WO2016109956A1 - 摄像镜头 - Google Patents
摄像镜头 Download PDFInfo
- Publication number
- WO2016109956A1 WO2016109956A1 PCT/CN2015/070301 CN2015070301W WO2016109956A1 WO 2016109956 A1 WO2016109956 A1 WO 2016109956A1 CN 2015070301 W CN2015070301 W CN 2015070301W WO 2016109956 A1 WO2016109956 A1 WO 2016109956A1
- Authority
- WO
- WIPO (PCT)
- Prior art keywords
- lens
- lens system
- image
- object side
- image side
- Prior art date
Links
Images
Classifications
-
- G—PHYSICS
- G02—OPTICS
- G02B—OPTICAL ELEMENTS, SYSTEMS OR APPARATUS
- G02B9/00—Optical objectives characterised both by the number of the components and their arrangements according to their sign, i.e. + or -
- G02B9/62—Optical objectives characterised both by the number of the components and their arrangements according to their sign, i.e. + or - having six components only
-
- G—PHYSICS
- G02—OPTICS
- G02B—OPTICAL ELEMENTS, SYSTEMS OR APPARATUS
- G02B13/00—Optical objectives specially designed for the purposes specified below
- G02B13/001—Miniaturised objectives for electronic devices, e.g. portable telephones, webcams, PDAs, small digital cameras
- G02B13/0015—Miniaturised objectives for electronic devices, e.g. portable telephones, webcams, PDAs, small digital cameras characterised by the lens design
- G02B13/002—Miniaturised objectives for electronic devices, e.g. portable telephones, webcams, PDAs, small digital cameras characterised by the lens design having at least one aspherical surface
- G02B13/0045—Miniaturised objectives for electronic devices, e.g. portable telephones, webcams, PDAs, small digital cameras characterised by the lens design having at least one aspherical surface having five or more lenses
-
- G—PHYSICS
- G02—OPTICS
- G02B—OPTICAL ELEMENTS, SYSTEMS OR APPARATUS
- G02B13/00—Optical objectives specially designed for the purposes specified below
- G02B13/18—Optical objectives specially designed for the purposes specified below with lenses having one or more non-spherical faces, e.g. for reducing geometrical aberration
Definitions
- the present invention relates to an image pickup lens, and more particularly to an image pickup lens.
- the corresponding imaging lens With the performance improvement and size reduction of a charge-coupled device (CCD) and a complementary metal-oxide semiconductor (CMOS) image sensor, the corresponding imaging lens also needs to meet high image quality and Miniaturization requirements.
- CCD charge-coupled device
- CMOS complementary metal-oxide semiconductor
- a general high-pixel thin-type imaging lens adopts a five-piece structure.
- an existing imaging lens sequentially has a first lens having a positive power and a second having a negative power from an object side to an image side.
- This system effectively improves image quality in a small-caliber configuration while maintaining miniaturization.
- further requirements have been placed on the performance of pixels, imaging quality and resolution of miniaturized photographic lenses.
- a large-caliber configuration is required to meet the illumination requirement, and the known five-piece structure cannot further shorten the system length and meet the image quality requirements in a large-caliber configuration.
- the present invention aims to solve at least one of the technical problems existing in the prior art.
- the present invention needs to provide an imaging lens that includes, from the object side to the image side, in order:
- a third lens having a negative power with a concave side
- a sixth lens having a negative power, the image side being a concave surface
- the camera lens satisfies the relationship:
- f is the effective focal length of the imaging lens
- f4 is the focal length of the fourth lens
- T12 is the on-axis spacing between the first lens and the second lens
- T23 is the second lens and the third The on-axis spacing between the lenses.
- the second lens object has a convex side, the image side is a concave surface; and the object side of the fourth lens The surface is convex.
- the object side surface concave surface of the sixth lens and the object side surface and the image side surface have at least one inflection point; the imaging lens further includes a subject disposed between the object and the second lens The light between the two.
- the camera lens also satisfies the conditional expression:
- f123 is a combined focal length of the first lens, the second lens and the third lens
- Dr1r6 is an on-axis distance from an object side surface of the first lens to an image side surface of the third lens
- the camera lens also satisfies the conditional expression:
- the camera lens also satisfies the conditional expression:
- f5 is a focal length of the fifth lens
- R11 and R12 are curvature radii of the object side surface and the image side surface of the sixth lens, respectively.
- the first lens, the second lens, the third lens, the fourth lens, the fifth lens, and the sixth lens are each made of plastic, and at least There is an aspheric surface.
- the image side surface of the third lens is convex.
- the image side surface of the first lens is a convex surface
- the object side surface of the fifth lens is a convex surface
- the image side of the fourth lens is concave.
- FIG. 1 is a schematic view of a lens system according to Embodiment 1 of the present invention.
- FIG. 2 is an axial chromatic aberration diagram (mm) of the lens system of Embodiment 1
- FIG. 3 is an astigmatism diagram (mm) of the lens system of Embodiment 1
- FIG. 4 is a distortion diagram (%) of the lens system of Embodiment 1.
- Figure 5 is a lens system magnification chromatic aberration diagram (um) of Embodiment 1;
- Figure 6 is a schematic view of a lens system according to Embodiment 2 of the present invention.
- FIG. 7 is an axial chromatic aberration diagram (mm) of the lens system of Embodiment 2;
- FIG. 8 is an astigmatism of the lens system of Embodiment 2.
- Figure 9 is a distortion diagram (%) of the lens system of Embodiment 2;
- Figure 10 is a lens system magnification chromatic aberration diagram (um) of Embodiment 2;
- Figure 11 is a schematic view of a lens system according to Embodiment 3 of the present invention.
- FIG. 12 is an axial chromatic aberration diagram (mm) of the lens system of Embodiment 3;
- FIG. 13 is an astigmatism diagram (mm) of the lens system of Embodiment 3;
- FIG. 14 is a distortion diagram (%) of the lens system of Embodiment 3.
- Figure 15 is a lens system magnification chromatic aberration diagram (um) of Embodiment 3;
- Figure 16 is a schematic view of a lens system of Embodiment 4 of the present invention.
- FIG. 17 is an axial chromatic aberration diagram (mm) of the lens system of Embodiment 4;
- FIG. 18 is an astigmatism diagram (mm) of the lens system of Embodiment 4;
- FIG. 19 is a distortion diagram (%) of the lens system of Embodiment 4.
- 20 is a lens system magnification chromatic aberration diagram (um) of Embodiment 4;
- Figure 21 is a schematic view of a lens system according to Embodiment 5 of the present invention.
- FIG. 22 is an axial chromatic aberration diagram (mm) of the lens system of Embodiment 5;
- FIG. 23 is an astigmatism diagram (mm) of the lens system of Embodiment 5;
- FIG. 24 is a distortion diagram (%) of the lens system of Embodiment 5.
- Figure 25 is a lens system magnification chromatic aberration diagram (um) of Embodiment 5;
- Figure 26 is a schematic view of a lens system of Embodiment 6 of the present invention.
- FIG. 27 is an axial chromatic aberration diagram (mm) of the lens system of Embodiment 6;
- FIG. 28 is an astigmatism diagram (mm) of the lens system of Embodiment 6, and
- FIG. 29 is a distortion diagram (%) of the lens system of Embodiment 6.
- Figure 30 is a lens system magnification chromatic aberration diagram (um) of Embodiment 6;
- Figure 31 is a schematic view of a lens system of Embodiment 7 of the present invention.
- FIG. 32 is an axial chromatic aberration diagram (mm) of the lens system of Embodiment 7
- FIG. 33 is an astigmatism diagram (mm) of the lens system of Embodiment 7
- FIG. 34 is a distortion diagram (%) of the lens system of Embodiment 7.
- Figure 35 is a lens system magnification chromatic aberration diagram (um) of Embodiment 7;
- Figure 36 is a schematic view of a lens system of Embodiment 8 of the present invention.
- FIG. 37 is an axial chromatic aberration diagram (mm) of the lens system of Embodiment 8;
- FIG. 38 is an astigmatism diagram (mm) of the lens system of Embodiment 8, and
- FIG. 39 is a distortion diagram (%) of the lens system of Embodiment 8.
- 40 is a lens system magnification chromatic aberration diagram (um) of Embodiment 8.
- first and second are used for descriptive purposes only, and It is not to be understood as indicating or implying a relative importance or implicitly indicating the number of technical features indicated. Thus, features defining “first” or “second” may include one or more of the described features either explicitly or implicitly. In the description of the present invention, the meaning of "a plurality" is two or more unless specifically and specifically defined otherwise.
- connection In the description of the present invention, it should be noted that the terms “installation”, “connected”, and “connected” are to be understood broadly, and may be fixed or detachable, for example, unless otherwise explicitly defined and defined. Connected, or integrally connected; may be mechanically connected, or may be electrically connected or may communicate with each other; may be directly connected or indirectly connected through an intermediate medium, may be internal communication of two elements or interaction of two elements relationship. For those skilled in the art, the specific meanings of the above terms in the present invention can be understood on a case-by-case basis.
- an image pickup lens includes, in order from the object side to the image side, a first lens having positive refractive power, a side surface of the object being a convex surface, a second lens having a negative refractive power, and having a negative light. a third lens having a focal length, a concave surface; a fourth lens having positive power; a fifth lens having positive power, a convex surface of the image side; and a sixth lens having negative power, the image The side is concave; the camera lens satisfies the relationship:
- f is the effective focal length of the imaging lens
- f4 is the focal length of the fourth lens E4
- T12 is the on-axis spacing between the first lens E1 and the second lens E2
- T23 is the second lens E2 and the third The on-axis spacing between lenses E3.
- Satisfying the above two conditions can facilitate the miniaturization of the lens and the expansion of the angle of view, and improve the image quality.
- the first lens E1 includes an object side surface S1 and an image side surface S2
- the second lens E2 includes an object side surface S3 and an image side surface S4
- the third lens E3 includes an object side surface S5 and an image side surface S6, and a fourth
- the lens E4 includes an image side surface S7 and an image side surface S8
- the fifth lens E5 includes an object side surface S9 and an image side surface S10
- the sixth lens E6 includes an object side surface S11 and an image side surface S12.
- the second lens E2 object side surface S3 is a convex surface
- the image side surface S4 is a concave surface
- the object side surface S7 of the fourth lens E4 is a convex surface.
- the object side surface S11 of the sixth lens E6 is concave and the object side surface S11 and The image side surface S12 has at least one inflection point; the image pickup lens further includes a stop STO disposed between the object and the second lens.
- the above control of the power and shape can further shorten the total length of the lens, which is advantageous for high pixel and large aperture.
- the camera lens also satisfies the conditional expression:
- f123 is a combined focal length of the first lens E1, the second lens E2, and the third lens E3, and Dr1r6 is an on-axis distance of the object side surface S1 of the first lens E1 to the image side surface S6 of the third lens E3.
- Satisfying the above conditional formula can help eliminate system astigmatism and further reduce the total length of the lens.
- the camera lens also satisfies the conditional expression:
- This arrangement is advantageous for controlling the aberration of the imaging lens, especially the astigmatism when the angle of view is increased.
- the camera lens also satisfies the conditional expression:
- f5 is the focal length of the fifth lens E5
- R11 and R12 are the curvature radii of the object side surface S11 and the image side surface S12 of the sixth lens E6, respectively.
- This setting is beneficial to the high pixel characteristics of the camera lens, and at the same time effectively reduces the influence of distortion on the imaging of the camera lens, and obtains better image quality.
- the first lens E1, the second lens E2, the third lens E3, the fourth lens E4, the fifth lens E5, and the sixth lens E6 are each made of plastic, and at least one aspherical surface exists.
- This arrangement is advantageous for miniaturization, high pixel and large aperture.
- the image side surface S6 of the third lens E3 is convex. This arrangement is advantageous for miniaturization, high pixel and large aperture.
- the image side surface S1 of the first lens E1 is convex
- the fifth lens E5 object side surface S9 is convex. This arrangement is advantageous for miniaturization, high pixel and large aperture.
- the image side S8 of the fourth lens E4 is concave. This arrangement is advantageous for miniaturization, high pixel and large aperture.
- the light passes through the imaging lens and passes through the filter E7 having the object side surface S13 and the image side surface S14, and is imaged on the imaging surface S15.
- the aspherical shape is determined by the following formula:
- h is the height from any point on the aspheric surface to the optical axis
- c is the curvature of the vertex
- k is the cone constant
- Ai is the correction coefficient of the i-th order of the aspheric surface.
- the lens system satisfies the conditions of the following table:
- f1 3.26mm
- f2 -5.86mm
- f3 -21.47mm
- f4 17.06mm
- f5 2.12mm
- f6 -1.74mm
- f 4.5mm
- TTL 5.55mm
- Semi-FOV 38.3 °
- the pupil value Fno 2.03.
- FIG. 2 is an axial chromatic aberration diagram (mm) of the lens system of Embodiment 1
- FIG. 3 is an astigmatism diagram (mm) of the lens system of Embodiment 1
- FIG. 4 is a distortion diagram (%) of the lens system of Embodiment 1.
- 5 is a lens system magnification chromatic aberration diagram (um) of Embodiment 1, and it can be seen that the aberration of the lens system is effectively controlled.
- the lens system satisfies the conditions of the following table:
- f1 3.29mm
- f2 -5.9mm
- f3 -18.3mm
- f4 13.25mm
- f5 2.16mm
- f6 -1.74mm
- f 4.58mm
- TTL 5.68mm
- Semi-FOV 37.8 °
- the pupil value Fno 2.03.
- FIG. 7 is an axial chromatic aberration diagram (mm) of the lens system of Embodiment 2
- FIG. 8 is an astigmatism diagram (mm) of the lens system of Embodiment 2
- FIG. 9 is a distortion diagram (%) of the lens system of Embodiment 2.
- FIG. 10 is a lens system magnification chromatic aberration diagram (um) of Embodiment 2, and it can be seen that the aberration of the lens system is effectively controlled.
- the lens system satisfies the conditions of the following table:
- f1 3.37mm
- f2 -5.94mm
- f3 -116mm
- f4 16.72mm
- f5 2.25mm
- f6 -1.68mm
- f 4.74mm
- TTL 5.7mm
- Semi-FOV 36.75°
- the pupil value Fno 2.03.
- FIG. 12 is an axial chromatic aberration diagram (mm) of the lens system of Embodiment 3
- FIG. 13 is an astigmatism diagram (mm) of the lens system of Embodiment 3
- FIG. 14 is a distortion diagram (%) of the lens system of Embodiment 3.
- 15 is a lens system magnification chromatic aberration diagram (um) of the third embodiment. It can be seen that the aberration of the lens system is effectively controlled.
- the lens system satisfies the conditions of the following table:
- FIG. 17 is an axial chromatic aberration diagram (mm) of the lens system of Embodiment 4
- FIG. 18 is an astigmatism diagram (mm) of the lens system of Embodiment 4
- FIG. 19 is a distortion diagram (%) of the lens system of Embodiment 4.
- 20 is a lens system magnification chromatic aberration diagram (um) of Embodiment 4, and it can be seen that the aberration of the lens system is effectively controlled.
- the lens system satisfies the conditions of the following table:
- f1 3.24mm
- f2 -6.3mm
- f3 -38.8mm
- f4 9.67mm
- f5 2.45mm
- f6 -1.64mm
- f 4.75mm
- TTL 5.86mm
- Semi-FOV 36.4 °
- the pupil value Fno 2.03.
- FIG. 22 is an axial chromatic aberration diagram (mm) of the lens system of Embodiment 5
- FIG. 23 is an astigmatism diagram (mm) of the lens system of Embodiment 5
- FIG. 24 is a distortion diagram (%) of the lens system of Embodiment 5.
- 25 is a lens system magnification chromatic aberration diagram (um) of the fifth embodiment. It can be seen that the aberration of the lens system is effectively controlled.
- the lens system satisfies the conditions of the following table:
- FIG. 27 is an axial chromatic aberration diagram (mm) of the lens system of Embodiment 6
- FIG. 28 is an astigmatism diagram (mm) of the lens system of Embodiment 6
- FIG. 29 is a distortion diagram (%) of the lens system of Embodiment 6.
- 30 is a lens system magnification chromatic aberration diagram (um) of Embodiment 6, and it can be seen that the aberration of the lens system is effectively controlled.
- the lens system satisfies the conditions of the following table:
- f1 2.66mm
- f2 -5.44mm
- f3 -19.1mm
- f4 25.9mm
- f5 2.42mm
- f6 -1.9mm
- f 3.58mm
- TTL 4.28mm
- Semi-FOV 39 °
- the pupil value Fno 1.98.
- FIG. 32 is an axial chromatic aberration diagram (mm) of the lens system of Embodiment 7
- FIG. 33 is an astigmatism diagram (mm) of the lens system of Embodiment 7
- FIG. 39 is a distortion diagram (%) of the lens system of Embodiment 34.
- 35 is a lens system magnification chromatic aberration diagram (um) of Embodiment 7, and it can be seen that the aberration of the lens system is effectively controlled.
- the lens system satisfies the conditions of the following table:
- f1 3.26mm
- f2 -5.93mm
- f3 -22.23mm
- f4 16.72mm
- f5 2.13mm
- f6 1.76mm
- f 4.43mm
- TTL 5.51mm
- Semi-FOV 39°
- the pupil value Fno 2.03.
- FIG. 37 is an axial chromatic aberration diagram (mm) of the lens system of Embodiment 8
- FIG. 38 is an astigmatism diagram (mm) of the lens system of Embodiment 8
- FIG. 39 is a distortion diagram (%) of the lens system of Embodiment 8.
- 40 is a lens system magnification chromatic aberration diagram (um) of Embodiment 8, and it can be seen that the aberration of the lens system is effectively controlled.
- Embodiment 1 2 3 4 5 6 7 8 f/f4 0.26 0.35 0.28 0.41 0.49 0.145 0.14 0.26
Landscapes
- Physics & Mathematics (AREA)
- General Physics & Mathematics (AREA)
- Optics & Photonics (AREA)
- Lenses (AREA)
Abstract
一种摄像镜头,由物侧至像侧依次包括:具有正光焦度的第一透镜(E1),物侧面(S1)为凸面;具有负光焦度的第二透镜(E2);具有负光焦度的第三透镜(E3),物侧面(S5)为凹面;具有正光焦度的第四透镜(E4);具有正光焦度的第五透镜(E5),像侧面(S10)为凸面;及具有负光焦度的第六透镜(E6),像侧面(S12)为凹面。摄像镜头满足关系式:0<f/f4<0.8及0<T12/T23<0.14。其中,f为摄像镜头的有效焦距,f4为第四透镜(E4)的焦距,T12为第一透镜(E1)和第二透镜(E2)之间的轴上间距,T23为第二透镜(E2)和第三透镜(E3)之间的轴上间距。从而获得高成像质量且小型化、大孔径的摄像镜头。
Description
本发明涉及摄像镜头,尤其是涉及一种摄像镜头。
随着电耦合器件(charge-coupled device,CCD)及互补式金属氧化物半导体(complementary metal-oxide semiconductor,CMOS)图像传感器的性能提高及尺寸减小,对应的摄像镜头也需满足高成像品质及小型化的要求。
目前,一般的高像素薄型摄像镜头多采用五片式结构,例如,现有的一种摄像镜头从物方到像方依次由具有正光焦度的第一透镜、具有负光焦度的第二透镜、具有负光焦度的第三透镜、具有正光焦度的第四透镜和具有负光焦度的第五透镜构成。这种系统在小口径的配置中,有效提升了成像品质,同时维持了小型化的特性。但是由于便携式电子产品的日益发展,对小型化摄影镜头的像素、成像质量及分辨率等性能提出了进一步更高的要求。为了满足高分辨率的要求,需要采用大口径的配置,才能满足照度的需求,而已知的五片式结构在大口径的配置下,将无法进一步缩短系统长度,满足像质要求。
发明内容
本发明旨在至少解决现有技术中存在的技术问题之一。
为此,本发明需要提供一种摄像镜头,其由物侧至像侧依次包括:
具有正光焦度的第一透镜,其物侧面为凸面;
具有负光焦度的第二透镜;
具有负光焦度的第三透镜,其物侧面为凹面;
具有正光焦度的第四透镜;
具有正光焦度的第五透镜,其像侧面为凸面;及
具有负光焦度的第六透镜,其像侧面为凹面;
所述摄像镜头满足关系式:
0<f/f4<0.8;
0<T12/T23<0.14
其中,f为所述摄像镜头的有效焦距,f4为所述第四透镜的焦距,T12为所述第一透镜和第二透镜之间的轴上间距,T23为所述第二透镜和第三透镜之间的轴上间距。
在某些实施方式中,所述第二透镜物侧面为凸面,像侧面为凹面;第四透镜的物侧
表面为凸面。
在某些实施方式中,所述第六透镜的物侧表面凹面而且物侧表面和像侧表面存在至少一个反曲点;所述摄像镜头还包括设置在被摄物与所述第二透镜之间的光阑。
在某些实施方式中,所述摄像镜头还满足条件式:
1<f123/Dr1r6<5.5;
其中,f123为所述第一透镜、所述第二透镜及所述第三透镜的组合焦距,Dr1r6为所述第一透镜的物侧表面至所述第三透镜的像侧表面的轴上距离,
在某些实施方式中,所述摄像镜头还满足条件式:
0.5<f123/f<2。
在某些实施方式中,所述摄像镜头还满足条件式:
0<f5/f<1;及
0<(R11+R12)/(R11-R12)<1;
其中,f5为所述第五透镜的焦距,R11、R12分别是所述第六透镜的物侧表面和像侧表面的曲率半径。
在某些实施方式中,所述第一透镜、所述第二透镜、所述第三透镜、所述第四透镜、所述第五透镜及所述第六透镜均由塑料制成,且至少存在一个非球面。
在某些实施方式中,所述第三透镜的像侧表面为凸面。
在某些实施方式中,所述第一透镜的像侧表面为凸面,所述第五透镜的物侧表面为凸面。
在某些实施方式中,所述第四透镜的像侧面为凹面。
本发明的附加方面和优点将在下面的描述中部分给出,部分将从下面的描述中变得明显,或通过本发明的实践了解到。
本发明的上述和/或附加的方面和优点从结合下面附图对实施方式的描述中将变得明显和容易理解,其中:
图1是本发明实施例1的镜头系统的示意图;
图2是实施例1的镜头系统的轴上色差图(mm);图3是实施例1的镜头系统的像散图(mm);图4是实施例1的镜头系统的畸变图(%);图5是实施例1的镜头系统倍率色差图(um);
图6是本发明实施例2的镜头系统的示意图;
图7是实施例2的镜头系统的轴上色差图(mm);图8是实施例2的镜头系统的像散
图(mm);图9是实施例2的镜头系统的畸变图(%);图10是实施例2的镜头系统倍率色差图(um);
图11是本发明实施例3的镜头系统的示意图;
图12是实施例3的镜头系统的轴上色差图(mm);图13是实施例3的镜头系统的像散图(mm);图14是实施例3的镜头系统的畸变图(%);图15是实施例3的镜头系统倍率色差图(um);
图16是本发明实施例4的镜头系统的示意图;
图17是实施例4的镜头系统的轴上色差图(mm);图18是实施例4的镜头系统的像散图(mm);图19是实施例4的镜头系统的畸变图(%);图20是实施例4的镜头系统倍率色差图(um);
图21是本发明实施例5的镜头系统的示意图;
图22是实施例5的镜头系统的轴上色差图(mm);图23是实施例5的镜头系统的像散图(mm);图24是实施例5的镜头系统的畸变图(%);图25是实施例5的镜头系统倍率色差图(um);
图26是本发明实施例6的镜头系统的示意图;
图27是实施例6的镜头系统的轴上色差图(mm);图28是实施例6的镜头系统的像散图(mm);图29是实施例6的镜头系统的畸变图(%);图30是实施例6的镜头系统倍率色差图(um);
图31是本发明实施例7的镜头系统的示意图;
图32是实施例7的镜头系统的轴上色差图(mm);图33是实施例7的镜头系统的像散图(mm);图34是实施例7的镜头系统的畸变图(%);图35是实施例7的镜头系统倍率色差图(um);
图36是本发明实施例8的镜头系统的示意图;
图37是实施例8的镜头系统的轴上色差图(mm);图38是实施例8的镜头系统的像散图(mm);图39是实施例8的镜头系统的畸变图(%);图40是实施例8的镜头系统倍率色差图(um)。
下面详细描述本发明的实施方式,所述实施方式的示例在附图中示出,其中自始至终相同或类似的标号表示相同或类似的元件或具有相同或类似功能的元件。下面通过参考附图描述的实施方式是示例性的,仅用于解释本发明,而不能理解为对本发明的限制。
在本发明的描述中,需要理解的是,术语“第一”、“第二”仅用于描述目的,而
不能理解为指示或暗示相对重要性或者隐含指明所指示的技术特征的数量。由此,限定有“第一”、“第二”的特征可以明示或者隐含地包括一个或者更多个所述特征。在本发明的描述中,“多个”的含义是两个或两个以上,除非另有明确具体的限定。
在本发明的描述中,需要说明的是,除非另有明确的规定和限定,术语“安装”、“相连”、“连接”应做广义理解,例如,可以是固定连接,也可以是可拆卸连接,或一体地连接;可以是机械连接,也可以是电连接或可以相互通信;可以是直接相连,也可以通过中间媒介间接相连,可以是两个元件内部的连通或两个元件的相互作用关系。对于本领域的普通技术人员而言,可以根据具体情况理解上述术语在本发明中的具体含义。
下文的公开提供了许多不同的实施方式或例子用来实现本发明的不同结构。为了简化本发明的公开,下文中对特定例子的部件和设置进行描述。当然,它们仅仅为示例,并且目的不在于限制本发明。此外,本发明可以在不同例子中重复参考数字和/或参考字母,这种重复是为了简化和清楚的目的,其本身不指示所讨论各种实施方式和/或设置之间的关系。此外,本发明提供了的各种特定的工艺和材料的例子,但是本领域普通技术人员可以意识到其他工艺的应用和/或其他材料的使用。
请参阅图1,本发明较佳实施方式的摄像镜头由物侧至像侧依次包括具有正光焦度的第一透镜,其物侧面为凸面;具有负光焦度的第二透镜;具有负光焦度的第三透镜,其物侧面为凹面;具有正光焦度的第四透镜;具有正光焦度的第五透镜,其像侧面为凸面;及具有负光焦度的第六透镜,其像侧面为凹面;所述摄像镜头满足关系式:
0<f/f4<0.8;
0<T12/T23<0.14;
其中,f为摄像镜头的有效焦距,f4为第四透镜E4的焦距,T12为所述第一透镜E1和第二透镜E2之间的轴上间距,T23为所述第二透镜E2和第三透镜E3之间的轴上间距。
满足上面两个条件式可有利于镜头的小型化和视场角的扩大,并提高成像质量。
具体的,第一透镜E1包括物侧表面S1及像侧表面S2,第二透镜E2包括物侧表面S3及像侧表面S4,第三透镜E3包括物侧表面S5及像侧表面S6,第四透镜E4包括像侧表面S7及像侧表面S8,第五透镜E5包括物侧表面S9及像侧表面S10,第六透镜E6包括物侧表面S11及像侧表面S12。
在某些实施方式中,所述第二透镜E2物侧面S3为凸面,像侧面S4为凹面;第四透镜E4的物侧表面S7为凸面。
在某些实施方式中,所述第六透镜E6的物侧表面S11为凹面而且物侧表面S11和
像侧表面S12存在至少一个反曲点;所述摄像镜头还包括设置在被摄物与所述第二透镜之间的光阑STO。
上述对于光焦度和形状的控制可进一步缩短镜头总长,有利于高像素和大孔径的特点。
在某些实施方式中,所述摄像镜头还满足条件式:
1<f123/Dr1r6<5.5;
其中,f123为第一透镜E1、第二透镜E2及第三透镜E3的组合焦距,Dr1r6为第一透镜E1的物侧表面S1至第三透镜E3的像侧表面S6的轴上距离。
满足以上条件式可有利于消除系统象散,进一步缩小镜头总长。
在某些实施方式中,摄像镜头还满足条件式:
0.5<f123/f<2。
如此设置,有利于控制摄像镜头的像差,特别是视场角增加时的象散。
在某些实施方式中,摄像镜头还满足条件式:
0<f5/f<1;及
0<(R11+R12)/(R11-R12)<1;
其中,f5为第五透镜E5的焦距,R11、R12分别是第六透镜E6的物侧表面S11和像侧表面S12的曲率半径。
如此设置,有利于摄像镜头高像素的特性,并同时有效的减小畸变对摄像镜头成像的影响,获得更好的成像质量。
在某些实施方式中,第一透镜E1、第二透镜E2、第三透镜E3、第四透镜E4、第五透镜E5及第六透镜E6均由塑料制成,且至少存在一个非球面。
如此设置有利于小型化、高像素及大孔径的特性。
在某些实施方式中,第三透镜E3的像侧表面S6为凸面。如此设置有利于小型化、高像素及大孔径的特性。
在某些实施方式中,第一透镜E1的像侧表面S1为凸面,第五透镜E5物侧面S9为凸面。如此设置有利于小型化、高像素及大孔径的特性。
在某些实施方式中,第四透镜E4的像侧面S8为凹面。如此设置有利于小型化、高像素及大孔径的特性。
成像时,光线穿过摄像镜头后经过具有物侧表面S13及像侧表面S14的滤光片E7后成像于成像面S15。
非球面的面形由以下公式决定:
其中,h是非球面上任一点到光轴的高度,c是顶点曲率,k是锥形常数,Ai是非球面第i-th阶的修正系数。
实施例1
实施例1中,镜头系统满足下面的表格的条件:
表1
表面编号 | 曲率半径 | 厚度 | 材料 | 有效口径 | 圆锥系数 |
OBJ | 无穷 | 无穷 | |||
STO | 无穷 | -0.3324 | 1.0900 | ||
S1 | 1.9605 | 0.6227 | 1.54,56.1 | 1.1117 | -0.2821 |
S2 | -17.3662 | 0.0325 | 1.1000 | -92.2311 | |
S3 | 4.6469 | 0.2350 | 1.64,23.8 | 1.1156 | -2.0714 |
S4 | 2.0358 | 0.5160 | 1.1137 | -5.5843 | |
S5 | -6.2175 | 0.2647 | 1.64,23.8 | 1.1271 | 12.2934 |
S6 | -11.5407 | 0.0621 | 1.2510 | -80.9957 | |
S7 | 8.0645 | 0.5831 | 1.54,56.1 | 1.5800 | 2.1584 |
S8 | 58.6245 | 0.6048 | 1.5835 | 7.9412 | |
S9 | 1345.1085 | 0.7687 | 1.54,56.1 | 1.8007 | -99.9900 |
S10 | -1.1583 | 0.2541 | 2.1658 | -5.4343 | |
S11 | -5.7142 | 0.3000 | 1.54,56.1 | 2.6954 | -51.5719 |
S12 | 1.1568 | 0.3462 | 2.9500 | -7.2720 | |
S13 | 无穷 | 0.2100 | 1.52,64.2 | 3.2233 | |
S14 | 无穷 | 0.7500 | 3.2734 | ||
IMA(S15) | 无穷 | 3.5595 |
表2
另外,f1=3.26mm、f2=-5.86mm、f3=-21.47mm、f4=17.06mm、f5=2.12mm、f6=-1.74mm、f=4.5mm、TTL=5.55mm及Semi-FOV=38.3°,光阑值Fno=2.03。
图2是实施例1的镜头系统的轴上色差图(mm),图3是实施例1的镜头系统的像散图(mm),图4是实施例1的镜头系统的畸变图(%),图5是实施例1的镜头系统倍率色差图(um),可见,镜头系统的像差得到有效控制。
实施例2
实施例2中,镜头系统满足下面的表格的条件:
表3
表4
另外,f1=3.29mm、f2=-5.9mm、f3=-18.3mm、f4=13.25mm、f5=2.16mm、f6=-1.74mm、f=4.58mm、TTL=5.68mm及Semi-FOV=37.8°,光阑值Fno=2.03。
图7是实施例2的镜头系统的轴上色差图(mm),图8是实施例2的镜头系统的像散图(mm),图9是实施例2的镜头系统的畸变图(%),图10是实施例2的镜头系统倍率色差图(um),可见,镜头系统的像差得到有效控制。
实施例3
实施例3中,镜头系统满足下面的表格的条件:
表5
表6
另外,f1=3.37mm、f2=-5.94mm、f3=-116mm、f4=16.72mm、f5=2.25mm、f6=-1.68mm、f=4.74mm、TTL=5.7mm及Semi-FOV=36.75°,光阑值Fno=2.03。
图12是实施例3的镜头系统的轴上色差图(mm),图13是实施例3的镜头系统的像散图(mm),图14是实施例3的镜头系统的畸变图(%),图15是实施例3的镜头系统倍率色差图(um),可见,镜头系统的像差得到有效控制。
实施例4
实施例4中,镜头系统满足下面的表格的条件:
表7
表面编号 | 曲率半径 | 厚度 | 材料 | 有效口径 | 圆锥系数 |
OBJ | 无穷 | 无穷 | |||
STO | 无穷 | -0.3459 | 1.1246 | ||
S1 | 1.9441 | 0.6659 | 1.54,56.1 | 1.1497 | -0.3022 |
S2 | -15.8942 | 0.0181 | 1.1606 | -51.0863 | |
S3 | 4.5470 | 0.2511 | 1.64,23.8 | 1.1662 | -1.6395 |
S4 | 2.0878 | 0.5156 | 1.1491 | -5.7163 | |
S5 | -6.6206 | 0.2808 | 1.64,23.8 | 1.1502 | 13.4765 |
S6 | 300.0215 | 0.0401 | 1.2753 | -769.3265 | |
S7 | 7.0842 | 0.6422 | 1.54,56.1 | 1.3363 | -4.7955 |
S8 | -41.9061 | 0.5504 | 1.5437 | -759.8294 | |
S9 | -159.2891 | 0.8236 | 1.54,56.1 | 1.7705 | -694.3210 |
S10 | -1.1632 | 0.2445 | 2.1398 | -5.6378 | |
S11 | -5.6199 | 0.2974 | 1.54,56.1 | 2.5851 | -61.7295 |
S12 | 1.1792 | 0.3417 | 2.8607 | -7.4725 | |
S13 | 无穷 | 0.2389 | 1.52,64.2 | 3.1257 | |
S14 | 无穷 | 0.7297 | 3.1794 | ||
IMA(S15) | 无穷 | 3.4364 |
表8
另外,f1=3.22mm、f2=-6.28mm、f3=-10.11mm、f4=11.15mm、f5=2.14mm、f6=-1.76mm、f=4.57mm、TTL=5.64mm及Semi-FOV=36.51°,光阑值Fno=2.03。
图17是实施例4的镜头系统的轴上色差图(mm),图18是实施例4的镜头系统的像散图(mm),图19是实施例4的镜头系统的畸变图(%),图20是实施例4的镜头系统倍率色差图(um),可见,镜头系统的像差得到有效控制。
实施例5
实施例5中,镜头系统满足下面的表格的条件:
表9
表面编号 | 曲率半径 | 厚度 | 材料 | 有效口径 | 圆锥系数 |
OBJ | 无穷 | 无穷 | |||
STO | 无穷 | -0.2461 | 1.1676 | ||
S1 | 2.0799 | 0.9836 | 1.54,56.1 | 1.2867 | -0.4674 |
S2 | -9.8868 | 0.0418 | 1.3470 | 32.8598 | |
S3 | 5.3833 | 0.1989 | 1.64,23.8 | 1.3096 | -5.6624 |
S4 | 2.2726 | 0.6215 | 1.2793 | -6.4538 | |
S5 | -5.9626 | 0.3240 | 1.64,23.8 | 1.2858 | 3.9342 |
S6 | -8.0123 | 0.0295 | 1.4164 | -21.2967 | |
S7 | 16.9807 | 0.5575 | 1.54,56.1 | 1.5776 | 12.8037 |
S8 | -7.5769 | 0.3974 | 1.6262 | -7.6853 | |
S9 | -6.4450 | 0.8829 | 1.54,56.1 | 1.6548 | 11.3923 |
S10 | -1.1596 | 0.1292 | 2.2147 | -5.6550 | |
S11 | -4.1864 | 0.3974 | 1.54,56.1 | 2.4386 | -12.7672 |
S12 | 1.1728 | 0.2965 | 2.9293 | -7.8496 | |
S13 | 无穷 | 0.5888 | 1.52,64.2 | 3.2452 | |
S14 | 无穷 | 0.4105 | 3.4039 | ||
IMA(S15) | 无穷 | 3.6037 |
表10
另外,f1=3.24mm、f2=-6.3mm、f3=-38.8mm、f4=9.67mm、f5=2.45mm、f6=-1.64mm、f=4.75mm、TTL=5.86mm及Semi-FOV=36.4°,光阑值Fno=2.03。
图22是实施例5的镜头系统的轴上色差图(mm),图23是实施例5的镜头系统的像散图(mm),图24是实施例5的镜头系统的畸变图(%),图25是实施例5的镜头系统倍率色差图(um),可见,镜头系统的像差得到有效控制。
实施例6
实施6中,镜头系统满足下面的表格的条件:
表11
表12
另外,f1=2.63mm、f2=-4.82mm、f3=-24.1mm、f4=25.7mm、f5=2.02mm、f6=-1.64mm、f=3.74mm、TTL=4.48mm及Semi-FOV=39.1°,光阑值Fno=1.9。
图27是实施例6的镜头系统的轴上色差图(mm),图28是实施例6的镜头系统的像散图(mm),图29是实施例6的镜头系统的畸变图(%),图30是实施例6的镜头系统倍率色差图(um),可见,镜头系统的像差得到有效控制。
实施例7
实施例7中,镜头系统满足下面的表格的条件:
表13
表14
另外,f1=2.66mm、f2=-5.44mm、f3=-19.1mm、f4=25.9mm、f5=2.42mm、f6=-1.9mm、f=3.58mm、TTL=4.28mm及Semi-FOV=39°,光阑值Fno=1.98。
图32是实施例7的镜头系统的轴上色差图(mm),图33是实施例7的镜头系统的像散图(mm),图39是实施例34的镜头系统的畸变图(%),图35是实施例7的镜头系统倍率色差图(um),可见,镜头系统的像差得到有效控制。
实施例8
实施例8中,镜头系统满足下面的表格的条件:
表15
表16
另外,f1=3.26mm、f2=-5.93mm、f3=-22.23mm、f4=16.72mm、f5=2.13mm、f6=1.76mm、f=4.43mm、TTL=5.51mm及Semi-FOV=39°,光阑值Fno=2.03。
图37是实施例8的镜头系统的轴上色差图(mm),图38是实施例8的镜头系统的像散图(mm),图39是实施例8的镜头系统的畸变图(%),图40是实施例8的镜头系统倍率色差图(um),可见,镜头系统的像差得到有效控制。
在实施例1-8中,各条件式满足下面表格的条件:
Embodiment | 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 |
f/f4 | 0.26 | 0.35 | 0.28 | 0.41 | 0.49 | 0.145 | 0.14 | 0.26 |
f123/Dr1r6 | 4.43 | 5.1 | 3.62 | 4.97 | 2.73 | 3.6 | 3.84 | 4.43 |
T12/T23 | 0.063 | 0.066 | 0.118 | 0.035 | 0.067 | 0.08 | 0.07 | 0.07 |
f123/f | 1.65 | 1.76 | 1.38 | 1.88 | 1.25 | 1.42 | 1.44 | 1.65 |
f5/f | 0.47 | 0.47 | 0.48 | 0.47 | 0.52 | 0.54 | 0.67 | 0.48 |
(R11+R12)/(R11-R12) | 0.66 | 0.71 | 0.66 | 0.65 | 0.56 | 0.42 | 0.54 | 0.67 |
在本说明书的描述中,参考术语“一个实施方式”、“一些实施方式”、“示意性实施方式”、“示例”、“具体示例”、或“一些示例”等的描述意指结合所述实施方式或示例描述的具体特征、结构、折射率/阿贝系数或者特点包含于本发明的至少一个实施方式或示例中。在本说明书中,对上述术语的示意性表述不一定指的是相同的实施方式或示例。而且,描述的具体特征、结构、折射率/阿贝系数或者特点可以在任何的一个或多个实施方式或示例中以合适的方式结合。
尽管已经示出和描述了本发明的实施方式,本领域的普通技术人员可以理解:在不脱离本发明的原理和宗旨的情况下可以对这些实施方式进行多种变化、修改、替换和变型,本发明的范围由权利要求及其等同物限定。
Claims (10)
- 一种摄像镜头,其特征在于,由物侧至像侧依次包括:具有正光焦度的第一透镜,其物侧面为凸面;具有负光焦度的第二透镜;具有负光焦度的第三透镜,其物侧面为凹面;具有正光焦度的第四透镜;具有正光焦度的第五透镜,其像侧面为凸面;及具有负光焦度的第六透镜,其像侧面为凹面;所述摄像镜头满足关系式:0<f/f4<0.8;0<T12/T23<0.14;其中,f为所述摄像镜头的有效焦距,f4为所述第四透镜的焦距,,T12为所述第一透镜和第二透镜之间的轴上间距,T23为所述第二透镜和第三透镜之间的轴上间距。
- 如权利要求1所述的摄像镜头,其特征在于,所述第二透镜物侧面为凸面,像侧面为凹面;第四透镜的物侧表面为凸面。
- 如权利要求1所述的摄像镜头,其特征在于,所述第六透镜的物侧表面凹面而且物侧表面和像侧表面存在至少一个反曲点;所述摄像镜头还包括设置在被摄物与所述第二透镜之间的光阑。
- 如权利要求1-3任意一项所述的摄像镜头,其特征在于:所述摄像镜头满足条件式:1<f123/Dr1r6<5.5;其中,f123为所述第一透镜、所述第二透镜及所述第三透镜的组合焦距,Dr1r6为所述第一透镜的物侧表面至所述第三透镜的像侧表面的轴上距离。
- 如权利要求1-3任意一项所述的摄像镜头,其特征在于,所述摄像镜头还满足条件式:0.5<f123/f<2;其中,f123为所述第一透镜、所述第二透镜及所述第三透镜的组合焦距。
- 如权利要求1-3任意一项所述的摄像镜头,其特征在于,所述摄像镜头还满足条件式:0<f5/f<1;及0<(R11+R12)/(R11-R12)<1;其中,f5为所述第五透镜的焦距,R11、R12分别是所述第六透镜的物侧表面和像侧表面的曲率半径。
- 如权利要求1-3任意一项所述的摄像镜头,其特征在于,所述第一透镜、所述第二透镜、所述第三透镜、所述第四透镜、所述第五透镜及所述第六透镜均由塑料制成,且至少存在一个非球面。
- 如权利要求1-3任意一项所述的摄像镜头,其特征在于所述第三透镜的像侧表面为凸面。
- 如权利要求1-3任意一项所述的摄像镜头,其特征在于,所述第一透镜的像侧表面为凸面,所述第五透镜的物侧表面为凸面。
- 如权利要求1-3任意一项所述的摄像镜头,其特征在于,所述第四透镜的像侧面为凹面。
Priority Applications (3)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
US14/913,539 US10254510B2 (en) | 2015-01-07 | 2015-01-07 | Camera lens |
PCT/CN2015/070301 WO2016109956A1 (zh) | 2015-01-07 | 2015-01-07 | 摄像镜头 |
EP15831200.9A EP3244247A4 (en) | 2015-01-07 | 2015-01-07 | Camera lens |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
PCT/CN2015/070301 WO2016109956A1 (zh) | 2015-01-07 | 2015-01-07 | 摄像镜头 |
Publications (1)
Publication Number | Publication Date |
---|---|
WO2016109956A1 true WO2016109956A1 (zh) | 2016-07-14 |
Family
ID=56355417
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
PCT/CN2015/070301 WO2016109956A1 (zh) | 2015-01-07 | 2015-01-07 | 摄像镜头 |
Country Status (3)
Country | Link |
---|---|
US (1) | US10254510B2 (zh) |
EP (1) | EP3244247A4 (zh) |
WO (1) | WO2016109956A1 (zh) |
Cited By (7)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US20160048003A1 (en) * | 2014-08-13 | 2016-02-18 | AAC Technologies Pte. Ltd. | Imaging lens assembly |
CN106814441A (zh) * | 2016-12-14 | 2017-06-09 | 瑞声科技(新加坡)有限公司 | 摄像光学镜头 |
TWI633329B (zh) * | 2017-06-22 | 2018-08-21 | 玉晶光電股份有限公司 | 光學成像鏡頭 |
US10073251B2 (en) | 2016-09-12 | 2018-09-11 | Largan Precision Co., Ltd. | Imaging optical lens system, image capturing apparatus and electronic device |
CN109100855A (zh) * | 2018-09-06 | 2018-12-28 | 广东旭业光电科技股份有限公司 | 一种光学成像透镜组及电子设备 |
WO2021134264A1 (zh) * | 2019-12-30 | 2021-07-08 | 诚瑞光学(常州)股份有限公司 | 摄像光学镜头 |
WO2022134183A1 (zh) * | 2020-12-21 | 2022-06-30 | 诚瑞光学(深圳)有限公司 | 摄像光学镜头 |
Families Citing this family (28)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN106526795B (zh) * | 2016-08-05 | 2019-07-26 | 玉晶光电(厦门)有限公司 | 光学镜片组 |
CN114114656B (zh) * | 2017-07-31 | 2023-09-15 | 浙江舜宇光学有限公司 | 光学成像镜头 |
JP6640163B2 (ja) * | 2017-09-29 | 2020-02-05 | カンタツ株式会社 | 撮像レンズ |
US10613293B2 (en) * | 2018-02-11 | 2020-04-07 | AAC Technologies Pte. Ltd. | Camera optical lens |
US10712534B2 (en) * | 2018-02-11 | 2020-07-14 | Aac Optics Solutions Pte. Ltd. | Camera optical lens |
JP6518364B1 (ja) * | 2018-04-26 | 2019-05-22 | エーエーシー テクノロジーズ ピーティーイー リミテッド | 撮像光学レンズ |
JP6526296B1 (ja) * | 2018-04-26 | 2019-06-05 | エーエーシー テクノロジーズ ピーティーイー リミテッド | 撮像光学レンズ |
CN108761738A (zh) * | 2018-08-06 | 2018-11-06 | 中山市众盈光学有限公司 | 一种高像素超薄型手机镜头光学系统 |
JP6556927B1 (ja) * | 2018-08-14 | 2019-08-07 | エーエーシー テクノロジーズ ピーティーイー リミテッド | 撮像光学レンズ |
CN109870786B (zh) * | 2018-12-31 | 2021-03-02 | 瑞声光学解决方案私人有限公司 | 摄像光学镜头 |
CN109828360B (zh) * | 2018-12-31 | 2021-09-21 | 瑞声光学解决方案私人有限公司 | 摄像光学镜头 |
CN109839727B (zh) * | 2018-12-31 | 2021-07-30 | 瑞声光学解决方案私人有限公司 | 摄像光学镜头 |
CN109856779B (zh) * | 2018-12-31 | 2021-07-30 | 瑞声光学解决方案私人有限公司 | 摄像光学镜头 |
CN109856780B (zh) * | 2018-12-31 | 2021-07-30 | 瑞声光学解决方案私人有限公司 | 摄像光学镜头 |
CN109839728B (zh) * | 2018-12-31 | 2021-03-19 | 瑞声光学解决方案私人有限公司 | 摄像光学镜头 |
CN110007432B (zh) * | 2018-12-31 | 2021-07-30 | 瑞声光学解决方案私人有限公司 | 摄像光学镜头 |
JP6859402B2 (ja) * | 2019-01-29 | 2021-04-14 | エーエーシー オプティックス ソリューションズ ピーティーイー リミテッド | 広角レンズ |
JP6796171B2 (ja) * | 2019-01-31 | 2020-12-02 | エーエーシー オプティックス ソリューションズ ピーティーイー リミテッド | 撮像光学レンズ |
CN110244436B (zh) * | 2019-06-29 | 2021-09-21 | 瑞声光学解决方案私人有限公司 | 摄像光学镜头 |
CN110412733B (zh) * | 2019-06-29 | 2021-09-17 | 瑞声光学解决方案私人有限公司 | 摄像光学镜头 |
CN110376711B (zh) * | 2019-06-29 | 2021-11-05 | 瑞声光学解决方案私人有限公司 | 摄像光学镜头 |
CN110262004B (zh) * | 2019-06-29 | 2021-09-17 | 瑞声光学解决方案私人有限公司 | 摄像光学镜头 |
WO2021159368A1 (zh) * | 2020-02-13 | 2021-08-19 | 天津欧菲光电有限公司 | 摄像模组、电子装置及汽车 |
WO2021196222A1 (zh) * | 2020-04-03 | 2021-10-07 | 江西晶超光学有限公司 | 光学系统、镜头模组和电子设备 |
CN111427136B (zh) * | 2020-06-09 | 2020-09-04 | 瑞声通讯科技(常州)有限公司 | 摄像光学镜头 |
CN111458851B (zh) * | 2020-06-16 | 2020-09-08 | 瑞声通讯科技(常州)有限公司 | 摄像光学镜头 |
CN111458852B (zh) * | 2020-06-16 | 2020-09-18 | 瑞声通讯科技(常州)有限公司 | 摄像光学镜头 |
CN112904535B (zh) * | 2021-02-07 | 2022-09-02 | 浙江舜宇光学有限公司 | 摄像镜头组 |
Citations (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN202330843U (zh) * | 2011-06-20 | 2012-07-11 | 大立光电股份有限公司 | 影像拾取光学系统 |
CN103676088A (zh) * | 2012-08-28 | 2014-03-26 | 索尼公司 | 图像拾取镜头和图像拾取装置 |
CN103676108A (zh) * | 2012-09-05 | 2014-03-26 | 三星电机株式会社 | 光学系统 |
CN103777319A (zh) * | 2013-09-06 | 2014-05-07 | 玉晶光电(厦门)有限公司 | 可携式电子装置与其光学成像镜头 |
CN103852858A (zh) * | 2012-11-30 | 2014-06-11 | 大立光电股份有限公司 | 影像撷取光学镜组 |
Family Cites Families (7)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
KR101499969B1 (ko) | 2008-10-10 | 2015-03-18 | 엘지이노텍 주식회사 | 촬상 렌즈 및 이를 포함하는 카메라 모듈 |
KR20130039758A (ko) * | 2010-07-16 | 2013-04-22 | 코니카 미놀타 어드밴스드 레이어즈 인코포레이티드 | 촬상 렌즈 |
TWI432772B (zh) * | 2011-06-10 | 2014-04-01 | Largan Precision Co Ltd | 光學影像擷取透鏡組 |
US8760774B2 (en) | 2012-02-17 | 2014-06-24 | Newmax Technology Co., Ltd. | Six-piece optical lens system |
JP5966748B2 (ja) | 2012-08-08 | 2016-08-10 | 株式会社リコー | 読取レンズ、画像読取装置及び画像形成装置 |
US8896935B2 (en) | 2013-01-31 | 2014-11-25 | Newmax Technology Co., Ltd. | Six-piece optical lens system |
CN204314534U (zh) | 2015-01-07 | 2015-05-06 | 浙江舜宇光学有限公司 | 摄像镜头 |
-
2015
- 2015-01-07 EP EP15831200.9A patent/EP3244247A4/en active Pending
- 2015-01-07 WO PCT/CN2015/070301 patent/WO2016109956A1/zh active Application Filing
- 2015-01-07 US US14/913,539 patent/US10254510B2/en active Active
Patent Citations (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN202330843U (zh) * | 2011-06-20 | 2012-07-11 | 大立光电股份有限公司 | 影像拾取光学系统 |
CN103676088A (zh) * | 2012-08-28 | 2014-03-26 | 索尼公司 | 图像拾取镜头和图像拾取装置 |
CN103676108A (zh) * | 2012-09-05 | 2014-03-26 | 三星电机株式会社 | 光学系统 |
CN103852858A (zh) * | 2012-11-30 | 2014-06-11 | 大立光电股份有限公司 | 影像撷取光学镜组 |
CN103777319A (zh) * | 2013-09-06 | 2014-05-07 | 玉晶光电(厦门)有限公司 | 可携式电子装置与其光学成像镜头 |
Cited By (10)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US20160048003A1 (en) * | 2014-08-13 | 2016-02-18 | AAC Technologies Pte. Ltd. | Imaging lens assembly |
US9618725B2 (en) * | 2014-08-13 | 2017-04-11 | AAC Technologies Pte. Ltd. | Imaging lens assembly |
US10073251B2 (en) | 2016-09-12 | 2018-09-11 | Largan Precision Co., Ltd. | Imaging optical lens system, image capturing apparatus and electronic device |
US10247924B2 (en) | 2016-09-12 | 2019-04-02 | Largan Precision Co., Ltd. | Imaging optical lens system, image capturing apparatus and electronic device |
CN106814441A (zh) * | 2016-12-14 | 2017-06-09 | 瑞声科技(新加坡)有限公司 | 摄像光学镜头 |
TWI633329B (zh) * | 2017-06-22 | 2018-08-21 | 玉晶光電股份有限公司 | 光學成像鏡頭 |
US10302912B2 (en) | 2017-06-22 | 2019-05-28 | Genius Electronic Optical Co., Ltd. | Optical imaging lens |
CN109100855A (zh) * | 2018-09-06 | 2018-12-28 | 广东旭业光电科技股份有限公司 | 一种光学成像透镜组及电子设备 |
WO2021134264A1 (zh) * | 2019-12-30 | 2021-07-08 | 诚瑞光学(常州)股份有限公司 | 摄像光学镜头 |
WO2022134183A1 (zh) * | 2020-12-21 | 2022-06-30 | 诚瑞光学(深圳)有限公司 | 摄像光学镜头 |
Also Published As
Publication number | Publication date |
---|---|
US20170357080A1 (en) | 2017-12-14 |
EP3244247A1 (en) | 2017-11-15 |
US10254510B2 (en) | 2019-04-09 |
EP3244247A4 (en) | 2018-08-15 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
WO2016109956A1 (zh) | 摄像镜头 | |
WO2017166475A1 (zh) | 摄像镜头 | |
WO2016109938A1 (zh) | 摄像镜头 | |
CN104570284B (zh) | 摄像镜头 | |
WO2017020587A1 (zh) | 超广角镜头 | |
WO2017041456A1 (zh) | 摄像镜头 | |
WO2016197604A1 (zh) | 成像镜头 | |
WO2016161797A1 (zh) | 摄像镜头 | |
WO2017148020A1 (zh) | 摄远镜头 | |
CN104597582B (zh) | 摄像镜头 | |
WO2016179986A1 (zh) | 广角成像镜头 | |
CN108363169B (zh) | 摄像光学镜头 | |
WO2015062351A1 (zh) | 具有六片镜片的镜头系统 | |
CN108152922B (zh) | 摄像光学镜头 | |
WO2017166452A1 (zh) | 摄像镜头及便携式电子装置 | |
CN108227148B (zh) | 摄像光学镜头 | |
WO2017148078A1 (zh) | 超广角摄像镜头 | |
WO2018192126A1 (zh) | 摄像镜头 | |
WO2016008299A1 (zh) | 摄像镜头 | |
KR20150058972A (ko) | 촬상 렌즈 시스템 및 이를 채용한 촬상 장치 | |
CN107065132B (zh) | 摄像光学镜头 | |
WO2017113557A1 (zh) | 摄像镜头 | |
CN108169876B (zh) | 摄像光学镜头 | |
CN108363170B (zh) | 摄像光学镜头 | |
WO2019019626A1 (zh) | 成像镜头 |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
REEP | Request for entry into the european phase |
Ref document number: 2015831200 Country of ref document: EP |
|
WWE | Wipo information: entry into national phase |
Ref document number: 2015831200 Country of ref document: EP |
|
WWE | Wipo information: entry into national phase |
Ref document number: 14913539 Country of ref document: US |
|
121 | Ep: the epo has been informed by wipo that ep was designated in this application |
Ref document number: 15831200 Country of ref document: EP Kind code of ref document: A1 |
|
NENP | Non-entry into the national phase |
Ref country code: DE |