 非球面 -3.3577 0.1189   5.3645
S7 非球面 7.1891 0.4000 1.640/23.53 6.1860
S8 非球面 2.6408 0.5187   -7.0738
S9 非球面 -10.8677 1.1623 1.535/55.78 0.0000
S10 非球面 -2.1661 0.3072   0.0000
S11 非球面 4.2583 1.3514 1.640/23.53 -39.8986
S12 非球面 1.6970 0.4683   -5.7305
S13 球面 无穷 0.2100 1.517/64.17  
S14 球面 无穷 0.5900    
S15 球面 无穷      
表17
Figure PCTCN2016095334-appb-000007
表18
f1(mm) -9.08 f(mm) 3.33
f2(mm) 7.82 Fno 2.52
f3(mm) 4.35 TTL(mm) 9.93
f4(mm) -6.71    
f5(mm) 4.81    
f6(mm) -5.52    
实施例7
请参阅图31-35,实施例7中,摄像镜头满足下面表格的条件:
表19
面号 表面类型 曲率半径 厚度 材料 圆锥系数
OBJ 球面 无穷 100000.0000    
S1 非球面 -63.5900 0.7000 1.535/55.78 50.0000
S2 非球面 5.2582 1.4312   -12.8906
S3 球面 11.6366 1.3200 1.755/52.32  
S4 球面 -11.6366 0.0782    
STO 球面 无穷 0.0443    
S5 非球面 6.6308 0.8882 1.535/55.78 -95.7441
S6 非球面 -2.6418 0.1665   3.5823
S7 非球面 -3.5176 0.4000 1.640/23.53 -18.2980
S8 非球面 -123.4542 0.5700   -99.9900
S9 非球面 -6.9795 1.1709 1.535/55.78 0.0000
S10 非球面 -2.2022 0.2888   0.0000
S11 非球面 3.3834 1.3494 1.640/23.53 -15.7047
S12 非球面 1.6146 0.5758   -4.3932
S13 球面 无穷 0.2100 1.517/64.17  
S14 球面 无穷 0.5900    
S15 球面 无穷      
表20
A4 A6 A8 A10 A12 A14 A16
             
S1 2.8192E-02 -3.7512E-03 2.2374E-04 5.3310E-05 -1.4922E-05 1.1671E-06 -2.7364E-08
S2 6.5792E-02 -1.5910E-02 1.2638E-02 -8.0443E-03 3.3960E-03 -7.6182E-04 6.4887E-05
S5 2.4393E-02 -5.0989E-02 3.0582E-02 -3.8620E-02 -9.5643E-04 0.0000E+00 0.0000E+00
S6 -2.6887E-02 -2.2487E-02 3.1353E-02 -1.7789E-02 1.8165E-03 0.0000E+00 0.0000E+00
S7 -9.9361E-02 5.8547E-03 2.8284E-02 -1.7551E-02 2.0642E-03 1.0862E-03 -2.9232E-04
S8 -3.2031E-03 -1.6351E-02 2.6111E-02 -1.5810E-02 5.1536E-03 -9.0947E-04 6.8600E-05
S9 4.7254E-03 -2.7046E-03 1.3383E-03 -1.7543E-04 0.0000E+00 0.0000E+00 0.0000E+00
S10 -2.0621E-03 6.8849E-03 4.1788E-04 -3.3711E-06 1.2003E-05 0.0000E+00 0.0000E+00
S11 -3.0441E-02 -1.3805E-03 3.3400E-03 -1.2277E-03 2.0976E-04 -1.7070E-05 5.3359E-07
S12 -2.7888E-02 6.2645E-03 -1.0292E-03 1.0897E-04 -7.4593E-06 2.9832E-07 -5.2726E-09
表21
f1(mm) -9.01 f(mm) 3.33
f2(mm) 7.87 Fno 2.52
f3(mm) 3.64 TTL(mm) 9.78
f4(mm) -5.62    
f5(mm) 5.52    
f6(mm) -6.84    
实施例8
请参阅图36-40,实施例8中,摄像镜头满足下面表格的条件:
表22
面号 表面类型 曲率半径 厚度 材料 圆锥系数
OBJ 球面 无穷 100000.0000    
S1 非球面 -26.6306 0.7000 1.535/55.78 50.0000
S2 非球面 5.4719 1.1677   -16.5689
S3 球面 7.7752 1.9450 1.755/52.32  
S4 球面 -5.6722 -0.0235    
STO 球面 无穷 0.0979    
S5 非球面 -182.8204 0.6970 1.535/55.78 50.0000
S6 非球面 -2.8946 0.1692   5.0539
S7 非球面 -4.1381 0.4000 1.640/23.53 -20.2756
S8 非球面 12.2130 0.5510   -99.9900
S9 非球面 -23.2417 1.1221 1.535/55.78 0.0000
S10 非球面 -2.2214 0.3928   0.0000
S11 非球面 3.0784 1.1939 1.640/23.53 -16.8255
S12 非球面 1.5131 0.5773   -4.6239
S13 球面 无穷 0.2100 1.517/64.17  
S14 球面 无穷 0.5900    
S15 球面 无穷      
表23
Figure PCTCN2016095334-appb-000008
Figure PCTCN2016095334-appb-000009
表24
f1(mm) -8.39 f(mm) 3.32
f2(mm) 4.62 Fno 2.52
f3(mm) 5.47 TTL(mm) 9.79
f4(mm) -4.75    
f5(mm) 4.49    
f6(mm) -6.59    
实施例9
请参阅图41-45,实施例9中,摄像镜头满足下面表格的条件:
表25
面号 表面类型 曲率半径 厚度 材料 圆锥系数
OBJ 球面 无穷 100000.0000    
S1 非球面 29.7578 0.7000 1.599/61.00 -99.9900
S2 非球面 4.1228 1.4435   -5.0745
S3 球面 -58.9605 2.1693 1.755/52.32  
S4 球面 -6.2384 0.0447    
STO 球面 无穷 0.0153    
S5 非球面 4.6944 1.0291 1.535/55.78 16.7798
S6 非球面 -7.3850 0.2453   13.9459
S7 非球面 172.5496 0.6612 1.640/23.53 50.0000
S8 非球面 4.2730 0.3259   -44.8270
S9 非球面 14.3963 1.1901 1.535/55.78 0.0000
S10 非球面 -2.2942 0.6412   0.0000
S11 非球面 4.2245 1.0225 1.651/21.52 -31.5772
S12 非球面 1.6781 0.7368   -5.5067
S13 球面 无穷 0.2100 1.517/64.17  
S14 球面 无穷 0.3324    
S15 球面 无穷      
表26
Figure PCTCN2016095334-appb-000010
Figure PCTCN2016095334-appb-000011
表27
f1(mm) -8.05 f(mm) 3.18
f2(mm) 9.05 Fno 2.38
f3(mm) 5.51 TTL(mm) 10.77
f4(mm) -6.81    
f5(mm) 3.78    
f6(mm) -5.04    
实施例10
请参阅图46-50,实施例10中,摄像镜头满足下面表格的条件:
表28
面号 表面类型 曲率半径 厚度 材料 圆锥系数
OBJ 球面 无穷 0.0000    
S1 非球面 -14.0530 0.7012 1.535/55.78 -44.0543
S2 非球面 8.4649 1.2137   -99.9900
S3 球面 39.1162 1.5353 1.755/52.32  
S4 球面 -7.9954 0.0450    
STO 球面 无穷 0.0150    
S5 非球面 5.3901 1.1183 1.535/55.78 -52.7554
S6 非球面 -3.2485 0.1512   4.0354
S7 非球面 24.3952 0.4000 1.640/23.53 50.0000
S8 非球面 2.9419 0.4614   -9.9824
S9 非球面 -13.3963 1.1504 1.535/55.78 0.0000
S10 非球面 -2.2256 0.4442   0.0000
S11 非球面 5.5334 1.3812 1.640/23.53 -49.7443
S12 非球面 1.9689 0.4774   -4.8660
S13 球面 无穷 0.2100 1.517/64.17  
S14 球面 无穷 0.5900    
S15 球面 无穷      
表29
Figure PCTCN2016095334-appb-000012
表30
f1(mm) -11.63 f(mm) 3.58
f2(mm) 8.82 Fno 2.40
f3(mm) 4.89 TTL(mm) 9.68
f4(mm) -7.40    
f5(mm) 5.25    
f6(mm) -5.35    
实施例11
请参阅图51-55,实施例11中,摄像镜头满足下面表格的条件:
表31
面号 表面类型 曲率半径 厚度 材料 圆锥系数
OBJ 球面 无穷 0.0000    
S1 非球面 -19.4947 0.7547 1.535/55.78 19.7572
S2 非球面 7.3397 1.1593   -68.1910
S3 球面 -118.0345 1.5990 1.755/52.32  
S4 球面 -5.4357 0.0843    
STO 球面 无穷 0.0798    
S5 非球面 7.1867 1.2857 1.535/55.78 -99.9900
S6 非球面 -4.0294 0.1954   5.2185
S7 非球面 9.8467 0.4000 1.640/23.53 38.2929
S8 非球面 3.9873 0.4434   -17.1518
S9 非球面 -5.9512 1.2816 1.535/55.78 0.0000
S10 非球面 -2.2910 0.2000   0.0000
S11 非球面 7.3191 1.5561 1.640/23.53 -85.1872
S12 非球面 2.1404 0.4705   -4.5421
S13 球面 无穷 0.2100 1.517/64.17  
S14 球面 无穷 0.5900    
S15 球面 无穷      
表32
Figure PCTCN2016095334-appb-000013
表33
f1(mm) -9.84 f(mm) 3.68
f2(mm) 7.48 Fno 2.42
f3(mm) 5.01 TTL(mm) 10.31
f4(mm) -10.68    
f5(mm) 6.18    
f6(mm) -5.32    
实施例12
请参阅图56-60,实施例12中,摄像镜头满足下面表格的条件:
表34
面号 表面类型 曲率半径 厚度 材料 圆锥系数
OBJ 球面 无穷 0.0000    
S1 非球面 -14.0530 0.7012 1.535/55.78 -44.0543
S2 非球面 8.4649 1.2137   -99.9900
S3 球面 39.1162 1.5353 1.755/52.32  
S4 球面 -7.9954 0.0450    
STO 球面 无穷 0.0150    
S5 非球面 5.3901 1.1183 1.535/55.78 -52.7554
S6 非球面 -3.2485 0.1512   4.0354
S7 非球面 24.3952 0.4000 1.640/23.53 50.0000
S8 非球面 2.9419 0.4614   -9.9824
S9 非球面 -13.3963 1.1504 1.535/55.78 0.0000
S10 非球面 -2.2256 0.4442   0.0000
S11 非球面 5.5334 1.3812 1.640/23.53 -49.7443
S12 非球面 1.9689 0.4774   -4.8660
S13 球面 无穷 0.2100 1.517/64.17  
S14 球面 无穷 0.5900    
S15 球面 无穷      
表35
Figure PCTCN2016095334-appb-000014
表36
f1(mm) -9.73 f(mm) 3.59
f2(mm) 8.89 Fno 2.41
f3(mm) 3.95 TTL(mm) 9.89
f4(mm) -5.23    
f5(mm) 4.80    
f6(mm) -5.59    
表37
在实施例1-12中,各条件式满足下面表格的条件:
Figure PCTCN2016095334-appb-000015
本发明实施方式的摄像镜头中,由于第一透镜L1具有负光焦度,可有效增加摄像镜头的视场角,同时保证成像面S15边缘有足够的亮度,有利于摄像镜头的广角化。而如上述表格及图1-45所示,满足上面的各个条件式,使得摄像镜头的光焦度合理分配,使得摄像镜头可以有效校正各种像差,使得摄像镜头在具有较大视场角、小型化的同时具有较高的成像质量。第二透镜L2的材料为玻璃,可消除热差,使得摄像镜头适用于不同环境温度。
在本说明书的描述中,参考术语“一个实施方式”、“一些实施方式”、“示意性实施方式”、“示例”、“具体示例”或“一些示例”等的描述意指结合所述实施方式或示例描述的具体特征、结构、材料或者特点包含于本发明的至少一个实施方式或示例中。在本说明书中,对上述术语的示意性表述不一定指的是相同的实施方式或示例。而且,描述的具体特征、结构、材料或者特点可以在任何的一个或多个实施方式或示例中以合适的方式结合。
尽管已经示出和描述了本发明的实施方式,本领域的普通技术人员可以理解:在不脱离本发明的原理和宗旨的情况下可以对这些实施方式进行多种变化、修改、替换和变型,本发明的范围由权利要求及其等同物限定。

Claims (10)

  1. 一种摄像镜头,其特征在于,从物侧至像侧依次包括:
    具有负光焦度的第一透镜;
    具有正光焦度的第二透镜,其像侧面为凸面,材料为玻璃;
    具有正光焦度的第三透镜,其像侧面为凸面;
    具有负光焦度的第四透镜;
    具有正光焦度的第五透镜;及
    具有负光焦度的第六透镜,其物侧面为凸面,像侧面为凹面;
    所述摄像镜头满足条件式:-1.7<f2/f4<-0.7;
    其中,f2为所述第二透镜的有效焦距;f4为所述第四透镜的有效焦距。
  2. 如权利要求1所述的摄像镜头,其特征在于,所述摄像镜头满足条件式:1<f2/f<3;
    其中,f2为所述第二透镜的有效焦距;f为所述摄像镜头的有效焦距。
  3. 如权利要求1所述的摄像镜头,其特征在于,所述摄像镜头满足条件式:0.3<CT1/CT2<0.9;
    其中,CT1为所述第一透镜在光轴上的中心厚度;CT2为所述第二透镜在光轴上的中心厚度。
  4. 如权利要求1所述的摄像镜头,其特征在于,所述摄像镜头满足条件式:0.03<SAG11/TTL<0.08;
    其中,SAG11为所述第一透镜的物侧面和光轴的交点至所述第一透镜的物侧面的有效半径顶点之间的轴上距离;TTL为所述第一透镜的物侧面至成像面的轴上距离。
  5. 如权利要求1所述的摄像镜头,其特征在于,所述摄像镜头满足条件式:0.05<SAG12/TTL<0.1;
    其中,SAG12为所述第一透镜的像侧面和光轴的交点至所述第一透镜的像侧面的有效半径顶点之间的轴上距离;TTL为所述第一透镜的物侧面至成像面的轴上距离。
  6. 如权利要求1所述的摄像镜头,其特征在于,所述第五透镜的像侧面为凸面。
  7. 如权利要求1所述的摄像镜头,其特征在于,所述摄像镜头满足条件式: 0.5<DT 11/DT62<1;
    其中,DT11为所述第一透镜的物侧面的有效半径;DT62为所述第六透镜的像侧面的有效半径。
  8. 如权利要求1所述的摄像镜头,其特征在于,所述摄像镜头满足条件式:1.1<DT11/DT52<1.5;
    其中,DT11为所述第一透镜的物侧面的有效半径;DT52为所述第五透镜的像侧面的有效半径。
  9. 如权利要求1所述的摄像镜头,其特征在于,所述摄像镜头满足条件式:1<ImgH/f<1.5;
    其中,ImgH为所述摄像镜头的成像面上有效像素区域对角线长的一半;f为所述摄像镜头的有效焦距。
  10. 如权利要求1所述的摄像镜头,其特征在于,所述第一透镜的像侧面为凹面。
PCT/CN2016/095334 2016-07-12 2016-08-15 摄像镜头 WO2018010246A1 (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
US15/552,230 US10345555B2 (en) 2016-07-12 2016-08-15 Camera lens

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201610551455.1 2016-07-12
CN201610551455 2016-07-12

Publications (1)

Publication Number Publication Date
WO2018010246A1 true WO2018010246A1 (zh) 2018-01-18

Family

ID=57117092

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2016/095334 WO2018010246A1 (zh) 2016-07-12 2016-08-15 摄像镜头

Country Status (3)

Country Link
US (1) US10345555B2 (zh)
CN (1) CN106019535B (zh)
WO (1) WO2018010246A1 (zh)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110297307A (zh) * 2019-06-13 2019-10-01 玉晶光电(厦门)有限公司 光学成像镜头
US10901185B2 (en) 2017-06-28 2021-01-26 Zhejiang Sunny Optical Co., Ltd. Optical imaging system
US11194127B2 (en) 2018-08-15 2021-12-07 Largan Precision Co., Ltd. Photographing optical lens assembly, imaging apparatus and electronic device
CN116719152A (zh) * 2023-08-09 2023-09-08 江西联益光学有限公司 光学镜头

Families Citing this family (30)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN106019535B (zh) 2016-07-12 2017-11-14 浙江舜宇光学有限公司 摄像镜头
KR101831203B1 (ko) * 2016-10-25 2018-02-22 엘컴텍 주식회사 렌즈 광학계
CN106526801B (zh) 2016-12-05 2019-01-08 浙江舜宇光学有限公司 摄像镜头及摄像装置
CN107065125A (zh) * 2016-12-14 2017-08-18 瑞声科技(新加坡)有限公司 摄像光学镜头
US11112583B2 (en) 2017-03-27 2021-09-07 Zhejiang Sunny Optical Co., Ltd Camera lens assembly and camera device comprising the camera lens assembly
US10921570B2 (en) 2017-04-17 2021-02-16 Zhejiang Sunny Optical Co., Ltd Camera lens assembly
US11073678B2 (en) * 2017-06-23 2021-07-27 Zhejiang Sunny Optical Co., Ltd Optical imaging system
JP6197141B1 (ja) * 2017-06-26 2017-09-13 エーエーシーアコースティックテクノロジーズ(シンセン)カンパニーリミテッドAAC Acoustic Technologies(Shenzhen)Co.,Ltd 撮像レンズ
CN107121756B (zh) * 2017-06-28 2022-09-06 浙江舜宇光学有限公司 光学成像系统
CN109425960B (zh) * 2017-08-24 2021-07-30 富晋精密工业(晋城)有限公司 光学镜头
JP6917869B2 (ja) * 2017-11-17 2021-08-11 株式会社タムロン 撮像レンズ及び撮像装置
JP6684033B2 (ja) * 2017-12-12 2020-04-22 カンタツ株式会社 撮像レンズ
TWI641864B (zh) 2018-01-24 2018-11-21 大立光電股份有限公司 攝像透鏡組、取像裝置及電子裝置
CN108333717B (zh) * 2018-02-02 2019-11-19 瑞声声学科技(深圳)有限公司 摄像镜头
TWI650588B (zh) 2018-02-02 2019-02-11 大立光電股份有限公司 取像用光學鏡組、取像裝置及電子裝置
CN111273425A (zh) * 2018-03-30 2020-06-12 玉晶光电(厦门)有限公司 光学成像镜头
CN108375825B (zh) * 2018-05-03 2023-03-31 浙江舜宇光学有限公司 光学成像镜头
CN109100852A (zh) * 2018-07-13 2018-12-28 玉晶光电(厦门)有限公司 光学成像镜头
CN109541785A (zh) * 2019-01-22 2019-03-29 浙江舜宇光学有限公司 光学透镜组
TWI698673B (zh) * 2019-04-10 2020-07-11 大立光電股份有限公司 光學鏡頭、取像裝置及電子裝置
CN109946817B (zh) * 2019-04-24 2023-11-28 威海世高光电子有限公司 一种超广角高像素手机内置镜头
CN110297314B (zh) * 2019-06-29 2021-08-17 瑞声光学解决方案私人有限公司 摄像光学镜头
CN110297315B (zh) * 2019-06-30 2021-08-17 瑞声光学解决方案私人有限公司 摄像光学镜头
CN110286474B (zh) * 2019-07-24 2024-04-19 浙江舜宇光学有限公司 光学成像系统
WO2021128275A1 (zh) * 2019-12-27 2021-07-01 诚瑞光学(常州)股份有限公司 摄像光学镜头
CN111025597B (zh) * 2019-12-30 2021-10-29 诚瑞光学(常州)股份有限公司 摄像光学镜头
CN111856730A (zh) * 2020-07-28 2020-10-30 玉晶光电(厦门)有限公司 光学成像镜头
CN113176651B (zh) * 2021-04-26 2022-07-08 嘉兴中润光学科技股份有限公司 一种高清会议镜头和图像拾取装置
TWI768998B (zh) * 2021-06-21 2022-06-21 大立光電股份有限公司 光學影像擷取系統、取像裝置及電子裝置
CN113484993B (zh) * 2021-07-28 2023-03-28 浙江舜宇光学有限公司 光学成像镜头

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20150116573A1 (en) * 2013-10-31 2015-04-30 Genius Electronic Optical Co., Ltd. Imaging Lens, and Electronic Apparatus Including the Same
US20150116572A1 (en) * 2013-10-31 2015-04-30 Genius Electronic Optical Co., Ltd. Optical imaging lens and electronic device comprising the same
CN205003346U (zh) * 2015-10-14 2016-01-27 浙江舜宇光学有限公司 超广角镜头
CN205049802U (zh) * 2015-10-20 2016-02-24 浙江舜宇光学有限公司 超广角镜头
US20160147044A1 (en) * 2014-11-25 2016-05-26 Fujifilm Corporation Imaging lens and imaging apparatus equipped with the imaging lens
CN106019535A (zh) * 2016-07-12 2016-10-12 浙江舜宇光学有限公司 摄像镜头

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US8953261B2 (en) * 2013-03-03 2015-02-10 Newmax Technology Co., Ltd. Six-piece optical lens system
TWI606255B (zh) * 2015-08-26 2017-11-21 大立光電股份有限公司 光學成像鏡頭組、取像裝置及電子裝置
KR101792345B1 (ko) * 2015-10-19 2017-11-01 삼성전기주식회사 촬상 광학계

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20150116573A1 (en) * 2013-10-31 2015-04-30 Genius Electronic Optical Co., Ltd. Imaging Lens, and Electronic Apparatus Including the Same
US20150116572A1 (en) * 2013-10-31 2015-04-30 Genius Electronic Optical Co., Ltd. Optical imaging lens and electronic device comprising the same
US20160147044A1 (en) * 2014-11-25 2016-05-26 Fujifilm Corporation Imaging lens and imaging apparatus equipped with the imaging lens
CN205003346U (zh) * 2015-10-14 2016-01-27 浙江舜宇光学有限公司 超广角镜头
CN205049802U (zh) * 2015-10-20 2016-02-24 浙江舜宇光学有限公司 超广角镜头
CN106019535A (zh) * 2016-07-12 2016-10-12 浙江舜宇光学有限公司 摄像镜头

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US10901185B2 (en) 2017-06-28 2021-01-26 Zhejiang Sunny Optical Co., Ltd. Optical imaging system
US11194127B2 (en) 2018-08-15 2021-12-07 Largan Precision Co., Ltd. Photographing optical lens assembly, imaging apparatus and electronic device
CN110297307A (zh) * 2019-06-13 2019-10-01 玉晶光电(厦门)有限公司 光学成像镜头
CN116719152A (zh) * 2023-08-09 2023-09-08 江西联益光学有限公司 光学镜头
CN116719152B (zh) * 2023-08-09 2023-12-05 江西联益光学有限公司 光学镜头

Also Published As

Publication number Publication date
CN106019535A (zh) 2016-10-12
US20180239113A1 (en) 2018-08-23
CN106019535B (zh) 2017-11-14
US10345555B2 (en) 2019-07-09

Similar Documents

Publication Publication Date Title
WO2018010246A1 (zh) 摄像镜头
WO2018045607A1 (zh) 摄像镜头
WO2018028026A1 (zh) 广角镜头
WO2017148020A1 (zh) 摄远镜头
WO2017166475A1 (zh) 摄像镜头
WO2020082814A1 (zh) 成像镜头
WO2017166452A1 (zh) 摄像镜头及便携式电子装置
WO2020191951A1 (zh) 光学成像镜头
WO2017020587A1 (zh) 超广角镜头
WO2020168717A1 (zh) 光学成像镜头
WO2017041456A1 (zh) 摄像镜头
WO2020119146A1 (zh) 光学成像镜头
WO2016197604A1 (zh) 成像镜头
WO2020143252A1 (zh) 摄像镜头
US20120069455A1 (en) Optical imaging lens system
WO2020088024A1 (zh) 光学成像镜头
WO2017148078A1 (zh) 超广角摄像镜头
WO2021184165A1 (zh) 光学系统、摄像模组及电子装置
WO2021042992A1 (zh) 光学成像系统
WO2020164247A1 (zh) 光学成像系统
WO2020029613A1 (zh) 光学成像镜头
WO2017161661A1 (zh) 摄远镜头
WO2020098328A1 (zh) 摄像镜头
WO2019233149A1 (zh) 摄影镜头
WO2017113557A1 (zh) 摄像镜头

Legal Events

Date Code Title Description
WWE Wipo information: entry into national phase

Ref document number: 15552230

Country of ref document: US

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 16908571

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 16908571

Country of ref document: EP

Kind code of ref document: A1