WO2017166452A1 - 摄像镜头及便携式电子装置 - Google Patents

摄像镜头及便携式电子装置 Download PDF

Info

Publication number
WO2017166452A1
WO2017166452A1 PCT/CN2016/086611 CN2016086611W WO2017166452A1 WO 2017166452 A1 WO2017166452 A1 WO 2017166452A1 CN 2016086611 W CN2016086611 W CN 2016086611W WO 2017166452 A1 WO2017166452 A1 WO 2017166452A1
Authority
WO
WIPO (PCT)
Prior art keywords
lens
imaging
image pickup
ttl
satisfies
Prior art date
Application number
PCT/CN2016/086611
Other languages
English (en)
French (fr)
Inventor
卢建龙
Original Assignee
浙江舜宇光学有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 浙江舜宇光学有限公司 filed Critical 浙江舜宇光学有限公司
Priority to US15/649,225 priority Critical patent/US10228540B2/en
Publication of WO2017166452A1 publication Critical patent/WO2017166452A1/zh

Links

Images

Classifications

    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B13/00Optical objectives specially designed for the purposes specified below
    • G02B13/001Miniaturised objectives for electronic devices, e.g. portable telephones, webcams, PDAs, small digital cameras
    • G02B13/0015Miniaturised objectives for electronic devices, e.g. portable telephones, webcams, PDAs, small digital cameras characterised by the lens design
    • G02B13/002Miniaturised objectives for electronic devices, e.g. portable telephones, webcams, PDAs, small digital cameras characterised by the lens design having at least one aspherical surface
    • G02B13/0045Miniaturised objectives for electronic devices, e.g. portable telephones, webcams, PDAs, small digital cameras characterised by the lens design having at least one aspherical surface having five or more lenses
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B9/00Optical objectives characterised both by the number of the components and their arrangements according to their sign, i.e. + or -
    • G02B9/62Optical objectives characterised both by the number of the components and their arrangements according to their sign, i.e. + or - having six components only
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B27/00Optical systems or apparatus not provided for by any of the groups G02B1/00 - G02B26/00, G02B30/00
    • G02B27/01Head-up displays
    • G02B27/0101Head-up displays characterised by optical features
    • G02B2027/0138Head-up displays characterised by optical features comprising image capture systems, e.g. camera

Definitions

  • the invention relates to an imaging technology, in particular to an imaging lens and a portable electronic device.
  • the photosensitive element of the imaging system includes a charge-coupled device (CCD) or a complementary metal-oxide semiconductor (CMOS) image sensor.
  • CCD charge-coupled device
  • CMOS complementary metal-oxide semiconductor
  • the pixel size of the photosensitive element Increasingly smaller, the pixels of the imaging system are getting higher and higher, especially when the camera lens is applied to a portable electronic device such as a wearable device. Therefore, correspondingly, an image pickup lens requiring an imaging lens has a higher resolution while having a smaller size.
  • the camera lens generally includes five lenses, which cannot meet the requirements of high resolution. For this reason, the resolution can be increased by increasing the number of lenses of the imaging lens. However, this is disadvantageous for miniaturization and weight reduction of the imaging lens.
  • the present invention aims to solve at least one of the technical problems existing in the prior art. To this end, the present invention needs to provide an imaging lens and a portable electronic device.
  • the imaging lens of the embodiment of the present invention includes, in order from the object side to the image side, in order:
  • a second lens having a refractive power wherein the image is concave at the paraxial side, and becomes concave from the concave surface as it moves away from the optical axis;
  • a third lens having a refractive power, the object side of which is convex
  • a fourth lens having a positive refractive power, the image side of which is convex
  • a sixth lens having a negative refractive power, the object side surface being a convex surface, and the image side surface being a concave surface;
  • the camera lens satisfies the conditional expression:
  • f4 is the effective focal length of the fourth lens
  • CT4 is the center thickness of the fourth lens on the optical axis.
  • the camera lens satisfies a conditional expression:
  • CT4 is the center thickness of the fourth lens on the optical axis
  • TTL is the total length of the lens of the imaging lens.
  • the camera lens satisfies a conditional expression:
  • HFOV is half of the maximum angle of view of the camera lens
  • TTL is the total length of the lens of the camera lens
  • the camera lens satisfies a conditional expression:
  • f6 is the effective focal length of the sixth lens.
  • the camera lens satisfies a conditional expression:
  • CT3 is the center thickness of the third lens on the optical axis
  • CT4 is the center thickness of the fourth lens on the optical axis.
  • the camera lens satisfies a conditional expression:
  • f is the effective focal length of the imaging lens
  • f1 is the effective focal length of the first lens
  • the camera lens satisfies a conditional expression:
  • R1 is a radius of curvature of an object side surface of the first lens
  • R5 is a radius of curvature of an object side surface of the third lens.
  • the camera lens satisfies a conditional expression:
  • TTL is the total length of the lens of the imaging lens
  • ImgH is half of the diagonal length of the effective pixel area on the imaging surface of the imaging lens.
  • the camera lens satisfies a conditional expression:
  • T12 is an axial distance between the first lens and the second lens
  • T23 is an axial distance between the second lens and the third lens
  • TTL is a total lens length of the imaging lens.
  • the image pickup lens according to the embodiment of the present invention has an advantage of small size and high image quality.
  • An imaging device comprising the camera lens for modulating a scene of an object in front of the device and projecting at a plane where the photoreceptor is located;
  • a projection device for projecting a virtual image to a human eye to form a virtual image or a superimposed image
  • a control device for controlling the imaging device and the projection device to implement identification and intelligent operation of the entire device.
  • FIG. 1 is a schematic view of an image pickup lens of Embodiment 1;
  • FIG. 2 is an axial chromatic aberration diagram (mm) of the imaging lens of Embodiment 1
  • FIG. 3 is an astigmatism diagram (mm) of the imaging lens of Embodiment 1
  • FIG. 4 is a distortion diagram (%) of the imaging lens of Embodiment 1.
  • Figure 5 is a magnification chromatic aberration diagram ( ⁇ m) of the imaging lens of Embodiment 1;
  • FIG. 6 is a schematic view of an image pickup lens of Embodiment 2;
  • FIG. 7 is an axial chromatic aberration diagram (mm) of the imaging lens of Example 2;
  • FIG. 8 is an astigmatism diagram (mm) of the imaging lens of Example 2;
  • FIG. 9 is a distortion diagram (%) of the imaging lens of Embodiment 2.
  • Figure 10 is a magnification chromatic aberration diagram ( ⁇ m) of the imaging lens of Embodiment 2;
  • Figure 11 is a schematic view of an image pickup lens of Embodiment 3.
  • FIG. 12 is an axial chromatic aberration diagram (mm) of the imaging lens of Example 3;
  • FIG. 13 is an astigmatism diagram (mm) of the imaging lens of Example 3; and
  • FIG. 14 is a distortion diagram (%) of the imaging lens of Example 3.
  • 15 is a magnification chromatic aberration diagram ( ⁇ m) of the imaging lens of Embodiment 3;
  • Figure 16 is a schematic diagram of an image pickup lens of Embodiment 4.
  • FIG. 17 is an axial chromatic aberration diagram (mm) of the imaging lens of Example 4;
  • FIG. 18 is an astigmatism diagram (mm) of the imaging lens of Example 4; and
  • FIG. 19 is a distortion diagram (%) of the imaging lens of Example 4.
  • 20 is a magnification chromatic aberration diagram ( ⁇ m) of the imaging lens of Embodiment 4;
  • FIG. 21 is a schematic view of an image pickup lens of Embodiment 5.
  • FIG. 22 is an axial chromatic aberration diagram (mm) of the five imaging lens of the embodiment
  • FIG. 23 is an astigmatism diagram (mm) of the imaging lens of the fifth embodiment
  • FIG. 24 is a distortion diagram (%) of the imaging lens of the fifth embodiment.
  • 25 is a magnification chromatic aberration diagram ( ⁇ m) of the imaging lens of Embodiment 5;
  • Figure 26 is a schematic diagram of an image pickup lens of Embodiment 6;
  • FIG. 27 is an axial chromatic aberration diagram (mm) of the imaging lens of Example 6
  • FIG. 28 is an astigmatism diagram (mm) of the imaging lens of Example 6
  • FIG. 29 is a distortion diagram (%) of the imaging lens of Example 6.
  • 30 is a magnification chromatic aberration diagram ( ⁇ m) of the imaging lens of Embodiment 6;
  • Figure 31 is a schematic diagram of an image pickup lens of Embodiment 7.
  • FIG. 32 is an axial chromatic aberration diagram (mm) of the imaging lens of Example 7
  • FIG. 33 is an astigmatism diagram (mm) of the imaging lens of Example 7
  • FIG. 34 is a distortion diagram (%) of the imaging lens of Example 7.
  • 35 is a magnification chromatic aberration diagram ( ⁇ m) of the imaging lens of Embodiment 7;
  • Figure 36 is a schematic diagram of an image pickup lens of Embodiment 8.
  • FIG. 37 is an axial chromatic aberration diagram (mm) of the imaging lens of Example 8
  • FIG. 38 is an astigmatism diagram (mm) of the imaging lens of Example 8
  • FIG. 39 is a distortion diagram (%) of the imaging lens of Example 8.
  • 40 is a magnification chromatic aberration diagram ( ⁇ m) of the imaging lens of Embodiment 8;
  • FIG. 42 is an axial chromatic aberration diagram (mm) of the imaging lens of Example 9
  • FIG. 43 is an astigmatism diagram (mm) of the imaging lens of Example 9
  • FIG. 44 is a distortion diagram (%) of the imaging lens of Example 9.
  • 45 is a magnification chromatic aberration diagram ( ⁇ m) of the imaging lens of Embodiment 9.
  • FIG. 42 is an axial chromatic aberration diagram (mm) of the imaging lens of Example 9
  • FIG. 43 is an astigmatism diagram (mm) of the imaging lens of Example 9
  • FIG. 44 is a distortion diagram (%) of the imaging lens of Example 9.
  • 45 is a magnification chromatic aberration diagram ( ⁇ m) of the imaging lens of Embodiment 9.
  • Figure 46 is a schematic diagram of an image pickup lens of Embodiment 10.
  • FIG. 47 is an axial chromatic aberration diagram (mm) of the imaging lens of Example 10;
  • FIG. 48 is an astigmatism diagram (mm) of the imaging lens of Example 10; and
  • FIG. 49 is a distortion diagram (%) of the imaging lens of Embodiment 10.
  • Figure 50 is a magnification chromatic aberration diagram ( ⁇ m) of the imaging lens of Embodiment 10;
  • 51 is a schematic structural view of a portable electronic device according to an embodiment of the present invention.
  • first and second are used for descriptive purposes only and are not to be construed as indicating or implying a relative importance or implicitly indicating the number of technical features indicated.
  • features defining “first” or “second” may include one or more of the described features either explicitly or implicitly.
  • the meaning of "a plurality” is two or more unless specifically and specifically defined otherwise.
  • connection In the description of the present invention, it should be noted that the terms “installation”, “connected”, and “connected” are to be understood broadly, and may be fixed or detachable, for example, unless otherwise explicitly defined and defined. Connected, or connected in one piece; can be mechanical, electrical, or can communicate with each other; either directly or through The intermediate medium is indirectly connected, and may be an internal connection of two elements or an interaction relationship of two elements. For those skilled in the art, the specific meanings of the above terms in the present invention can be understood on a case-by-case basis.
  • the first feature "on” or “under” the second feature may include direct contact of the first and second features, and may also include first and second features, unless otherwise specifically defined and defined. It is not in direct contact but through additional features between them.
  • the first feature “above”, “above” and “above” the second feature includes the first feature directly above and above the second feature, or merely indicating that the first feature level is higher than the second feature.
  • the first feature “below”, “below” and “below” the second feature includes the first feature directly above and above the second feature, or merely the first feature level being less than the second feature.
  • an imaging lens includes a first lens L1 having a positive refractive power, a second lens L2 having a refractive power, a third lens L3 having a refractive power, and a positive refractive index in order from the object side to the image side.
  • the first lens L1 has an object side surface S1 and an image side surface S2; the second lens L2 has an object side surface S3 and an image side surface S4; the third lens L3 has an object side surface S5 and an image side surface S6; and the fourth lens L4 has an object side surface S7 and an image side surface. S8; the fifth lens L5 has an object side surface S9 and an image side surface S10; and the sixth lens L6 has an object side surface S11 and an image side surface S12.
  • the object side surface S1 is a convex surface;
  • the image side surface S4 is a concave surface at a paraxial shape, and the concave surface becomes a convex surface as it is away from the optical axis;
  • the object side surface S5 is a convex surface;
  • the image side surface S8 is a convex surface;
  • the object side surface S11 is The convex surface, the side surface S12 is concave, and the camera lens satisfies the conditional expression:
  • f4 is the effective focal length of the fourth lens L4
  • CT4 is the center thickness of the fourth lens L4 on the optical axis.
  • the image pickup lens has a small size while having a high image quality.
  • the camera lens also satisfies the conditional expression:
  • the TTL is the total length of the lens of the imaging lens, and in some embodiments is the on-axis distance from the object side S1 of the first lens L1 to the imaging surface S15.
  • the fourth lens L4 has a uniform shape and is easy to manufacture, thereby improving the processability of the image pickup lens and reducing the cost.
  • the camera lens also satisfies the conditional expression:
  • HFOV is half of the maximum angle of view of the camera lens.
  • satisfying the above conditional expression can effectively control the size of the imaging lens while enlarging the angle of view of the imaging lens, thereby obtaining an imaging lens having a large viewing angle and a small size.
  • the camera lens also satisfies the following conditional expression:
  • f6 is the effective focal length of the sixth lens L6.
  • the fourth lens L4 and the sixth lens L6 can be made uniform in shape and easy to manufacture, thereby improving the processability of the image pickup lens and reducing the cost.
  • the camera lens also satisfies the following conditional expression:
  • CT3 is the center thickness of the third lens L3 on the optical axis.
  • Satisfying the above conditional expression is advantageous for correcting the aberration of the imaging lens and improving the imaging quality of the imaging lens.
  • the camera lens also satisfies the following conditional expression:
  • f is the effective focal length of the imaging lens
  • f1 is the effective focal length of the first lens L1.
  • the camera lens also satisfies the following conditional expression:
  • R1 is a radius of curvature of the object side surface S1 of the first lens L1; and R5 is a radius of curvature of the object side surface S5 of the third lens L3.
  • the above conditional expression can be adjusted to adjust the incident angle of the incident image sensor of each field of view, effectively avoiding total reflection, and making the shape distribution of the first lens L1 and the third lens L3 reasonable, the curve is smooth, and the processing is easy, thereby reducing the cost of the image pickup lens. .
  • the camera lens also satisfies the following conditional expression:
  • ImgH is half of the diagonal length of the effective pixel area on the imaging surface S15.
  • Satisfying the above conditional expression limits the lens volume by controlling the relationship between the total length of the lens of the imaging lens and the imaging area, which is advantageous for miniaturization of the imaging lens.
  • the camera lens also satisfies the following conditional expression:
  • T12 is an on-axis distance of the first lens L1 and the second lens L2; and T23 is an on-axis separation distance between the second lens L2 and the third lens L3.
  • the first lens L1, the second lens L2, the third lens L3, the fourth lens L4, the fifth lens L5, and the sixth lens L6 may be plastic lenses, and both are aspherical lenses, so that Reduce costs and ensure image quality, and downsizing.
  • the aspherical shape is determined by the following formula:
  • h is the height from any point on the aspheric surface to the optical axis
  • c is the curvature of the vertex
  • k is the cone constant
  • Ai is the correction coefficient of the i-th order of the aspheric surface.
  • the camera lens satisfies the conditions of the following table:
  • the camera lens satisfies the conditions of the following table:
  • the camera lens satisfies the conditions of the following table:
  • the camera lens satisfies the conditions of the following table:
  • the camera lens satisfies the conditions of the following table:
  • the camera lens satisfies the conditions of the following table:
  • the camera lens satisfies the conditions of the following table:
  • the camera lens satisfies the conditions of the following table:
  • the camera lens satisfies the conditions of the following table:
  • the camera lens satisfies the conditions of the following table:
  • each conditional expression satisfies the conditions of the following table:
  • the imaging lens of the embodiment of the present invention can be applied to a portable electronic device because of its advantages of high image quality and small size.
  • the portable electronic device may include a control device 1, an imaging device 2, and a projection device 3.
  • the control device 1 is used for controlling the portable electronic device, for example, controlling the imaging device 2 to image and control the projection device 3 to project, and also controlling the cooperation between the imaging device 2 and the projection device 3, for example, controlling the projection device 3 to synchronously play the imaging device 2 to form Image.
  • the imaging device 2 includes an imaging lens and an image sensor according to an embodiment of the present invention.
  • the camera lens is used for optical imaging
  • the image sensor is used to convert optical imaging of the camera lens into an electronic image.
  • the projection device 3 includes a spatial light modulator (SLM) for modulating an electronic image as an optical image and a projection lens for projecting an optical image to amplify the optical image.
  • SLM spatial light modulator
  • the portable electronic device may be a wearable device, such as multimedia glasses.
  • the control device 1 may be disposed on the frame, and the imaging device may be disposed on the frame and set forward to capture the scene in front, and the projection device 3 may also be disposed on the frame and set backwards This allows the optical image to be projected onto the user's eye.

Landscapes

  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Optics & Photonics (AREA)
  • Lenses (AREA)

Abstract

公开了一种摄像镜头和一种便携式电子装置。摄像镜头从物侧至像侧依次包括:正屈折力的第一透镜(L1),其物侧面为凸面;具有屈折力的第二透镜(L2),其像侧面近轴处为凹面,随着远离光轴,由凹面变为凸面;具有屈折力的第三透镜(L3),其物侧面为凸面;具有正屈折力的第四透镜(L4),其像侧面为凸面;具有屈折力的第五透镜(L5);及具有负屈折力的第六透镜(L6),其物侧面为凸面,像侧面为凹面。摄像镜头满足条件式:f4/CT4<2.5;其中,f4为第四透镜(L4)的有效焦距;CT4为第四透镜(L4)在光轴上的中心厚度。这种摄像镜头具有尺寸小、成像质量高的优点,适用于便携式电子装置。

Description

摄像镜头及便携式电子装置
优先权信息
本申请请求2016年4月1日向中国国家知识产权局提交的、专利申请号为201610206643.0的专利申请的优先权和权益,并且通过参照将其全文并入此处。
技术领域
本发明涉及一种成像技术,特别涉及一种摄像镜头及便携式电子装置。
背景技术
目前成像系统的感光元件包括电荷耦合装置(charge-coupled device,CCD)或互补性氧化金属半导体元件(complementary metal-oxide semiconductor,CMOS)图像传感器,随着半导体制程技术的发展,感光元件的像素尺寸越来越小,成像系统的像素越来越高,特别是当摄像镜头应用于可穿戴设备等便携式电子装置时。因此,对应地,需要成像镜头的摄像镜头具有较高分辨率的同时具有较小尺寸。目前,摄像镜头一般包括五片透镜,已经无法满足高分辨率的要求。为此,可以通过增加摄像镜头的透镜数目来提高分辨率,然而,如此,不利于摄像镜头的小型化及轻量化。
发明内容
本发明旨在至少解决现有技术中存在的技术问题之一。为此,本发明需要提供一种摄像镜头及便携式电子装置。
本发明实施方式的摄像镜头从物侧至像侧依次包括:
正屈折力的第一透镜,其物侧面为凸面;
具有屈折力的第二透镜,其像侧面近轴处为凹面,随着远离光轴,由凹面变为凸面;
具有屈折力的第三透镜,其物侧面为凸面;
具有正屈折力的第四透镜,其像侧面为凸面;
具有屈折力的第五透镜;及
具有负屈折力的第六透镜,其物侧面为凸面,像侧面为凹面;
所述摄像镜头满足条件式:
f4/CT4<2.5;
其中,f4为所述第四透镜的有效焦距;CT4为所述第四透镜在光轴上的中心厚度。
在某些实施方式中,所述摄像镜头满足条件式:
0.15<CT4/TTL<0.3;
其中,CT4为所述第四透镜在光轴上的中心厚度,TTL为所述摄像镜头的镜头总长。
在某些实施方式中,所述摄像镜头满足条件式:
TAN(HFOV)/TTL>0.25mm-1;
其中,HFOV为所述摄像镜头的最大视场角的一半,TTL为所述摄像镜头的镜头总长。
在某些实施方式中,所述摄像镜头满足条件式:
-1<f4/f6<-0.2;
其中,f6为所述第六透镜的有效焦距。
在某些实施方式中,所述摄像镜头满足条件式:
CT3/CT4<0.6;
其中,CT3为所述第三透镜在光轴上的中心厚度,CT4为所述第四透镜在光轴上的中心厚度。
在某些实施方式中,所述摄像镜头满足条件式:
0.35<f/f1<0.9;
其中,f为所述摄像镜头的有效焦距;f1为所述第一透镜的有效焦距。
在某些实施方式中,所述摄像镜头满足条件式:
0.45<R1/R5<1.10;
其中,R1为所述第一透镜的物侧面的曲率半径;R5为所述第三透镜的物侧面的曲率半径。
在某些实施方式中,所述摄像镜头满足条件式:
TTL/ImgH<1.6;
其中,TTL为所述摄像镜头的镜头总长,ImgH为所述摄像镜头的成像面上有效像素区域对角线长的一半。
在某些实施方式中,所述摄像镜头满足条件式:
(T12+T23)/TTL<0.1;
其中,T12为所述第一透镜和所述第二透镜的轴上间隔距离;T23为所述第二透镜和所述第三透镜的轴上间隔距离;TTL为所述摄像镜头的镜头总长。
本发明实施方式的摄像镜头具有尺寸小、成像质量高的优点。
本发明实施方式的便携式电子装置包括:
成像装置,所述成像装置包括所述摄像镜头,用于调制设备前方物体的景象,投射于感光器所在的平面处;
投影装置,所述投影装置用于将虚拟图像投射于人眼,形成虚拟图像或叠加图像;及
控制装置,所述控制装置用于控制所述成像装置及所述投影装置,实现整个设备的识别和智能操作。
本发明的附加方面和优点将在下面的描述中部分给出,部分将从下面的描述中变得明显,或通过本发明的实践了解到。
附图说明
本发明的上述和/或附加的方面和优点从结合下面附图对实施方式的描述中将变得明显和容易理解,其中:
图1是实施例1的摄像镜头的示意图;
图2是实施例1的摄像镜头的轴上色差图(mm);图3是实施例1的摄像镜头的像散图(mm);图4是实施例1的摄像镜头的畸变图(%);图5是实施例1的摄像镜头的倍率色差图(μm);
图6是实施例2的摄像镜头的示意图;
图7是实施例2的摄像镜头的轴上色差图(mm);图8是实施例2的摄像镜头的像散图(mm);图9是实施例2的摄像镜头的畸变图(%);图10是实施例2的摄像镜头的倍率色差图(μm);
图11是实施例3的摄像镜头的示意图;
图12是实施例3的摄像镜头的轴上色差图(mm);图13是实施例3的摄像镜头的像散图(mm);图14是实施例3的摄像镜头的畸变图(%);图15是实施例3的摄像镜头的倍率色差图(μm);
图16是实施例4的摄像镜头的示意图;
图17是实施例4的摄像镜头的轴上色差图(mm);图18是实施例4的摄像镜头的像散图(mm);图19是实施例4的摄像镜头的畸变图(%);图20是实施例4的摄像镜头的倍率色差图(μm);
图21是实施例5的摄像镜头的示意图;
图22是实施例的5摄像镜头的轴上色差图(mm);图23是实施例5的摄像镜头的像散图(mm);图24是实施例5的摄像镜头的畸变图(%);图25是实施例5的摄像镜头的倍率色差图(μm);
图26是实施例6的摄像镜头的示意图;
图27是实施例6的摄像镜头的轴上色差图(mm);图28是实施例6的摄像镜头的像散图(mm);图29是实施例6的摄像镜头的畸变图(%);图30是实施例6的摄像镜头的倍率色差图(μm);
图31是实施例7的摄像镜头的示意图;
图32是实施例7的摄像镜头的轴上色差图(mm);图33是实施例7的摄像镜头的像散图(mm);图34是实施例7的摄像镜头的畸变图(%);图35是实施例7的摄像镜头的倍率色差图(μm);
图36是实施例8的摄像镜头的示意图;
图37是实施例8的摄像镜头的轴上色差图(mm);图38是实施例8的摄像镜头的像散图(mm);图39是实施例8的摄像镜头的畸变图(%);图40是实施例8的摄像镜头的倍率色差图(μm);
图41是实施例9的摄像镜头的示意图;
图42是实施例9的摄像镜头的轴上色差图(mm);图43是实施例9的摄像镜头的像散图(mm);图44是实施例9的摄像镜头的畸变图(%);图45是实施例9的摄像镜头的倍率色差图(μm)
图46是实施例10的摄像镜头的示意图;
图47是实施例10的摄像镜头的轴上色差图(mm);图48是实施例10的摄像镜头的像散图(mm);图49是实施例10的摄像镜头的畸变图(%);图50是实施例10的摄像镜头的倍率色差图(μm);
图51是本发明实施方式的便携式电子装置的结构示意图。
具体实施方式
下面详细描述本发明的实施方式,所述实施方式的示例在附图中示出,其中自始至终相同或类似的标号表示相同或类似的元件或具有相同或类似功能的元件。下面通过参考附图描述的实施方式是示例性的,仅用于解释本发明,而不能理解为对本发明的限制。
在本发明的描述中,需要理解的是,术语“中心”、“纵向”、“横向”、“长度”、“宽度”、“厚度”、“上”、“下”、“前”、“后”、“左”、“右”、“竖直”、“水平”、“顶”、“底”、“内”、“外”、“顺时针”、“逆时针”等指示的方位或位置关系为基于附图所示的方位或位置关系,仅是为了便于描述本发明和简化描述,而不是指示或暗示所指的装置或元件必须具有特定的方位、以特定的方位构造和操作,因此不能理解为对本发明的限制。此外,术语“第一”、“第二”仅用于描述目的,而不能理解为指示或暗示相对重要性或者隐含指明所指示的技术特征的数量。由此,限定有“第一”、“第二”的特征可以明示或者隐含地包括一个或者更多个所述特征。在本发明的描述中,“多个”的含义是两个或两个以上,除非另有明确具体的限定。
在本发明的描述中,需要说明的是,除非另有明确的规定和限定,术语“安装”、“相连”、“连接”应做广义理解,例如,可以是固定连接,也可以是可拆卸连接,或一体地连接;可以是机械连接,也可以是电连接或可以相互通讯;可以是直接相连,也可以通过 中间媒介间接相连,可以是两个元件内部的连通或两个元件的相互作用关系。对于本领域的普通技术人员而言,可以根据具体情况理解上述术语在本发明中的具体含义。
在本发明中,除非另有明确的规定和限定,第一特征在第二特征之“上”或之“下”可以包括第一和第二特征直接接触,也可以包括第一和第二特征不是直接接触而是通过它们之间的另外的特征接触。而且,第一特征在第二特征“之上”、“上方”和“上面”包括第一特征在第二特征正上方和斜上方,或仅仅表示第一特征水平高度高于第二特征。第一特征在第二特征“之下”、“下方”和“下面”包括第一特征在第二特征正上方和斜上方,或仅仅表示第一特征水平高度小于第二特征。
下文的公开提供了许多不同的实施方式或例子用来实现本发明的不同结构。为了简化本发明的公开,下文中对特定例子的部件和设置进行描述。当然,它们仅仅为示例,并且目的不在于限制本发明。此外,本发明可以在不同例子中重复参考数字和/或参考字母,这种重复是为了简化和清楚的目的,其本身不指示所讨论各种实施方式和/或设置之间的关系。此外,本发明提供了的各种特定的工艺和材料的例子,但是本领域普通技术人员可以意识到其他工艺的应用和/或其他材料的使用。
请参阅图1,本发明实施方式的摄像镜头从物侧到像侧依次包括正屈折力的第一透镜L1、具有屈折力的第二透镜L2、具有屈折力的第三透镜L3、具有正屈折力的第四透镜L4、具有屈折力的第五透镜L5、具有负屈折力的第六透镜L6。
第一透镜L1具有物侧面S1及像侧面S2;第二透镜L2具有物侧面S3及像侧面S4;第三透镜L3具有物侧面S5及像侧面S6;第四透镜L4具有物侧面S7及像侧面S8;第五透镜L5具有物侧面S9及像侧面S10;第六透镜L6具有物侧面S11及像侧面S12。
摄像时,光线进入摄像镜头,并经过具有物侧面S13及像表面S14的滤光片L7后成像于成像面S15。
在某些实施方式中,物侧面S1为凸面;像侧面S4近轴处为凹面,随着远离光轴,由凹面变为凸面;物侧面S5为凸面;像侧面S8为凸面;物侧面S11为凸面,像侧面S12为凹面,且摄像镜头满足条件式:
f4/CT4<2.5;
其中,f4为第四透镜L4的有效焦距;CT4为第四透镜L4在光轴上的中心厚度。
满足上述配置可以有效减小第四透镜L4的尺寸的同时较好地校正摄像镜头的畸变,因此,摄像镜头具有较小的尺寸同时具有较高的成像质量。
在某些实施方式中,摄像镜头还满足条件式:
0.15<CT4/TTL<0.3;
其中,TTL为摄像镜头的镜头总长,在某些实施方式中为第一透镜L1的物侧面S1至成像面S15的轴上距离。
满足上面的条件式可以保证第四透镜L4形状均匀,易于制造,从而提高摄像镜头的工艺性,降低成本。
在某些实施方式中,摄像镜头还满足条件式:
TAN(HFOV)/TTL>0.25mm-1;
其中,HFOV为摄像镜头的最大视场角的一半。
如此,满足上面的条件式可以在扩大摄像镜头的视场角的同时有效控制摄像镜头的尺寸,从而得到大视角小尺寸的摄像镜头。
在某些实施方式中,摄像镜头还满足下面的条件式:
-1<f4/f6<-0.2;
其中,f6为第六透镜L6的有效焦距。
满足上面的条件式,可以使第四透镜L4及第六透镜L6形状均匀,易于制造,从而提高摄像镜头的工艺性,降低成本。
在某些实施方式中,摄像镜头还满足下面的条件式:
CT3/CT4<0.6;
其中,CT3为第三透镜L3在光轴上的中心厚度。
满足上面的条件式有利于修正摄像镜头的像差,提升摄像镜头的成像质量。
在某些实施方式中,摄像镜头还满足下面的条件式:
0.35<f/f1<0.9;
其中,f为摄像镜头的有效焦距;f1为第一透镜L1的有效焦距。
满足上面的条件式使得光线角度平缓,降低摄像镜头的公差敏感度,提高摄像镜头的成像质量,同时提升视场角。
在某些实施方式中,摄像镜头还满足下面的条件式:
0.45<R1/R5<1.10;
其中,R1为第一透镜L1的物侧面S1的曲率半径;R5为第三透镜L3的物侧面S5的曲率半径。
满足上面的条件式可以调整各视场入射图像传感器的入射角度,有效避免全反射,而且使得第一透镜L1及第三透镜L3的形状分配合理,曲线平滑,易于加工,从而降低摄像镜头的成本。
在某些实施方式中,摄像镜头还满足下面的条件式:
TTL/ImgH<1.6;
其中,ImgH为成像面S15上有效像素区域对角线长的一半。
满足上面的条件式通过控制摄像镜头的镜头总长与成像区域的关系来限制镜头体积,有利于摄像镜头的小型化。
在某些实施方式中,摄像镜头还满足下面的条件式:
(T12+T23)/TTL<0.1;
其中,T12为第一透镜L1和第二透镜L2的轴上间隔距离;T23为第二透镜L2和第三透镜L3的轴上间隔距离。
满足上面的条件式使得第一透镜L1、第二透镜L2及第三透镜L3之间的间距分配合理,易于组装,从而降低成本。
在某些实施方式中,第一透镜L1、第二透镜L2、第三透镜L3、第四透镜L4、第五透镜L5及第六透镜L6可以采用塑料透镜,并且都为非球面透镜,如此可以降低成本而且保证成像质量,又可以缩小尺寸。
非球面的面型由以下公式决定:
Figure PCTCN2016086611-appb-000001
其中,h是非球面上任一点到光轴的高度,c是顶点曲率,k是锥形常数,Ai是非球面第i-th阶的修正系数。
实施例1
实施例1中,摄像镜头满足下面表格的条件:
表1
面号 表面类型 曲率半径 厚度 材料 圆锥系数
OBJ 球面 无穷 500.0000    
STO 球面 无穷 -0.0501    
S1 非球面 1.8803 0.4130 1.544/56.11 -0.7509
S2 非球面 -1389.1510 0.1713   -19.4395
S3 非球面 10.0839 0.2300 1.640/23.53 -93.2990
S4 非球面 2.7839 0.0485   -61.2185
S5 非球面 1.8720 0.2300 1.640/23.53 -29.3455
S6 非球面 2.3358 0.1489   -44.3445
S7 非球面 -2.8141 0.6630 1.544/56.11 -47.0193
S8 非球面 -0.5823 0.0329   -3.4174
S9 非球面 -5.6031 0.2649 1.640/23.53 7.4387
S10 非球面 2000.0000 0.0300   -94.9977
S11 非球面 2.6276 0.2998 1.535/55.60 0.3298
S12 非球面 0.6293 0.3499   -4.5128
S13 球面 无穷 0.2100 1.517/64.17  
S14 球面 无穷 0.4500    
IMA 球面 无穷      
表2
Figure PCTCN2016086611-appb-000002
Figure PCTCN2016086611-appb-000003
表3
f1(mm) 3.440 f(mm) 2.309
f2(mm) -6.040 Fno 2
f3(mm) 12.246 TTL(mm) 3.542
f4(mm) 1.217    
f5(mm) -8.668    
f6(mm) -1.627    
实施例2
实施例2中,摄像镜头满足下面表格的条件:
表4
Figure PCTCN2016086611-appb-000004
Figure PCTCN2016086611-appb-000005
表5
Figure PCTCN2016086611-appb-000006
表6
f1(mm) 4.095 f(mm) 2.309
f2(mm) -8.074 Fno 2.02
f3(mm) 10.757 TTL(mm) 3.575
f4(mm) 1.244    
f5(mm) -7.612    
f6(mm) -1.753    
实施例3
实施例3中,摄像镜头满足下面表格的条件:
表7
Figure PCTCN2016086611-appb-000007
Figure PCTCN2016086611-appb-000008
表8
Figure PCTCN2016086611-appb-000009
表9
Figure PCTCN2016086611-appb-000010
Figure PCTCN2016086611-appb-000011
实施例4
实施例4中,摄像镜头满足下面表格的条件:
表10
面号 表面类型 曲率半径 厚度 材料 圆锥系数
OBJ 球面 无穷 500.0000    
STO 球面 无穷 -0.0520    
S1 非球面 1.7378 0.4303 1.544/56.11 -0.1412
S2 非球面 5.8017 0.1837   -31.4253
S3 非球面 3.8903 0.2393 1.651/21.52 -10.4140
S4 非球面 4.0345 0.0626   -80.8062
S5 非球面 2.8389 0.2100 1.651/21.52 -45.1459
S6 非球面 2.8665 0.1315   -69.8271
S7 非球面 -2.5221 0.6504 1.544/56.11 -32.7706
S8 非球面 -0.6028 0.0300   -3.5052
S9 非球面 -7.0735 0.2924 1.651/21.52 4.6994
S10 非球面 24.4000 0.0300   -31.3208
S11 非球面 2.4903 0.2600 1.544/56.11 0.2208
S12 非球面 0.6694 0.3386   -4.4731
S13 球面 无穷 0.2100 1.517/64.17  
S14 球面 无穷 0.4500    
IMA 球面 无穷      
表11
Figure PCTCN2016086611-appb-000012
Figure PCTCN2016086611-appb-000013
表12
f1(mm) 4.380 f(mm) 2.326
f2(mm) 100.016 Fno 1.99
f3(mm) 111.907 TTL(mm) 2.859
f4(mm) 1.296    
f5(mm) -8.324    
f6(mm) -1.766    
实施例5
实施例5中,摄像镜头满足下面表格的条件:
表13
面号 表面类型 曲率半径 厚度 材料 圆锥系数
OBJ 球面 无穷 500.0000    
STO 球面 无穷 -0.0501    
S1 非球面 1.6910 0.4653 1.544/56.11 0.4013
S2 非球面 14.8012 0.2301   50.0000
S3 非球面 -10.0015 0.2000 1.651/21.52 -99.9900
S4 非球面 11.0798 0.0300   -99.9900
S5 非球面 2.9183 0.2100 1.651/21.52 -31.3652
S6 非球面 3.1879 0.1131   -99.8511
S7 非球面 -2.7071 0.7106 1.544/56.11 -32.7706
S8 非球面 -0.6371 0.0300   -3.4169
S9 非球面 27.4243 0.2200 1.651/21.52 4.6994
S10 非球面 9.9344 0.0300   -31.3208
S11 非球面 2.3123 0.3142 1.544/56.11 -0.2225
S12 非球面 0.6528 0.3868   -4.1438
S13 球面 无穷 0.2100 1.517/64.17  
S14 球面 无穷 0.4500    
IMA 球面 无穷      
表14
Figure PCTCN2016086611-appb-000014
Figure PCTCN2016086611-appb-000015
表15
f1(mm) 3.454 f(mm) 2.316
f2(mm) -7.978 Fno 1.99
f3(mm) 40.167 TTL(mm) 2.940
f4(mm) 1.361    
f5(mm) -23.851    
f6(mm) -1.786    
实施例6
实施例6中,摄像镜头满足下面表格的条件:
表16
面号 表面类型 曲率半径 厚度 材料 圆锥系数
OBJ 球面 无穷 500.0000    
STO 球面 无穷 -0.0625    
S1 非球面 1.7966 0.4771 1.544/56.11 0.5281
S2 非球面 8.1931 0.1675   -26.8813
S3 非球面 4.3163 0.2112 1.651/21.52 -97.7043
S4 非球面 2.5609 0.0678   -46.2324
S5 非球面 3.8722 0.2369 1.544/56.11 -78.4055
S6 非球面 -100.1057 0.0926   50.0000
S7 非球面 -1.7488 0.7095 1.544/56.11 -32.7706
S8 非球面 -0.6687 0.0300   -3.6588
S9 非球面 7.2776 0.2200 1.651/21.52 4.6994
S10 非球面 6.4492 0.0402   -31.3208
S11 非球面 1.9181 0.3015 1.544/56.11 -0.1225
S12 非球面 0.6296 0.3857   -4.0166
S13 球面 无穷 0.2100 1.517/64.17  
S14 球面 无穷 0.4500    
IMA 球面 无穷      
表17
Figure PCTCN2016086611-appb-000016
表18
f1(mm) 4.107 f(mm) 2.289
f2(mm) -10.074 Fno 1.99
f3(mm) 6.834 TTL(mm) 2.940
f4(mm) 1.610    
f5(mm) -96.464    
f6(mm) -1.872    
实施例7
实施例7中,摄像镜头满足下面表格的条件:
表19
Figure PCTCN2016086611-appb-000017
Figure PCTCN2016086611-appb-000018
表20
Figure PCTCN2016086611-appb-000019
表21
f1(mm) 5.805 f(mm) 2.298
f2(mm) -38.409 Fno 1.99
f3(mm) -15.086 TTL(mm) 2.892
f4(mm) 1.249    
f5(mm) -44.966    
f6(mm) -1.652    
实施例8
实施例8中,摄像镜头满足下面表格的条件:
表22
Figure PCTCN2016086611-appb-000020
Figure PCTCN2016086611-appb-000021
表23
Figure PCTCN2016086611-appb-000022
表24
Figure PCTCN2016086611-appb-000023
Figure PCTCN2016086611-appb-000024
实施例9
实施例9中,摄像镜头满足下面表格的条件:
表25
面号 表面类型 曲率半径 厚度 材料 圆锥系数
OBJ 球面 无穷 500.0000    
STO 球面 无穷 -0.0377    
S1 非球面 1.7077 0.4333 1.544/56.11 0.0623
S2 非球面 6.9673 0.1758   -30.2937
S3 非球面 4.5580 0.2150 1.651/21.52 -25.3582
S4 非球面 3.0066 0.0687   -88.8634
S5 非球面 2.0821 0.2100 1.651/21.52 -41.8008
S6 非球面 2.3826 0.1356   -64.6624
S7 非球面 -2.5086 0.6582 1.544/56.11 -32.7706
S8 非球面 -0.6588 0.0300   -3.4353
S9 非球面 52.3830 0.2553 1.651/21.52 4.6994
S10 非球面 257.5529 0.0300   -31.3208
S11 非球面 2.5767 0.2795 1.544/56.11 0.2625
S12 非球面 0.6492 0.3447   -4.1120
S13 球面 无穷 0.2100 1.517/64.17  
S14 球面 无穷 0.4500    
IMA 球面 无穷      
表26
Figure PCTCN2016086611-appb-000025
Figure PCTCN2016086611-appb-000026
表27
f1(mm) 4.027 f(mm) 2.303
f2(mm) -14.239 Fno 1.99
f3(mm) 19.693 TTL(mm) 2.836
f4(mm) 1.454    
f5(mm) 100.133    
f6(mm) -1.676    
实施例10
实施例10中,摄像镜头满足下面表格的条件:
表28
面号 表面类型 曲率半径 厚度 材料 圆锥系数
OBJ 球面 无穷 500.0000    
STO 球面 无穷 -0.0425    
S1 非球面 1.7300 0.4120 1.544/56.11 0.2352
S2 非球面 9.6383 0.2127   -14.8945
S3 非球面 7.0222 0.2000 1.640/23.53 -80.0394
S4 非球面 2.4662 0.0394   -63.3031
S5 非球面 1.8816 0.2100 1.640/23.53 -35.4281
S6 非球面 2.1903 0.1181   -49.4383
S7 非球面 -3.5262 0.7528 1.544/56.11 -32.7706
S8 非球面 -0.6784 0.0300   -3.1803
S9 非球面 11.8910 0.2200 1.544/56.11 4.6994
S10 非球面 14.9922 0.0300   -31.3208
S11 非球面 2.2807 0.3090 1.544/56.11 0.0480
S12 非球面 0.6559 0.3812   -3.7270
S13 球面 无穷 0.2100 1.517/64.17  
S14 球面 无穷 0.4500    
IMA 球面 无穷      
表29
Figure PCTCN2016086611-appb-000027
Figure PCTCN2016086611-appb-000028
表30
f1(mm) 3.792 f(mm) 2.291
f2(mm) -5.894 Fno 1.99
f3(mm) 16.018 TTL(mm) 2.915
f4(mm) 1.407    
f5(mm) 102.725    
f6(mm) -1.808    
在实施例1-10中,各条件式满足下面表格的条件:
Figure PCTCN2016086611-appb-000029
请参阅图51,本发明实施方式的摄像镜头由于具有高成像质量及小尺寸等优点,因此可以应用于便携式电子装置。
便携式电子装置可以包括控制装置1、成像装置2及投影装置3。控制装置1用于控制便携式电子装置,例如控制成像装置2成像及控制投影装置3投影,也可以控制成像装置2及投影装置3之间的配合,例如,控制投影装置3同步播放成像装置2形成的图像。
成像装置2包括本发明实施方式的摄像镜头及图像传感器。摄像镜头用于光学成像,图像传感器用于将摄像镜头的光学成像转换成电子图像。
投影装置3包括有空间光调制器(sptial light modulator,SLM)及投影镜头,SLM用于调制电子图像为光学图像,投影镜头用于投射光学图像以放大光学图像。
本实施方式中,便携式电子装置可以是可穿戴设备,例如为多媒体眼镜。在多媒体眼镜的实施方式中,控制装置1可以设置在镜架上,而成像装置可以设置在加框上并向前设置拍摄前方的场景,而投影装置3同样可以设置在镜框上并朝后设置,如此可以将光学图像投射使用者的眼球上。
在本说明书的描述中,参考术语“一个实施方式”、“一些实施方式”、“示意性实施方式”、“示例”、“具体示例”或“一些示例”等的描述意指结合所述实施方式或示例描述的具体特征、结构、材料或者特点包含于本发明的至少一个实施方式或示例中。在本说明书中,对上述术语的示意性表述不一定指的是相同的实施方式或示例。而且,描述的具体特征、结构、材料或者特点可以在任何的一个或多个实施方式或示例中以合适的方式结合。
尽管已经示出和描述了本发明的实施方式,本领域的普通技术人员可以理解:在不脱离本发明的原理和宗旨的情况下可以对这些实施方式进行多种变化、修改、替换和变型,本发明的范围由权利要求及其等同物限定。

Claims (11)

  1. 一种摄像镜头,其特征在于,从物侧至像侧依次包括:
    正屈折力的第一透镜,其物侧面为凸面;
    具有屈折力的第二透镜,其像侧面近轴处为凹面,随着远离光轴,由凹面变为凸面;
    具有屈折力的第三透镜,其物侧面为凸面;
    具有正屈折力的第四透镜,其像侧面为凸面;
    具有屈折力的第五透镜;及
    具有负屈折力的第六透镜,其物侧面为凸面,像侧面为凹面;
    所述摄像镜头满足条件式:f4/CT4<2.5;其中,f4为所述第四透镜的有效焦距;CT4为所述第四透镜在光轴上的中心厚度。
  2. 如权利要求1所述的摄像镜头,其特征在于,所述摄像镜头满足条件式:0.15<CT4/TTL<0.3;其中,CT4为所述第四透镜在光轴上的中心厚度,TTL为所述摄像镜头的镜头总长。
  3. 如权利要求1所述的摄像镜头,其特征在于,所述摄像镜头满足条件式:TAN(HFOV)/TTL>0.25mm-1;其中,HFOV为所述摄像镜头的最大视场角的一半,TTL为所述摄像镜头的镜头总长。
  4. 如权利要求1所述的摄像镜头,其特征在于,所述摄像镜头满足条件式:-1<f4/f6<-0.2;其中,f6为所述第六透镜的有效焦距。
  5. 如权利要求1所述的摄像镜头,其特征在于,所述摄像镜头满足条件式:CT3/CT4<0.6;其中,CT3为所述第三透镜在光轴上的中心厚度,CT4为所述第四透镜在光轴上的中心厚度。
  6. 如权利要求1所述的摄像镜头,其特征在于,所述摄像镜头满足条件式:0.35<f/f1<0.9;其中,f为所述摄像镜头的有效焦距;f1为所述第一透镜的有效焦距。
  7. 如权利要求1所述的摄像镜头,其特征在于,所述摄像镜头满足条件式:0.45<R1/R5<1.10;其中,R1为所述第一透镜的物侧面的曲率半径;R5为所述第三透镜的物侧面的曲率半径。
  8. 如权利要求1所述的摄像镜头,其特征在于,所述摄像镜头满足条件式:TTL/ImgH<1.6;其中,TTL为所述摄像镜头的镜头总长,ImgH为所述摄像镜头的成像面上有效像素区域对角线长的一半。
  9. 如权利要求1所述的摄像镜头,其特征在于,所述摄像镜头满足条件式:(T12+T23)/TTL<0.1;其中,T12为所述第一透镜和所述第二透镜的轴上间隔距离;T23为所述第二透镜和所述第三透镜的轴上间隔距离;TTL为所述摄像镜头的镜头总长。
  10. 一种便携式电子装置,其特征在于包括:
    成像装置,所述成像装置包括如权利要求1-9任意一项所述的摄像镜头,所述成像装置用于成像;
    投影装置,所述投影装置用于投影;及
    控制装置,所述控制装置用于控制所述成像装置及所述投影装置。
  11. 如权利要求10所述的便携式电子装置,其特征在于,所述电子装置包括多媒体眼镜,所述多媒体眼镜包括镜架及镜框;
    所述控制装置设置在所述镜架上;
    所述成像装置设置在所述镜框上且向前设置,用于拍摄所述多媒体眼镜的使用者前方的场景;
    所述投影装置设置在所述镜框上且向后设置,用于投影到所述使用者的眼睛上。
PCT/CN2016/086611 2016-04-01 2016-06-21 摄像镜头及便携式电子装置 WO2017166452A1 (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
US15/649,225 US10228540B2 (en) 2016-04-01 2017-07-13 Camera lens assembly and portable electronic device

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201610206643.0A CN105824102B (zh) 2016-04-01 2016-04-01 摄像镜头及便携式电子装置
CN201610206643.0 2016-04-01

Related Child Applications (1)

Application Number Title Priority Date Filing Date
US15/649,225 Continuation US10228540B2 (en) 2016-04-01 2017-07-13 Camera lens assembly and portable electronic device

Publications (1)

Publication Number Publication Date
WO2017166452A1 true WO2017166452A1 (zh) 2017-10-05

Family

ID=56525611

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2016/086611 WO2017166452A1 (zh) 2016-04-01 2016-06-21 摄像镜头及便携式电子装置

Country Status (3)

Country Link
US (1) US10228540B2 (zh)
CN (1) CN105824102B (zh)
WO (1) WO2017166452A1 (zh)

Families Citing this family (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN105572848B (zh) * 2016-03-02 2018-03-27 浙江舜宇光学有限公司 摄远镜头
TWI580999B (zh) 2016-05-20 2017-05-01 大立光電股份有限公司 影像擷取鏡頭、取像裝置及電子裝置
JP6410865B2 (ja) 2016-10-19 2018-10-24 カンタツ株式会社 撮像レンズ
CN113640947B (zh) 2016-10-19 2023-03-31 东京晨美光学电子株式会社 摄像镜头
US10274703B1 (en) * 2017-12-29 2019-04-30 AAC Technologies Pte. Ltd. Camera optical lens
US11448858B2 (en) * 2018-08-08 2022-09-20 Meta Platforms Technologies, Llc Ultracompact wide field of view lens assembly
JP6720454B1 (ja) * 2019-05-29 2020-07-08 エスゼット ディージェイアイ テクノロジー カンパニー リミテッドSz Dji Technology Co.,Ltd レンズ系、撮像装置、及び移動体
CN110221413B (zh) * 2019-06-30 2022-03-01 瑞声光学解决方案私人有限公司 摄像光学镜头
CN112346209B (zh) 2019-08-09 2022-10-11 华为技术有限公司 摄像头模组及终端设备
TWI685675B (zh) * 2019-08-16 2020-02-21 大立光電股份有限公司 成像鏡頭組、取像裝置及電子裝置
CN110488463B (zh) * 2019-08-19 2021-02-19 诚瑞光学(常州)股份有限公司 摄像光学镜头
CN111812820B (zh) * 2020-09-10 2020-11-27 瑞泰光学(常州)有限公司 摄像光学镜头
CN113156620B (zh) * 2021-04-29 2022-04-01 西安石油大学 一种超广角折衍射手机镜头

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN104330880A (zh) * 2014-07-29 2015-02-04 玉晶光电(厦门)有限公司 光学成像镜头及应用该光学成像镜头的电子装置
CN104656228A (zh) * 2013-11-25 2015-05-27 大立光电股份有限公司 摄影透镜组、取像装置以及可携式装置
CN104932084A (zh) * 2014-03-21 2015-09-23 大立光电股份有限公司 光学影像镜组、取像装置及可携装置
CN105093498A (zh) * 2014-05-23 2015-11-25 先进光电科技股份有限公司 光学成像系统
CN105204138A (zh) * 2015-09-08 2015-12-30 浙江舜宇光学有限公司 摄像镜头
CN105425361A (zh) * 2014-09-12 2016-03-23 先进光电科技股份有限公司 光学成像系统

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN104656228A (zh) * 2013-11-25 2015-05-27 大立光电股份有限公司 摄影透镜组、取像装置以及可携式装置
CN104932084A (zh) * 2014-03-21 2015-09-23 大立光电股份有限公司 光学影像镜组、取像装置及可携装置
CN105093498A (zh) * 2014-05-23 2015-11-25 先进光电科技股份有限公司 光学成像系统
CN104330880A (zh) * 2014-07-29 2015-02-04 玉晶光电(厦门)有限公司 光学成像镜头及应用该光学成像镜头的电子装置
CN105425361A (zh) * 2014-09-12 2016-03-23 先进光电科技股份有限公司 光学成像系统
CN105204138A (zh) * 2015-09-08 2015-12-30 浙江舜宇光学有限公司 摄像镜头

Also Published As

Publication number Publication date
CN105824102B (zh) 2018-12-25
US10228540B2 (en) 2019-03-12
US20170307855A1 (en) 2017-10-26
CN105824102A (zh) 2016-08-03

Similar Documents

Publication Publication Date Title
WO2017166452A1 (zh) 摄像镜头及便携式电子装置
WO2018010246A1 (zh) 摄像镜头
TWI585455B (zh) 影像擷取透鏡系統、取像裝置及電子裝置
TWI595261B (zh) 攝像用光學鏡頭組、取像裝置及電子裝置
WO2018045607A1 (zh) 摄像镜头
WO2017166475A1 (zh) 摄像镜头
TWI586998B (zh) 攝像用光學系統、取像裝置及電子裝置
TWI588522B (zh) 攝像光學透鏡組、取像裝置及電子裝置
TWI417596B (zh) 廣視角攝影鏡頭
TWI457596B (zh) 光學攝像系統組
TWI424188B (zh) 廣視角取像鏡組
TWI449947B (zh) 影像鏡片系統組
TW201910848A (zh) 影像透鏡系統組、取像裝置及電子裝置
WO2016197604A1 (zh) 成像镜头
WO2017148020A1 (zh) 摄远镜头
JP2018522266A (ja) 撮影用広角レンズ
TWI452334B (zh) 光學影像拾取系統鏡組
TWI502214B (zh) 光學結像鏡頭組、取像裝置及可攜裝置
TW201837524A (zh) 影像擷取光學鏡頭、取像裝置及電子裝置
KR20170051080A (ko) 단초점 렌즈 광학계 및 그를 포함하는 촬상 장치
JP2017517756A (ja) 広角撮像レンズ
TW201831944A (zh) 影像擷取光學透鏡組、取像裝置及電子裝置
TW201812377A (zh) 光學影像擷取系統鏡組、取像裝置及電子裝置
TWI604219B (zh) 光學成像鏡片系統、取像裝置及電子裝置
TW201641981A (zh) 攝像鏡片系統、取像裝置及電子裝置

Legal Events

Date Code Title Description
NENP Non-entry into the national phase

Ref country code: DE

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 16896225

Country of ref document: EP

Kind code of ref document: A1

122 Ep: pct application non-entry in european phase

Ref document number: 16896225

Country of ref document: EP

Kind code of ref document: A1