WO2017166475A1 - 摄像镜头 - Google Patents

摄像镜头 Download PDF

Info

Publication number
WO2017166475A1
WO2017166475A1 PCT/CN2016/088626 CN2016088626W WO2017166475A1 WO 2017166475 A1 WO2017166475 A1 WO 2017166475A1 CN 2016088626 W CN2016088626 W CN 2016088626W WO 2017166475 A1 WO2017166475 A1 WO 2017166475A1
Authority
WO
WIPO (PCT)
Prior art keywords
lens
imaging
image side
satisfies
aspherical
Prior art date
Application number
PCT/CN2016/088626
Other languages
English (en)
French (fr)
Inventor
尹志东
戴付建
Original Assignee
浙江舜宇光学有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 浙江舜宇光学有限公司 filed Critical 浙江舜宇光学有限公司
Priority to JP2017542051A priority Critical patent/JP6568592B2/ja
Priority to US15/552,070 priority patent/US10197776B2/en
Publication of WO2017166475A1 publication Critical patent/WO2017166475A1/zh

Links

Images

Classifications

    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B13/00Optical objectives specially designed for the purposes specified below
    • G02B13/06Panoramic objectives; So-called "sky lenses" including panoramic objectives having reflecting surfaces
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B13/00Optical objectives specially designed for the purposes specified below
    • G02B13/001Miniaturised objectives for electronic devices, e.g. portable telephones, webcams, PDAs, small digital cameras
    • G02B13/0015Miniaturised objectives for electronic devices, e.g. portable telephones, webcams, PDAs, small digital cameras characterised by the lens design
    • G02B13/002Miniaturised objectives for electronic devices, e.g. portable telephones, webcams, PDAs, small digital cameras characterised by the lens design having at least one aspherical surface
    • G02B13/0045Miniaturised objectives for electronic devices, e.g. portable telephones, webcams, PDAs, small digital cameras characterised by the lens design having at least one aspherical surface having five or more lenses
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B13/00Optical objectives specially designed for the purposes specified below
    • G02B13/18Optical objectives specially designed for the purposes specified below with lenses having one or more non-spherical faces, e.g. for reducing geometrical aberration
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B27/00Optical systems or apparatus not provided for by any of the groups G02B1/00 - G02B26/00, G02B30/00
    • G02B27/0025Optical systems or apparatus not provided for by any of the groups G02B1/00 - G02B26/00, G02B30/00 for optical correction, e.g. distorsion, aberration
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B9/00Optical objectives characterised both by the number of the components and their arrangements according to their sign, i.e. + or -
    • G02B9/62Optical objectives characterised both by the number of the components and their arrangements according to their sign, i.e. + or - having six components only

Definitions

  • the present invention relates to the field of imaging, and more particularly to an ultra wide-angle imaging lens.
  • the photosensitive element of the general optical system is nothing more than a photosensitive coupling element (CCD) or a complementary oxidized metal semiconductor element (CMOS).
  • CCD photosensitive coupling element
  • CMOS complementary oxidized metal semiconductor element
  • an embodiment of the present invention aim to at least solve one of the technical problems existing in the prior art. Therefore, an embodiment of the present invention needs to provide an imaging lens.
  • An imaging lens comprising, from the object side to the image side, in order:
  • a second lens having a positive refractive power, the object side of the second lens being a convex surface, and the image side of the second lens being a convex surface;
  • a third lens having a negative refractive power, the image side of the third lens being a concave surface
  • a fifth lens having a positive refractive power, the image side of the fifth lens being a convex surface
  • a sixth lens having a negative refractive power, the image side of the sixth lens being a concave surface
  • the camera lens satisfies the following relationship: 2 ⁇ tan (HFOV) ⁇ 9; wherein HFOV is half of the maximum angle of view of the camera lens.
  • the camera lens that meets the above configuration can achieve ultra-wide angle, uniform image quality and high reductivity, which can be applied to many An imaging device in the field of imaging.
  • the imaging lens that satisfies the above configuration is compact and compact.
  • the camera lens satisfies the following relationship: 1 ⁇ f5 / f ⁇ 2.5; wherein f5 is the effective focal length of the fifth lens; f is the effective focal length of the camera lens.
  • the camera lens satisfies the following relationship: -2 ⁇ f1/f2 ⁇ 0; wherein f1 is the effective focal length of the first lens; and f2 is the effective focal length of the second lens.
  • the camera lens satisfies the following relationship:
  • the on-axis distance; DT62 is the effective radius of the image side of the sixth lens.
  • the camera lens satisfies the following relationship: T23/T12 ⁇ 0.2; wherein T23 is an on-axis separation distance between the second lens and the third lens; T12 is the first lens and the second lens The distance between the axes.
  • the camera lens satisfies the following relationship: 0.5 ⁇ R2 / R3 ⁇ 1.5; wherein R2 is the radius of curvature of the object side of the second lens; and R3 is the radius of curvature of the object side of the third lens.
  • the camera lens satisfies the following relationship: 0 ⁇ Dr5r8/TTL ⁇ 0.5; wherein Dr5r8 is an on-axis distance from the object side of the third lens to the image side of the fourth lens; TTL is the first The axial distance from the object side of a lens to the imaging surface.
  • the camera lens satisfies the following relationship: 1 ⁇ DT12 / DT21 ⁇ 2; wherein DT12 is the effective radius of the image side of the first lens; DT21 is the effective radius of the object side of the second lens.
  • the camera lens satisfies the following relationship: -2 ⁇ f6 / f ⁇ - 0.8; wherein f6 is the effective focal length of the sixth lens; f is the effective focal length of the camera lens.
  • the object side surface of the third lens is a convex surface
  • the object side surface of the fourth lens is a convex surface
  • the image side surface of the fourth lens is a convex surface
  • FIG. 1 is a schematic structural view of an image pickup lens of Embodiment 1;
  • FIG. 2 is an axial chromatic aberration diagram (mm) of the imaging lens of Embodiment 1
  • FIG. 3 is an astigmatism diagram (mm) of the imaging lens of Embodiment 1
  • FIG. 4 is a distortion diagram (%) of the imaging lens of Embodiment 1.
  • Figure 5 is a magnification chromatic aberration diagram (um) of the imaging lens of Embodiment 1;
  • FIG. 6 is a schematic structural view of an image pickup lens of Embodiment 2;
  • FIG. 7 is an axial chromatic aberration diagram (mm) of the imaging lens of Example 2;
  • FIG. 8 is an astigmatism diagram (mm) of the imaging lens of Embodiment 2; and
  • FIG. 9 is a distortion diagram (%) of the imaging lens of Embodiment 2.
  • Figure 10 is a magnification chromatic aberration diagram (um) of the imaging lens of Embodiment 2;
  • FIG. 11 is a schematic structural view of an image pickup lens of Embodiment 3.
  • FIG. 12 is an axial chromatic aberration diagram (mm) of the imaging lens of Embodiment 3;
  • FIG. 13 is an astigmatism diagram (mm) of the imaging lens of Embodiment 3;
  • FIG. 14 is a distortion diagram (%) of the imaging lens of Embodiment 3.
  • 15 is a magnification chromatic aberration diagram (um) of the imaging lens of Embodiment 3;
  • FIG. 16 is a schematic structural view of an image pickup lens of Embodiment 4.
  • FIG. 17 is an axial chromatic aberration diagram (mm) of the imaging lens of Example 4;
  • FIG. 18 is an astigmatism diagram (mm) of the imaging lens of Example 4; and
  • FIG. 19 is a distortion diagram (%) of the imaging lens of Embodiment 4.
  • 20 is a magnification chromatic aberration diagram (um) of the imaging lens of Embodiment 4;
  • FIG. 21 is a schematic structural diagram of an image pickup lens of Embodiment 5.
  • FIG. 22 is an axial chromatic aberration diagram (mm) of the imaging lens of Example 5;
  • FIG. 23 is an astigmatism diagram (mm) of the imaging lens of Embodiment 5; and
  • FIG. 24 is a distortion diagram (%) of the imaging lens of Embodiment 5.
  • Figure 25 is a magnification chromatic aberration diagram (um) of the imaging lens of Embodiment 5;
  • Figure 26 is a schematic structural view of an image pickup lens of Embodiment 6;
  • FIG. 27 is an axial chromatic aberration diagram (mm) of the imaging lens of Example 6
  • FIG. 28 is an astigmatism diagram (mm) of the imaging lens of Example 6
  • FIG. 29 is a distortion diagram (%) of the imaging lens of Example 6.
  • Figure 30 is a magnification chromatic aberration diagram (um) of the imaging lens of Embodiment 6;
  • Figure 31 is a schematic structural view of an image pickup lens of Embodiment 7.
  • FIG. 32 is an axial chromatic aberration diagram (mm) of the imaging lens of Embodiment 7
  • FIG. 33 is an astigmatism diagram (mm) of the imaging lens of Embodiment 7
  • FIG. 34 is a distortion diagram (%) of the imaging lens of Embodiment 7.
  • 35 is a magnification chromatic aberration diagram (um) of the imaging lens of Embodiment 7;
  • FIG. 36 is a schematic structural diagram of an image pickup lens of Embodiment 8.
  • FIG. 37 is an axial chromatic aberration diagram (mm) of the imaging lens of Example 8
  • FIG. 38 is an astigmatism diagram (mm) of the imaging lens of Example 8
  • FIG. 39 is a distortion diagram (%) of the imaging lens of Example 8.
  • 40 is a magnification chromatic aberration diagram (um) of the image pickup lens of Example 8.
  • first and second are used for descriptive purposes only and are not to be construed as indicating or implying a relative importance or implicitly indicating the number of technical features indicated.
  • features defining “first” or “second” may include one or more of the described features either explicitly or implicitly.
  • the meaning of "a plurality" is two or more unless specifically and specifically defined otherwise.
  • connection In the description of the present invention, it should be noted that the terms “installation”, “connected”, and “connected” are to be understood broadly, and may be fixed or detachable, for example, unless otherwise explicitly defined and defined. Connected, or integrally connected; may be mechanically connected, or may be electrically connected or may communicate with each other; may be directly connected or indirectly connected through an intermediate medium, may be internal communication of two elements or interaction of two elements relationship. For those skilled in the art, the specific meanings of the above terms in the present invention can be understood on a case-by-case basis.
  • an imaging lens includes, from the object side to the image side, in order:
  • the object side surface S3 of the second lens L2 is a convex surface
  • the image side surface S4 of the second lens L2 is a convex surface
  • the camera lens satisfies the following relationship:
  • the camera lens that satisfies the above configuration can achieve ultra-wide angle, uniform image quality and high reductibility, and can be applied to image capturing devices in various imaging fields. At the same time, the imaging lens that satisfies the above configuration is compact and compact.
  • the camera lens satisfies the following relationship: 1 ⁇ f5 / f ⁇ 2.5; wherein f5 is the effective focal length of the fifth lens L5; f is the effective focal length of the camera lens.
  • the imaging lens that satisfies the requirements of the above formula enables the light to be effectively and smoothly concentrated at the fifth lens L5, which satisfies the aberration of the system reasonably, thereby improving the image quality and facilitating the manufacture of the fifth lens L5.
  • the camera lens satisfies the following relationship: -2 ⁇ f1/f2 ⁇ 0; wherein f1 is the effective focal length of the first lens L1; and f2 is the effective focal length of the second lens L2.
  • the imaging lens that satisfies the above requirements can properly configure the lens shape and the power, which is advantageous for ensuring the miniaturization of the imaging lens, effectively correcting various types of aberrations, and improving the imaging quality of the imaging lens.
  • the imaging lens satisfies the following relationship:
  • the on-axis distance between the vertices; DT62 is the effective radius of the image side S12 of the sixth lens L6.
  • the imaging lens that satisfies the requirements of the above formula further defines the shape of the sixth lens L6, and can ensure the amount of light passing through the sixth lens L6, thereby ensuring the amount of light passing through the photosensitive element and improving the contrast.
  • the camera lens satisfies the following relationship: T23/T12 ⁇ 0.2; wherein T23 is an axial distance between the second lens L2 and the third lens L3; T12 is the first lens L1 and the second The lens L2 is spaced apart on the axis.
  • the imaging lens that satisfies the requirements of the above formula is advantageous in reducing the spacing between the lenses, shortening the total length of the imaging lens, and further ensuring the miniaturization of the imaging lens.
  • the imaging lens satisfies the following relationship: 0.5 ⁇ R2 / R3 ⁇ 1.5; wherein R2 is the radius of curvature of the object side surface S3 of the second lens L2; R3 is the curvature of the object side surface S5 of the third lens L3 radius.
  • the imaging lens that satisfies the requirements of the above formula has a uniform image quality from the center to the edge, which is advantageous for improving the image quality.
  • the imaging lens satisfies the following relationship: 0 ⁇ Dr5r8/TTL ⁇ 0.5; wherein Dr5r8 is the on-axis distance from the object side S5 of the third lens L3 to the image side S8 of the fourth lens L4; The on-axis distance of the object side surface S1 of the first lens L1 to the imaging plane S15.
  • the camera lens that meets the requirements of the above formula can keep the camera lens compact and simple, so that it can be mounted on a thin and portable electronic product.
  • the imaging lens satisfies the following relationship: 1 ⁇ DT12/DT21 ⁇ 2; wherein DT12 is the effective radius of the image side S2 of the first lens L1; DT21 is effective for the object side S3 of the second lens L2. radius.
  • the imaging lens that satisfies the requirements of the above formula is advantageous for uniformly distributing the aperture of the lens, effectively reducing the volume of the imaging lens, and is easy to assemble the lens, and can reduce the sensitivity of the imaging lens.
  • the camera lens satisfies the following relationship: -2 ⁇ f6 / f ⁇ - 0.8; wherein f6 is the effective focal length of the sixth lens L6; f is the effective focal length of the camera lens.
  • the imaging lens that satisfies the requirements of the above formula is advantageous in that the imaging lens can be miniaturized, the light angle of the imaging lens can be made gentle, the tolerance sensitivity of the imaging lens can be reduced, and the imaging lens can be easily processed and assembled.
  • the object side surface S5 of the third lens L3 is a convex surface
  • the object side surface S7 of the fourth lens L4 is a convex surface
  • the image side surface S8 of the fourth lens L4 is a convex surface.
  • the first lens L1, the second lens L2, the third lens L3, the fourth lens L4, the fifth lens L5, and the sixth lens L6 are all aspherical lenses.
  • the aspherical shape is determined by the following formula:
  • h is the height from any point on the aspheric surface to the optical axis
  • c is the curvature of the vertex
  • k is the cone constant
  • Ai is the correction coefficient of the i-th order of the aspheric surface.
  • the imaging lens satisfies the conditions of Tables 1-3 below:
  • the camera lens satisfies the conditions of Table 4-6 below:
  • the imaging lens satisfies the conditions of Tables 7-9 below:
  • the imaging lens satisfies the conditions of Table 10-12 below:
  • the imaging lens satisfies the conditions of Table 13-15 below:
  • the camera lens satisfies the conditions of Tables 16-18 below:
  • the camera lens satisfies the conditions of Table 19-21 below:
  • the camera lens satisfies the conditions of Table 22-24 below:
  • first and second are used for descriptive purposes only and are not to be construed as indicating or implying a relative importance or implicitly indicating the number of technical features indicated.
  • features defining “first” or “second” may include at least one of the features, either explicitly or implicitly.
  • the meaning of "a plurality” is at least two, such as two, three, etc., unless specifically defined otherwise.

Landscapes

  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Optics & Photonics (AREA)
  • Lenses (AREA)

Abstract

一种摄像镜头,其由物侧至像侧依次包括:具有负屈折力的第一透镜(L1),该第一透镜(L1)的像侧面(S2)为凹面;具有正屈折力的第二透镜(L2),该第二透镜(L2)的物侧面(S3)为凸面,该第二透镜(L2)的像侧面(S4)为凸面;具有负屈折力的第三透镜(L3),该第三透镜(L3)的像侧面(S6)为凹面;具有屈折力的第四透镜(L4);具有正屈折力的第五透镜(L5),该第五透镜(L5)的像侧面(S10)为凸面;具有负屈折力的第六透镜(L6),该第六透镜(L6)的像侧面(S12)为凹面;该摄像镜头满足下列关系式:2<tan(HFOV)<9;其中,HFOV为该摄像镜头的最大视场角的一半。满足上述配置的摄像镜头可实现超广角,而且画质均匀及还原性高,可以适用于多种成像领域的取像设备。同时,满足上述配置的摄像镜头的结构紧凑及小型化。

Description

摄像镜头
优先权信息
本申请请求2016年04月01日向中国国家知识产权局提交的、专利申请号为201610204455.4的专利申请的优先权和权益,并且通过参照将其全文并入此处。
技术领域
本发明涉及摄像领域,更具体而言,涉及一种超广角的摄像镜头。
背景技术
近年来,随着科技的发展,便携式电子产品逐步兴起,特别是具有摄像功能的便携式电子产品得到人们更多的青睐。取像设备的种类也日益增多,可适用于多种不同成像领域的取像设备的摄像镜头更受市场欢迎。一般光学系统的感光元件不外乎是感光耦合元件(CCD)或互补性氧化金属半导体元件(CMOS)两种,随着半导体制程技术的精进,光学系统趋向于更高像素,感光元件的像素尺寸越来越小,对相配套的光学系统的成像质量要求也越来越高。
发明内容
本发明实施例旨在至少解决现有技术中存在的技术问题之一。为此,本发明实施例需要提供一种摄像镜头。
一种摄像镜头,由物侧至像侧依次包括:
具有负屈折力的第一透镜,该第一透镜的像侧面为凹面;
具有正屈折力的第二透镜,该第二透镜的物侧面为凸面,该第二透镜的像侧面为凸面;
具有负屈折力的第三透镜,该第三透镜的像侧面为凹面;
具有屈折力的第四透镜;
具有正屈折力的第五透镜,该第五透镜的像侧面为凸面;
具有负屈折力的第六透镜,该第六透镜的像侧面为凹面;
该摄像镜头满足下列关系式:2<tan(HFOV)<9;其中,HFOV为该摄像镜头的最大视场角的一半。
满足上述配置的摄像镜头可实现超广角,而且画质均匀及还原性高,可以适用于多 种成像领域的取像设备。同时,满足上述配置的摄像镜头的结构紧凑及小型化。
在一个实施例中,该摄像镜头满足下列关系式:1<f5/f<2.5;其中,f5为该第五透镜的有效焦距;f为该摄像镜头的有效焦距。
在一个实施例中,该摄像镜头满足下列关系式:-2<f1/f2<0;其中,f1为该第一透镜的有效焦距;f2为该第二透镜的有效焦距。
在一个实施例中,该摄像镜头满足下列关系式:|SAG62/DT62|<0.2;其中,SAG62为该第六透镜的像侧面和光轴的交点至该第六透镜的像侧面的有效半径顶点之间的轴上距离;DT62为该第六透镜的像侧面的有效半径。
在一个实施例中,该摄像镜头满足下列关系式:T23/T12<0.2;其中,T23为该第二透镜和该第三透镜的轴上间隔距离;T12为该第一透镜和该第二透镜的轴上间隔距离。
在一个实施例中,该摄像镜头满足下列关系式:0.5<R2/R3<1.5;其中,R2为该第二透镜的物侧面的曲率半径;R3为该第三透镜的物侧面的曲率半径。
在一个实施例中,该摄像镜头满足下列关系式:0<Dr5r8/TTL<0.5;其中,Dr5r8为该第三透镜的物侧面至该第四透镜的像侧面的轴上距离;TTL为该第一透镜的物侧面至成像面的轴上距离。
在一个实施例中,该摄像镜头满足下列关系式:1<DT12/DT21<2;其中,DT12为该第一透镜的像侧面的有效半径;DT21为该第二透镜的物侧面的有效半径。
在一个实施例中,该摄像镜头满足下列关系式:-2<f6/f<-0.8;其中,f6为该第六透镜的有效焦距;f为该摄像镜头的有效焦距。
在一个实施例中,该第三透镜的物侧面为凸面,该第四透镜的物侧面为凸面,该第四透镜的像侧面为凸面。
本发明实施例的附加方面和优点将在下面的描述中部分给出,部分将从下面的描述中变得明显,或通过本发明实施例的实践了解到。
附图说明
本发明实施例的上述和/或附加的方面和优点从结合下面附图对实施例的描述中将变得明显和容易理解,其中:
图1是实施例1的摄像镜头的结构示意图;
图2是实施例1的摄像镜头的轴上色差图(mm);图3是实施例1的摄像镜头的象散图(mm);图4是实施例1的摄像镜头的畸变图(%);图5是实施例1的摄像镜头的倍率色差图(um);
图6是实施例2的摄像镜头的结构示意图;
图7是实施例2的摄像镜头的轴上色差图(mm);图8是实施例2的摄像镜头的象散图(mm);图9是实施例2的摄像镜头的畸变图(%);图10是实施例2的摄像镜头的倍率色差图(um);
图11是实施例3的摄像镜头的结构示意图;
图12是实施例3的摄像镜头的轴上色差图(mm);图13是实施例3的摄像镜头的象散图(mm);图14是实施例3的摄像镜头的畸变图(%);图15是实施例3的摄像镜头的倍率色差图(um);
图16是实施例4的摄像镜头的结构示意图;
图17是实施例4的摄像镜头的轴上色差图(mm);图18是实施例4的摄像镜头的象散图(mm);图19是实施例4的摄像镜头的畸变图(%);图20是实施例4的摄像镜头的倍率色差图(um);
图21是实施例5的摄像镜头的结构示意图;
图22是实施例5的摄像镜头的轴上色差图(mm);图23是实施例5的摄像镜头的象散图(mm);图24是实施例5的摄像镜头的畸变图(%);图25是实施例5的摄像镜头的倍率色差图(um);
图26是实施例6的摄像镜头的结构示意图;
图27是实施例6的摄像镜头的轴上色差图(mm);图28是实施例6的摄像镜头的象散图(mm);图29是实施例6的摄像镜头的畸变图(%);图30是实施例6的摄像镜头的倍率色差图(um);
图31是实施例7的摄像镜头的结构示意图;
图32是实施例7的摄像镜头的轴上色差图(mm);图33是实施例7的摄像镜头的象散图(mm);图34是实施例7的摄像镜头的畸变图(%);图35是实施例7的摄像镜头的倍率色差图(um);
图36是实施例8的摄像镜头的结构示意图;
图37是实施例8的摄像镜头的轴上色差图(mm);图38是实施例8的摄像镜头的象散图(mm);图39是实施例8的摄像镜头的畸变图(%);图40是实施例8的摄像镜头的倍率色差图(um)。
具体实施方式
下面详细描述本发明的实施例,所述实施例的示例在附图中示出,其中自始至终相同或类似的标号表示相同或类似的元件或具有相同或类似功能的元件。下面通过参考附图描述的实施例是示例性的,仅用于解释本发明,而不能理解为对本发明的限制。
在本发明的描述中,需要理解的是,术语“第一”、“第二”仅用于描述目的,而不能理解为指示或暗示相对重要性或者隐含指明所指示的技术特征的数量。由此,限定有“第一”、“第二”的特征可以明示或者隐含地包括一个或者更多个所述特征。在本发明的描述中,“多个”的含义是两个或两个以上,除非另有明确具体的限定。
在本发明的描述中,需要说明的是,除非另有明确的规定和限定,术语“安装”、“相连”、“连接”应做广义理解,例如,可以是固定连接,也可以是可拆卸连接,或一体地连接;可以是机械连接,也可以是电连接或可以相互通信;可以是直接相连,也可以通过中间媒介间接相连,可以是两个元件内部的连通或两个元件的相互作用关系。对于本领域的普通技术人员而言,可以根据具体情况理解上述术语在本发明中的具体含义。
下文的公开提供了许多不同的实施例或例子用来实现本发明的不同结构。为了简化本发明的公开,下文中对特定例子的部件和设定进行描述。当然,它们仅仅为示例,并且目的不在于限制本发明。此外,本发明可以在不同例子中重复参考数字和/或参考字母,这种重复是为了简化和清楚的目的,其本身不指示所讨论各种实施例和/或设定之间的关系。此外,本发明提供了的各种特定的工艺和材料的例子,但是本领域普通技术人员可以意识到其他工艺的应用和/或其他材料的使用。
请参阅图1,本发明较佳实施例的摄像镜头,由物侧至像侧依次包括:
具有负屈折力的第一透镜L1,该第一透镜L1的像侧面S2为凹面;
具有正屈折力的第二透镜L2,该第二透镜L2的物侧面S3为凸面,该第二透镜L2的像侧面S4为凸面;
具有负屈折力的第三透镜L3,该第三透镜L3的像侧面S6为凹面;
具有屈折力的第四透镜L4;
具有正屈折力的第五透镜L5,该第五透镜L5的像侧面S10为凸面;
具有负屈折力的第六透镜L6,该第六透镜L6的像侧面S12为凹面;
该摄像镜头满足下列关系式:
2<tan(HFOV)<9;其中,HFOV为该摄像镜头的最大视场角的一半。
满足上述配置的摄像镜头可实现超广角,而且画质均匀及还原性高,可以适用于多种成像领域的取像设备。同时,满足上述配置的摄像镜头的结构紧凑及小型化。
较佳地,该摄像镜头满足下列关系式:1<f5/f<2.5;其中,f5为该第五透镜L5的有效焦距;f为该摄像镜头的有效焦距。
满足上式要求的摄像镜头能够使得光线可以在第五透镜L5处有效平稳的汇聚,合理分担了系统的像差,进而提高了成像品质,有利于第五透镜L5生产制造的可行性。
较佳地,该摄像镜头满足下列关系式:-2<f1/f2<0;其中,f1为该第一透镜L1的有效焦距;f2为该第二透镜L2的有效焦距。
满足上式要求的摄像镜头能够合理配置透镜形状与光焦度,有利于保证摄像镜头的小型化的同时,有效修正各类像差,提升了摄像镜头的成像品质。
较佳地,该摄像镜头满足下列关系式:|SAG62/DT62|<0.2;其中,SAG62为该第六透镜L6的像侧面S12和光轴的交点至该第六透镜L6的像侧面S12的有效半径顶点之间的轴上距离;DT62为该第六透镜L6的像侧面S12的有效半径。
满足上式要求的摄像镜头对第六透镜L6的形状作进一步限定,能够保证第六透镜L6的通光量,进而保证了感光元件的通光量、提升了相对照度。
较佳地,该摄像镜头满足下列关系式:T23/T12<0.2;其中,T23为该第二透镜L2和该第三透镜L3的轴上间隔距离;T12为该第一透镜L1和该第二透镜L2的轴上间隔距离。
满足上式要求的摄像镜头有利于减小各透镜间的间距,缩短了摄像镜头的总长度,进一步保证摄像镜头的小型化。
较佳地,该摄像镜头满足下列关系式:0.5<R2/R3<1.5;其中,R2为该第二透镜L2的物侧面S3的曲率半径;R3为该第三透镜L3的物侧面S5的曲率半径。
满足上式要求的摄像镜头,其中心到边缘的整体像质比较均匀,有利于提升成像品质。
较佳地,该摄像镜头满足下列关系式:0<Dr5r8/TTL<0.5;其中,Dr5r8为该第三透镜L3的物侧面S5至该第四透镜L4的像侧面S8的轴上距离;TTL为该第一透镜L1的物侧面S1至成像面S15的轴上距离。
满足上式要求的摄像镜头可使摄像镜头保持小型化及简易的特性,以便于搭载在轻薄可携式的电子产品上。
较佳地,该摄像镜头满足下列关系式:1<DT12/DT21<2;其中,DT12为该第一透镜L1的像侧面S2的有效半径;DT21为该第二透镜L2的物侧面S3的有效半径。
满足上式要求的摄像镜头有利于均匀分配透镜的口径,有效减小摄像镜头的体积,且易于透镜组装,并可降低摄像镜头的敏感性。
较佳地,该摄像镜头满足下列关系式:-2<f6/f<-0.8;其中,f6为该第六透镜L6的有效焦距;f为该摄像镜头的有效焦距。
满足上式要求的摄像镜头有利于在实现摄像镜头的小型化的同时,可使得摄像镜头的光线角度平缓,降低摄像镜头的公差敏感度,使摄像镜头易于加工及组装。
较佳地,该第三透镜L3的物侧面S5为凸面,该第四透镜L4的物侧面S7为凸面, 该第四透镜L4的像侧面S8为凸面。
成像时,光线穿过六片透镜后经过具有物侧表面S13及像侧表面S14的滤光片L7后成像于成像面S15。
在某些实施例中,第一透镜L1、第二透镜L2、第三透镜L3、第四透镜L4、第五透镜L5及第六透镜L6都为非球面透镜。
非球面的面形由以下公式决定:
Figure PCTCN2016088626-appb-000001
其中,h是非球面上任一点到光轴的高度,c是顶点曲率,k是锥形常数,Ai是非球面第i-th阶的修正系数。
实施例1
请结合图1~图5,在实施例1中,摄像镜头满足下面表1-3的条件:
表1
面号 表面类型 曲率半径 厚度 材料 圆锥系数
OBJ 球面 无穷 400.0000 -- --
S1 非球面 -1.8318 0.3546 1.535/55.80 -31.5144
S2 非球面 3.0511 0.5816 -- 10.6948
STO 球面 无穷 0.0227 -- --
S3 非球面 4.0475 0.6345 1.544/56.11 -43.8554
S4 非球面 -0.6990 0.0300 -- -1.3284
S5 非球面 19.0790 0.2400 1.651/21.52 50.0000
S6 非球面 1.1694 0.0893 -- -14.3114
S7 非球面 6.8280 0.5708 1.544/56.11 31.4200
S8 非球面 -38.0028 0.0300 -- 50.0000
S9 非球面 1.4454 0.7053 1.544/56.11 -4.4155
S10 非球面 -1.9242 0.0499 -- -33.7153
S11 非球面 1.7312 0.3200 1.651/21.52 -5.5354
S12 非球面 0.7208 0.2000 -- -2.3916
S13 球面 无穷 0.2100 1.517/64.17 --
S14 球面 无穷 0.3914 -- --
S15 球面 无穷 -- -- --
表2
下表是非球面透镜的非球面高次项系数A4、A6、A8、A10、A12、A14、A16:
Figure PCTCN2016088626-appb-000002
Figure PCTCN2016088626-appb-000003
表3
f1(mm) -2.097 f(mm) 1.278
f2(mm) 1.155 Fno 2.273
f3(mm) -1.947 TTL(mm) 4.430
f4(mm) 10.739 HFOV(°) 73.000
f5(mm) 1.646    
f6(mm) -2.192    
实施例2
请结合图6~图10,在实施例2中,摄像镜头满足下面表4-6的条件:
表4
面号 表面类型 曲率半径 厚度 材料 圆锥系数
OBJ 球面 无穷 400.0000 -- --
S1 非球面 -1.8921 0.3717 1.535/55.80 -33.0516
S2 非球面 3.0008 0.5559 -- 10.5914
STO 球面 无穷 0.0227 -- --
S3 非球面 3.9647 0.6506 1.544/56.11 -31.3982
S4 非球面 -0.7019 0.0316 -- -1.3329
S5 非球面 18.8697 0.2390 1.651/21.52 253.1804
S6 非球面 1.1710 0.0891 -- -14.2619
S7 非球面 6.8441 0.5705 1.544/56.11 31.6383
S8 非球面 -38.2790 0.0276 -- -669.0409
S9 非球面 1.4629 0.7057 1.544/56.11 -4.2665
S10 非球面 -1.8191 0.0448 -- -33.4772
S11 非球面 1.6761 0.3055 1.651/21.52 -5.5091
S12 非球面 0.7190 0.2165 -- -2.4985
S13 球面 无穷 0.2100 1.517/64.17 --
S14 球面 无穷 0.3825 -- --
S15 球面 无穷 3.8516 -- --
表5
下表是非球面透镜的非球面高次项系数A4、A6、A8、A10、A12、A14、A16:
Figure PCTCN2016088626-appb-000004
Figure PCTCN2016088626-appb-000005
表6
f1(mm) -2.106 f(mm) 1.277
f2(mm) 1.149 Fno 2.000
f3(mm) -1.912 TTL(mm) 4.424
f4(mm) 10.683 HFOV(°) 68.488
f5(mm) 1.607    
f6(mm) -2.196    
实施例3
请结合图11~图15,在实施例3中,摄像镜头满足下面表7-9的条件:
表7
面号 表面类型 曲率半径 厚度 材料 圆锥系数
OBJ 球面 无穷 400.0000 -- --
S1 非球面 -1.9045 0.3684 1.535/55.80 -34.2712
S2 非球面 3.0239 0.5481 -- 10.2764
STO 球面 无穷 0.0227 -- --
S3 非球面 3.8680 0.6685 1.544/56.11 -24.8830
S4 非球面 -0.7053 0.0318 -- -1.3499
S5 非球面 18.9154 0.2388 1.651/21.52 308.0534
S6 非球面 1.1708 0.0854 -- -14.2357
S7 非球面 6.8541 0.5690 1.544/56.11 31.8325
S8 非球面 -38.0656 0.0296 -- -533.5869
S9 非球面 1.4632 0.7052 1.544/56.11 -4.1652
S10 非球面 -1.7838 0.0432 -- -33.5947
S11 非球面 1.6691 0.3033 1.651/21.52 -5.5461
S12 非球面 0.7147 0.2166 -- -2.4836
S13 球面 无穷 0.2100 1.517/64.17 --
S14 球面 无穷 0.3794 -- --
S15 球面 无穷 3.9044 -- --
表8
下表是非球面透镜的非球面高次项系数A4、A6、A8、A10、A12、A14、A16:
面号 A4 A6 A8 A10 A12 A14 A16
S1 3.2147E-01 -3.3342E-01 2.6081E-01 -1.2966E-01 3.5491E-02 -4.1784E-03 0
S2 1.2004E+00 -2.9463E+00 1.5523E+01 -5.5262E+01 1.1919E+02 -1.1722E+02 2.5360E+01
S3 -1.1014E-01 -2.0772E+00 1.8748E+01 -2.0341E+02 9.9886E+02 -2.0169E+03 0
S4 6.5257E-01 -7.6431E+00 3.8142E+01 -1.3511E+02 2.7234E+02 -2.4775E+02 0
S5 -8.4317E-02 -2.2264E+00 1.0391E+01 -3.0333E+01 4.7132E+01 -2.9248E+01 0
S6 1.5098E-01 -7.8774E-01 2.0924E+00 -3.6308E+00 3.5449E+00 -1.4859E+00 0
S7 2.8826E-01 -1.0515E+00 2.7362E+00 -4.0334E+00 3.2431E+00 -1.0811E+00 0
S8 -2.3433E-02 -1.9754E+00 4.6160E+00 -5.8018E+00 4.3620E+00 -1.3456E+00 0
S9 2.1050E-01 -1.4322E+00 3.1389E+00 -5.6026E+00 6.1899E+00 -3.6509E+00 9.0248E-01
S10 7.1575E-02 8.7886E-01 -3.8530E+00 5.5035E+00 -3.9700E+00 1.4621E+00 -2.0915E-01
S11 -4.4798E-01 -4.8442E-01 6.7377E-01 7.1883E-02 -5.0375E-01 3.0753E-01 -6.3313E-02
S12 -6.5770E-01 6.3153E-01 -3.4204E-01 1.1193E-01 -2.1825E-02 2.4344E-03 -1.4165E-04
表9
f1(mm) -2.122 f(mm) 1.279
f2(mm) 1.152 Fno 1.930
f3(mm) -1.912 TTL(mm) 4.420
f4(mm) 10.687 HFOV(°) 66.220
f5(mm) 1.595    
f6(mm) -2.178    
实施例4
请结合图16~图20,在实施例4中,摄像镜头满足下面表10-12的条件:
表10
面号 表面类型 曲率半径 厚度 材料 圆锥系数
OBJ 球面 无穷 331.3809 -- --
S1 非球面 -1.5365 0.2900 1.544/56.11 -32.3701
S2 非球面 2.5346 0.4759 -- 10.5156
STO 球面 无穷 0.0188 -- --
S3 非球面 3.3454 0.5233 1.544/56.11 -45.8173
S4 非球面 -0.5783 0.0300 -- -1.3146
S5 非球面 14.3088 0.1911 1.651/21.52 243.2430
S6 非球面 0.9760 0.0734 -- -14.4559
S7 非球面 5.6664 0.4739 1.544/56.11 31.5911
S8 非球面 -36.6253 0.0245 -- -1430.9160
S9 非球面 1.2055 0.5799 1.544/56.11 -4.4618
S10 非球面 -1.5638 0.0398 -- -32.9006
S11 非球面 1.3779 0.2546 1.651/21.52 -5.5257
S12 非球面 0.5829 0.1730 -- -2.3994
S13 球面 无穷 0.1740 1.517/64.17 --
S14 球面 无穷 0.3086 -- --
S15 球面 无穷 3.3121 -- --
表11
下表是非球面透镜的非球面高次项系数A4、A6、A8、A10、A12、A14、A16:
面号 A4 A6 A8 A10 A12 A14 A16
S1 5.6077E-01 -8.5835E-01 9.7117E-01 -7.0677E-01 2.8095E-01 -4.7121E-02 0
S2 2.1181E+00 -7.5308E+00 5.7984E+01 -3.0056E+02 9.4446E+02 -1.3485E+03 4.2471E+02
S3 -2.3396E-01 -5.4107E+00 7.0307E+01 -1.0968E+03 7.7785E+03 -2.5397E+04 0
S4 1.1289E+00 -1.9678E+01 1.4149E+02 -7.4221E+02 2.1725E+03 -2.8799E+03 0
S5 -1.4820E-01 -5.7927E+00 3.8382E+01 -1.6263E+02 3.7094E+02 -3.3904E+02 0
S6 2.6711E-01 -2.0077E+00 7.8421E+00 -1.9754E+01 2.7775E+01 -1.7159E+01 0
S7 5.0681E-01 -2.6960E+00 1.0205E+01 -2.1999E+01 2.5580E+01 -1.2297E+01 0
S8 -4.0468E-02 -5.0676E+00 1.7222E+01 -3.1574E+01 3.4563E+01 -1.5472E+01 0
S9 3.6974E-01 -3.6643E+00 1.1728E+01 -3.0468E+01 4.9070E+01 -4.2154E+01 1.5198E+01
S10 1.2118E-01 2.2470E+00 -1.4388E+01 2.9940E+01 -3.1464E+01 1.6885E+01 -3.5237E+00
S11 -7.8628E-01 -1.2400E+00 2.5162E+00 3.9310E-01 -3.9848E+00 3.5678E+00 -1.0324E+00
S12 -1.1679E+00 1.6194E+00 -1.2773E+00 6.0845E-01 -1.7324E-01 2.8086E-02 -2.4360E-03
表12
f1(mm) -1.709 f(mm) 1.062
f2(mm) 0.948 Fno 2.276
f3(mm) -1.605 TTL(mm) 3.631
f4(mm) 9.024 HFOV(°) 83.005
f5(mm) 1.347    
f6(mm) -1.763    
实施例5
请结合图21~图25,在实施例5中,摄像镜头满足下面表13-15的条件:
表13
Figure PCTCN2016088626-appb-000006
Figure PCTCN2016088626-appb-000007
表14
下表是非球面透镜的非球面高次项系数A4、A6、A8、A10、A12、A14、A16:
面号 A4 A6 A8 A10 A12 A14 A16
S1 5.5973E-01 -8.5865E-01 9.7109E-01 -7.0679E-01 2.8094E-01 -4.7129E-02 0
S2 2.1153E+00 -7.5186E+00 5.8004E+01 -3.0056E+02 9.4431E+02 -1.3491E+03 4.2262E+02
S3 -2.3594E-01 -5.3811E+00 7.0764E+01 -1.0926E+03 7.8101E+03 -2.5176E+04 0
S4 1.1294E+00 -1.9660E+01 1.4160E+02 -7.4178E+02 2.1739E+03 -2.8768E+03 0
S5 -1.4652E-01 -5.7902E+00 3.8389E+01 -1.6259E+02 3.7116E+02 -3.3792E+02 0
S6 2.6624E-01 -2.0083E+00 7.8420E+00 -1.9753E+01 2.7780E+01 -1.7148E+01 0
S7 5.0723E-01 -2.6957E+00 1.0204E+01 -2.2000E+01 2.5576E+01 -1.2306E+01 0
S8 -4.1104E-02 -5.0686E+00 1.7221E+01 -3.1576E+01 3.4562E+01 -1.5473E+01 0
S9 3.7060E-01 -3.6632E+00 1.1730E+01 -3.0466E+01 4.9072E+01 -4.2151E+01 1.5202E+01
S10 1.2224E-01 2.2478E+00 -1.4388E+01 2.9940E+01 -3.1464E+01 1.6885E+01 -3.5240E+00
S11 -7.8955E-01 -1.2411E+00 2.5162E+00 3.9332E-01 -3.9845E+00 3.5681E+00 -1.0321E+00
S12 -1.1673E+00 1.6196E+00 -1.2769E+00 6.0944E-01 -1.7310E-01 2.8121E-02 -2.4247E-03
表15
f1(mm) -1.714 f(mm) 1.055
f2(mm) 0.946 Fno 2.040
f3(mm) -1.611 TTL(mm) 3.632
f4(mm) 8.974 HFOV(°) 83.006
f5(mm) 1.345    
f6(mm) -1.744    
实施例6
请结合图26~图30,在实施例6中,摄像镜头满足下面表16-18的条件:
表16
Figure PCTCN2016088626-appb-000008
Figure PCTCN2016088626-appb-000009
表17
下表是非球面透镜的非球面高次项系数A4、A6、A8、A10、A12、A14、A16:
面号 A4 A6 A8 A10 A12 A14 A16
S1 1.0021E-01 -4.9064E-02 1.7641E-02 -4.0865E-03 5.1674E-04 -2.7580E-05 0
S2 3.7852E-01 -4.2897E-01 1.0547E+00 -1.7372E+00 1.7370E+00 -7.8999E-01 7.8114E-02
S3 -4.3463E-02 -3.0754E-01 1.2887E+00 -6.3066E+00 1.4392E+01 -1.4677E+01 0
S4 2.0320E-01 -1.1221E+00 2.5736E+00 -4.2873E+00 4.0001E+00 -1.6827E+00 0
S5 -2.6148E-02 -3.3046E-01 6.9778E-01 -9.3969E-01 6.8311E-01 -1.9739E-01 0
S6 4.7726E-02 -1.1465E-01 1.4254E-01 -1.1416E-01 5.1121E-02 -1.0027E-02 0
S7 9.1011E-02 -1.5395E-01 1.8540E-01 -1.2719E-01 4.7047E-02 -7.1991E-03 0
S8 -7.4546E-03 -2.8946E-01 3.1290E-01 -1.8254E-01 6.3578E-02 -9.0547E-03 0
S9 6.6563E-02 -2.0914E-01 2.1314E-01 -1.7613E-01 9.0267E-02 -2.4669E-02 2.8316E-03
S10 2.1959E-02 1.2836E-01 -2.6142E-01 1.7309E-01 -5.7878E-02 9.8822E-03 -6.5640E-04
S11 -1.4193E-01 -7.0925E-02 4.5722E-02 2.2772E-03 -7.3278E-03 2.0890E-03 -1.9196E-04
S12 -2.0888E-01 9.2452E-02 -2.3223E-02 3.5212E-03 -3.1833E-04 1.6478E-05 -4.4880E-07
表18
f1(mm) -3.090 f(mm) 1.875
f2(mm) 1.678 Fno 2.040
f3(mm) -2.859 TTL(mm) 6.424
f4(mm) 15.958 HFOV(°) 83.006
f5(mm) 2.392    
f6(mm) -3.100    
实施例7
请结合图31~图35,在实施例7中,摄像镜头满足下面表19-21的条件:
表19
Figure PCTCN2016088626-appb-000010
Figure PCTCN2016088626-appb-000011
表20
下表是非球面透镜的非球面高次项系数A4、A6、A8、A10、A12、A14、A16:
面号 A4 A6 A8 A10 A12 A14 A16
S1 7.0634E-02 -2.6659E-02 7.5921E-03 -1.3740E-03 1.3691E-04 -5.8692E-06 0
S2 2.6339E-01 -2.3576E-01 4.5182E-01 -5.8560E-01 4.5979E-01 -1.6461E-01 1.2965E-02
S3 -2.4480E-02 -1.6626E-01 5.4588E-01 -2.1549E+00 3.8549E+00 -2.8292E+00 0
S4 1.4344E-01 -6.1107E-01 1.1103E+00 -1.4318E+00 1.0506E+00 -3.4793E-01 0
S5 -1.8509E-02 -1.7804E-01 3.0245E-01 -3.2145E-01 1.8182E-01 -4.1076E-02 0
S6 3.3158E-02 -6.2987E-02 6.0909E-02 -3.8474E-02 1.3675E-02 -2.0867E-03 0
S7 6.3316E-02 -8.4078E-02 7.9649E-02 -4.2742E-02 1.2511E-02 -1.5180E-03 0
S8 -5.1570E-03 -1.5795E-01 1.3437E-01 -6.1482E-02 1.6827E-02 -1.8899E-03 0
S9 4.6255E-02 -1.1452E-01 9.1369E-02 -5.9371E-02 2.3879E-02 -5.1272E-03 4.6140E-04
S10 1.5723E-02 7.0275E-02 -1.1216E-01 5.8321E-02 -1.5315E-02 2.0533E-03 -1.0694E-04
S11 -9.8363E-02 -3.8737E-02 1.9612E-02 7.6137E-04 -1.9434E-03 4.3187E-04 -3.2372E-05
S12 -1.4448E-01 5.0507E-02 -9.9561E-03 1.1862E-03 -8.4197E-05 3.4189E-06 -7.2631E-08
表21
f1(mm) -3.534 f(mm) 2.120
f2(mm) 1.910 Fno 1.930
f3(mm) -3.169 TTL(mm) 7.326
f4(mm) 17.715 HFOV(°) 66.113
f5(mm) 2.644    
f6(mm) -3.609    
实施例8
请结合图36~图40,在实施例8中,摄像镜头满足下面表22-24的条件:
表22
Figure PCTCN2016088626-appb-000012
Figure PCTCN2016088626-appb-000013
表23
下表是非球面透镜的非球面高次项系数A4、A6、A8、A10、A12、A14、A16:
面号 A4 A6 A8 A10 A12 A14 A16
S1 8.1669E-03 -3.5897E-03 2.8393E-04 9.3893E-06 -1.4643E-06 0 0
S2 4.0243E-02 -3.3716E-03 8.2770E-04 -7.2892E-04 2.1797E-04 0 0
S3 -9.7669E-03 -1.2952E-02 1.2704E-02 -1.3546E-02 3.9171E-03 0 0
S4 1.8027E-02 -2.2418E-02 1.1006E-02 -3.7047E-03 3.8832E-04 0 0
S5 -5.3262E-02 1.0737E-03 -1.2083E-03 2.3683E-04 -9.4218E-05 0 0
S6 -1.6441E-02 1.2608E-03 -6.0394E-04 3.3968E-04 -3.4694E-05 0 0
S7 -9.7316E-04 -5.3976E-04 -4.6414E-05 -2.5116E-04 4.5712E-05 0 0
S8 -2.3786E-03 -7.1878E-04 -1.3149E-04 3.6352E-06 -2.2876E-05 0 0
S9 8.0713E-03 -2.1473E-03 -1.5268E-04 6.3980E-05 -1.9976E-06 0 0
S10 -5.3619E-03 -8.9729E-04 -6.5108E-05 1.6137E-05 6.3614E-06 0 0
S11 -4.1977E-02 -3.2186E-03 7.5365E-04 7.4068E-06 -1.0859E-06 7.1137E-07 -3.9165E-09
S12 -1.5510E-02 1.6677E-03 -1.5017E-04 3.8835E-06 3.1083E-08 1.3777E-08 -5.6897E-10
表24
f1(mm) -5.449 f(mm) 3.853
f2(mm) 3.234 Fno 2.440
f3(mm) -6.706 TTL(mm) 9.999
f4(mm) 5.011 HFOV(°) 65.000
f5(mm) 8.257    
f6(mm) -3.591    
在实施例1-8中,各条件式满足下面表格的条件:
Figure PCTCN2016088626-appb-000014
Figure PCTCN2016088626-appb-000015
在本说明书的描述中,参考术语“一个实施例”、“一些实施例”、“示意性实施例”、“示例”、“具体示例”、或“一些示例”等的描述意指结合所述实施例或示例描述的具体特征、结构、材料或者特点包含于本发明的至少一个实施例或示例中。在本说明书中,对上述术语的示意性表述不一定指的是相同的实施例或示例。而且,描述的具体特征、结构、材料或者特点可以在任何的一个或多个实施例或示例中以合适的方式结合。
此外,术语“第一”、“第二”仅用于描述目的,而不能理解为指示或暗示相对重要性或者隐含指明所指示的技术特征的数量。由此,限定有“第一”、“第二”的特征可以明示或者隐含地包括至少一个该特征。在本发明的描述中,“多个”的含义是至少两个,例如两个,三个等,除非另有明确具体的限定。
尽管上面已经示出和描述了本发明的实施例,可以理解的是,上述实施例是示例性的,不能理解为对本发明的限制,本领域的普通技术人员在本发明的范围内可以对上述实施例进行变化、修改、替换和变型。

Claims (10)

  1. 一种摄像镜头,其特征在于,由物侧至像侧依次包括:
    具有负屈折力的第一透镜,该第一透镜的像侧面为凹面;
    具有正屈折力的第二透镜,该第二透镜的物侧面为凸面,该第二透镜的像侧面为凸面;
    具有负屈折力的第三透镜,该第三透镜的像侧面为凹面;
    具有屈折力的第四透镜;
    具有正屈折力的第五透镜,该第五透镜的像侧面为凸面;
    具有负屈折力的第六透镜,该第六透镜的像侧面为凹面;
    该摄像镜头满足下列关系式:
    2<tan(HFOV)<9;其中,HFOV为该摄像镜头的最大视场角的一半。
  2. 如权利要求1所述的摄像镜头,其特征在于,该摄像镜头满足下列关系式:1<f5/f<2.5;其中,f5为该第五透镜的有效焦距;f为该摄像镜头的有效焦距。
  3. 如权利要求1所述的摄像镜头,其特征在于,该摄像镜头满足下列关系式:-2<f1/f2<0;其中,f1为该第一透镜的有效焦距;f2为该第二透镜的有效焦距。
  4. 如权利要求1所述的摄像镜头,其特征在于,该摄像镜头满足下列关系式:|SAG62/DT62|<0.2;其中,SAG62为该第六透镜的像侧面和光轴的交点至该第六透镜的像侧面的有效半径顶点之间的轴上距离;DT62为该第六透镜的像侧面的有效半径。
  5. 如权利要求1所述的摄像镜头,其特征在于,该摄像镜头满足下列关系式:T23/T12<0.2;其中,T23为该第二透镜和该第三透镜的轴上间隔距离;T12为该第一透镜和该第二透镜的轴上间隔距离。
  6. 如权利要求1所述的摄像镜头,其特征在于,该摄像镜头满足下列关系式:0.5<R2/R3<1.5;其中,R2为该第二透镜的物侧面的曲率半径;R3为该第三透镜的物侧面的曲率半径。
  7. 如权利要求1所述的摄像镜头,其特征在于,该摄像镜头满足下列关系式:0<Dr5r8/TTL<0.5;其中,Dr5r8为该第三透镜的物侧面至该第四透镜的像侧面的轴上距 离;TTL为该第一透镜的物侧面至成像面的轴上距离。
  8. 如权利要求1所述的摄像镜头,其特征在于,该摄像镜头满足下列关系式:1<DT12/DT21<2;其中,DT12为该第一透镜的像侧面的有效半径;DT21为该第二透镜的物侧面的有效半径。
  9. 如权利要求1所述的摄像镜头,其特征在于,该摄像镜头满足下列关系式:-2<f6/f<-0.8;其中,f6为该第六透镜的有效焦距;f为该摄像镜头的有效焦距。
  10. 如权利要求1所述的摄像镜头,其特征在于,该第三透镜的物侧面为凸面,该第四透镜的物侧面为凸面,该第四透镜的像侧面为凸面。
PCT/CN2016/088626 2016-04-01 2016-07-05 摄像镜头 WO2017166475A1 (zh)

Priority Applications (2)

Application Number Priority Date Filing Date Title
JP2017542051A JP6568592B2 (ja) 2016-04-01 2016-07-05 撮像レンズ
US15/552,070 US10197776B2 (en) 2016-04-01 2016-07-05 Camera lens

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201610204455.4 2016-04-01
CN201610204455.4A CN105759406B (zh) 2016-04-01 2016-04-01 摄像镜头

Publications (1)

Publication Number Publication Date
WO2017166475A1 true WO2017166475A1 (zh) 2017-10-05

Family

ID=56346059

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2016/088626 WO2017166475A1 (zh) 2016-04-01 2016-07-05 摄像镜头

Country Status (4)

Country Link
US (1) US10197776B2 (zh)
JP (1) JP6568592B2 (zh)
CN (1) CN105759406B (zh)
WO (1) WO2017166475A1 (zh)

Families Citing this family (29)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
TWI580999B (zh) 2016-05-20 2017-05-01 大立光電股份有限公司 影像擷取鏡頭、取像裝置及電子裝置
CN106125260B (zh) * 2016-08-25 2018-08-28 广东弘景光电科技股份有限公司 超广角低畸变高像素光学系统及其应用的镜头
KR20180032057A (ko) * 2016-09-21 2018-03-29 삼성전자주식회사 어안렌즈 어셈블리 및 이를 포함한 전자장치
CN106526801B (zh) 2016-12-05 2019-01-08 浙江舜宇光学有限公司 摄像镜头及摄像装置
TWI610110B (zh) * 2017-04-14 2018-01-01 大立光電股份有限公司 攝影系統鏡頭組、取像裝置及電子裝置
CN107422461B (zh) * 2017-09-22 2021-11-16 江西联创电子有限公司 监控镜头
CN108802964B (zh) * 2017-12-28 2020-11-06 成都理想境界科技有限公司 一种光纤扫描投影物镜以及光纤扫描投影设备
TWI641864B (zh) 2018-01-24 2018-11-21 大立光電股份有限公司 攝像透鏡組、取像裝置及電子裝置
TWI650588B (zh) 2018-02-02 2019-02-11 大立光電股份有限公司 取像用光學鏡組、取像裝置及電子裝置
CN108459395B (zh) * 2018-03-30 2020-06-05 玉晶光电(厦门)有限公司 光学成像镜头
CN108508577A (zh) * 2018-03-30 2018-09-07 玉晶光电(厦门)有限公司 光学成像镜头
CN111273425B (zh) * 2018-03-30 2024-06-18 玉晶光电(厦门)有限公司 光学成像镜头
CN108459401B (zh) * 2018-03-30 2020-02-21 玉晶光电(厦门)有限公司 光学成像镜头
CN108627953B (zh) * 2018-04-28 2020-06-02 玉晶光电(厦门)有限公司 光学成像镜头
CN113472976B (zh) * 2018-10-16 2022-11-25 华为技术有限公司 微距成像的方法及终端
CN112485884B (zh) * 2019-09-11 2022-08-23 信泰光学(深圳)有限公司 广角镜头
KR102368760B1 (ko) * 2019-11-21 2022-03-02 삼성전기주식회사 촬상 광학계
JP2021086075A (ja) * 2019-11-29 2021-06-03 コニカミノルタ株式会社 撮像光学系、撮像装置及び携帯端末
CN110850558B (zh) * 2019-12-20 2024-08-23 辽宁中蓝光电科技有限公司 超广角摄像镜头
CN113467051B (zh) * 2020-02-25 2022-09-20 浙江舜宇光学有限公司 光学成像系统
CN111123485B (zh) * 2020-04-01 2020-07-03 瑞声通讯科技(常州)有限公司 摄像光学镜头
CN114488488B (zh) * 2020-04-28 2024-04-26 浙江舜宇光学有限公司 摄像镜头
CN116500762A (zh) * 2020-06-05 2023-07-28 玉晶光电(厦门)有限公司 光学成像镜头
CN114063245B (zh) * 2020-08-04 2022-09-30 新巨科技股份有限公司 六片式广角镜片组
CN111999858B (zh) * 2020-09-11 2022-12-02 Oppo广东移动通信有限公司 镜头组、相机模组及电子装置
CN111965797B (zh) * 2020-09-17 2022-07-29 江西蓝晶光电科技有限公司 紧凑型超广角成像光学系统
CN114252975B (zh) * 2020-09-21 2023-11-10 光燿科技股份有限公司 光学成像镜头
CN112198628B (zh) * 2020-10-12 2022-09-16 天津欧菲光电有限公司 光学成像系统和具有其的取像模组、电子装置
CN112379507A (zh) * 2020-11-20 2021-02-19 江西晶超光学有限公司 光学成像系统、取像模组和电子装置

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6268965B1 (en) * 1998-11-04 2001-07-31 Asahi Kogaku Kogyo Kabushiki Kaisha Zoom lens system
US20020041449A1 (en) * 2000-10-02 2002-04-11 Asahi Kogaku Kogyo Kabushiki Kaisha Zoom lens system
US6384987B1 (en) * 1999-02-15 2002-05-07 Asahi Kogaku Kogyo Kabushiki Kaisha Wide-angle lens system
CN105204143A (zh) * 2015-10-14 2015-12-30 浙江舜宇光学有限公司 超广角镜头
CN205003346U (zh) * 2015-10-14 2016-01-27 浙江舜宇光学有限公司 超广角镜头

Family Cites Families (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2646350B2 (ja) 1986-01-28 1997-08-27 オリンパス光学工業株式会社 内視鏡対物レンズ
JP2004354572A (ja) * 2003-05-28 2004-12-16 Minolta Co Ltd 撮像装置
JP5031880B2 (ja) 2010-10-29 2012-09-26 オリンパスメディカルシステムズ株式会社 内視鏡用対物レンズ
JPWO2012086199A1 (ja) * 2010-12-22 2014-05-22 富士フイルム株式会社 撮像レンズおよび撮像装置
WO2012127826A1 (ja) 2011-03-18 2012-09-27 富士フイルム株式会社 撮像レンズおよび撮像装置
JP2015125150A (ja) 2013-12-25 2015-07-06 富士フイルム株式会社 撮像レンズおよび撮像装置
TWI583988B (zh) * 2015-05-22 2017-05-21 先進光電科技股份有限公司 光學成像系統

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6268965B1 (en) * 1998-11-04 2001-07-31 Asahi Kogaku Kogyo Kabushiki Kaisha Zoom lens system
US6384987B1 (en) * 1999-02-15 2002-05-07 Asahi Kogaku Kogyo Kabushiki Kaisha Wide-angle lens system
US20020041449A1 (en) * 2000-10-02 2002-04-11 Asahi Kogaku Kogyo Kabushiki Kaisha Zoom lens system
CN105204143A (zh) * 2015-10-14 2015-12-30 浙江舜宇光学有限公司 超广角镜头
CN205003346U (zh) * 2015-10-14 2016-01-27 浙江舜宇光学有限公司 超广角镜头

Also Published As

Publication number Publication date
CN105759406A (zh) 2016-07-13
JP2018514797A (ja) 2018-06-07
US10197776B2 (en) 2019-02-05
CN105759406B (zh) 2018-09-21
US20180136443A1 (en) 2018-05-17
JP6568592B2 (ja) 2019-08-28

Similar Documents

Publication Publication Date Title
WO2017166475A1 (zh) 摄像镜头
WO2018045607A1 (zh) 摄像镜头
WO2018010246A1 (zh) 摄像镜头
WO2017041456A1 (zh) 摄像镜头
WO2017148020A1 (zh) 摄远镜头
WO2019091170A1 (zh) 摄像透镜组
WO2018153012A1 (zh) 摄像镜头
WO2017148078A1 (zh) 超广角摄像镜头
WO2017020587A1 (zh) 超广角镜头
WO2018028026A1 (zh) 广角镜头
WO2016109938A1 (zh) 摄像镜头
WO2016197604A1 (zh) 成像镜头
WO2016109956A1 (zh) 摄像镜头
WO2018192126A1 (zh) 摄像镜头
WO2018214349A1 (zh) 摄像镜头
WO2016179986A1 (zh) 广角成像镜头
WO2017166452A1 (zh) 摄像镜头及便携式电子装置
WO2017161661A1 (zh) 摄远镜头
WO2019052220A1 (zh) 光学成像镜头
WO2019169856A1 (zh) 摄像镜头组
WO2020098328A1 (zh) 摄像镜头
WO2019056775A1 (zh) 摄像透镜组
WO2018209855A1 (zh) 光学成像系统
WO2019033756A1 (zh) 光学成像镜头
WO2017113557A9 (zh) 摄像镜头

Legal Events

Date Code Title Description
ENP Entry into the national phase

Ref document number: 2017542051

Country of ref document: JP

Kind code of ref document: A

WWE Wipo information: entry into national phase

Ref document number: 15552070

Country of ref document: US

NENP Non-entry into the national phase

Ref country code: DE

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 16896248

Country of ref document: EP

Kind code of ref document: A1

122 Ep: pct application non-entry in european phase

Ref document number: 16896248

Country of ref document: EP

Kind code of ref document: A1