WO2020221138A1 - 定焦镜头及车载摄像系统 - Google Patents

定焦镜头及车载摄像系统 Download PDF

Info

Publication number
WO2020221138A1
WO2020221138A1 PCT/CN2020/086776 CN2020086776W WO2020221138A1 WO 2020221138 A1 WO2020221138 A1 WO 2020221138A1 CN 2020086776 W CN2020086776 W CN 2020086776W WO 2020221138 A1 WO2020221138 A1 WO 2020221138A1
Authority
WO
WIPO (PCT)
Prior art keywords
lens
fixed
focal length
focus lens
focus
Prior art date
Application number
PCT/CN2020/086776
Other languages
English (en)
French (fr)
Inventor
高博
李伟娜
黄健新
韩建
Original Assignee
江西联创电子有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 江西联创电子有限公司 filed Critical 江西联创电子有限公司
Priority to US17/038,065 priority Critical patent/US11906814B2/en
Publication of WO2020221138A1 publication Critical patent/WO2020221138A1/zh

Links

Images

Classifications

    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B9/00Optical objectives characterised both by the number of the components and their arrangements according to their sign, i.e. + or -
    • G02B9/64Optical objectives characterised both by the number of the components and their arrangements according to their sign, i.e. + or - having more than six components
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60RVEHICLES, VEHICLE FITTINGS, OR VEHICLE PARTS, NOT OTHERWISE PROVIDED FOR
    • B60R11/00Arrangements for holding or mounting articles, not otherwise provided for
    • B60R11/04Mounting of cameras operative during drive; Arrangement of controls thereof relative to the vehicle
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B13/00Optical objectives specially designed for the purposes specified below
    • G02B13/001Miniaturised objectives for electronic devices, e.g. portable telephones, webcams, PDAs, small digital cameras
    • G02B13/0015Miniaturised objectives for electronic devices, e.g. portable telephones, webcams, PDAs, small digital cameras characterised by the lens design
    • G02B13/002Miniaturised objectives for electronic devices, e.g. portable telephones, webcams, PDAs, small digital cameras characterised by the lens design having at least one aspherical surface
    • G02B13/0045Miniaturised objectives for electronic devices, e.g. portable telephones, webcams, PDAs, small digital cameras characterised by the lens design having at least one aspherical surface having five or more lenses
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B7/00Mountings, adjusting means, or light-tight connections, for optical elements
    • G02B7/02Mountings, adjusting means, or light-tight connections, for optical elements for lenses
    • G02B7/025Mountings, adjusting means, or light-tight connections, for optical elements for lenses using glue

Definitions

  • This application relates to the field of lenses, and more specifically, to a fixed-focus lens and a vehicle-mounted camera system.
  • This application proposes a fixed focus lens and a vehicle-mounted camera system to improve the above-mentioned defects.
  • an embodiment of the present application provides a fixed-focus lens, from the object side to the imaging surface, sequentially including: a first lens with a negative focal length, the first lens being a meniscus spherical lens with a concave surface facing the imaging surface;
  • the second lens with negative focal length, the second lens is biconcave spherical lens;
  • the third lens with positive focal length, the third lens is biconvex spherical lens or meniscus spherical lens;
  • the fourth lens with positive focal length, the fourth The lens is a biconvex spherical lens or a biconvex aspheric lens;
  • a fifth lens with a positive focal length, and the fifth lens is a biconvex spherical lens;
  • a sixth lens with a negative focal length, and the sixth lens is a biconcave spherical lens;
  • a seventh lens with a positive focal length, the seventh lens is a biconvex aspheric lens or
  • the fixed focus lens satisfies the relationship:
  • f 2 represents the focal length of the second lens
  • f 3 represents the focal length of the third lens
  • the fixed focus lens satisfies the relationship:
  • V 5 represents the Abbe number of the fifth lens
  • V 6 represents the Abbe number of the sixth lens
  • the fixed focus lens satisfies the relationship:
  • f 4 represents the focal length of the fourth lens
  • f 7 represents the focal length of the seventh lens
  • the fixed focus lens further includes an aperture, which is arranged between the fourth lens and the fifth lens or between the third lens and the fourth lens.
  • the fourth lens is a biconvex spherical lens
  • the seventh lens is a biconvex aspheric lens.
  • the fixed focus lens satisfies the relationship:
  • T L represents the total optical length of the fixed focus lens
  • f represents the focal length of the fixed focus lens
  • represents the half field angle of the fixed focus lens
  • each aspheric surface of the fixed focus lens satisfies the relationship:
  • z is the distance between the surface and the vertex of the surface in the optical axis direction
  • h is the distance from the optical axis to the surface
  • c is the curvature of the vertex of the surface
  • k is the conic coefficient
  • a 4 , a 6 , a 8 , a 10 , a 12 Respectively represent the surface coefficients corresponding to the fourth, sixth, eighth, tenth, and twelfth-order radial coordinates.
  • first lens, the second lens, the third lens, the fourth lens, the fifth lens, the sixth lens, and the seventh lens are all made of glass materials.
  • an embodiment of the present application provides a vehicle-mounted camera system, including the fixed-focus lens provided in the first aspect.
  • the second lens and the third lens are bonded by optical glue
  • the fifth lens and the sixth lens are bonded by optical glue.
  • FIG. 1 is a schematic cross-sectional structure diagram of a fixed focus lens in the first embodiment of the present invention.
  • FIG. 2 is a curve diagram of field curvature of the fixed focus lens in the first embodiment of the present invention.
  • FIG. 3 is a graph of F- ⁇ distortion of the fixed focus lens in the first embodiment of the present invention.
  • FIG. 4 is a schematic diagram of the chromatic aberration of on-axis point spherical aberration of the fixed focus lens in the first embodiment of the present invention.
  • FIG. 5 is a schematic cross-sectional structure diagram of a fixed focus lens in the second embodiment of the present invention.
  • FIG. 6 is a curve diagram of field curvature of a fixed focus lens in the second embodiment of the present invention.
  • FIG. 7 is a graph of F- ⁇ distortion of the fixed focus lens in the second embodiment of the present invention.
  • FIG. 8 is a schematic diagram of the chromatic aberration of the on-axis point spherical aberration of the fixed focus lens in the second embodiment of the present invention.
  • FIG. 9 is a schematic diagram of a cross-sectional structure of a fixed focus lens in a third embodiment of the present invention.
  • FIG. 10 is a curve diagram of field curvature of a fixed focus lens in the third embodiment of the present invention.
  • FIG. 11 is a graph of F- ⁇ distortion of the fixed focus lens in the third embodiment of the present invention.
  • FIG. 12 is a schematic diagram of chromatic aberration of on-axis point spherical aberration of the fixed focus lens in the third embodiment of the present invention.
  • FIG. 13 is a schematic diagram of the structure of the vehicle-mounted camera system provided by the present invention.
  • the fixed-focus lens provided by the embodiments of the application can be used as a vehicle-mounted lens and is suitable for vehicle-mounted camera systems, and is fully applicable to the current mainstream high-definition chips.
  • the image quality is good under visible light and infrared light conditions, and it can be clear and bright even under low illumination at night Monitoring screen.
  • FIG. 1 shows a fixed-focus lens 100 provided by an embodiment of the present application.
  • the fixed-focus lens 100 includes a first lens L1, a second lens L2, and a third lens L3 in order from the object side to the imaging surface.
  • the fourth lens L4 the fifth lens L5, the sixth lens L6, the seventh lens L7, and the filter L8.
  • the first lens L1 has a negative focal length and is a meniscus spherical lens with a concave surface facing the imaging surface.
  • the second lens L2 has a negative focal length and is a biconcave spherical lens.
  • the third lens L3 has a positive focal length and is a biconvex spherical lens.
  • the fourth lens L4 has a positive focal length and is a biconvex spherical lens.
  • the fifth lens L5 has a positive focal length and is a biconvex spherical lens.
  • the sixth lens L6 has a negative focal length and is a biconcave spherical lens.
  • the seventh lens L7 has a positive focal length and is a biconvex aspheric lens.
  • the second lens L2 and the third lens L3 are bonded by optical glue, and the fifth lens L5 and the sixth lens L6 are bonded by optical glue.
  • the image side surface of the second lens L2 and the object side surface of the third lens L3 may be bonded through optical glue, and the image side surface of the fifth lens L5 and the object side surface of the sixth lens L6 may be bonded through optical glue.
  • the fourth lens L4 and the seventh lens L7 is an aspheric lens, and the other is a spherical lens. That is to say, the fourth lens L4 may be a biconvex spherical lens, and the seventh lens L7 It is a biconvex aspheric lens; it can also be that the fourth lens L4 is a biconvex aspheric lens, and the seventh lens L7 is a biconvex spherical lens. In the embodiment of the present application, the fourth lens L4 is a biconvex spherical lens, and the seventh lens L7 is a biconvex aspheric lens.
  • the fixed focus lens 100 may further include an aperture 1, which is arranged between the fourth lens L4 and the fifth lens L5.
  • the aperture 1 is a light-shielding paper with a light-passing hole in the center, and the aperture of the aperture 1 is smaller than that of the spacer, so as to ensure that the light flux of the fixed-focus lens 100 is determined by the aperture of the aperture 1.
  • the diaphragm 1 is arranged between the fourth lens L4 and the fifth lens L5, which can increase the angle of view of the fixed-focus lens 100 and better match the incident angle of the chip, and a light-shielding paper with a light hole in the center is used as Diaphragm 1 reduces the requirements on the light hole of the lens barrel, reduces the difficulty of forming the light hole of the lens barrel, improves productivity, and reduces production costs.
  • the position of the imaging surface 2 is the image side of the fixed focus lens 100.
  • the fixed focus lens 100 satisfies the following relationship:
  • T L represents the total optical length of the fixed focus lens 100
  • f represents the focal length of the fixed focus lens 100
  • represents the half field angle of the fixed focus lens 100, which is half of the field angle of the fixed focus lens 100.
  • T L /(f*tan ⁇ ) When the value of T L /(f*tan ⁇ ) exceeds the upper limit, the overall lens length is too long, or if the overall length is shortened, the image height will be insufficient. When the value of T L /(f*tan ⁇ ) exceeds the lower limit In a limited time, because the focal length of each lens is too large, the lens aberration correction is difficult, and the resolution ability is significantly reduced. Therefore, the T L /(f*tan ⁇ ) is limited between 6.5 and 7.9, and the obtained image height is appropriate. And the lens aberration is effectively corrected, and the resolution is good. In addition, f*tan ⁇ determines the ideal image height. Therefore, a reasonable setting of f*tan ⁇ can provide a suitable image height, so that the image size of the image is suitable for the 1/2 inch chip size of 7.7mm*4.4mm*8.8mm .
  • the fixed focus lens 100 satisfies the following relationship:
  • f 2 represents the focal length of the second lens L2
  • f 3 represents the focal length of the second lens L3
  • f 4 represents the focal length of the fourth lens L4
  • f 7 represents the focal length of the seventh lens L7.
  • the fixed focus lens 100 In order to correct chromatic aberration, the fixed focus lens 100 also satisfies the following relationship:
  • V 5 represents the Abbe number of the fifth lens
  • V 6 represents the Abbe number of the sixth lens
  • the Abbe number is also called the dispersion coefficient, which is used to measure the degree of light dispersion of a transparent medium.
  • the Abbe number is an index used to express the dispersion ability of a transparent medium. Generally speaking, the greater the refractive index of the medium, the more severe the dispersion, and the smaller the Abbe number; conversely, the smaller the refractive index of the medium, the less the dispersion, and the greater the Abbe number.
  • the surface shape of the aspheric surface of each aspheric lens satisfies the following equation:
  • z is the distance between the surface and the vertex of the surface in the optical axis direction
  • h is the distance from the optical axis to the surface
  • c is the curvature of the vertex of the surface
  • k is the conic coefficient
  • a 4 , a 6 , a 8 , a 10 , a 12 Respectively represent the surface coefficients corresponding to the fourth, sixth, eighth, tenth, and twelfth-order radial coordinates.
  • the aspherical surface size of each aspherical lens can be accurately set by the above-mentioned relational expression, and the fixed focus lens 100 can greatly improve the clarity and sharpness of the lens imaging by using the powerful aberration correction function of the aspherical surface.
  • the surface curve When k is less than -1, the surface curve is a hyperbola, when k is equal to -1, the surface curve is a parabola, when k is between -1 and 0, the surface curve is an ellipse, when k is equal to 0 , The surface curve is circular, when k is greater than 0, the surface curve is oblate.
  • the first lens, the second lens, the third lens, the fourth lens, the fifth lens, the sixth lens, and the seventh lens are all made of glass material.
  • the fixed-focus lens 100 provided by the embodiment of this application is suitable for day and night dual-purpose vehicle monitoring systems. It realizes high-definition imaging through a reasonable combination of glass lenses. It is fully applicable to the current mainstream high-definition chips.
  • the imaging quality is good under both visible and infrared light conditions. A clear and bright monitoring picture can be achieved even under low illumination at night.
  • Table 1 shows the relevant parameters of each lens of the fixed focus lens 100 in this embodiment.
  • Fig. 2 shows the field curvature curve of the fixed-focus lens in this embodiment.
  • Fig. 3 which shows the F- ⁇ distortion curve of the fixed-focus lens in this embodiment.
  • Fig. 4 Is a schematic diagram of the chromatic aberration of the on-axis point spherical aberration of the fixed-focus lens in this embodiment. According to FIGS. 2 to 4, it can be seen that the field curvature, distortion, and chromatic aberration of the fixed-focus lens are well corrected.
  • FIG. 5 is a schematic cross-sectional structure diagram of the fixed focus lens 200 in the second embodiment of the present invention.
  • the fixed focus lens 200 in this embodiment is substantially the same as the fixed focus lens 100 in the first embodiment, with the difference
  • the diaphragm 1 of the fixed-focus lens 200 in this embodiment is provided between the third lens L3 and the fourth lens L4, instead of the diaphragm 1 of the fixed-focus lens 100 in the first embodiment.
  • the fourth lens L4 is a biconvex spherical lens
  • the seventh lens L7 is a meniscus aspheric lens with a concave surface facing the object side.
  • the relevant parameters of each lens of the fixed focus lens 200 in this embodiment are different from the relevant parameters of each lens of the fixed focus lens 100 in the first embodiment.
  • Table 3 shows the relevant parameters of each lens of the fixed focus lens 200 in this embodiment.
  • Table 4 shows the relevant parameters of the aspheric surface of the fixed focus lens 200 in this embodiment.
  • FIG. 6 shows the field curvature curve of the fixed-focus lens 200 in this embodiment.
  • FIG. 7 shows the F- ⁇ distortion curve of the fixed-focus lens 200 in this embodiment.
  • FIG. 8 is a schematic diagram of the chromatic aberration of the on-axis point spherical aberration of the fixed-focus lens 200 in this embodiment. According to FIGS. 6 to 8, it can be seen that the field curvature, distortion, and chromatic aberration of the fixed-focus lens 200 are all affected by Good correction.
  • FIG. 9 shows a schematic cross-sectional structure diagram of a fixed focus lens 300 in a third embodiment of the present invention.
  • the fixed focus lens 300 in this embodiment is substantially the same as the fixed focus lens 100 in the first embodiment, with the difference The difference lies in the position of the aspheric lens.
  • the fourth lens L4 of the fixed focus lens 300 in this embodiment is an aspheric lens, while in the first embodiment, the aspheric lens is the seventh lens L7, which is In other words, the fourth lens L4 is a biconvex aspheric lens, and the seventh lens L7 is a biconvex spherical lens.
  • the third lens L3 is a meniscus spherical lens with a concave surface facing the imaging surface.
  • the relevant parameters of each lens of the fixed focus lens 300 in this embodiment are different from the relevant parameters of each lens of the fixed focus lens 100 in the first embodiment.
  • Table 5 shows the relevant parameters of each lens of the fixed focus lens 300 in this embodiment.
  • FIG. 10 shows the field curvature curve diagram of the fixed-focus lens 300 in this embodiment.
  • FIG. 11 shows the F- ⁇ distortion curve diagram of the fixed-focus lens 300 in this embodiment.
  • Fig. 12 is a schematic diagram of the chromatic aberration of the on-axis point spherical aberration of the fixed-focus lens 300 in this embodiment. According to Figs. 10 to 12, it can be seen that the field curvature, distortion, and chromatic aberration of the fixed-focus lens 300 are all affected by Good correction.
  • Chart 7 is the optical characteristics corresponding to each of the above three embodiments, including the focal length f of the fixed focus lens 300, the number of aperture F#, the total optical length TL and the field of view 2 ⁇ , and also includes the above implementations The relative value corresponding to each relation in the example.
  • an embodiment of the present invention also provides a vehicle-mounted camera system 400, which includes a fixed-focus lens, and the fixed-focus lens may be any of the aforementioned fixed-focus lenses (100/200/300).
  • the fixed focus lens 100 is installed in a vehicle to obtain traffic information and road surface information.
  • the fixed focus lens and the vehicle-mounted camera system including the fixed focus lens have the following advantages:
  • the fixed-focus lens provided by this embodiment is small in size, light in weight, and requires very low processing accuracy. It uses two sets of glued lenses, which is easy to assemble, effectively reduces tolerance loss, and can ensure high-quality resolution, that is, to ensure the resolution of the subject The ability of original details;
  • the fixed-focus lens provided in this embodiment can choose to use an aspherical lens as the last lens. The farther the aspherical lens is from the stop 1, the more beneficial it is for the correction of distortion, which can minimize the distortion of the fixed-focus lens;
  • the fixed focus lens provided in this embodiment can all adopt glass lenses, which can adapt to different temperature occasions, has good temperature control, and has a higher service life and stability;
  • the cemented lens of the fixed-focus lens provided in this embodiment adopts high and low dispersion glass materials
  • the fifth lens L5 is a positive focal length lens, which can use a large Abbe number to produce small positive chromatic aberration
  • the sixth lens L6 has a negative focal length
  • the lens, which can use a small Abbe number to produce large negative chromatic aberration, that is, the positive lens (the fifth lens L5) close to the stop 1 is selected from low-dispersion materials, and the other negative lens (the sixth lens) L6)
  • Selecting high-dispersion materials can effectively reduce the overall chromatic aberration of the lens and minimize the purple fringing phenomenon, that is, it can better avoid the high-light and low-light areas due to the large contrast of the subject during the shooting process The phenomenon of spots appearing everywhere;
  • the fixed-focus lens provided in this embodiment can reach more than 8 million pixels under visible light or infrared light conditions. Compared with the 5 million pixels or less in the prior art, the imaging quality is higher;
  • the fixed-focus lens provided in this embodiment has an image surface size of ⁇ 8.8mm, which can be matched with a 1/2-inch chip, for example, a 1/2-inch with a specification of 7.7mm*4.4mm*8.8mm can be used.
  • a 1/2-inch chip for example, a 1/2-inch with a specification of 7.7mm*4.4mm*8.8mm can be used.
  • the fixed focus lens provided in this embodiment can make the picture have better imaging quality. Meet the needs of high-definition vehicle lens;
  • All lenses of the fixed-focus lens of the present invention can be coated with a high-transmittance multilayer film, and the transmittance can reach over 99.5%, so that the entire fixed-focus lens has an ultra-high transmittance.

Abstract

一种定焦镜头(100)及车载摄像系统(400),定焦镜头(100)从物侧到成像面(2)依次包括:具有负焦距的第一透镜(L1),第一透镜(L1)为凹面(S2)朝向成像面(2)的弯月型球面镜片;具有负焦距的第二透镜(L2),第二透镜(L2)为双凹型球面镜片;具有正焦距的第三透镜(L3),第三透镜(L3)为双凸型球面镜片;具有正焦距的第四透镜(L4),第四透镜(L4)为双凸型球面镜片;具有正焦距的第五透镜(L5),第五透镜(L5)为双凸型球面镜片;具有负焦距的第六透镜(L6),第六透镜(L6)为双凹型球面镜片;具有正焦距的第七透镜(L7),第七透镜(L7)为双凸型非球面镜片;第二透镜(L2)与第三透镜(L3)通过光学胶粘合,第五透镜(L5)与第六透镜(L6)通过光学胶粘合。通过两组粘合透镜,使得定焦镜头(100)的体积小,重量轻,加工精度要求非常低,便于组装,可以保证高品质解像力。

Description

定焦镜头及车载摄像系统
相关申请的交叉引用
本申请要求于2019年04月28日提交中国专利局的申请号为2019103525358、名称为“定焦镜头”的中国专利申请的优先权,其全部内容通过引用结合在本申请中。
技术领域
本申请涉及镜头领域,更具体地,涉及一种定焦镜头及车载摄像系统。
背景技术
通常来说成像质量越好分辨率越高的镜头使用的镜片数量越多,因较多的镜片有利于矫正像差提高分辨率,但镜头的成本也随之上升,因此有必要设计一种成本低的镜头。
发明内容
本申请提出了一种定焦镜头及车载摄像系统,以改善上述缺陷。
第一方面,本申请实施例提供了一种定焦镜头,从物侧到成像面,依次包括:具有负焦距的第一透镜,第一透镜为凹面朝向成像面的弯月型球面镜片;具有负焦距的第二透镜,第二透镜为双凹型球面镜片;具有正焦距的第三透镜,第三透镜为双凸型球面镜片或弯月型球面镜片;具有正焦距的第四透镜,第四透镜为双凸型球面镜片或双凸型非球面镜片;具有正焦距的第五透镜,第五透镜为双凸型球面镜片;具有负焦距的第六透镜, 第六透镜为双凹型球面镜片;具有正焦距的第七透镜,第七透镜为双凸型非球面镜片或双凸型球面镜片或弯月型非球面镜片;第二透镜与第三透镜通过光学胶粘合,第五透镜与第六透镜通过光学胶粘合;其中,所述第四透镜和所述第七透镜中,一个是球面镜片,另一个是非球面镜片。
进一步地,所述定焦镜头满足关系式:
0.7<|f 2/f 3|<0.9;
其中,f 2表示所述第二透镜的焦距,f 3表示所述第三透镜的焦距。
进一步地,定焦镜头满足关系式:
40<|V 5-V 6|<60;
其中,V 5表示所述第五透镜的阿贝数,V 6表示所述第六透镜的阿贝数。
进一步地,定焦镜头满足关系式:
0.6<f 4/f 7<0.8;
其中,f 4表示所述第四透镜的焦距,f 7表示所述第七透镜的焦距。
进一步地,定焦镜头还包括光阑,光阑设置于所述第四透镜与所述第五透镜之间或者设置于所述第三透镜与所述第四透镜之间。
进一步地,所述第四透镜为双凸型球面镜片,所述第七透镜为双凸型非球面镜片。
进一步地,定焦镜头满足关系式:
6.5<T L/(f*tanθ)<7.9;
其中,T L表示所述定焦镜头的光学总长,f表示所述定焦镜头的焦距,θ表示所述定焦镜头的半视场角。
进一步地,定焦镜头的各个非球面表面形状满足关系式:
Figure PCTCN2020086776-appb-000001
其中,z为曲面离开曲面顶点在光轴方向的距离,h为光轴到曲面的距离,c为曲面顶点的曲率,k为圆锥系数,a 4、a 6、a 8、a 10、a 12分别表示四阶、六阶、八阶、十阶、十二阶径向坐标所对应的曲面系数。
进一步地,所述第一透镜、所述第二透镜、所述第三透镜、所述第四透镜、所述第五透镜、所述第六透镜和所述第七透镜均由玻璃材料构成。
第二方面,本申请实施例提供了一种车载摄像系统,包括如第一方面 提供的定焦镜头。
相对于现有技术,本申请提供的定焦镜头和包括该定焦镜头的车载摄像系统,第二透镜与第三透镜通过光学胶粘合,第五透镜与第六透镜通过光学胶粘合,使得定焦镜头的体积小,重量轻,加工精度要求非常低,便于组装,有效的减少公差损失,可以保证高品质解像力。
本申请实施例的其他特征和优点将在随后的说明书阐述,并且,部分地从说明书中变得显而易见,或者通过实施本申请实施例而了解。本申请实施例的目的和其他优点可通过在所写的说明书、权利要求书、以及附图中所特别指出的结构来实现和获得。
附图说明
图1为本发明第一实施例中定焦镜头的截面结构示意图。
图2为本发明第一实施例中定焦镜头的场曲曲线图。
图3为本发明第一实施例中定焦镜头的F-θ畸变曲线图。
图4为本发明第一实施例中定焦镜头的轴上点球差色差示意图。
图5为本发明第二实施例中定焦镜头的截面结构示意图。
图6为本发明第二实施例中定焦镜头的场曲曲线图。
图7为本发明第二实施例中定焦镜头的F-θ畸变曲线图。
图8为本发明第二实施例中定焦镜头的轴上点球差色差示意图。
图9为本发明第三实施例中定焦镜头的截面结构示意图。
图10为本发明第三实施例中定焦镜头的场曲曲线图。
图11为本发明第三实施例中定焦镜头的F-θ畸变曲线图。
图12为本发明第三实施例中定焦镜头的轴上点球差色差示意图。
图13为本发明提供的车载摄像系统的结构示意图。
具体实施方式
为了便于理解本发明,下面将参照相关附图对本发明进行更全面的描述。附图中给出了本发明的若干实施例。但是,本发明可以以许多不同的 形式来实现,并不限于本文所描述的实施例。相反地,提供这些实施例的目的是使对本发明的公开内容更加透彻全面。
本申请实施例提供的定焦镜头可作为车载镜头适用于车载摄像系统,完全适用于目前主流的高清芯片,可见光和红外光条件下成像质量均良好,即使在夜晚低照度下也能实现清晰明亮的监控画面。
随着车载行业整体向高清化发展,芯片尺寸越来越大、像素越来越高,现有主流的1/3英寸或1/4英寸的芯片已满足不了人们的需求,分辨率有待提高,而且如果需要日夜连续监控的场合,还需要使用日夜两用的镜头,然而,普通的车载镜头主要是针对白天可见光条件设计的,而到傍晚和晚上时由于红外光的比重加大,成像变差画面质量会受到影响,无法满足夜间车辆行驶时对捕捉画面的要求。通常来说成像质量越好分辨率越高的镜头使用的镜片数量越多,因较多的镜片有利于矫正像差提高分辨率,但镜头的成本也随之上升,因此有必要设计一种成本低的镜头,同时要求该镜头在白天和晚上均有良好的成像质量。
实施例1
请参阅图1,示出了本申请实施例提供的一种定焦镜头100,该定焦镜头100从物侧到成像面,依次包括:第一透镜L1、第二透镜L2、第三透镜L3、第四透镜L4、第五透镜L5、第六透镜L6、第七透镜L7以及滤光片L8。
第一透镜L1具有负焦距,且为凹面朝向成像面的弯月型球面镜片。第二透镜L2具有负焦距,且为双凹型球面镜片。第三透镜L3具有正焦距,且为双凸型球面镜片。第四透镜L4具有正焦距,且为双凸型球面镜片。第五透镜L5具有正焦距,且为双凸型球面镜片。第六透镜L6具有负焦距,且为双凹型球面镜片。第七透镜L7具有正焦距,且为双凸型非球面镜片,第二透镜L2与第三透镜L3通过光学胶粘合,第五透镜L5与第六透镜L6通过光学胶粘合。具体地,可以是将第二透镜L2的像侧面与第三透镜L3的物侧面通过光学胶粘合,以及,将第五透镜L5的像侧面与第六透镜L6的物侧面通过光学胶粘合。
需要说明的是,第四透镜L4和第七透镜L7中有一个为非球面镜片,另一个为球面镜片,也就是说,可以是第四透镜L4为双凸型球面镜片,而 第七透镜L7为双凸型非球面镜片;也可以是,第四透镜L4为双凸型非球面镜片,而第七透镜L7为双凸型球面镜片。于本申请实施例中,第四透镜L4为双凸型球面镜片,而第七透镜L7为双凸型非球面镜片。
另外,该定焦镜头100还可以包括光阑1,光阑1设置于第四透镜L4与第五透镜L5之间。光阑1为中心设有通光孔的遮光纸,并且光阑1的通光口径小于隔圈,以保证定焦镜头100的通光量由光阑1的通光孔径决定。光阑1设置于第四透镜L4和第五透镜L5之间,可以提高定焦镜头100的视场角并能更好的配合芯片的入射角度,并且采用中心设有通光孔的遮光纸作为光阑1,降低了对镜筒通光孔的要求,使镜筒通光孔成型难度下降,提高了生产率,降低了生产成本。
可以理解的,成像面2的位置即为定焦镜头100的像侧。
为限制系统的总长,并确保系统具有足够好的成像品质,定焦镜头100满足以下关系式:
6.5<T L/(f*tanθ)<7.9,        (1)
其中,T L表示定焦镜头100的光学总长,f表示定焦镜头100的焦距,θ表示定焦镜头100的半视场角,即为定焦镜头100的视场角的一半。
当T L/(f*tanθ)的值超过上限时,整体镜头的总长过长,或者如果将整体总长缩短的情况下,像高会不足,当T L/(f*tanθ)的值超过下限时,由于各透镜的光焦度过大,镜头像差矫正困难,解像能力显著下降,因此,将T L/(f*tanθ)限定在6.5与7.9之间,所得到的像高合适,并且镜头像差得到有效校正,解像能力好。另外,f*tanθ决定了理想像高,因此,合理设置f*tanθ能够提供合适的像高,使得所成像的像面尺寸适用于7.7mm*4.4mm*8.8mm的1/2英寸的芯片规格。
为在良好的矫正像差的同时提供合适的镜头尺寸,定焦镜头100满足以下关系式:
0.7<|f 2/f 3|<0.9,      (2)
0.6<f 4/f 7<0.8,        (3)
其中,f 2表示第二透镜L2的焦距,f 3表示第二透镜L3的焦距,f 4表示第四透镜L4的焦距,f 7表示第七透镜L7的焦距。上述关系式(2)和(3) 合理的限制了各个透镜的光焦度分配,使得整个镜头兼顾尺寸的情况下,还能减小像差,提高屈光能力等。
当|f 2/f 3|的值超过上限时,第二透镜L2和第三透镜L3胶合后的光焦度过强,虽然能够使系统总长变小,但其产生的象散、场曲、畸变过大,很难矫正;当|f 2/f 3|的值超过下限时,第二透镜L2和第三透镜L3胶合后的光焦度减弱,上述各种像差相对减小,但其屈光能力下降导致系统加长。
当f 4/f 7的值超过上限时,第四透镜L4的光焦度过强,光阑1会过于靠近第四透镜L4;当f 4/f 7的值超过下限时,第四透镜L4的光焦度减弱,光阑1会过于远离第四透镜L4。
为矫正色差,定焦镜头100还满足以下关系式:
40<|V 5-V 6|<60,         (4)
其中,V 5表示第五透镜的阿贝数,V 6表示第六透镜的阿贝数。其中,阿贝数也称色散系数,用来衡量透明介质的光线色散程度。阿贝数用以表示透明介质色散能力的指数。一般来说,介质的折射率越大,色散越严重,阿贝数越小;反之,介质的折射率越小,色散越轻微,阿贝数越大。
当|V 5-V 6|的值超过下限时,色差的矫正不足;当|V 5-V 6|的值超过上限时,则材料选择困难。
具体地,各个非球面透镜的非球面的表面形状均满足下列方程:
Figure PCTCN2020086776-appb-000002
其中,z为曲面离开曲面顶点在光轴方向的距离,h为光轴到曲面的距离,c为曲面顶点的曲率,k为圆锥系数,a 4、a 6、a 8、a 10、a 12分别表示四阶、六阶、八阶、十阶、十二阶径向坐标所对应的曲面系数。
通过以上述关系式可以精确设定各非球面透镜的非球面面型尺寸,定焦镜头100利用非球面对像差的强大校正功能能够大大提高镜头成像的清晰度及锐利度。
当k小于-1时,面形曲线为双曲线,当k等于-1时,面形曲线为抛物线,当k介于-1到0之间时,面形曲线为椭圆,当k等于0时,面形曲线为圆形,当k大于0时为,面形曲线为扁圆形。
在一些实施方式中,第一透镜、第二透镜、第三透镜、第四透镜、第 五透镜、第六透镜和第七透镜均由玻璃材料构成。
本申请实施例提供的定焦镜头100适用于日夜两用车载监控系统,通过玻璃镜片的合理组合实现高清成像,完全适用于目前主流的高清芯片,可见光和红外光条件下成像质量均良好,即使在夜晚低照度下也能实现清晰明亮的监控画面。
请参阅表1,所示为本实施例当中的定焦镜头100的各个镜片的相关参数。
表1
Figure PCTCN2020086776-appb-000003
表2
Figure PCTCN2020086776-appb-000004
Figure PCTCN2020086776-appb-000005
请参阅图2,所示为本实施例当中的定焦镜头的场曲曲线图,请参阅图3,所示为本实施例当中的定焦镜头的F-θ畸变曲线图,请参阅图4,为本实施例当中的定焦镜头的轴上点球差色差示意图,根据图2至图4可以看出,定焦镜头的场曲、畸变和轴上点球差色差都被良好矫正。
实施例2
请参阅图5,所示为本发明第二实施例中的定焦镜头200的截面结构示意图,本实施例当中的定焦镜头200与第一实施例当中的定焦镜头100大抵相同,不同之处在于,本实施例当中的定焦镜头200的光阑1设置在第三透镜L3和第四透镜L4之间,而并非第一实施例中定焦镜头100的光阑1设在第四透镜L4和第五透镜L5之间。而且,第四透镜L4为双凸型球面镜片,而第七透镜L7为凹面朝向物侧的弯月型非球面镜片。
同时本实施例当中的定焦镜头200的各个镜片的相关参数与第一实施例当中的定焦镜头100的各个镜片的相关参数存在差异。
请参阅表3,所示为本实施例当中的定焦镜头200的各个镜片的相关参数。
表3
Figure PCTCN2020086776-appb-000006
Figure PCTCN2020086776-appb-000007
请参阅表4,所示为本实施例当中的定焦镜头200的非球面的相关参数。
表4
Figure PCTCN2020086776-appb-000008
请参阅图6,所示为本实施例当中的定焦镜头200的场曲曲线图,请参阅图7,所示为本实施例当中的定焦镜头200的F-θ畸变曲线图,请参阅图8,为本实施例当中的定焦镜头200的轴上点球差色差示意图,根据图6至图8可以看出,定焦镜头200的场曲、畸变和轴上点球差色差都被良好矫正。
实施例3
请参阅图9,所示为本发明第三实施例中的定焦镜头300的截面结构示意图,本实施例当中的定焦镜头300与第一实施例当中的定焦镜头100大抵相同,不同之处在于非球面透镜所处的位置不一样,本实施例当中的定焦镜头300的第四透镜L4为非球面透镜,而在第一实施例中,非球面透镜为第七透镜L7,也就是说,第四透镜L4为双凸型非球面镜片,而第七透镜L7为双凸型球面镜片。另外,第三透镜L3为凹面朝向成像面的弯月型球面镜片。
同时本实施例当中的定焦镜头300的各个镜片的相关参数与第一实施例当中的定焦镜头100的各个镜片的相关参数存在差异。
请参阅表5,所示为本实施例当中的定焦镜头300的各个镜片的相关参 数。
表5
Figure PCTCN2020086776-appb-000009
参阅表6,所示为本实施例当中的定焦镜头300的非球面的相关参数。
表6
表面序号 k a 4 a 6 a 8 a 10 a 12
12 0.067 0.00012 1.4E-05 -7.2E-07 4.56E-08 -6.7E-10
13 -200 0.00054 9.45E-05 1.56E-06 -4.4E-07 1.95E-08
请参阅图10,所示为本实施例当中的定焦镜头300的场曲曲线图,请参阅图11,所示为本实施例当中的定焦镜头300的F-θ畸变曲线图,请参阅图12,为本实施例当中的定焦镜头300的轴上点球差色差示意图,根据图10至图12可以看出,定焦镜头300的场曲、畸变和轴上点球差色差都被良好矫正。
请参阅图表7,所述为上述3个实施例当中各实施例对应的光学特性,包括定焦镜头300的焦距f、光圈数F#、光学总长T L和视场角2θ,同时还包括上述实施例中每个关系式对应的相关数值。
表7
实施例 f(mm) F# T L(mm) T L/(f*tanθ) |f 2/f 3| f 4/f 7 |V 5-V 6|
1 7.861 2.8 34.95 60 7.70 0.76 0.74 55
2 7.781 2.8 30.00 60 6.68 0.85 0.69 55.89
3 7.861 2.8 35 60 7.71 0.77 0.72 41.44
请参阅图13,本发明实施例还提供一种车载摄像系统400,其包括一种定焦镜头,该定焦镜头可以是前述的任一种定焦镜头(100/200/300)。例如将定焦镜头100设置于车辆,以获取交通信息、路面信息。
综上,本发明上述实施例中,所述定焦镜头以及包括该定焦镜头的车载摄像系统具有以下的优点:
1.本实施例提供的定焦镜头的体积小,重量轻,加工精度要求非常低,并且采用两组胶合镜片,便于组装,有效的减少公差损失,可以保证高品质解像力,即保证分辨被摄原物细节的能力;
2.本实施例提供的定焦镜头可以选择用非球面镜片做最后一片镜片,非球面镜片离光阑1越远越有利于畸变的校正,可最大程度地减小定焦镜头的畸变;
3.本实施例提供的定焦镜头可以全部采用玻璃镜片,可适应不同的温度场合,温度控制好,且有较高的使用寿命和稳定性;
4.本实施例提供的定焦镜头的胶合镜片采用高低色散玻璃材料搭配,第五透镜L5为正焦距透镜,其可以采用大的阿贝数产生小的正色差,第六透镜L6为负焦距透镜,其可以采用小的阿贝数产生大的负色差,也就说是,靠近光阑1的正透镜(第五透镜L5)选取低色散材料,而组合的另一片负透镜(第六透镜L6)选取高色散材料,可以有效减小镜头的整体色差,最大程度地减少紫边现象,即能够较好避免在拍摄取物过程中由于被摄物体反差较大,在高光与低光部位交界处出现的色斑的现象;
5.本实施例提供的定焦镜头在可见光或红外光条件下均能达到800万 以上的像素,相比现有技术中的500万像素以下,成像质量更高;
6.本实施例提供的定焦镜头的像面尺寸φ8.8mm,可搭配1/2英寸大小的芯片,比如搭配规格为7.7mm*4.4mm*8.8mm的1/2英寸就可以满足。与现有的搭配的芯片一般是1/3英寸或1/4英寸大小相比,同样像素个数的小芯片镜头,本实施例提供的定焦镜头可以让画面具有更佳的成像质量,可以满足车载镜头高清化的需求;
7.本发明定焦镜头的全部镜片均可镀高透过率多层膜,透过率达到99.5%以上,使整个定焦镜头拥有超高透过率。
以上所述仅为本发明的优选实施例而已,并不用于限制本发明,对于本领域的技术人员来说,本发明可以有各种更改和变化。凡在本发明的精神和原则之内,所作的任何修改、等同替换、改进等,均应包含在本发明的保护范围之内。应注意到:相似的标号和字母在下面的附图中表示类似项,因此,一旦某一项在一个附图中被定义,则在随后的附图中不需要对其进行进一步定义和解释。
尽管上面已经示出和描述了本发明的实施例,可以理解的是,上述实施例是示例性的,不能理解为对本发明的限制,本领域的普通技术人员在本发明的范围内可以对上述实施例进行变化、修改、替换和变型。

Claims (10)

  1. 一种定焦镜头,其特征在于,从物侧到成像面,依次包括:
    具有负焦距的第一透镜,所述第一透镜为凹面朝向所述成像面的弯月型球面镜片;
    具有负焦距的第二透镜,所述第二透镜为双凹型球面镜片;
    具有正焦距的第三透镜,所述第三透镜为双凸型球面镜片或弯月型球面镜片;
    具有正焦距的第四透镜,所述第四透镜为双凸型球面镜片或双凸型非球面镜片;
    具有正焦距的第五透镜,所述第五透镜为双凸型球面镜片;
    具有负焦距的第六透镜,所述第六透镜为双凹型球面镜片;
    具有正焦距的第七透镜,所述第七透镜为双凸型非球面镜片、双凸型球面镜片或弯月型非球面镜片;
    所述第二透镜与所述第三透镜通过光学胶粘合,所述第五透镜与所述第六透镜通过光学胶粘合;其中,所述第四透镜和所述第七透镜中,一个是球面镜片,另一个是非球面镜片。
  2. 根据权利要求1所述的定焦镜头,其特征在于,所述定焦镜头满足关系式:
    0.7<|f 2/f 3|<0.9;
    其中,f 2表示所述第二透镜的焦距,f 3表示所述第三透镜的焦距。
  3. 根据权利要求1所述的定焦镜头,其特征在于,所述定焦镜头满足关系式:
    40<|V 5-V 6|<60;
    其中,V 5表示所述第五透镜的阿贝数,V 6表示所述第六透镜的阿贝数。
  4. 根据权利要求1所述的定焦镜头,其特征在于,所述定焦镜头满足关系式:
    0.6<f 4/f 7<0.8;
    其中,f 4表示所述第四透镜的焦距,f 7表示所述第七透镜的焦距。
  5. 根据权利要求1所述的定焦镜头,其特征在于,所述定焦镜头还包 括光阑,所述光阑设置于所述第四透镜与所述第五透镜之间或者设置于所述第三透镜与所述第四透镜之间。
  6. 根据权利要求5所述的定焦镜头,其特征在于,所述第四透镜为双凸型球面镜片,所述第七透镜为双凸型非球面镜片。
  7. 根据权利要求1所述的定焦镜头,其特征在于,所述定焦镜头满足关系式:
    6.5<T L/(f*tanθ)<7.9;
    其中,T L表示所述定焦镜头的光学总长,f表示所述定焦镜头的焦距,θ表示所述定焦镜头的半视场角。
  8. 根据权利要求1所述的定焦镜头,其特征在于,所述定焦镜头的各个非球面表面形状满足关系式:
    Figure PCTCN2020086776-appb-100001
    其中,z为曲面离开曲面顶点在光轴方向的距离,h为光轴到曲面的距离,c为曲面顶点的曲率,k为圆锥系数,a 4、a 6、a 8、a 10、a 12分别表示四阶、六阶、八阶、十阶、十二阶径向坐标所对应的曲面系数。
  9. 根据权利要求1所述的定焦镜头,其特征在于,所述第一透镜、所述第二透镜、所述第三透镜、所述第四透镜、所述第五透镜、所述第六透镜和所述第七透镜均由玻璃材料构成。
  10. 一种车载摄像系统,其特征在于,包括如权利要求1-9任一项所述的定焦镜头。
PCT/CN2020/086776 2019-04-28 2020-04-24 定焦镜头及车载摄像系统 WO2020221138A1 (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
US17/038,065 US11906814B2 (en) 2019-04-28 2020-09-30 Prime lens module, in-vehicle camera system, and camera module

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201910352535.8A CN110133828B (zh) 2019-04-28 2019-04-28 定焦镜头
CN201910352535.8 2019-04-28

Related Child Applications (1)

Application Number Title Priority Date Filing Date
US17/038,065 Continuation-In-Part US11906814B2 (en) 2019-04-28 2020-09-30 Prime lens module, in-vehicle camera system, and camera module

Publications (1)

Publication Number Publication Date
WO2020221138A1 true WO2020221138A1 (zh) 2020-11-05

Family

ID=67575489

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2020/086776 WO2020221138A1 (zh) 2019-04-28 2020-04-24 定焦镜头及车载摄像系统

Country Status (3)

Country Link
US (1) US11906814B2 (zh)
CN (1) CN110133828B (zh)
WO (1) WO2020221138A1 (zh)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN114063253A (zh) * 2021-11-26 2022-02-18 福建福光股份有限公司 一种零色差光学镜头及其成像方法

Families Citing this family (15)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110133828B (zh) * 2019-04-28 2021-04-06 江西联创电子有限公司 定焦镜头
TWI735013B (zh) * 2019-07-26 2021-08-01 光芒光學股份有限公司 定焦取像鏡頭
JP7335596B2 (ja) * 2019-09-12 2023-08-30 株式会社コシナ 撮像光学系
CN113495342B (zh) * 2020-04-02 2024-04-02 宁波舜宇车载光学技术有限公司 光学镜头及电子设备
TWI764252B (zh) * 2020-08-26 2022-05-11 佳凌科技股份有限公司 光學成像鏡頭
CN114442262B (zh) * 2020-11-02 2023-04-14 信泰光学(深圳)有限公司 成像镜头
CN112485890B (zh) * 2020-11-26 2022-03-04 江西联创电子有限公司 光学成像镜头及成像设备
CN113031212B (zh) * 2020-12-29 2024-01-12 福建福光天瞳光学有限公司 一种4k像素行车记录仪光学系统及其成像方法
CN113419327A (zh) * 2021-05-17 2021-09-21 南京信息工程大学 一种近红外广角镜头
CN113031230B (zh) * 2021-05-25 2021-09-10 江西联创电子有限公司 超广角镜头及成像设备
CN113741012B (zh) * 2021-11-08 2022-02-15 沂普光电(天津)有限公司 一种光学透镜模组
CN114397746B (zh) * 2022-01-22 2023-11-24 福建福光天瞳光学有限公司 一种日夜两用定焦镜头及其成像方法
CN114721125A (zh) 2022-03-29 2022-07-08 诚瑞光学(苏州)有限公司 摄像光学镜头
CN115097616B (zh) * 2022-08-29 2022-12-06 江西联创电子有限公司 光学成像镜头及成像设备
CN117369094B (zh) * 2023-12-07 2024-03-19 联创电子科技股份有限公司 光学镜头

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5265218B2 (ja) * 2008-02-26 2013-08-14 株式会社タムロン ズームレンズ
CN108469667A (zh) * 2018-05-31 2018-08-31 江西联创电子有限公司 广角镜头
CN108490589A (zh) * 2018-06-14 2018-09-04 宁波永新光学股份有限公司 一种定焦光学系统
CN109541780A (zh) * 2018-11-16 2019-03-29 江西联创电子有限公司 光学镜头及成像设备
CN110133828A (zh) * 2019-04-28 2019-08-16 江西联创电子有限公司 定焦镜头

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
ES2314392T3 (es) * 2003-04-17 2009-03-16 Essilor International Compagnie Generale D'optique Composicion adhesiva fotocurable y su utilizacion en el campo optico.
CN103809264A (zh) * 2014-02-22 2014-05-21 中山联合光电科技有限公司 一种光学调焦系统结构
TWI774845B (zh) * 2018-09-21 2022-08-21 先進光電科技股份有限公司 光學成像模組
CN111487744B (zh) * 2019-01-28 2022-04-19 信泰光学(深圳)有限公司 成像镜头

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5265218B2 (ja) * 2008-02-26 2013-08-14 株式会社タムロン ズームレンズ
CN108469667A (zh) * 2018-05-31 2018-08-31 江西联创电子有限公司 广角镜头
CN108490589A (zh) * 2018-06-14 2018-09-04 宁波永新光学股份有限公司 一种定焦光学系统
CN109541780A (zh) * 2018-11-16 2019-03-29 江西联创电子有限公司 光学镜头及成像设备
CN110133828A (zh) * 2019-04-28 2019-08-16 江西联创电子有限公司 定焦镜头

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN114063253A (zh) * 2021-11-26 2022-02-18 福建福光股份有限公司 一种零色差光学镜头及其成像方法

Also Published As

Publication number Publication date
CN110133828B (zh) 2021-04-06
CN110133828A (zh) 2019-08-16
US20210011258A1 (en) 2021-01-14
US11906814B2 (en) 2024-02-20

Similar Documents

Publication Publication Date Title
WO2020221138A1 (zh) 定焦镜头及车载摄像系统
WO2019228127A1 (zh) 广角镜头
CN105527694B (zh) 光学镜头
CN106501921B (zh) 无人机摄像镜头
WO2020024599A1 (zh) 光学镜头
CN110646919B (zh) 鱼眼镜头
CN112882211B (zh) 一种大孔径的四片式光学镜头
CN105700117B (zh) 一种光学成像系统
CN111025593B (zh) 大孔径高清光学镜头
WO2019205875A1 (zh) 光学镜头
WO2022041680A1 (zh) 一种大孔径的三片式透镜光学镜头
WO2019144382A1 (zh) 广角镜头、成像装置和无人机
WO2020221137A1 (zh) 超广角镜头
TWI410671B (zh) 投影鏡頭
CN110858024B (zh) 光学镜头
CN108614344B (zh) 一种车载广角镜头
TW202011070A (zh) 取像鏡頭及其製造方法
CN211014806U (zh) 一种鱼眼镜头
CN108061960B (zh) 一种车载流媒体摄像头的镜头
CN113391432B (zh) 一种大孔径的三片式光学镜头
CN110412744B (zh) 一种新型后视光学系统及其制造方法
CN110333591B (zh) 一种0.95mm车载高清环视光学系统及其成像方法
CN207704119U (zh) 一种车载流媒体摄像头的镜头
CN112666682A (zh) 一种低畸变4k像素光学镜头及其成像方法
CN106483638B (zh) 一种高清广角镜头

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 20798257

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 20798257

Country of ref document: EP

Kind code of ref document: A1