WO2020221137A1 - 超广角镜头 - Google Patents

超广角镜头 Download PDF

Info

Publication number
WO2020221137A1
WO2020221137A1 PCT/CN2020/086775 CN2020086775W WO2020221137A1 WO 2020221137 A1 WO2020221137 A1 WO 2020221137A1 CN 2020086775 W CN2020086775 W CN 2020086775W WO 2020221137 A1 WO2020221137 A1 WO 2020221137A1
Authority
WO
WIPO (PCT)
Prior art keywords
lens
wide
ultra
angle
spherical
Prior art date
Application number
PCT/CN2020/086775
Other languages
English (en)
French (fr)
Inventor
韩建
高博
李伟娜
黄健新
Original Assignee
江西联创电子有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 江西联创电子有限公司 filed Critical 江西联创电子有限公司
Publication of WO2020221137A1 publication Critical patent/WO2020221137A1/zh

Links

Images

Classifications

    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B1/00Optical elements characterised by the material of which they are made; Optical coatings for optical elements
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B13/00Optical objectives specially designed for the purposes specified below
    • G02B13/001Miniaturised objectives for electronic devices, e.g. portable telephones, webcams, PDAs, small digital cameras
    • G02B13/0015Miniaturised objectives for electronic devices, e.g. portable telephones, webcams, PDAs, small digital cameras characterised by the lens design
    • G02B13/002Miniaturised objectives for electronic devices, e.g. portable telephones, webcams, PDAs, small digital cameras characterised by the lens design having at least one aspherical surface
    • G02B13/0045Miniaturised objectives for electronic devices, e.g. portable telephones, webcams, PDAs, small digital cameras characterised by the lens design having at least one aspherical surface having five or more lenses
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B13/00Optical objectives specially designed for the purposes specified below
    • G02B13/06Panoramic objectives; So-called "sky lenses" including panoramic objectives having reflecting surfaces

Definitions

  • This application relates to the field of lenses, and more specifically, to an ultra-wide-angle lens.
  • This application proposes an ultra-wide-angle lens to improve the above-mentioned defects.
  • an embodiment of the present application provides an ultra-wide-angle lens, which includes an aperture and a lens group composed of glass material.
  • the lens group sequentially includes from the object side to the imaging surface: a first lens with negative refractive power,
  • the first lens is a meniscus spherical lens with a concave surface facing the imaging surface; a second lens with a negative refractive power, and the second lens is a meniscus spherical or aspheric lens with a concave surface facing the imaging surface
  • a third lens with negative refractive power the third lens is a meniscus spherical lens with a concave surface facing the object side; a fourth lens with positive refractive power, the fourth lens is a biconvex aspheric Lenses, meniscus aspherical lenses or biconvex spherical lenses; a fifth lens with positive refractive power, the fifth lens being biconvex spherical lenses or meniscus spherical lenses with a concave
  • the third lens includes: a first sub-lens with negative refractive power, the first sub-lens is a biconcave spherical lens; a second sub-lens with positive refractive power, the second sub-lens is A spherical lens with a convex surface facing the imaging surface, and the first sub-lens and the second sub-lens are cemented into the third lens.
  • the fourth lens is a biconvex aspheric lens or a meniscus aspheric lens
  • the fifth lens is a biconvex spherical lens.
  • the second lens is a meniscus aspheric lens
  • the fourth lens is a biconvex spherical lens
  • the fifth lens is a meniscus spherical lens with a concave surface facing the imaging surface.
  • the ultra-wide-angle lens satisfies the relationship:
  • T L represents the total optical length of the ultra-wide-angle lens
  • h represents the image plane height of the ultra-wide-angle lens
  • the ultra-wide-angle lens satisfies the relationship:
  • the ultra-wide-angle lens satisfies the relationship:
  • the ultra-wide-angle lens satisfies the relationship:
  • V 8 represents the Abbe number of the eighth lens
  • V 1 represents the Abbe number of the first lens
  • the ultra-wide-angle lens satisfies the relationship:
  • R 2F represents the radius of curvature of the apex of the object side of the second lens
  • R 2B represents the radius of curvature of the apex of the image side of the second lens
  • R 8F represents the radius of curvature of the apex of the object side of the eighth lens
  • R 8B represents the curvature radius of the vertex of the image side surface of the eighth lens.
  • the ultra-wide-angle lens satisfies the relationship:
  • ⁇ h 0 represents the imaging size under a field angle of 0° to 1°
  • ⁇ h 100 represents the imaging size under a field angle of 99° to 100°.
  • the ultra-wide-angle lens provided by this application adopts all-glass lenses, which has a higher service life and stability, which effectively reduces the difficulty of lens processing and manufacturing costs; adopts all-glass lenses to effectively correct lens aberrations And it has the advantages of small focus drift caused by high and low temperature, which can be adapted to different temperature occasions, and the temperature is well controlled; using all-glass lenses, and through a reasonable combination of the optical power of each lens, it can reach a large field of view above 200° , And achieve the effect of day and night confocal, to ensure that day and night can also shoot high-quality images.
  • FIG. 1 is a schematic structural diagram of an ultra-wide-angle lens provided in Embodiment 1 of the present invention
  • Embodiment 2 is a field curvature curve diagram of the ultra-wide-angle lens provided in Embodiment 1 of the present invention
  • Embodiment 3 is a distortion curve diagram of the ultra-wide-angle lens provided in Embodiment 1 of the present invention.
  • Embodiment 2 of the present invention is a schematic diagram of the structure of an ultra-wide-angle lens provided in Embodiment 2 of the present invention.
  • Fig. 6 is a field curve diagram of an ultra-wide-angle lens provided in Embodiment 2 of the present invention.
  • FIG. 7 is a distortion curve diagram of the ultra-wide-angle lens provided in Embodiment 2 of the present invention.
  • FIG. 8 is an MTF curve in the visible spectrum of the super wide-angle lens provided in Embodiment 2 of the present invention.
  • Embodiment 9 is a schematic structural diagram of an ultra-wide-angle lens provided in Embodiment 3 of the present invention.
  • Embodiment 10 is a field curvature curve diagram of the ultra-wide-angle lens provided in Embodiment 3 of the present invention.
  • FIG. 11 is a distortion curve diagram of the ultra-wide-angle lens provided in Embodiment 3 of the present invention.
  • FIG. 12 is an MTF curve in the visible spectrum of the super wide-angle lens provided in Embodiment 3 of the present invention.
  • first and second are only used for descriptive purposes, and cannot be understood as indicating or implying relative importance or implicitly indicating the number of indicated technical features. Thus, the features defined with “first” and “second” may explicitly or implicitly include one or more of these features. In the description of the present invention, “plurality” means two or more than two, unless specifically defined otherwise.
  • ultra-wide-angle high-definition photography lenses have become more and more diverse.
  • the ultra-wide-angle lenses currently used generally have defects such as large total length, small viewing angle, poor temperature control, low resolution quality, high cost, and non-confocal day and night, which cannot meet the requirements of use.
  • FIG. 1 shows an ultra-wide-angle lens 1 provided by an embodiment of the present application.
  • the ultra-wide-angle lens includes a first lens 11 with negative refractive power and a second lens 11 with negative refractive power from the object side to the imaging surface.
  • Lens 12 third lens 13 with negative refractive power
  • fourth lens 14 with positive refractive power
  • stop 20 fifth lens 15 with positive refractive power
  • sixth lens 16 with negative refractive power
  • the first lens 11 is a meniscus spherical lens with a concave surface facing the imaging surface
  • the second lens 12 is a meniscus spherical lens or a meniscus aspheric lens with a concave surface facing the imaging surface
  • the third lens 13 is a concave surface facing the object side
  • the fourth lens 14 is a biconvex aspheric lens, a meniscus aspheric lens or a biconvex spherical lens
  • the diaphragm 20 is a filter paper with a light hole in the center
  • the fifth lens 15 is a biconvex spherical lens or a meniscus spherical lens with a concave surface facing the imaging surface
  • the sixth lens 16 is a biconcave spherical lens
  • the seventh lens 17 is a biconvex spherical lens
  • the sixth lens 16 and the seventh lens 17 are in In some embodiments, a cemented lens can be formed
  • the filter 30 is either a visible light filter or an infrared light filter.
  • the thickness is 0.3mm
  • the infrared filter is selected, the thickness is 0.21mm.
  • Optional infrared light 850nm filter it is understandable that, in this embodiment, a filter with a thickness of 0.3 mm is taken as an example, but it is understandable that the thickness of the filter 30 is not limited to this, and at the same time, the visible light filter and the infrared light filter The thickness can be the same or different.
  • the third lens 13 may be a combination of two lenses, or may be integrally formed. Specifically, in the embodiment of the present application, the third lens 13 is formed by cementing the first sub-lens 131 and the second sub-lens 132.
  • the first sub-lens 131 has negative refractive power and is a biconcave spherical lens.
  • the second sub-lens 132 has a positive refractive power and is a spherical lens with a convex surface facing the imaging surface.
  • the first sub-lens 131 and the second sub-lens 132 are cemented into the third lens 13.
  • the integrated third lens will be described in subsequent embodiments.
  • the second lens 12 may be a meniscus spherical or aspheric lens with a concave surface facing the imaging surface
  • the fourth lens 14 may be a biconvex aspheric lens, a meniscus aspheric lens or a biconvex spherical lens.
  • the lens 15 may be a biconvex spherical lens or a meniscus spherical lens with a concave surface facing the imaging surface.
  • the second lens 12 is a meniscus spherical lens
  • the fourth lens 14 is a biconvex aspheric lens
  • the fifth lens 15 is a biconvex spherical lens
  • the second lens 12 is a meniscus spherical lens
  • the fourth lens 14 is a meniscus aspheric lens
  • the fifth lens 15 is a biconvex spherical lens
  • the second lens 12 is a meniscus aspheric lens
  • the fourth lens 14 is a biconvex spherical lens
  • the fifth lens 15 is a meniscus spherical lens with a concave surface facing the imaging surface.
  • the second lens 12 is a meniscus spherical lens
  • the fourth lens 14 is a biconvex aspheric lens
  • the fifth lens 15 is a biconvex spherical lens
  • the second and third The combination method will be described in subsequent embodiments.
  • the first lens 11, the second lens 12, the third lens 13, the fifth lens 15, the sixth lens 16, and the seventh lens 17 are glass spherical lenses
  • the fourth lens 14, the eighth lens 18 It is a glass aspherical lens, and the optical center of each lens is on the same straight line.
  • each lens of the ultra-wide-angle lens can be coated with a high-transmittance multilayer film.
  • the function of the diaphragm 20 is to precisely adjust the amount of light passing. In order to take a clear picture in a dark scene, a larger luminous flux lens is required.
  • the diaphragm 20 is set at this position to help control the incident angle of the chief ray to the image surface within 5° ⁇ 3°. Meet the incident requirements of the imaging chip.
  • the diaphragm 20 adopts shading paper with a light-through hole in the center, and the light-shielding paper is used as the diaphragm, which reduces the requirement for the light hole of the lens barrel, guarantees the processing accuracy to the greatest extent, reduces processing errors, and facilitates adjustment.
  • the ultra-wide-angle lens 1 satisfies the relationship (1):
  • T L represents the total optical length of the ultra-wide-angle lens
  • h represents the image height of the ultra-wide-angle lens.
  • the ultra-wide-angle lens 1 satisfies the relationship (2):
  • the optical focus of the first lens 11 is too strong. Although it can achieve the purpose of fast collection and reduce the total optical length, the astigmatism, field curvature, and distortion produced by it are too large and difficult to correct. At the same time, the radius of curvature of the first lens 11 will be reduced, which will increase the difficulty of processing and increase the system error;
  • the refractive power of the first lens 11 is weakened, and the astigmatism, curvature of field, and distortion are relatively reduced, but its refractive power decreases and the total optical length is lengthened.
  • the ultra-wide-angle lens 1 satisfies the relationship (3):
  • the ultra-wide-angle lens Represents the combined power of the lens from the object side to the diaphragm, that is, the combined power of the first lens 11, the second lens 12, the third lens 13, and the fourth lens 14.
  • the ultra-wide-angle lens composed of the first four lenses
  • the front lens group of 1, the front lens group effectively converges the object-plane light with a wide angle of view into the lens without causing large aberrations. when When the value of exceeds the upper limit, the combined optical power of the front lens group is too strong.
  • the total length of the system can be reduced, the spherical aberration generated by it is too large and difficult to correct;
  • the value of exceeds the lower limit the power of the front lens group is weakened, and the spherical aberration is relatively reduced, but its refractive power decreases, which leads to an increase in the total length of the system.
  • the ultra-wide-angle lens 1 satisfies the relationship (4):
  • the optical power of the ultra-wide-angle lens Incates the optical power of the ultra-wide-angle lens, It represents the combined power of the lens between the diaphragm and the imaging surface, that is, the combined power of the fifth lens 15, the sixth lens 16, the seventh lens 17, and the eighth lens 18.
  • the rear four lenses form the rear lens group of the ultra-wide-angle lens 1, and the combined refractive power of the rear lens group corresponds to the front lens group, which effectively cooperates with the front lens group and removes aberrations reasonably.
  • the ultra-wide-angle lens 1 satisfies the relations (5) and (6):
  • V 8 represents the Abbe number of the eighth lens
  • V 1 represents the Abbe number of the first lens.
  • the ultra-wide-angle lens 1 satisfies the relations (7) and (8):
  • R 2F represents the radius of curvature of the apex of the object side of the second lens 12
  • R 2B represents the radius of curvature of the apex of the image side of the second lens 12
  • R 8F represents the radius of curvature of the apex of the object side of the eighth lens 18
  • R 8B represents The radius of curvature of the apex of the image side surface of the eighth lens 18.
  • the above relational expressions (7) and (8) define the shape of the second lens 12 and the last lens, that is, the eighth lens 18.
  • the ultra-wide-angle lens 1 satisfies the relationship (9):
  • ⁇ h 0 represents the imaging size under a field angle of 0° to 1°
  • ⁇ h 100 represents the imaging size under a field angle of 99° to 100°.
  • z is the distance of the curved surface from the apex of the curved surface in the direction of the optical axis
  • c is the curvature of the apex of the curved surface
  • K is the quadric surface coefficient
  • h is the distance from the optical axis to the curved surface
  • B, C, D, and E are fourth-order, Sixth, eighth and tenth order surface coefficients.
  • the cross-sectional structure of the ultra-wide-angle lens can be referred to as shown in FIG. 1.
  • the thickness, radius of curvature, and material selection of each lens in the ultra-wide-angle lens are different. For specific differences, refer to the parameter table of each embodiment.
  • Table 1a and Table 1b show the design parameters and aspheric coefficients of each lens in this embodiment.
  • FIG. 2 and FIG. 3 show the field curvature and distortion curve of the ultra-wide-angle lens in this embodiment. It can be seen from the figure that the field curvature and distortion are well corrected.
  • FIG. 4 shows the MTF curve of the ultra-wide-angle lens in this embodiment. It can be seen from the figure that the lens in this embodiment has good resolution and resolution.
  • the ultra-wide-angle lens in the embodiments of the present application has the following advantages:
  • the ultra-wide-angle lens in the embodiment of the application uses nine glass lenses, which has a high service life and stability, and effectively reduces the difficulty of lens processing and manufacturing costs;
  • the lens in the embodiments of the present application uses a full glass spherical lens, so that the aberration of the lens is effectively corrected and has the advantages of small focus drift caused by high and low temperature, and can be adapted to different temperature occasions with good temperature control;
  • the lens in the embodiment of the application adopts nine all-glass lenses, and through a reasonable combination of the optical power of each lens, a large field of view of 220° or more can be achieved, and the effect of day and night confocal can be achieved, ensuring that during the day It can shoot high-quality images as well as the dark night;
  • the ultra-wide-angle lens in the embodiment of the present application is provided with one of the visible light and infrared light filters behind the eighth lens, which achieves the advantage that visible light and near-infrared light have no focal plane drift;
  • the ultra-wide-angle lens in the embodiments of the present application has the advantages of small distortion and small image distortion of the edge field of view, and the image height ratio of the unit angle of the center field of view to the unit angle of the edge field of view can reach between 1.4-2;
  • Low-dispersion glass material is used to effectively reduce lens chromatic aberration and minimize purple fringing.
  • FIG. 5 is a schematic diagram showing the structure of the ultra-wide-angle lens in the second embodiment of the present application.
  • the lens structure in this embodiment is substantially the same as that in the first embodiment, except for: (1) fifth lens 15 It is a meniscus glass aspheric lens; (2)
  • the filter 21 in this embodiment can be any one of a visible light filter and an infrared light filter, but the visible light filter selected in this embodiment is the same as The thickness of the infrared light filter is the same, and both are 0.3mm.
  • Table 2a and Table 2b show the relevant parameters and aspheric coefficients of each lens of the ultra-wide-angle lens in this embodiment.
  • FIGS. 6 and 7 show the field curvature and distortion curves of the ultra-wide-angle lens in this embodiment. It can be seen from the diagrams that the field curvature and distortion are well corrected.
  • Figures 7 and 8 show the MTF curves of the ultra-wide-angle lens in this embodiment in the visible spectrum and 850nm infrared spectrum. It can be seen from the figure that the lens in this embodiment also has Good resolution and resolution capabilities.
  • FIG. 9 is a schematic diagram showing the structure of the ultra-wide-angle lens in the third embodiment of the application.
  • the lens structure in this embodiment is substantially the same as that in Embodiment 1, except that this embodiment is designed to reduce processing and assembly.
  • the cost of materials, the double cemented lens composed of the first sub-lens 131 and the second sub-lens 132 of embodiment 1 is turned into a single lens, the shape is the same as that of the cemented lens of the first embodiment, and the concave surface faces the object surface.
  • the position of the aspheric surface is moved from the position before the diaphragm to the position of the second lens, and the lens behind the diaphragm is a meniscus lens.
  • the filter 30 in this embodiment can be any one of a visible light filter and an infrared light filter, but the visible light filter and the infrared light filter selected in this embodiment have the same thickness and are both 0.3mm.
  • Table 3a and Table 3b show the relevant parameters and aspheric coefficients of each lens of the ultra-wide-angle lens provided in this embodiment.
  • FIG. 10 and FIG. 11 show the field curvature and distortion curves of the ultra-wide-angle lens in this embodiment. It can be seen from the figures that the field curvature and distortion are well corrected.
  • Figures 11 and 12 show the MTF curves of the ultra-wide-angle lens in this embodiment in the visible spectrum and the 850nm infrared spectrum. It can be seen from the figure that the lens in this embodiment also has Good resolution and resolution capabilities.
  • Table 4 lists the corresponding optical characteristics of the ultra-wide-angle lens in each of the above three embodiments, including the number of apertures of the ultra-wide-angle lens F#, the total optical length TL and the field of view 2 ⁇ , as well as each of the above relations The corresponding relevant value.

Abstract

一种超广角镜头(1),包括由玻璃材质构成的透镜组,透镜组从物侧到成像面依次包括:具有负光焦度的第一透镜(11),第一透镜(11)为凹面朝向成像面的弯月型球面镜片;具有负光焦度的第二透镜(12),第二透镜(12)为弯月型球面或非球面镜片;具有负光焦度的第三透镜(13),第三透镜(13)为凹面朝向物侧的弯月型球面镜片;具有正光焦度的第四透镜(14),第四透镜(14)为双凸型非球面镜片、弯月型非球面镜片或双凸型非球面镜片;具有正光焦度的第五透镜(15),第五透镜(15)为双凸型球面镜片或凹面朝向所述成像面的弯月型球面镜片;具有负光焦度的第六透镜(16),第六透镜(16)为双凹型球面镜片;具有正光焦度的第七透镜(17),第七透镜(17)为双凸型球面镜片;以及具有正光焦度的第八透镜(18),第八透镜(18)为双凸型非球面镜片。采用全玻璃镜片,具有较高的使用寿命和稳定性,有效降低镜头加工难度以及制造成本。

Description

超广角镜头
相关申请的交叉引用
本申请要求于2019年04月28日提交中国专利局的申请号为2019103515939、名称为“超广角镜头”的中国专利申请的优先权,其全部内容通过引用结合在本申请中。
技术领域
本申请涉及镜头领域,更具体地,涉及一种超广角镜头。
背景技术
随着市场环境对超广角镜头要求的不断提高,超广角高清摄影镜头也变得越来越多样化了。
为了满足所有的摄影爱好者使用需求,以满足户外旅游拍摄、潜水探险拍摄、房屋建筑内饰拍摄、同时又可作为会议记录摄像镜头以及监控摄像镜头等,所以迫切地需要研制出一种能很好地校正高阶像差的高品质的广角镜头。
发明内容
本申请提出了一种超广角镜头,以改善上述缺陷。
第一方面,本申请实施例提供了一种超广角镜头,包括光阑和由玻璃材质构成的透镜组,所述透镜组从物侧到成像面依次包括:具有负光焦度的第一透镜,所述第一透镜为凹面朝向所述成像面的弯月型球面镜片;具有负光焦度的第二透镜,所述第二透镜为凹面朝向所述成像面的弯月型球面或非球面镜片;具有负光焦度的第三透镜,所述第三透镜为凹面朝向所述物侧的弯月型球面镜片;具有正光焦度的第四透镜,所述第四透镜为双凸型非球面镜片、弯月型非球面镜片或双凸型球面镜片;具有正光焦度的第五透镜,所述第五透镜为双凸型球面镜片或凹面朝向所述成像面的弯月型球面镜片;具有负光焦度的第六透镜,所述第六透镜为双凹型球面镜片;具有正光焦度的第七透镜,所述第七透镜为双凸型球面镜片;具有正光焦度的第八透镜,所述第八透 镜为双凸型非球面镜片;所述光阑设置于所述第四透镜和所述第五透镜之间。
进一步地,所述第三透镜包括:具有负光焦度的第一子透镜,所述第一子透镜为双凹型球面镜片;具有正光焦度的第二子透镜,所述第二子透镜为凸面朝向所述成像面的球面镜片,且所述第一子透镜与所述第二子透镜胶合成所述第三透镜。
进一步地,若所述第二透镜为弯月型球面镜片,则所述第四透镜为双凸型非球面镜片或弯月型非球面镜片,且所述第五透镜为双凸型球面镜片。
进一步地,若所述第二透镜为弯月型非球面镜片,则所述第四透镜为双凸型球面镜片,且所述第五透镜为凹面朝向所述成像面的弯月型球面镜片。
进一步地,所述超广角镜头满足关系式:
6<T L/(h/2)<9;
其中,T L表示所述超广角镜头的光学总长,h表示所述超广角镜头的像面高度。
进一步地,所述超广角镜头满足关系式:
Figure PCTCN2020086775-appb-000001
其中,
Figure PCTCN2020086775-appb-000002
表示所述第一透镜的光焦度,
Figure PCTCN2020086775-appb-000003
表示所述超广角镜头的光焦度。
进一步地,所述超广角镜头满足关系式:
Figure PCTCN2020086775-appb-000004
Figure PCTCN2020086775-appb-000005
其中,
Figure PCTCN2020086775-appb-000006
表示所述超广角镜头的光焦度,
Figure PCTCN2020086775-appb-000007
表示所述物侧至所述光阑之间的透镜组合的光焦度,
Figure PCTCN2020086775-appb-000008
表示所述光阑至所述成像面之间的透镜组合的光焦度。
进一步地,所述超广角镜头满足关系式:
70<V 8<91;
40<V 8-V 1<70;
其中,V 8表示所述第八透镜的阿贝数,V 1表示所述第一透镜的阿贝数。
进一步地,所述超广角镜头满足关系式:
0.5<(R 2F-R 2B)/R 2F<0.9;
-0.9<R 8B/(R 8F-R 8B)<-0.6;
其中,R 2F表示所述第二透镜的物侧面的顶点曲率半径,R 2B表示所述第二透镜的像侧面的顶点曲率半径,R 8F表示所述第八透镜的物侧面的顶点曲率半径,R 8B表示所述第八透镜的像侧面的顶点曲率半径。
进一步地,所述超广角镜头满足关系式:
0.9<Δh 100/Δh 0<1.1;
其中,Δh 0表示0°到1°视场角下的成像大小,Δh 100表示99°到100°视场角下的成像 大小。
相对于现有技术,本申请提供的超广角镜头,采用全玻璃镜片,具有较高的使用寿命和稳定性,有效降低镜头加工难度以及制造成本;采用全玻璃镜片,使镜头的像差得到有效校正且具有高低温产生焦点漂移量小的优点,可适应不同的温度场合,温度控制好;采用全玻璃镜片,并通过合理搭配各镜片的光焦度组合,可达到200°以上的超大视场角,且达到日夜共焦的效果,确保白天和黑夜同样能够拍摄高成像质量的图像。
本申请实施例的其他特征和优点将在随后的说明书中阐述,并且,部分地从说明书中变得显而易见,或者通过实施本申请实施例而了解。本申请实施例的目的和其他优点可通过在所写的说明书、权利要求书、以及附图中所特别指出的结构来实现和获得。
附图说明
为了更清楚地说明本申请实施例中的技术方案,下面将对实施例描述中所需要使用的附图作简单地介绍,显而易见地,下面描述中的附图仅仅是本申请的一些实施例,对于本领域技术人员来讲,在不付出创造性劳动的前提下,还可以根据这些附图获得其他的附图。
图1是本发明实施例1当中提供的超广角镜头的结构示意图;
图2是本发明实施例1当中提供的超广角镜头的场曲曲线图;
图3是本发明实施例1当中提供的超广角镜头的畸变曲线图;
图4是本发明实施例1当中提供的超广角镜头在可见光谱的MTF曲线;
图5是本发明实施例2当中提供的超广角镜头的结构示意图;
图6是本发明实施例2当中提供的超广角镜头的场曲曲线图;
图7是本发明实施例2当中提供的超广角镜头的畸变曲线图;
图8是本发明实施例2当中提供的超广角镜头在可见光谱的MTF曲线;
图9是本发明实施例3当中提供的超广角镜头的结构示意图;
图10是本发明实施例3当中提供的超广角镜头的场曲曲线图;
图11是本发明实施例3当中提供的超广角镜头的畸变曲线图;
图12是本发明实施例3当中提供的超广角镜头在可见光谱的MTF曲线。
具体实施方式
为了便于理解本发明,下面将参照相关附图对本发明进行更全面的描述。附图中给出了本发明的若干实施例。但是,本发明可以以许多不同的形式来实现,并不限于本文所描述的实施例。相反地,提供这些实施例的目的是使对本发明的公开内容更加透彻全面。
此外,术语“第一”、“第二”仅用于描述目的,而不能理解为指示或暗示相对重要性或者隐含指明所指示的技术特征的数量。由此,限定有“第一”、“第二”的特征可以明示或者隐含地包括一个或者更多个该特征。在本发明的描述中,“多个”的含义是两个或两个以上,除非另有明确具体的限定。
随着市场环境对超广角镜头要求的不断提高,超广角高清摄影镜头也变得越来越多样化了。目前使用的超广角镜头普遍存在总长大、视角偏小、温度控制差、解像品质低、成本高、日夜不共焦等缺陷,无法满足使用要求。
为了满足所有的摄影爱好者使用需求,以满足户外旅游拍摄、潜水探险拍摄、房屋建筑内饰拍摄、同时又可作为会议记录摄像镜头以及监控摄像镜头等,所以迫切地需要研制出一种能很好地校正高阶像差的高品质的广角镜头。
实施例1
请参阅图1,示出了本申请实施例提供的一种超广角镜头1,该超广角镜头从物侧到成像面依次包括具有负光焦度的第一透镜11、具有负光焦度的第二透镜12、具有负光焦度的第三透镜13、具有正光焦度的第四透镜14、光阑20、具有正光焦度的第五透镜15、具有负光焦度的第六透镜16、具有正光焦度的第七透镜17、具有正光焦度的第八透镜18、滤光片30及盖玻璃40。
其中,第一透镜11为凹面朝向成像面的弯月型球面镜片,第二透镜12为凹面朝向成像面的弯月型球面镜片或弯月型非球面镜片,第三透镜13为凹面朝向物侧的弯月型球面镜片,第四透镜14为双凸型非球面镜片、弯月型非球面镜片或双凸型球面镜片,光阑20为中心设有通光孔的滤光纸,第五透镜15为双凸型球面镜片或凹面朝向成像面的弯月型球面镜片,第六透镜16为双凹型球面镜片,第七透镜17为双凸型球面镜片,第六透镜16与第七透镜17在一些实施例中可以组成胶合镜片,第八透镜18为双凸型非球面镜片。滤光片30为可见光滤光片或者红外光滤光片当中的任意一种,当选用可见光滤光片时,厚度选用0.3mm,当选用红外光滤光片时,其厚度选用0.21mm,具体可选用红外光850nm滤光片。可以理解的,在本实施例当中,以厚度为0.3mm的滤光片为例,但可以理解的,滤光片30的厚度不限于此,同时,可见光滤光片与红外光滤光片的厚度可以相同,也可不同。
其中,第三透镜13可以是由两个透镜组合而成,也可以是一体成型。具体地,于本申请实施例中,第三透镜13由第一子透镜131和第二子透镜132胶合而成。第一子透镜131具有负光焦度,且为双凹型球面镜片。第二子透镜132具有正光焦度,且为凸面朝向成像面的球面镜片,第一子透镜131与第二子透镜132胶合成第三透镜13。而针对一体成型的第三透镜将在后续实施例中描述。
另外,第二透镜12可以是凹面朝向成像面的弯月型球面或非球面镜片,第四透镜14可以是双凸型非球面镜片、弯月型非球面镜片或双凸型球面镜片,第五透镜15可以 是双凸型球面镜片或凹面朝向成像面的弯月型球面镜片。在第一透镜11、第三透镜13、第六透镜16、第七透镜17和第八透镜18保持上述实施方式的情况下,第二透镜12、第四透镜14和第五透镜15的选择方式不同,可以使得超广角镜头有多种组合方式:
第一种,第二透镜12为弯月型球面镜片,第四透镜14为双凸型非球面透镜,第五透镜15为双凸型球面镜片;
第二种,第二透镜12为弯月型球面镜片,第四透镜14为弯月型非球面透镜,第五透镜15为双凸型球面镜片;
第三种,第二透镜12为弯月型非球面镜片,第四透镜14为双凸型球面镜片,第五透镜15为凹面朝向成像面的弯月型球面镜片。
于本申请实施例中,第二透镜12为弯月型球面镜片,第四透镜14为双凸型非球面镜片,第五透镜15为双凸型球面镜片,而上述第二种和第三种组合方式,将在后续实施例中描述。于本申请实施例中,第一透镜11、第二透镜12、第三透镜13、第五透镜15、第六透镜16以及第七透镜17为玻璃球面镜片,第四透镜14、第八透镜18为玻璃非球面镜片,且各个透镜的光学中心位于同一直线上,同时超广角镜头的每个透镜上均可以镀设有高透过率的多层膜。
需要说明的是,光阑20的作用在于精确调整通光量。为了在光线较暗的场景下拍到清晰的图片,需要较大的光通量镜头,在此位置设置光阑20,有利于将到达像面的主光线入射角度控制在5°±3°以内,更符合成像芯片的入射要求。同时,光阑20采用中心设有通光孔的遮光纸,利用遮光纸做光阑,对镜筒通光孔要求降低,最大程度地保证了加工的精确性,减少加工误差,便于调整。
此外,还需要指出的是,可见光与红外光分别为昼与夜工作波段,通过滤光片可以抑制非工作波段光透过,通过在第八透镜18后侧设有可见光滤光片或红外光滤光片当中的一个,可以有效减少光学系统的色差和杂光,提升成像效果。
其中,为限制超广角镜头的光学总长,并确保超广角镜头具有足够好的成像品质,超广角镜头1满足关系式(1):
6<T L/(h/2)<9;         (1)
其中,T L表示超广角镜头的光学总长,h表示超广角镜头的像面高度。当T L/(h/2)的值超过上限时,超广角镜头的光学总长过长,或者说如果光学总长缩短的情况下,像高会不足;当T L/(h/2)的值超过下限时,各透镜的光焦度过大,像差矫正困难,超广角镜头的解像能力显著下降。
其中,为在良好的矫正像差的同时提供合适的镜头尺寸,超广角镜头1满足关系式(2):
Figure PCTCN2020086775-appb-000009
其中,
Figure PCTCN2020086775-appb-000010
表示第一透镜11的光焦度,
Figure PCTCN2020086775-appb-000011
表示超广角镜头1的光焦度。
Figure PCTCN2020086775-appb-000012
的值超过上限时,第一透镜11的光焦度过强,虽然能够达到快速收光的目的,使光学总长变小,但其产生的像散、场曲、畸变过大,很难矫正,同时第一透镜11的曲率半径会缩小,提高加工难度,并增大系统误差;当
Figure PCTCN2020086775-appb-000013
的值超过下限时,第一透镜11的光焦度减弱,像散、场曲、畸变相对减小,但其屈光能力下降导致光学总长加长。
其中,为在良好的矫正像差的同时提供合适的镜头尺寸,超广角镜头1满足关系式(3):
Figure PCTCN2020086775-appb-000014
其中,
Figure PCTCN2020086775-appb-000015
表示超广角镜头的光焦度,
Figure PCTCN2020086775-appb-000016
表示物侧至光阑之间的透镜组合的光焦度,即第一透镜11、第二透镜12、第三透镜13以及第四透镜14的组合光焦度,前四个透镜组成的超广角镜头1的前透镜群,该前透镜群有效地将宽视场角的物面光汇聚进入镜头内,且未产生较大像差。当
Figure PCTCN2020086775-appb-000017
的值超过上限时,前透镜群的组合光焦度过强,虽然能够使系统总长变小,但其产生的球差过大,很难矫正;当
Figure PCTCN2020086775-appb-000018
的值超过下限时,该前透镜群光焦度减弱,球差相对减小,但其屈光能力下降导致系统总长加长。
其中,为在良好的矫正像差的同时提供合适的镜头尺寸,超广角镜头1满足关系式(4):
Figure PCTCN2020086775-appb-000019
其中,
Figure PCTCN2020086775-appb-000020
表示超广角镜头的光焦度,
Figure PCTCN2020086775-appb-000021
表示光阑至成像面之间的透镜组合的光焦度,即第五透镜15、第六透镜16、第七透镜17、第八透镜18的组合光焦度。后四个透镜组成该超广角镜头1的后透镜群,该后透镜群的组合光焦度与前透镜群形成呼应,有效的配合前透镜群,并合理去除像差。当
Figure PCTCN2020086775-appb-000022
的值超过上限时,该后透镜群的光焦度过强,能够使系统总长变小,但其产生的球差、像散、场曲过大,很难矫正;当
Figure PCTCN2020086775-appb-000023
的值超过下限时,该后透镜群的光焦度减弱,球差、像散、场曲相对减小,但其屈光能力下降导致系统加长。
其中,为保证材料的合理搭配,同时兼顾校正色差、高低温变化后焦稳定性,超广角镜头1满足关系式(5)和(6):
70<V 8<91;          (5)
40<V 8-V 1<70;       (6)
其中,V 8表示第八透镜的阿贝数,V 1表示第一透镜的阿贝数。当V 8-V 1的值超过下限时,色差校正不足;当V 8-V 1的值超过上限时,则材料选择困难。
其中,为校正场曲和畸变,超广角镜头1满足关系式(7)和(8):
0.5<(R 2F-R 2B)/R 2F<0.9;           (7)
-0.9<R 8B/(R 8F-R 8B)<-0.6;             (8)
其中,R 2F表示第二透镜12的物侧面的顶点曲率半径,R 2B表示第二透镜12的像侧面的顶点曲率半径,R 8F表示第八透镜18的物侧面的顶点曲率半径,R 8B表示第八透镜18的像侧面的顶点曲率半径。上述关系式(7)和(8)定义了第二透镜12与最后一片镜片,即第八透镜18的形状。当上述值超过上限时,超广角镜头的畸变会减小,但场曲矫正困难;当上述值超过下限时,超广角镜头的场曲会减小,但畸变矫正困难。
进一步地,超广角镜头1满足关系式(9):
0.9<Δh 100/Δh 0<1.1;             (9)
其中,Δh 0表示0°到1°视场角下的成像大小,Δh 100表示99°到100°视场角下的成像大小。
满足上述关系式(9),说明超广角镜头1的中心视场单位角度与边缘视场单位角度的像高比例达到0.9~1.1,即超广角镜头1具有理想的成像比例,比一般镜头具有更高的解像能力、更清晰的成像质量。
进一步地,超广角镜头1的非球面镜的表面形状均满足下列方程:
Figure PCTCN2020086775-appb-000024
其中,z为曲面离开曲面顶点在光轴方向的距离,c为曲面顶点的曲率,K为二次曲面系数,h为光轴到曲面的距离,B、C、D和E分别为四阶、六阶、八阶和十阶曲面系数。
在本发明后续提供的所有实施例中,超广角镜头的截面结构都可参阅图1所示,在以下各个实施例中,超广角镜头中的各个透镜的厚度、曲率半径、材料选择部分有所不同,具体不同可参见各实施例的参数表。
请参阅表1a和表1b,所示为本实施例当中各透镜的设计参数与非球面系数。
表1a
Figure PCTCN2020086775-appb-000025
Figure PCTCN2020086775-appb-000026
表1b
Figure PCTCN2020086775-appb-000027
请参阅图2和图3,所示为本实施例当中的超广角镜头的场曲与畸变曲线,由图上可以看出,场曲和畸变都被良好地矫正。请参阅图4,所示为本实施例当中的超广角镜头的MTF曲线,由图上可以看出,本实施例当中的镜头具有良好的分辨率及解像能力。
综上,本申请实施例当中的超广角镜头,其与现有技术相比,具有以下的优点:
(1)本申请实施例中的超广角镜头采用九片玻璃镜片,具有较高的使用寿命和稳定性,有效降低镜头加工难度以及制造成本;
(2)本申请实施例中的镜头使用全玻璃球面镜片,使镜头的像差得到有效校正且具有高低温产生焦点漂移量小的优点,可适应不同的温度场合,温度控制好;
(3)本申请实施例中的镜头采用九片全玻璃镜片,并通过合理搭配各镜片的光焦度组合,可达到220°以上的超大视场角,且达到日夜共焦的效果,确保白天和黑夜同样能够拍摄高成像质量的图像;
(4)本申请实施例中的超广角镜头在第八透镜后设置可见光和红外光滤光片其中的一个,达到了可见光与近红外光不焦面漂移的优点;
(5)本申请实施例中的超广角镜头具有畸变小、边缘视场成像变形小的优点,中心视场单位角度与边缘视场单位角度像高比例可达到1.4-2之间;
(6)采用了低色散玻璃材料,有效减小镜头色差,最大程度地减少紫边现象。
实施例2
请参阅图5,所示为本申请第二实施例当中的超广角镜头结构示意图,本实施例当中的镜头结构与第一实施例当中的大抵相同,不同之处在于:(1)第五透镜15是弯月型玻璃非球面镜片;(2)本实施例当中的滤光片21可以为可见光滤光片与红外光滤光片当中的任意一种,但本实施例选用的可见光滤光片与红外光滤光片的厚度相同,且均为0.3mm。
请参阅表2a和表2b,所示为本实施例当中的超广角镜头的各镜片的相关参数与非球面系数。
表2a
Figure PCTCN2020086775-appb-000028
Figure PCTCN2020086775-appb-000029
表2b
表面序号 K B C D E
S8 -1.95E+01 1.47E-02 -8.40E-04 -4.53E-04 4.18E-04
S9 -1.71E+02 1.24E-02 4.81E-04 1.70E-03 -8.41E-04
S16 -3.95E+00 6.65E-03 -5.61E-04 5.91E-05 -2.58E-06
S17 -8.32E+00 3.05E-03 -5.00E-05 3.68E-05 -3.53E-06
请参阅图6和图7,所示为本实施例当中的超广角镜头的场曲与畸变曲线,由图上可以看出,场曲和畸变都被良好矫正。请参阅图7和图8,所示为本实施例当中的超广角镜头在可见光谱和850nm红外光谱的MTF曲线,由图上可以看出,本实施例当中的镜头在日夜共焦情况下还具有良好的分辨率及解像能力。
实施例3
请参阅图9,所示为本申请第三实施例当中的超广角镜头结构示意图,本实施例当中的镜头结构与实施例1当中的大抵相同,不同之处在于:本实施例为了降低加工、装配、物料的成本,将实施例1的第一子透镜131和第二字透镜132组成的双胶合镜片变成一片镜片,形状与第一实施例的胶合镜片的形状相同,为凹面朝向物面的弯月型球面镜片,为了更好的校正畸变,将非球面的位置从光阑前的位置移动到了第二片的位置,且光阑后的镜片为弯月形镜片。
本实施例当中的滤光片30可以为可见光滤光片与红外光滤光片当中的任意一种,但本实施例选用的可见光滤光片与红外光滤光片的厚度相同,且均为0.3mm。
请参阅表3a和表3b,所示为本实施例提供的超广角镜头的各镜片相关参数与非球面系数。
表3a
Figure PCTCN2020086775-appb-000030
Figure PCTCN2020086775-appb-000031
表3b
表面序号 K B C D E
S3 -5.51E+01 3.47E-04 -7.74E-06 -4.52E-08 2.33E-09
S4 -9.43E-01 1.72E-03 5.29E-04 -3.15E-05 3.81E-06
S15 -3.56E-01 -4.43E-03 -3.79E-04 8.41E-06 -1.03E-05
S16 5.95E+01 -5.20E-04 -3.23E-04 -5.58E-05 9.22E-07
请参阅图10和图11,所示为本实施例当中的超广角镜头的场曲与畸变曲线,由图上可以看出,场曲和畸变都被良好矫正。请参阅图11和图12,所示为本实施例当中的超广角镜头在可见光谱和850nm红外光谱的MTF曲线,由图上可以看出,本实施例当中的镜头在日夜共焦情况下还具有良好的分辨率及解像能力。
请参阅表4,所列为上述三个实施例当中各实施例的超广角镜头对应的光学特性,包括超广角镜头光圈数F#、光学总长T L和视场角2θ,同时还包括上述每个关系式对应的相关数值。
表4
Figure PCTCN2020086775-appb-000032
Figure PCTCN2020086775-appb-000033
以上所述仅为本发明的优选实施例而已,并不用于限制本发明,对于本领域的技术人员来说,本发明可以有各种更改和变化。凡在本发明的精神和原则之内,所作的任何修改、等同替换、改进等,均应包含在本发明的保护范围之内。应注意到:相似的标号和字母在下面的附图中表示类似项,因此,一旦某一项在一个附图中被定义,则在随后的附图中不需要对其进行进一步定义和解释。
尽管上面已经示出和描述了本发明的实施例,可以理解的是,上述实施例是示例性的,不能理解为对本发明的限制,本领域的普通技术人员在本发明的范围内可以对上述实施例进行变化、修改、替换和变型。

Claims (10)

  1. 一种超广角镜头,其特征在于,包括光阑和由玻璃材质构成的透镜组,所述透镜组从物侧到成像面依次包括:
    具有负光焦度的第一透镜,所述第一透镜为凹面朝向所述成像面的弯月型球面镜片;
    具有负光焦度的第二透镜,所述第二透镜为凹面朝向所述成像面的弯月型球面或非球面镜片;
    具有负光焦度的第三透镜,所述第三透镜为凹面朝向所述物侧的弯月型球面镜片;
    具有正光焦度的第四透镜,所述第四透镜为双凸型非球面镜片、弯月型非球面镜片或双凸型球面镜片;
    具有正光焦度的第五透镜,所述第五透镜为双凸型球面镜片或凹面朝向所述成像面的弯月型球面镜片;
    具有负光焦度的第六透镜,所述第六透镜为双凹型球面镜片;
    具有正光焦度的第七透镜,所述第七透镜为双凸型球面镜片;
    具有正光焦度的第八透镜,所述第八透镜为双凸型非球面镜片;
    所述光阑设置于所述第四透镜和所述第五透镜之间。
  2. 根据权利要求1所述的超广角镜头,其特征在于,所述第三透镜包括:
    具有负光焦度的第一子透镜,所述第一子透镜为双凹型球面镜片;
    具有正光焦度的第二子透镜,所述第二子透镜为凸面朝向所述成像面的球面镜片,且所述第一子透镜与所述第二子透镜胶合成所述第三透镜。
  3. 根据权利要求1所述的超广角镜头,其特征在于:
    若所述第二透镜为弯月型球面镜片,则所述第四透镜为双凸型非球面镜片或弯月型非球面镜片,且所述第五透镜为双凸型球面镜片。
  4. 根据权利要求1所述的超广角镜头,其特征在于:
    若所述第二透镜为弯月型非球面镜片,则所述第四透镜为双凸型球面镜片,且所述第五透镜为凹面朝向所述成像面的弯月型球面镜片。
  5. 根据权利要求1-4任一所述的超广角镜头,其特征在于,所述超广角镜头满足关系式:
    6<T L/(h/2)<9;
    其中,T L表示所述超广角镜头的光学总长,h表示所述超广角镜头的像面高度。
  6. 根据权利要求1-4任一所述的超广角镜头,其特征在于,所述超广角镜头满足关系式:
    Figure PCTCN2020086775-appb-100001
    其中,
    Figure PCTCN2020086775-appb-100002
    表示所述第一透镜的光焦度,
    Figure PCTCN2020086775-appb-100003
    表示所述超广角镜头的光焦度。
  7. 根据权利要求1-4任一所述的超广角镜头,其特征在于,所述超广角镜头满足关系式:
    Figure PCTCN2020086775-appb-100004
    Figure PCTCN2020086775-appb-100005
    其中,
    Figure PCTCN2020086775-appb-100006
    表示所述超广角镜头的光焦度,
    Figure PCTCN2020086775-appb-100007
    表示所述物侧至所述光阑之间的透镜组合的光焦度,
    Figure PCTCN2020086775-appb-100008
    表示所述光阑至所述成像面之间的透镜组合的光焦度。
  8. 根据权利要求1-4任一所述的超广角镜头,其特征在于,所述超广角镜头满足关系式:
    70<V 8<91;
    40<V 8-V 1<70;
    其中,V 8表示所述第八透镜的阿贝数,V 1表示所述第一透镜的阿贝数。
  9. 根据权利要求1-4任一所述的超广角镜头,其特征在于,所述超广角镜头满足关系式:
    0.5<(R 2F-R 2B)/R 2F<0.9;
    -0.9<R 8B/(R 8F-R 8B)<-0.6;
    其中,R 2F表示所述第二透镜的物侧面的顶点曲率半径,R 2B表示所述第二透镜的像侧面的顶点曲率半径,R 8F表示所述第八透镜的物侧面的顶点曲率半径,R 8B表示所述第八透镜的像侧面的顶点曲率半径。
  10. 根据权利要求1-4任一所述的超广角镜头,其特征在于,所述超广角镜头满足关系式:
    0.9<Δh 100/Δh 0<1.1;
    其中,Δh 0表示0°到1°视场角下的成像大小,Δh 100表示99°到100°视场角下的成像大小。
PCT/CN2020/086775 2019-04-28 2020-04-24 超广角镜头 WO2020221137A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201910351593.9A CN110133827B (zh) 2019-04-28 2019-04-28 超广角镜头
CN201910351593.9 2019-04-28

Publications (1)

Publication Number Publication Date
WO2020221137A1 true WO2020221137A1 (zh) 2020-11-05

Family

ID=67575565

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2020/086775 WO2020221137A1 (zh) 2019-04-28 2020-04-24 超广角镜头

Country Status (2)

Country Link
CN (1) CN110133827B (zh)
WO (1) WO2020221137A1 (zh)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110133827B (zh) * 2019-04-28 2021-06-08 江西联创电子有限公司 超广角镜头
CN111443462B (zh) * 2020-05-18 2021-09-21 苏州东方克洛托光电技术有限公司 一种投影仪附加镜头
CN112285911B (zh) * 2020-09-29 2022-11-04 江西联创电子有限公司 超广角镜头及成像设备

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102360118A (zh) * 2011-10-27 2012-02-22 昆明晶华光学有限公司 一种超广角目镜光学系统
CN104007535A (zh) * 2014-06-10 2014-08-27 舜宇光学(中山)有限公司 一种新型的超广角镜头
CN106338816A (zh) * 2016-10-19 2017-01-18 佛山华国光学器材有限公司 一种超高清广角变焦光学系统
US20170242220A1 (en) * 2016-02-19 2017-08-24 Samsung Electronics Co., Ltd. Optical lens assembly and electronic apparatus including the same
CN107632379A (zh) * 2017-11-01 2018-01-26 东莞市宇瞳光学科技股份有限公司 小型超大孔径星光级超广角变焦镜头
CN108519660A (zh) * 2018-04-04 2018-09-11 江西联创电子有限公司 超广角镜头
CN110133827A (zh) * 2019-04-28 2019-08-16 江西联创电子有限公司 超广角镜头

Family Cites Families (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5126534A (en) * 1974-08-29 1976-03-04 Asahi Optical Co Ltd Akaruichokokakurenzu
KR100932850B1 (ko) * 2008-12-29 2009-12-21 주식회사 나노포토닉스 어안 렌즈
JP5694835B2 (ja) * 2011-04-13 2015-04-01 日東光学株式会社 投写用レンズシステムおよびプロジェクタ装置
US9835834B2 (en) * 2014-08-04 2017-12-05 Han's Laser Technology Industry Group Co., Ltd. Optical lens
JP6400104B2 (ja) * 2014-08-05 2018-10-03 オリンパス株式会社 結像光学系及びそれを備えた光学装置
JP6309478B2 (ja) * 2015-03-31 2018-04-11 富士フイルム株式会社 撮像レンズおよび撮像装置
JP2017142297A (ja) * 2016-02-08 2017-08-17 富士フイルム株式会社 撮像レンズおよび撮像装置
JP6798270B2 (ja) * 2016-11-21 2020-12-09 セイコーエプソン株式会社 撮像レンズ系、撮像装置及びプロジェクター
CN108241202B (zh) * 2016-12-23 2020-01-17 信泰光学(深圳)有限公司 成像镜头
CN109143534B (zh) * 2017-06-28 2022-02-08 佳能企业股份有限公司 光学镜头与应用该光学镜头的电子装置
CN206906683U (zh) * 2017-07-07 2018-01-19 江西联创电子有限公司 全景摄像镜头
TWI657258B (zh) * 2018-03-02 2019-04-21 大立光電股份有限公司 光學攝影鏡組、取像裝置及電子裝置

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102360118A (zh) * 2011-10-27 2012-02-22 昆明晶华光学有限公司 一种超广角目镜光学系统
CN104007535A (zh) * 2014-06-10 2014-08-27 舜宇光学(中山)有限公司 一种新型的超广角镜头
US20170242220A1 (en) * 2016-02-19 2017-08-24 Samsung Electronics Co., Ltd. Optical lens assembly and electronic apparatus including the same
CN106338816A (zh) * 2016-10-19 2017-01-18 佛山华国光学器材有限公司 一种超高清广角变焦光学系统
CN107632379A (zh) * 2017-11-01 2018-01-26 东莞市宇瞳光学科技股份有限公司 小型超大孔径星光级超广角变焦镜头
CN108519660A (zh) * 2018-04-04 2018-09-11 江西联创电子有限公司 超广角镜头
CN110133827A (zh) * 2019-04-28 2019-08-16 江西联创电子有限公司 超广角镜头

Also Published As

Publication number Publication date
CN110133827B (zh) 2021-06-08
CN110133827A (zh) 2019-08-16

Similar Documents

Publication Publication Date Title
WO2020221138A1 (zh) 定焦镜头及车载摄像系统
CN108519660B (zh) 超广角镜头
WO2021047222A1 (zh) 广角成像镜头
WO2020221137A1 (zh) 超广角镜头
CN110646919B (zh) 鱼眼镜头
CN106501921B (zh) 无人机摄像镜头
CN206906683U (zh) 全景摄像镜头
WO2019137055A1 (zh) 摄像透镜系统
CN108388004A (zh) 一种星光级高清日夜共焦光学镜头
CN110456482B (zh) 超广角可交换式定焦镜头
CN107422463B (zh) 一种长焦超高清日夜共焦光学系统
WO2021258889A1 (zh) 广角镜头及全景摄像系统
WO2019242324A1 (zh) 定焦镜头及成像系统
CN105700117A (zh) 一种光学成像系统
CN207164347U (zh) 一种大光圈超高清日夜共焦光学系统
CN109164557B (zh) 广角镜头及全景摄像系统
CN112285911B (zh) 超广角镜头及成像设备
CN107807439B (zh) 远摄可交换式定焦镜头
CN107450168B (zh) 中远摄可交换式定焦镜头
CN109116525A (zh) 一种无热化鱼眼高清的光学镜头
CN209765144U (zh) 一种数字航空测绘彩色相机远心光学系统
CN207704119U (zh) 一种车载流媒体摄像头的镜头
CN112285884A (zh) 1.14mm超广角光学系统及其成像方法
CN110361855B (zh) 远摄微距可交换式定焦镜头
CN220438637U (zh) Tof镜头

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 20798370

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 20798370

Country of ref document: EP

Kind code of ref document: A1