WO2019137055A1 - 摄像透镜系统 - Google Patents

摄像透镜系统 Download PDF

Info

Publication number
WO2019137055A1
WO2019137055A1 PCT/CN2018/110437 CN2018110437W WO2019137055A1 WO 2019137055 A1 WO2019137055 A1 WO 2019137055A1 CN 2018110437 W CN2018110437 W CN 2018110437W WO 2019137055 A1 WO2019137055 A1 WO 2019137055A1
Authority
WO
WIPO (PCT)
Prior art keywords
lens
lens system
image pickup
focal length
effective focal
Prior art date
Application number
PCT/CN2018/110437
Other languages
English (en)
French (fr)
Inventor
李明
吕赛锋
张凯元
Original Assignee
浙江舜宇光学有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 浙江舜宇光学有限公司 filed Critical 浙江舜宇光学有限公司
Publication of WO2019137055A1 publication Critical patent/WO2019137055A1/zh

Links

Images

Classifications

    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B13/00Optical objectives specially designed for the purposes specified below
    • G02B13/001Miniaturised objectives for electronic devices, e.g. portable telephones, webcams, PDAs, small digital cameras
    • G02B13/0015Miniaturised objectives for electronic devices, e.g. portable telephones, webcams, PDAs, small digital cameras characterised by the lens design
    • G02B13/002Miniaturised objectives for electronic devices, e.g. portable telephones, webcams, PDAs, small digital cameras characterised by the lens design having at least one aspherical surface
    • G02B13/0045Miniaturised objectives for electronic devices, e.g. portable telephones, webcams, PDAs, small digital cameras characterised by the lens design having at least one aspherical surface having five or more lenses

Definitions

  • the present application relates to an image pickup lens system, and more particularly to an image pickup lens system including a periscope lens.
  • the present application proposes an image pickup lens system including a periscope lens which is applicable to a portable electronic product and has a large screen ratio.
  • an image pickup lens system which may include a lens barrel, which may have a first portion that receives and transmits incident light from an object side and emits light to an image side
  • the second part wherein the first part may be provided with a first lens, the second part is perpendicular to the first part, and the second part is provided with a lens group having at least three lenses, and the radial width D of the first part may be smaller than 0.5 mm; and the length of the first portion elongating from the second portion is H, and satisfies 0.8 mm ⁇ H ⁇ 2.0 mm.
  • the reflective element is disposed at a location where the first portion and the second portion intersect such that incident light received from the first portion is transmitted to the second portion.
  • the first lens has a negative power.
  • the lens closest to the image side of the at least three subsequent lenses has a negative power.
  • the lens of the at least three subsequent lenses closest to the reflective element ie, the second lens
  • the lens of the at least three subsequent lenses closest to the reflective element has a positive power, the effective focal length value f2 of which is satisfied with the effective focal length value f of the imaging lens system: 0 ⁇ f/f2 ⁇ 1.
  • the dispersion coefficient V1 of the first lens and the dispersion coefficient V2 of the second lens may satisfy:
  • the effective focal length value f of the imaging lens system and the effective focal length value fi of the lens closest to the image side may satisfy: -1.0 ⁇ f / fi ⁇ -0.5.
  • the effective focal length value f of the imaging lens system and the effective focal length value f1 of the first lens may satisfy: -1.0 ⁇ f / f1 ⁇ 0.
  • an image pickup lens system which may include a lens barrel, which may have a first portion that receives and transmits incident light from an object side and emits light to a second portion of the image side, wherein a first lens may be disposed in the first portion, the first portion has a radial width D of less than 0.5 mm; the second portion is perpendicular to the first portion, and the second portion is provided with at least three lenses The lens group; wherein the lens closest to the image side of the at least three subsequent lenses may have a negative power.
  • the first lens can have a negative power.
  • the length of the first portion epitaxially ejected from the second portion is H and satisfies 0.8 mm ⁇ H ⁇ 2.0 mm.
  • the reflective element is disposed at a location where the first portion and the second portion intersect such that incident light received from the first portion is transmitted to the second portion.
  • the lens of the at least three subsequent lenses closest to the reflective element ie, the second lens
  • the lens of the at least three subsequent lenses closest to the reflective element may have a positive power, the effective focal length value f2 of which is satisfied with the effective focal length value f of the imaging lens system: 0 ⁇ f/f2 ⁇ 1.
  • the dispersion coefficient V1 of the first lens and the dispersion coefficient V2 of the second lens may satisfy:
  • the effective focal length value f of the imaging lens system and the effective focal length value fi of the lens closest to the image side may satisfy: -1.0 ⁇ f / fi ⁇ -0.5.
  • the effective focal length value f of the imaging lens system and the effective focal length value f1 of the first lens may satisfy: -1.0 ⁇ f / f1 ⁇ 0.
  • At least one advantageous effect such as miniaturization, small chromatic aberration, small aberration, and portable electronic product suitable for a large screen ratio can be obtained.
  • FIG. 1 is a schematic structural view showing an image pickup lens system according to the present application.
  • FIG. 2 is a schematic structural view showing a lens group in an image pickup lens system according to Embodiment 1 of the present application;
  • 3A to 3D respectively show an axial chromatic aberration curve, an astigmatism curve, a distortion curve, and a magnification chromatic aberration curve of the image pickup lens system of Embodiment 1;
  • FIG. 4 is a schematic structural view showing a lens group in an image pickup lens system according to Embodiment 2 of the present application;
  • 5A to 5D respectively show an axial chromatic aberration curve, an astigmatism curve, a distortion curve, and a magnification chromatic aberration curve of the image pickup lens system of Embodiment 2;
  • FIG. 6 is a schematic structural view showing a lens group in an image pickup lens system according to Embodiment 3 of the present application.
  • 7A to 7D respectively show an axial chromatic aberration curve, an astigmatism curve, a distortion curve, and a magnification chromatic aberration curve of the image pickup lens system of Embodiment 3;
  • FIG. 8 is a schematic structural view showing a lens group in an image pickup lens system according to Embodiment 4 of the present application.
  • 9A to 9D respectively show the axial chromatic aberration curve, the astigmatism curve, the distortion curve and the magnification chromatic aberration curve of the imaging lens system of Embodiment 4.
  • first, second, etc. are used to distinguish one feature from another, and do not represent any limitation of the feature.
  • first lens discussed below may also be referred to as a second lens without departing from the teachings of the present application.
  • the thickness, size, and shape of the lens have been somewhat exaggerated for convenience of explanation.
  • the spherical or aspherical shape shown in the drawings is shown by way of example. That is, the shape of the spherical surface or the aspherical surface is not limited to the spherical or aspherical shape shown in the drawings.
  • the drawings are only examples and are not to scale.
  • the paraxial region refers to a region near the optical axis (ie, the center line of the light beam or the axis of symmetry of the optical system). If the surface of the lens is convex and the position of the convex surface is not defined, it indicates that the surface of the lens is convex at least in the paraxial region; if the surface of the lens is concave and the position of the concave surface is not defined, it indicates that the surface of the lens is at least in the paraxial region. Concave.
  • the surface closest to the object in each lens is referred to as the object side
  • the surface of each lens closest to the image plane is referred to as the image side.
  • An image pickup lens system includes a lens barrel that may have a first portion that receives and transmits incident light from an object side and a second portion that emits light to an image side.
  • the first portion may be provided with a first lens
  • the second portion is perpendicular to the first portion
  • a lens group having at least three lenses is disposed in the second portion.
  • the end of the first portion has a small size, for example, the end radial width D may be less than 0.5 mm; and the length of the first portion elongating from the second portion is H, and satisfies 0.8 mm ⁇ H ⁇ 2.0 mm.
  • the camera lens system that satisfies the above conditions can ensure the miniaturization of the lens, and the height of the lens barrel becomes smaller, which is more suitable for a portable electronic product (for example, a mobile phone) that occupies a large screen, and can realize a clear camera function.
  • the first lens in the image pickup lens system is disposed at the object side end, that is, in the first portion of the lens barrel.
  • a reflective element is disposed at a location where the first portion and the second portion intersect such that incident light received from the first portion is transmitted to the second portion.
  • a lens group having at least three lenses is disposed in the second portion. Light is incident on the first lens from the object side and then reflected by the reflective element, and then passes through the lens group having at least three lenses to the image side.
  • the first lens may have a negative power.
  • the lens closest to the image side of at least one of the subsequent lenses may have a negative power.
  • Such an arrangement is advantageous for increasing the field of view and balancing the power of the entire imaging lens system, so that the edge positioning size is large.
  • the lens closest to the reflective element (ie, the second lens) of at least three subsequent lenses may have positive power.
  • the effective focal length value f of the imaging lens system and the effective focal length value f2 of the second lens may satisfy: 0 ⁇ f/f2 ⁇ 1, and more specifically, further satisfy 0.47 ⁇ f/f2 ⁇ 0.72.
  • the dispersion coefficient V1 of the first lens and the dispersion coefficient V2 of the second lens may satisfy:
  • the effective focal length value f of the imaging lens system and the effective focal length value fi of the lens closest to the image side may satisfy: -1.0 ⁇ f / fi ⁇ -0.5, and more specifically, further satisfactorily - 0.80 ⁇ f / fi ⁇ -0.67.
  • the effective focal length value f of the imaging lens system and the effective focal length value f1 of the first lens may satisfy: -1.0 ⁇ f / f1 ⁇ 0, and more specifically, further satisfy -0.73 ⁇ f / F1 ⁇ -0.59. With such an arrangement, it is ensured that the first lens and the reflective element have good positioning characteristics while having good imaging effects and processing characteristics.
  • the image pickup lens system may further be provided with an aperture STO for limiting the light beam, adjusting the amount of incoming light, and improving the image quality.
  • the appropriate lens material can effectively ensure the miniaturization of the imaging lens system and improve the image quality, so that the camera lens system is more conducive to production processing and can be applied to portable electronic products. .
  • At least one of the mirror faces of each lens is an aspherical mirror.
  • Aspherical lenses are characterized by a continuous change in curvature from the center of the lens to the periphery. Unlike a spherical lens having a constant curvature from the center of the lens to the periphery, the aspherical lens has better curvature radius characteristics, has the advantages of improving distortion and improving astigmatic aberration, and can make the field of view larger and more realistic. With an aspherical lens, the aberrations that occur during imaging can be eliminated as much as possible, improving image quality. In addition, the use of aspherical lenses can also effectively reduce the number of lenses in an optical system.
  • FIG. 1 shows a schematic structural view of an image pickup lens system according to the present application.
  • the image pickup lens system includes a lens barrel of a small end portion.
  • the lens barrel may have a first portion A1 that receives and transmits incident light from the object side and a second portion A2 that emits light to the image side.
  • the first portion A1 may be provided with a first lens
  • the second portion A2 is perpendicular to the first portion A1
  • the second portion A2 is provided with a lens group having at least three lenses.
  • the lens barrel has a substantially cylindrical structure, and the left end portion of the first portion A1 of the lens barrel is higher than the right end portion where the second portion A2 is located, the length of the lens barrel is L1, and the height of the lens barrel (ie, the maximum Height) is H2.
  • the end portion of the first portion A1 has a small size, for example, the end radial width D may be less than 0.5 mm; and the length of the first portion A1 which is epitaxially extended from the second portion A2 is H, and satisfies 0.8 mm ⁇ H ⁇ 2.0 mm.
  • the total length of the lens of the image pickup lens system is L2
  • the total length L2 of the lens can be obtained by adding the length L1 of the lens barrel to the on-axis distance of the image from the center of the right end of the lens barrel to the image side of the image side.
  • FIG. 2 is a view showing the configuration of a lens group in an image pickup lens system according to Embodiment 1 of the present application.
  • the lens group includes a first lens E1, a reflection element P, a second lens E2, a third lens E3, a fourth lens E4, and a fifth lens E5 which are sequentially arranged from the object side to the image side.
  • the first lens E1 is disposed in the first portion A1;
  • the reflective member P is disposed at a position where the first portion A1 and the second portion A2 intersect; and the second lens E2 to the fifth lens E5 are disposed in the second portion A2.
  • the optical axis of the first lens E1 is perpendicular to the optical axes of the second lens E2 to the fifth lens E5.
  • the first lens E1 has an object side surface S1 and an image side surface S2; the second lens E2 has an object side surface S3 and an image side surface S4; the third lens E3 has an object side surface S5 and an image side surface S6; and the fourth lens E4 has an object side surface S7 and The image side surface S8; and the fifth lens E5 have an object side surface S9 and an image side surface S10.
  • the reflective element P is disposed between the first lens E1 and the second lens E2 or adjacent to the first lens E1 and the second lens E2.
  • the reflective element P disposed as described above reflects light incident from the first lens E1 to the second lens E2.
  • the first lens E1 has a negative refractive power
  • the object side surface S1 is a concave surface
  • the image side surface S2 is a concave surface
  • the second lens E2 has a positive power
  • the object side surface S3 is a convex surface
  • the image side surface S4 is a convex surface.
  • the third lens E3 has a negative refractive power
  • the object side surface S5 is a convex surface
  • the image side surface S6 is a concave surface
  • the fourth lens E4 has a positive refractive power
  • the object side surface S7 is a convex surface
  • the image side surface S8 is a convex surface
  • the fifth lens E5 has a negative refractive power
  • its object side surface S9 is a convex surface
  • its image side surface S10 is a concave surface.
  • an aperture STO provided between the reflection member P and the second lens E2 for limiting the light beam is further included.
  • the image pickup lens system according to Embodiment 1 may include a filter E6 having an object side surface S11 and an image side surface S12, and the filter sheet E6 may be used to correct color deviation. Light from the object sequentially passes through the respective surfaces S1 to S12 and is finally imaged on the imaging plane S13.
  • Table 1 shows the surface type, radius of curvature, thickness, material, and conical coefficient of each lens and/or reflective element of the image pickup lens system of Example 1.
  • each lens is taken as an example.
  • the miniaturization of the lens of the imaging lens can be ensured; at the same time, various aberrations are corrected, and the resolution of the lens is improved.
  • Imaging quality is defined by the following formula:
  • x is the distance of the aspherical surface at height h from the optical axis, and the distance from the aspherical vertex is high;
  • k is the conic coefficient (given in Table 1 above);
  • Ai is the correction coefficient of the a-th order of the aspheric surface.
  • Table 2 below shows the higher order coefficient A 4 , A 6 , A 8 , A 10 , A 12 , A 14 , A 16 , A 18 and A 20 which can be used for each of the mirror faces S1 - S10 in Embodiment 1.
  • Table 3 below shows the effective focal length values f1 to f5 of the lenses of Embodiment 1, the effective focal length value f of the imaging lens system, and half of the maximum angle of view of the lens of the image pickup lens system HFOV.
  • the dispersion coefficient V1 of the first lens and the dispersion coefficient V2 of the second lens satisfy
  • 0.200;
  • Fig. 3A shows an axial chromatic aberration curve of the image pickup lens system of Embodiment 1, which indicates that the light beams of different wavelengths are deviated from the focus point after passing through the image pickup lens system.
  • Fig. 3B shows an astigmatism curve of the image pickup lens system of Embodiment 1, which shows meridional field curvature and sagittal image plane curvature.
  • Fig. 3C shows a distortion curve of the image pickup lens system of Embodiment 1, which shows the distortion magnitude value in the case of different viewing angles.
  • Fig. 3D shows a magnification chromatic aberration curve of the image pickup lens system of Embodiment 1, which shows deviations of different image heights on the image plane after the light rays pass through the image pickup lens system.
  • the image pickup lens system given in Embodiment 1 can achieve good image quality.
  • a lens group in the image pickup lens system according to Embodiment 2 of the present application is described below with reference to FIGS. 4 to 5D.
  • the lens barrel structure in the image pickup lens system described in the second embodiment and the following embodiments is the same as that of the lens barrel in the first embodiment except for the size of the lens barrel.
  • the lens group in the image pickup lens system described in each embodiment is the same as the lens group described in Embodiment 1. For the sake of brevity, a description similar to that of Embodiment 1 will be omitted.
  • the lens group includes a first lens E1, a reflection element P, a second lens E2, a third lens E3, and a fourth lens E4 which are sequentially arranged from the object side to the image side.
  • the first lens E1 is disposed in the first portion A1;
  • the reflective member P is disposed at a position where the first portion A1 and the second portion A2 intersect;
  • the second lens E2 to the fourth lens E4 are disposed in the second portion A2.
  • the optical axis of the first lens E1 is perpendicular to the optical axes of the second lens E2 to the fourth lens E4.
  • the first lens E1 has the object side surface S1 and the image side surface S2; the second lens E2 has the object side surface S3 and the image side surface S4; the third lens E3 has the object side surface S5 and the image side surface S6; and the fourth lens E4 has the object side surface S7 And like the side S8.
  • the reflective element P is disposed between the first lens E1 and the second lens E2 or adjacent to the first lens E1 and the second lens E2.
  • the reflective element P disposed as described above reflects light incident from the first lens E1 to the second lens E2.
  • the first lens E1 has a negative refractive power
  • the object side surface S1 is a concave surface
  • the image side surface S2 is a convex surface
  • the second lens E2 has a positive power
  • the object side surface S3 is a convex surface
  • the image side surface S4 is a convex surface.
  • the third lens E3 has a positive refractive power
  • the object side surface S5 is a convex surface
  • the image side surface S6 is a convex surface
  • the fourth lens E4 has a negative refractive power
  • the object side surface S7 is a concave surface
  • the image side surface S8 is a concave surface.
  • an aperture STO provided between the second lens E2 and the third lens E3 for limiting the light beam is further included.
  • the image pickup lens system according to Embodiment 2 may include a filter E5 having an object side surface S9 and an image side surface S10, and the filter sheet E5 may be used to correct color deviation. Light from the object sequentially passes through the respective surfaces S1 to S10 and is finally imaged on the imaging plane S11.
  • Table 4 shows the surface type, radius of curvature, thickness, material, and conical coefficient of each lens and/or reflective element of the image pickup lens system of Example 2.
  • Table 5 shows the high order term coefficients of the respective aspherical mirrors in Example 2.
  • Table 6 shows the effective focal length values f1 to f4 of the lenses of Embodiment 2, the effective focal length value f of the imaging lens system, and half of the maximum angle of view of the lens of the image pickup lens system HFOV.
  • each aspherical surface type can be defined by the formula (1) given in the above embodiment 1.
  • the dispersion coefficient V1 of the first lens and the dispersion coefficient V2 of the second lens satisfy
  • 0.200;
  • Fig. 5A shows an axial chromatic aberration curve of the image pickup lens system of Embodiment 2, which shows that the light beams of different wavelengths are deviated from the focus point after passing through the image pickup lens system.
  • Fig. 5B shows an astigmatism curve of the image pickup lens system of Embodiment 2, which shows meridional field curvature and sagittal image plane curvature.
  • Fig. 5C shows a distortion curve of the image pickup lens system of Embodiment 2, which shows the distortion magnitude value in the case of different viewing angles.
  • Fig. 5D shows a magnification chromatic aberration curve of the image pickup lens system of Embodiment 2, which shows deviations of different image heights on the image plane after the light rays pass through the image pickup lens system.
  • the image pickup lens system given in Embodiment 2 can achieve good image quality.
  • a lens group in the image pickup lens system according to Embodiment 3 of the present application is described below with reference to FIGS. 6 to 7D.
  • Fig. 6 is a view showing the configuration of a lens group in an image pickup lens system according to Embodiment 3 of the present application.
  • the lens group includes a first lens E1, a reflective element P, a second lens E2, a third lens E3, and a fourth lens E4 which are sequentially arranged from the object side to the image side.
  • the first lens E1 is disposed in the first portion A1;
  • the reflective member P is disposed at a position where the first portion A1 and the second portion A2 intersect; and the second lens E2 to the fourth lens E4 are disposed in the second portion A2.
  • the optical axis of the first lens E1 is perpendicular to the optical axes of the second lens E2 to the fourth lens E4.
  • the first lens E1 has the object side surface S1 and the image side surface S2; the second lens E2 has the object side surface S3 and the image side surface S4; the third lens E3 has the object side surface S5 and the image side surface S6; and the fourth lens E4 has the object side surface S7 And like the side S8.
  • the reflective element P is disposed between the first lens E1 and the second lens E2 or adjacent to the first lens E1 and the second lens E2.
  • the reflective element P disposed as described above reflects light incident from the first lens E1 to the second lens E2.
  • the first lens E1 has a negative refractive power
  • the object side surface S1 is a concave surface
  • the image side surface S2 is a concave surface
  • the second lens E2 has a positive power
  • the object side surface S3 is a convex surface
  • the image side surface S4 is a convex surface.
  • the third lens E3 has a positive refractive power
  • the object side surface S5 is a convex surface
  • the image side surface S6 is a convex surface
  • the fourth lens E4 has a negative refractive power
  • the object side surface S7 is a convex surface
  • the image side surface S8 is a concave surface.
  • an aperture STO provided between the reflection member P and the second lens E2 for limiting the light beam is further included.
  • the image pickup lens system according to Embodiment 3 may include a filter E5 having an object side surface S9 and an image side surface S10, and the filter sheet E5 may be used to correct color deviation. Light from the object sequentially passes through the respective surfaces S1 to S10 and is finally imaged on the imaging plane S11.
  • Table 7 shows the surface type, radius of curvature, thickness, material, and conical coefficient of each lens and/or reflective element of the image pickup lens system of Example 3.
  • Table 8 shows the high order term coefficients of the respective aspherical mirrors in the third embodiment.
  • Table 9 shows the effective focal length values f1 to f4 of the lenses of Embodiment 3, the effective focal length value f of the image pickup lens system, and half of the maximum angle of view of the lens of the image pickup lens system HFOV.
  • each aspherical surface type can be defined by the formula (1) given in the above embodiment 1.
  • the dispersion coefficient V1 of the first lens and the dispersion coefficient V2 of the second lens satisfy
  • 0;
  • Fig. 7A shows an axial chromatic aberration curve of the image pickup lens system of Embodiment 3, which shows that the light beams of different wavelengths are deviated from the focus point after passing through the image pickup lens system.
  • Fig. 7B shows an astigmatism curve of the image pickup lens system of Embodiment 3, which shows meridional field curvature and sagittal image plane curvature.
  • Fig. 7C shows a distortion curve of the image pickup lens system of Embodiment 3, which shows the distortion magnitude value in the case of different viewing angles.
  • Fig. 7D shows a magnification chromatic aberration curve of the image pickup lens system of Embodiment 3, which shows deviations of different image heights on the image plane after the light rays pass through the image pickup lens system. 7A to 7D, the image pickup lens system given in Embodiment 3 can achieve good image quality.
  • a lens group in the image pickup lens system according to Embodiment 4 of the present application is described below with reference to FIGS. 8 to 9D.
  • Fig. 8 is a view showing the configuration of a lens group in an image pickup lens system according to Embodiment 4 of the present application.
  • the lens group includes a first lens E1, a reflective element P, a second lens E2, a third lens E3, and a fourth lens E4 which are sequentially arranged from the object side to the image side.
  • the first lens E1 is disposed in the first portion A1;
  • the reflective member P is disposed at a position where the first portion A1 and the second portion A2 intersect; and the second lens E2 to the fourth lens E4 are disposed in the second portion A2.
  • the optical axis of the first lens E1 is perpendicular to the optical axes of the second lens E2 to the fourth lens E4.
  • the first lens E1 has the object side surface S1 and the image side surface S2; the second lens E2 has the object side surface S3 and the image side surface S4; the third lens E3 has the object side surface S5 and the image side surface S6; and the fourth lens E4 has the object side surface S7 And like the side S8.
  • the reflective element P is disposed between the first lens E1 and the second lens E2 or adjacent to the first lens E1 and the second lens E2.
  • the reflective element P disposed as described above reflects light incident from the first lens E1 to the second lens E2.
  • the first lens E1 has a negative refractive power
  • the object side surface S1 is a concave surface
  • the image side surface S2 is a concave surface
  • the second lens E2 has a positive power
  • the object side surface S3 is a convex surface
  • the image side surface S4 is a convex surface.
  • the third lens E3 has a positive refractive power
  • the object side surface S5 is a convex surface
  • the image side surface S6 is a convex surface
  • the fourth lens E4 has a negative refractive power
  • the object side surface S7 is a concave surface
  • the image side surface S8 is a convex surface.
  • an aperture STO provided between the second lens E2 and the third lens E3 for limiting the light beam is further included.
  • the image pickup lens system according to Embodiment 4 may include a filter E5 having an object side surface S9 and an image side surface S10, and the filter sheet E5 may be used to correct color deviation. Light from the object sequentially passes through the respective surfaces S1 to S10 and is finally imaged on the imaging plane S11.
  • Table 10 shows the surface type, radius of curvature, thickness, material, and conical coefficient of each lens and/or reflective member of the image pickup lens system of Example 4.
  • Table 11 shows the high order term coefficients of the respective aspherical mirrors in Example 4.
  • Table 12 shows the effective focal length values f1 to f4 of the lenses of Embodiment 4, the effective focal length value f of the imaging lens system, and half of the maximum angle of view of the lens of the image pickup lens system HFOV.
  • each aspherical surface type can be defined by the formula (1) given in the above embodiment 1.
  • the dispersion coefficient V1 of the first lens and the dispersion coefficient V2 of the second lens satisfy
  • 12;
  • Fig. 9A shows an axial chromatic aberration curve of the image pickup lens system of Embodiment 4, which shows that the light beams of different wavelengths are deviated from the focus point after passing through the image pickup lens system.
  • Fig. 9B shows an astigmatism curve of the image pickup lens system of Embodiment 4, which shows meridional field curvature and sagittal image plane curvature.
  • Fig. 9C shows a distortion curve of the image pickup lens system of Embodiment 4, which shows the distortion magnitude value in the case of different viewing angles.
  • Fig. 9D shows a magnification chromatic aberration curve of the image pickup lens system of Embodiment 4, which shows deviations of different image heights on the image plane after the light rays pass through the image pickup lens system.
  • the imaging lens system given in Embodiment 4 can achieve good imaging quality.
  • Embodiments 1 to 4 respectively satisfy the relationships shown in Table 13 below.

Abstract

一种摄像透镜系统,包括镜筒,镜筒具有从物侧接收并传送入射光的第一部分(A1)以及用于将光出射到像侧的第二部分(A2),其中,第一部分中设置有第一透镜(E1),第二部分垂直于第一部分,并且第二部分中设置有具有至少三个透镜的透镜组,第一部分的径向宽度D小于0.5mm;以及第一部分从第二部分外延出的长度为H,并且满足0.8mm<H<2.0mm。这种摄像透镜系统,具有小型化,适用于便携式电子产品的特性。

Description

摄像透镜系统
相关申请的交叉引用
本申请要求于2018年01月10日提交于中国国家知识产权局(CNIPA)的、专利申请号为201810024180.5的中国专利申请的优先权和权益,该中国专利申请通过引用整体并入本文。
技术领域
本申请涉及一种摄像透镜系统,更具体地,涉及一种包括潜望式镜头的摄像透镜系统。
背景技术
近年来,便携式电子产品发展迅速,如手机、平板电脑等已充斥着人们的生活,适用于便携式电子产品上的摄像镜头也随之蓬勃发展。随着科学技术的进步,市场对便携式电子产品的外观美感要求越来越高,对应的摄像镜头也需满足其要求,如何提升大屏占比成了主要努力的方向。
因此,本申请提出一种可适用于便携式电子产品,具有大屏占比的包括潜望式镜头的摄像透镜系统。
发明内容
本申请提供的技术方案至少部分地解决了以上所述的技术问题。
根据本申请的一个方面,提供了这样一种摄像透镜系统,该摄像透镜系统可包括镜筒,该镜筒可具有从物侧接收并传送入射光的第一部分以及用于将光出射到像侧的第二部分,其中,第一部分中可设置有第一透镜,第二部分垂直于第一部分,并且第二部分中设置有具有至少三个透镜的透镜组,第一部分的径向宽度D可小于0.5mm;以及第一部分从第二部分外延出的长度为H,并且满足0.8mm<H<2.0mm。
在一个实施方式中,第一部分和第二部分交叉的位置处设置有反射元件,从而使得从第一部分接收的入射光传向第二部分。
在一个实施方式中,第一透镜具有负光焦度。
在一个实施方式中,至少三个后续透镜中最靠近像侧的透镜具有负光焦度。
在一个实施方式中,至少三个后续透镜中的最靠近反射元件的透镜,即,第二透镜,具有正光焦度,其有效焦距值f2与摄像透镜系统的有效焦距值f之间满足:0<f/f2<1。
在一个实施方式中,第一透镜的色散系数V1与第二透镜的色散系数V2之间可满足:|V1-V2|<15。
在一个实施方式中,摄像透镜系统的有效焦距值f与最靠近像侧的透镜的有效焦距值fi之间可满足:-1.0<f/fi<-0.5。
在一个实施方式中,摄像透镜系统的有效焦距值f与第一透镜的有效焦距值f1之间可满足:-1.0<f/f1<0。
根据本申请的另一个方面,还提供了这样一种摄像透镜系统,该摄像透镜系统可包括镜筒,该镜筒可具有从物侧接收并传送入射光的第一部分以及用于将光出射到像侧的第二部分,其中,第一部分中可设置有第一透镜,第一部分的径向宽度D小于0.5mm;第二部分垂直于第一部分,并且第二部分中设置有具有至少三个透镜的透镜组;其中,至少三个后续透镜中最靠近像侧的透镜可具有负光焦度。
在一个实施方式中,第一透镜可具有负光焦度。
在一个实施方式中,第一部分从第二部分外延出的长度为H,并且满足0.8mm<H<2.0mm。
在一个实施方式中,第一部分和第二部分交叉的位置处设置有反射元件,从而使得从第一部分接收的入射光传向第二部分。
在一个实施方式中,至少三个后续透镜中的最靠近反射元件的透镜,即,第二透镜,可具有正光焦度,其有效焦距值f2与摄像透镜系统的有效焦距值f之间满足:0<f/f2<1。
在一个实施方式中,第一透镜的色散系数V1与第二透镜的色散 系数V2之间可满足:|V1-V2|<15。
在一个实施方式中,摄像透镜系统的有效焦距值f与最靠近像侧的透镜的有效焦距值fi之间可满足:-1.0<f/fi<-0.5。
在一个实施方式中,摄像透镜系统的有效焦距值f与第一透镜的有效焦距值f1之间可满足:-1.0<f/f1<0。
通过上述配置的摄像透镜系统,可具有小型化、小色差、小像差、适用于大屏占比的便携式电子产品等至少一个有益效果。
附图说明
通过参照以下附图所作出的详细描述,本申请的实施方式的以上及其它优点将变得显而易见,附图旨在示出本申请的示例性实施方式而非对其进行限制。在附图中:
图1为示出根据本申请的摄像透镜系统的结构示意图;
图2为示出根据本申请实施例1的摄像透镜系统中的透镜组的结构示意图;
图3A至图3D分别示出了实施例1的摄像透镜系统的轴上色差曲线、象散曲线、畸变曲线以及倍率色差曲线;
图4为示出根据本申请实施例2的摄像透镜系统中的透镜组的结构示意图;
图5A至图5D分别示出了实施例2的摄像透镜系统的轴上色差曲线、象散曲线、畸变曲线以及倍率色差曲线;
图6为示出根据本申请实施例3的摄像透镜系统中的透镜组的结构示意图;
图7A至图7D分别示出了实施例3的摄像透镜系统的轴上色差曲线、象散曲线、畸变曲线以及倍率色差曲线;
图8为示出根据本申请实施例4的摄像透镜系统中的透镜组的结构示意图;以及
图9A至图9D分别示出了实施例4的摄像透镜系统的轴上色差曲线、象散曲线、畸变曲线以及倍率色差曲线.
具体实施方式
为了更好地理解本申请,将参考附图对本申请的各个方面做出更详细的说明。应理解,这些详细说明只是对本申请的示例性实施方式的描述,而非以任何方式限制本申请的范围。在说明书全文中,相同的附图标号指代相同的元件。表述“和/或”包括相关联的所列项目中的一个或多个的任何和全部组合。
应注意,在本说明书中,第一、第二等的表述仅用于将一个特征与另一个特征区分开来,而不表示对特征的任何限制。因此,在不背离本申请的教导的情况下,下文中讨论的第一透镜也可被称作第二透镜。
在附图中,为了便于说明,已稍微夸大了透镜的厚度、尺寸和形状。具体来讲,附图中所示的球面或非球面的形状通过示例的方式示出。即,球面或非球面的形状不限于附图中示出的球面或非球面的形状。附图仅为示例而并非严格按比例绘制。
还应理解的是,用语“包括”、“包括有”、“具有”、“包含”和/或“包含有”,当在本说明书中使用时表示存在所陈述的特征、整体、步骤、操作、元件和/或部件,但不排除存在或附加有一个或多个其它特征、整体、步骤、操作、元件、部件和/或它们的组合。此外,当诸如“...中的至少一个”的表述出现在所列特征的列表之后时,修饰整个所列特征,而不是修饰列表中的单独元件。此外,当描述本申请的实施方式时,使用“可以”表示“本申请的一个或多个实施方式”。并且,用语“示例性的”旨在指代示例或举例说明。
如在本文中使用的,用语“基本上”、“大约”以及类似的用语用作表近似的用语,而不用作表程度的用语,并且旨在说明将由本领域普通技术人员认识到的、测量值或计算值中的固有偏差。
除非另外限定,否则本文中使用的所有用语(包括技术用语和科学用语)均具有与本申请所属领域普通技术人员的通常理解相同的含义。还应理解的是,用语(例如在常用词典中定义的用语)应被解释为具有与它们在相关技术的上下文中的含义一致的含义,并且将不被以理想化 或过度正式意义解释,除非本文中明确如此限定。
此外,近轴区域是指光轴(即,光束的中心线或该光学系统的对称轴)附近的区域。若透镜表面为凸面且未界定该凸面位置时,则表示该透镜表面至少于近轴区域为凸面;若透镜表面为凹面且未界定该凹面位置时,则表示该透镜表面至少于近轴区域为凹面。在本文中,每个透镜中最靠近物体的表面称为物侧面,每个透镜中最靠近成像面的表面称为像侧面。
需要说明的是,在不冲突的情况下,本申请中的实施例及实施例中的特征可以相互组合。下面将参考附图并结合实施例来详细说明本申请。
以下结合具体实施例进一步描述本申请。
根据本申请示例性实施方式的摄像透镜系统包括镜筒,该镜筒可具有从物侧接收并传送入射光的第一部分以及用于将光出射到像侧的第二部分。其中,第一部分中可设置有第一透镜,第二部分垂直于第一部分,并且第二部分中设置有具有至少三个透镜的透镜组。第一部分的端部具有小尺寸,例如,端部径向宽度D可小于0.5mm;以及第一部分从第二部分外延出的长度为H,并且满足0.8mm<H<2.0mm。满足上述条件的摄像透镜系统,可保证镜头的小型化,并且镜筒的高度尺寸变小,更加适用于大屏占比的便携式电子产品(例如,手机),并且可实现清晰的拍照摄像功能。
摄像透镜系统中的第一透镜设置在物侧端,即镜筒的第一部分中。在第一部分和第二部分交叉的位置处设置有反射元件,从而使得从第一部分接收的入射光传向第二部分。具有至少三个透镜的透镜组设置在第二部分中。光从物侧入射到第一透镜上,然后再经反射元件反射,之后依次经过具有至少三个透镜的透镜组到达像侧。
在示例性实施方式中,第一透镜可具有负光焦度。至少一个后续透镜中最靠近像侧的透镜可具有负光焦度。这样的设置,有利于增大视场,平衡整个摄像透镜系统的光焦度,使得边缘定位尺寸大。在示例性实施方式中,至少三个后续透镜中的最靠近反射元件的透镜(即,第二透镜)可具有正光焦度。通过合理的控制各个透镜的正负光焦度 分配,可有效地平衡控制系统的低阶像差,使得摄像透镜系统获得较优的成像品质。
在示例性实施方式中,摄像透镜系统的有效焦距值f与第二透镜的有效焦距值f2之间可满足:0<f/f2<1,更具体地,进一步可满足0.47≤f/f2≤0.72。通过光焦度的合理分配,可有利于矫正像差,保证镜头的小型化。
在示例性实施方式中,第一透镜的色散系数V1与第二透镜的色散系数V2之间可满足:|V1-V2|<15,更具体地,进一步可满足|V1-V2|≤12。通过不同材料之间的相互配合,可有利于矫正镜头色差,提高成像质量。
在示例性实施方式中,摄像透镜系统的有效焦距值f与最靠近像侧的透镜的有效焦距值fi之间可满足:-1.0<f/fi<-0.5,更具体地,进一步可满足-0.80≤f/fi≤-0.67。通过这样的设置,可有效矫正摄像透镜系统的象散、畸变等像差,同时有利于匹配芯片的主光线角度。
在示例性实施方式中,摄像透镜系统的有效焦距值f与第一透镜的有效焦距值f1之间可满足:-1.0<f/f1<0,更具体地,进一步可满足-0.73≤f/f1≤-0.59。通过这样的设置,可保证第一透镜与反射元件有良好的定位特征,同时具有良好的成像效果以及加工特性。
在示例性实施方式中,摄像透镜系统还可设置有用于限制光束的光圈STO,调节进光量,提高成像品质。
通过合理分配各透镜的光焦度和面型,采用合适的透镜材料,可有效保证摄像透镜系统的小型化并提高成像质量,从而使得摄像透镜系统更有利于生产加工并且可适用于便携式电子产品。
在本申请的实施方式中,各透镜的镜面中的至少一个为非球面镜面。非球面透镜的特点是:曲率从透镜中心到周边是连续变化的。与从透镜中心到周边有恒定曲率的球面透镜不同,非球面透镜具有更佳的曲率半径特性,具有改善歪曲像差及改善像散像差的优点,能够使得视野变得更大而真实。采用非球面透镜后,能够尽可能地消除在成像的时候出现的像差,从而改善成像质量。另外,非球面透镜的使用还可有效地减少光学系统中的透镜个数。
然而,本领域的技术人员应当理解,在未背离本申请要求保护的技术方案的情况下,可改变构成镜头的透镜数量,来获得本说明书中描述的各个结果和优点。
下面参照附图进一步描述可适用于上述实施方式的摄像透镜系统的具体实施例。
实施例1
以下参照图1至图3D描述根据本申请实施例1的摄像透镜系统。
图1示出了根据本申请的摄像透镜系统的结构示意图。如图1所示,摄像透镜系统包括端部小尺寸的镜筒。该镜筒可具有从物侧接收并传送入射光的第一部分A1以及用于将光出射到像侧的第二部分A2。其中,第一部分A1中可设置有第一透镜,第二部分A2垂直于第一部分A1,并且第二部分A2中设置有具有至少三个透镜的透镜组。
如图1所示,镜筒为大致圆筒形结构,镜筒的第一部分A1所在的左端部高于第二部分A2所在的右端部,镜筒的长度为L1,镜筒高度(即,最大高度)为H2。第一部分A1所在的端部具有小尺寸,例如,端部径向宽度D可小于0.5mm;以及第一部分A1从第二部分A2外延出的长度为H,并且满足0.8mm<H<2.0mm。另外,摄像透镜系统的镜头总长为L2,镜头总长L2可由镜筒长度L1和镜筒的右端部中心到像侧的成像面的轴上距离相加得到。
图2示出了根据本申请实施例1的摄像透镜系统中的透镜组的结构示意图。如图2所示,该透镜组包括从物侧至成像侧依序排列的第一透镜E1、反射元件P、第二透镜E2、第三透镜E3、第四透镜E4和第五透镜E5。其中,第一透镜E1设置在第一部分A1中;反射元件P设置在第一部分A1与第二部分A2相交的位置处;第二透镜E2至第五透镜E5设置在第二部分A2中。第一透镜E1的光轴与第二透镜E2至第五透镜E5的光轴垂直。其中,第一透镜E1具有物侧面S1和像侧面S2;第二透镜E2具有物侧面S3和像侧面S4;第三透镜E3具有物侧面S5和像侧面S6;第四透镜E4具有物侧面S7和像侧面S8; 以及第五透镜E5具有物侧面S9和像侧面S10。其中,反射元件P设置在第一透镜E1与第二透镜E2之间或与第一透镜E1和第二透镜E2相邻地设置。如上所述设置的反射元件P将从第一透镜E1入射的光反射到第二透镜E2。
在该实施例中,第一透镜E1具有负光焦度,其物侧面S1为凹面,像侧面S2为凹面;第二透镜E2具有正光焦度,其物侧面S3为凸面,像侧面S4为凸面;第三透镜E3具有负光焦度,其物侧面S5为凸面,像侧面S6为凹面;第四透镜E4具有正光焦度,其物侧面S7为凸面,像侧面S8为凸面;以及第五透镜E5具有负光焦度,其物侧面S9为凸面,其像侧面S10为凹面。
在本实施例的摄像透镜系统中,还包括用于限制光束的、设置在反射构件P与第二透镜E2之间的光圈STO。根据实施例1的摄像透镜系统可包括具有物侧面S11和像侧面S12的滤光片E6,滤光片E6可用于校正色彩偏差。来自物体的光依序穿过各表面S1至S12并最终成像在成像面S13上。
表1示出了实施例1的摄像透镜系统的各透镜和/或反射元件的表面类型、曲率半径、厚度、材料及圆锥系数。
表1
Figure PCTCN2018110437-appb-000001
Figure PCTCN2018110437-appb-000002
本实施例采用了五片透镜作为示例,通过合理分配各镜片的焦距与面型并选择合适的材料,可保证摄像透镜镜头的小型化;同时校正各类像差,提高了镜头的解析度与成像品质。各非球面面型x由以下公式限定:
Figure PCTCN2018110437-appb-000003
其中,x为非球面沿光轴方向在高度为h的位置时,距非球面顶点的距离矢高;c为非球面的近轴曲率,c=1/R(即,近轴曲率c为上表1中曲率半径R的倒数);k为圆锥系数(在上表1中已给出);Ai是非球面第i-th阶的修正系数。下表2示出了实施例1中可用于各镜面S1-S10的高次项系数A 4、A 6、A 8、A 10、A 12、A 14、A 16、A 18和A 20
表2
面号 A4 A6 A8 A10 A12 A14 A16 A18 A20
S1 6.1238E-02 -2.0386E-02 7.5454E-03 -2.4654E-03 6.0787E-04 -1.0013E-04 9.6463E-06 -4.0827E-07 0.0000E+00
S2 6.4457E-02 -1.1428E-02 1.8183E-03 1.1503E-04 -1.4739E-04 2.8086E-05 -2.1683E-06 6.0772E-08 0.0000E+00
S3 7.5352E-02 -4.7949E-02 2.8996E-02 -1.6477E-02 4.5824E-03 -6.5619E-04 0.0000E+00 0.0000E+00 0.0000E+00
S4 4.0300E-02 -3.3485E-02 2.6444E-02 -2.4495E-02 9.4471E-03 -1.3284E-03 0.0000E+00 0.0000E+00 0.0000E+00
S5 1.8183E-02 -1.0204E-01 1.1711E-01 -7.9679E-02 2.9131E-02 -4.1816E-03 0.0000E+00 0.0000E+00 0.0000E+00
S6 1.2560E-02 -7.3075E-02 6.6337E-02 -3.5794E-02 1.2822E-02 -1.9507E-03 0.0000E+00 0.0000E+00 0.0000E+00
S7 1.7672E-02 4.3966E-02 -9.4956E-02 8.2233E-02 -3.7641E-02 9.4093E-03 -1.2110E-03 6.2806E-05 0.0000E+00
S8 1.9104E-02 -6.0165E-02 5.5085E-02 -3.5335E-02 1.4566E-02 -3.7131E-03 5.2026E-04 -2.9576E-05 0.0000E+00
S9 1.2290E-02 -1.0790E-01 6.5487E-02 -2.6900E-02 7.7267E-03 -1.4130E-03 1.5350E-04 -8.9978E-06 2.1898E-07
S10 5.6070E-03 -6.8716E-02 4.9953E-02 -1.8154E-02 3.8387E-03 -4.8777E-04 3.6613E-05 -1.4948E-06 2.5582E-08
下表3示出了实施例1的各透镜的有效焦距值f1至f5、摄像透镜系统的有效焦距值f以及摄像透镜系统的镜头的最大视场角的一半HFOV。
表3
参数 f1(mm) f2(mm) f3(mm) f4(mm) f5(mm) f(mm) HFOV(°)
数值 -5.58 5.31 -15.01 2.98 -4.97 3.32 35.1
结合上表1、表3,在该实施例中:
摄像透镜系统的有效焦距值f与第二透镜的有效焦距值f2之间满足f/f2=0.63;
第一透镜的色散系数V1与第二透镜的色散系数V2之间满足|V1-V2|=0.200;
摄像透镜系统的有效焦距值f与最靠近成像面的第五透镜的有效焦距值f5之间满足f/f5=-0.67;以及
摄像透镜系统的有效焦距值f与第一透镜的有效焦距值f1之间足f/f1=-0.59。
图3A示出了实施例1的摄像透镜系统的轴上色差曲线,其表示不同波长的光线经由摄像透镜系统后的会聚焦点偏离。图3B示出了实施例1的摄像透镜系统的象散曲线,其表示子午像面弯曲和弧矢像面弯曲。图3C示出了实施例1的摄像透镜系统的畸变曲线,其表示不同视角情况下的畸变大小值。图3D示出了实施例1的摄像透镜系统的倍率色差曲线,其表示光线经由摄像透镜系统后在成像面上的不同的像高的偏差。根据图3A至图3D可知,实施例1所给出的摄像透镜系统能够实现良好的成像品质。
实施例2
以下参照图4至图5D描述了根据本申请实施例2的摄像透镜系统中的透镜组。除了镜筒的尺寸之外,在本实施例2及以下各实施例中描述的摄像透镜系统中的镜筒结构与实施例1中的镜筒结构相同。除了摄像透镜系统的各镜片的参数之外,例如除了各镜片的曲率半径、厚度、圆锥系数、有效焦距、轴上间距、各镜面的高次项系数等之外,在本实施例2及以下各实施例中描述的摄像透镜系统中的透镜组与实施例1中描述的透镜组的布置结构相同。为简洁起见,将省略部分与实施例1相似的描述。
图4示出了根据本申请实施例2的摄像透镜系统中的透镜组的结构示意图。如图4所示,该透镜组包括从物侧至成像侧依序排列的第一透镜E1、反射元件P、第二透镜E2、第三透镜E3和第四透镜E4。其中,第一透镜E1设置在第一部分A1中;反射元件P设置在第一部分A1与第二部分A2相交的位置处;第二透镜E2至第四透镜E4设置在第二部分A2中。第一透镜E1的光轴与第二透镜E2至第四透镜E4的光轴垂直。其中,第一透镜E1具有物侧面S1和像侧面S2;第二透镜E2具有物侧面S3和像侧面S4;第三透镜E3具有物侧面S5和像侧面S6;以及第四透镜E4具有物侧面S7和像侧面S8。其中,反射元件P设置在第一透镜E1与第二透镜E2之间或与第一透镜E1和第二透镜E2相邻地设置。如上所述设置的反射元件P将从第一透镜E1入射的光反射到第二透镜E2。
在该实施例中,第一透镜E1具有负光焦度,其物侧面S1为凹面,像侧面S2为凸面;第二透镜E2具有正光焦度,其物侧面S3为凸面,像侧面S4为凸面;第三透镜E3具有正光焦度,其物侧面S5为凸面,像侧面S6为凸面;以及第四透镜E4具有负光焦度,其物侧面S7为凹面,像侧面S8为凹面。
在本实施例的摄像透镜系统中,还包括用于限制光束的、设置在第二透镜E2与第三透镜E3之间的光圈STO。根据实施例2的摄像透镜系统可包括具有物侧面S9和像侧面S10的滤光片E5,滤光片E5可用于校正色彩偏差。来自物体的光依序穿过各表面S1至S10并最终成像在成像面S11上。
下表4示出了实施例2的摄像透镜系统的各透镜和/或反射元件的表面类型、曲率半径、厚度、材料及圆锥系数。表5示出了实施例2中各非球面镜面的高次项系数。表6示出了实施例2的各透镜的有效焦距值f1至f4、摄像透镜系统的有效焦距值f以及摄像透镜系统的镜头的最大视场角的一半HFOV。其中,各非球面面型可由上述实施例1中给出的公式(1)限定。
表4
Figure PCTCN2018110437-appb-000004
表5
面号 A4 A6 A8 A10 A12 A14 A16 A18 A20
S1 6.4225E-02 -1.5133E-02 4.5572E-03 -2.7671E-04 -4.1524E-04 1.8561E-04 -2.7997E-05 1.0470E-06 0.0000E+00
S2 5.3067E-02 -5.9828E-03 -7.9306E-03 1.3665E-02 -1.1964E-02 5.3489E-03 -9.4838E-04 0.0000E+00 0.0000E+00
S3 4.6908E-02 -1.8953E-02 1.1005E-02 -2.4295E-03 -7.0350E-04 9.0601E-04 0.0000E+00 0.0000E+00 0.0000E+00
S4 -5.0188E-02 1.0168E-01 -1.3609E-01 1.1921E-01 -5.7167E-02 1.2622E-02 0.0000E+00 0.0000E+00 0.0000E+00
S5 4.3023E-02 -5.2795E-02 9.4436E-02 -1.7824E-01 2.1699E-01 -1.5349E-01 5.8541E-02 -9.3243E-03 0.0000E+00
S6 5.7641E-02 -4.2536E-02 2.8189E-02 -4.0014E-02 -2.4285E-02 6.6066E-02 -3.8703E-02 7.6508E-03 0.0000E+00
S7 7.3127E-02 -9.8454E-02 2.3375E-01 -6.7217E-01 1.1773E+00 -1.3754E+00 1.0205E+00 -4.2956E-01 7.7768E-02
S8 9.4320E-02 -1.0461E-01 4.2341E-01 -1.1152E+00 1.8257E+00 -1.8793E+00 1.1750E+00 -4.0665E-01 5.9707E-02
表6
参数 f1(mm) f2(mm) f3(mm) f4(mm) f(mm) HFOV(°)
数值 -4.51 6.17 2.92 -3.62 2.88 33.5
结合上表4、表6,在该实施例中:
摄像透镜系统的有效焦距值f与第二透镜的有效焦距值f2之间满足f/f2=0.47;
第一透镜的色散系数V1与第二透镜的色散系数V2之间满足|V1-V2|=0.200;
摄像透镜系统的有效焦距值f与最靠近成像面的第四透镜的有效焦距值f4之间满足f/f4=-0.8;以及
摄像透镜系统的有效焦距值f与第一透镜的有效焦距值f1之间足f/f1=-0.64。
图5A示出了实施例2的摄像透镜系统的轴上色差曲线,其表示不同波长的光线经由摄像透镜系统后的会聚焦点偏离。图5B示出了实施例2的摄像透镜系统的象散曲线,其表示子午像面弯曲和弧矢像面弯曲。图5C示出了实施例2的摄像透镜系统的畸变曲线,其表示不同视角情况下的畸变大小值。图5D示出了实施例2的摄像透镜系统的倍率色差曲线,其表示光线经由摄像透镜系统后在成像面上的不同的像高的偏差。根据图5A至图5D可知,实施例2所给出的摄像透镜系统能够实现良好的成像品质。
实施例3
以下参照图6至图7D描述了根据本申请实施例3的摄像透镜系统中的透镜组。
图6示出了根据本申请实施例3的摄像透镜系统中的透镜组的结构示意图。如图6所示,该透镜组包括从物侧至成像侧依序排列的第一透镜E1、反射元件P、第二透镜E2、第三透镜E3和第四透镜E4。其中,第一透镜E1设置在第一部分A1中;反射元件P设置在第一部分A1与第二部分A2相交的位置处;第二透镜E2至第四透镜E4设置在第二部分A2中。第一透镜E1的光轴与第二透镜E2至第四透镜E4的光轴垂直。其中,第一透镜E1具有物侧面S1和像侧面S2;第二透镜E2具有物侧面S3和像侧面S4;第三透镜E3具有物侧面S5和像侧面S6;以及第四透镜E4具有物侧面S7和像侧面S8。其中,反射元件P设置在第一透镜E1与第二透镜E2之间或与第一透镜E1和第二透镜E2相邻地设置。如上所述设置的反射元件P将从第一透镜E1入射的光反射到第二透镜E2。
在该实施例中,第一透镜E1具有负光焦度,其物侧面S1为凹面,像侧面S2为凹面;第二透镜E2具有正光焦度,其物侧面S3为凸面,像侧面S4为凸面;第三透镜E3具有正光焦度,其物侧面S5为凸面, 像侧面S6为凸面;以及第四透镜E4具有负光焦度,其物侧面S7为凸面,像侧面S8为凹面。
在本实施例的摄像透镜系统中,还包括用于限制光束的、设置在反射构件P与第二透镜E2之间的光圈STO。根据实施例3的摄像透镜系统可包括具有物侧面S9和像侧面S10的滤光片E5,滤光片E5可用于校正色彩偏差。来自物体的光依序穿过各表面S1至S10并最终成像在成像面S11上。
下表7示出了实施例3的摄像透镜系统的各透镜和/或反射元件的表面类型、曲率半径、厚度、材料及圆锥系数。表8示出了实施例3中各非球面镜面的高次项系数。表9示出了实施例3的各透镜的有效焦距值f1至f4、摄像透镜系统的有效焦距值f以及摄像透镜系统的镜头的最大视场角的一半HFOV。其中,各非球面面型可由上述实施例1中给出的公式(1)限定。
表7
Figure PCTCN2018110437-appb-000005
表8
面号 A4 A6 A8 A10 A12 A14 A16 A18 A20
S1 2.9858E-01 -2.7660E-01 2.3686E-01 -1.6203E-01 8.0716E-02 -2.6633E-02 5.1268E-03 -4.3234E-04 0.0000E+00
S2 2.7988E-01 -1.8531E-01 9.9538E-02 -3.4730E-02 7.1239E-03 -8.2916E-04 5.0783E-05 -1.2728E-06 0.0000E+00
S3 4.1773E-02 -1.7580E-02 -1.2864E-03 3.5430E-03 -2.5372E-03 5.4761E-04 0.0000E+00 0.0000E+00 0.0000E+00
S4 -8.2137E-03 3.1658E-02 -4.2159E-02 2.4713E-02 -8.3970E-03 1.2599E-03 0.0000E+00 0.0000E+00 0.0000E+00
S5 7.5956E-02 -1.9044E-02 -1.1841E-02 1.4354E-02 -7.5484E-03 2.0251E-03 -2.5900E-04 1.2383E-05 0.0000E+00
S6 6.9063E-02 -1.5794E-01 1.5989E-01 -1.1113E-01 5.2312E-02 -1.5498E-02 2.5263E-03 -1.6966E-04 0.0000E+00
S7 1.1805E-04 -9.3857E-02 7.3484E-02 -3.0585E-02 7.5722E-03 -1.1361E-03 1.0118E-04 -4.9202E-06 1.0064E-07
S8 1.1958E-01 -1.0060E-01 9.3368E-02 -5.2379E-02 1.6208E-02 -2.8590E-03 2.8807E-04 -1.5466E-05 3.4363E-07
表9
参数 f1(mm) f2(mm) f3(mm) f4(mm) f(mm) HFOV(°)
数值 -3.82 3.90 3.61 -3.79 2.80 34.0
结合上表7、表9,在该实施例中:
摄像透镜系统的有效焦距值f与第二透镜的有效焦距值f2之间满足f/f2=0.72;
第一透镜的色散系数V1与第二透镜的色散系数V2之间满足|V1-V2|=0;
摄像透镜系统的有效焦距值f与最靠近成像面的第四透镜的有效焦距值f4之间满足f/f4=-0.74;以及
摄像透镜系统的有效焦距值f与第一透镜的有效焦距值f1之间足f/f1=-0.73。
图7A示出了实施例3的摄像透镜系统的轴上色差曲线,其表示不同波长的光线经由摄像透镜系统后的会聚焦点偏离。图7B示出了实施例3的摄像透镜系统的象散曲线,其表示子午像面弯曲和弧矢像面弯曲。图7C示出了实施例3的摄像透镜系统的畸变曲线,其表示不同视角情况下的畸变大小值。图7D示出了实施例3的摄像透镜系统的倍率色差曲线,其表示光线经由摄像透镜系统后在成像面上的不同的像高的偏差。根据图7A至图7D可知,实施例3所给出的摄像透镜系统能够实现良好的成像品质。
实施例4
以下参照图8至图9D描述了根据本申请实施例4的摄像透镜系统中的透镜组。
图8示出了根据本申请实施例4的摄像透镜系统中的透镜组的结 构示意图。如图8所示,该透镜组包括从物侧至成像侧依序排列的第一透镜E1、反射元件P、第二透镜E2、第三透镜E3和第四透镜E4。其中,第一透镜E1设置在第一部分A1中;反射元件P设置在第一部分A1与第二部分A2相交的位置处;第二透镜E2至第四透镜E4设置在第二部分A2中。第一透镜E1的光轴与第二透镜E2至第四透镜E4的光轴垂直。其中,第一透镜E1具有物侧面S1和像侧面S2;第二透镜E2具有物侧面S3和像侧面S4;第三透镜E3具有物侧面S5和像侧面S6;以及第四透镜E4具有物侧面S7和像侧面S8。其中,反射元件P设置在第一透镜E1与第二透镜E2之间或与第一透镜E1和第二透镜E2相邻地设置。如上所述设置的反射元件P将从第一透镜E1入射的光反射到第二透镜E2。
在该实施例中,第一透镜E1具有负光焦度,其物侧面S1为凹面,像侧面S2为凹面;第二透镜E2具有正光焦度,其物侧面S3为凸面,像侧面S4为凸面;第三透镜E3具有正光焦度,其物侧面S5为凸面,像侧面S6为凸面;以及第四透镜E4具有负光焦度,其物侧面S7为凹面,像侧面S8为凸面。
在本实施例的摄像透镜系统中,还包括用于限制光束的、设置在第二透镜E2与第三透镜E3之间的光圈STO。根据实施例4的摄像透镜系统可包括具有物侧面S9和像侧面S10的滤光片E5,滤光片E5可用于校正色彩偏差。来自物体的光依序穿过各表面S1至S10并最终成像在成像面S11上。
下表10示出了实施例4的摄像透镜系统的各透镜和/或反射元件的表面类型、曲率半径、厚度、材料及圆锥系数。表11示出了实施例4中各非球面镜面的高次项系数。表12示出了实施例4的各透镜的有效焦距值f1至f4、摄像透镜系统的有效焦距值f以及摄像透镜系统的镜头的最大视场角的一半HFOV。其中,各非球面面型可由上述实施例1中给出的公式(1)限定。
表10
Figure PCTCN2018110437-appb-000006
Figure PCTCN2018110437-appb-000007
表11
面号 A4 A6 A8 A10 A12 A14 A16 A18 A20
S1 3.4680E-01 -2.8320E-02 4.5722E-03 -7.3516E-04 1.1070E-04 -5.1462E-06 -9.0546E-06 6.3916E-06 0
S2 1.8424E-01 -5.9318E-03 6.7672E-04 5.0425E-05 2.4279E-05 2.6783E-05 -7.3202E-06 0 0
S3 9.6232E-02 1.8113E-03 5.9324E-03 3.0640E-04 -8.4836E-05 -3.4239E-05 0 0 0
S4 3.6711E-02 -1.8046E-03 8.9296E-03 -3.3712E-04 3.8048E-04 -5.3176E-05 0 0 0
S5 1.0984E-01 -3.0263E-02 8.1456E-03 -5.2246E-03 2.6921E-04 6.9487E-05 2.5478E-04 2.9527E-05 0
S6 -1.5163E-02 -3.2554E-02 3.6169E-03 1.3787E-03 -1.5363E-03 1.8692E-04 -1.6988E-04 -1.0599E-05 0
S7 3.0810E-02 -2.6976E-02 -1.0136E-02 3.5026E-03 -1.6337E-03 3.5236E-04 -3.4308E-04 -2.2750E-05 -5.9544E-05
S8 1.5745E-01 -4.7973E-03 -2.9506E-03 4.9914E-04 -1.6369E-04 8.1284E-05 -1.3231E-05 -1.4503E-07 3.4786E-08
表12
参数 f1(mm) f2(mm) f3(mm) f4(mm) f(mm) HFOV(°)
数值 -3.92 5.75 2.71 -3.77 2.81 34.0
结合上表10、表12,在该实施例中:
摄像透镜系统的有效焦距值f与第二透镜的有效焦距值f2之间满足f/f2=0.49;
第一透镜的色散系数V1与第二透镜的色散系数V2之间满足|V1-V2|=12;
摄像透镜系统的有效焦距值f与最靠近成像面的第四透镜的有效焦距值f4之间满足f/f4=-0.75;以及
摄像透镜系统的有效焦距值f与第一透镜的有效焦距值f1之间足 f/f1=-0.72。
图9A示出了实施例4的摄像透镜系统的轴上色差曲线,其表示不同波长的光线经由摄像透镜系统后的会聚焦点偏离。图9B示出了实施例4的摄像透镜系统的象散曲线,其表示子午像面弯曲和弧矢像面弯曲。图9C示出了实施例4的摄像透镜系统的畸变曲线,其表示不同视角情况下的畸变大小值。图9D示出了实施例4的摄像透镜系统的倍率色差曲线,其表示光线经由摄像透镜系统后在成像面上的不同的像高的偏差。根据图9A至图9D可知,实施例4所给出的摄像透镜系统能够实现良好的成像品质。
综上,实施例1至实施例4分别满足以下表13所示的关系。
表13
条件式/实施例 1 2 3 4
f/fi -0.67 -0.80 -0.74 -0.75
f/f1 -0.59 -0.64 -0.73 -0.72
f/f2 0.63 0.47 0.72 0.49
|V1-V2| 0.20 0.20 0.00 12.00
以上描述仅为本申请的较佳实施例以及对所运用技术原理的说明。本领域技术人员应当理解,本申请中所涉及的发明范围,并不限于上述技术特征的特定组合而成的技术方案,同时也应涵盖在不脱离所述发明构思的情况下,由上述技术特征或其等同特征进行任意组合而形成的其它技术方案。例如上述特征与本申请中公开的(但不限于)具有类似功能的技术特征进行互相替换而形成的技术方案。

Claims (16)

  1. 摄像透镜系统,其特征在于,包括:
    镜筒,所述镜筒具有从物侧接收并传送入射光的第一部分,以及用于将光出射到像侧的第二部分,
    其中,所述第一部分中设置有第一透镜,所述第二部分垂直于所述第一部分,并且所述第二部分中设置有具有至少三个透镜的透镜组,
    所述第一部分的径向宽度D小于0.5mm;以及
    所述第一部分从所述第二部分外延出的长度为H,并且满足0.8mm<H<2.0mm。
  2. 根据权利要求1所述的摄像透镜系统,其特征在于,所述第一部分和所述第二部分交叉的位置处设置有反射元件,从而使得从所述第一部分接收的入射光传向所述第二部分。
  3. 根据权利要求1所述的摄像透镜系统,其特征在于,所述第一透镜具有负光焦度。
  4. 根据权利要求1所述的摄像透镜系统,其特征在于,所述至少三个透镜中最靠近像侧的透镜具有负光焦度。
  5. 根据权利要求2所述的摄像透镜系统,其特征在于,所述至少三个透镜中的最靠近所述反射元件的透镜,即,第二透镜,具有正光焦度,其有效焦距值f2与所述摄像透镜系统的有效焦距值f之间满足:0<f/f2<1。
  6. 根据权利要求5所述的摄像透镜系统,其特征在于,所述第一透镜的色散系数V1与所述第二透镜的色散系数V2之间满足:|V1-V2|<15。
  7. 根据权利要求4所述的摄像透镜系统,其特征在于,所述摄像透镜系统的有效焦距值f与所述最靠近像侧的透镜的有效焦距值fi之间满足:-1.0<f/fi<-0.5。
  8. 根据权利要求1-7中任一项所述的摄像透镜系统,其特征在于,所述摄像透镜系统的有效焦距值f与所述第一透镜的有效焦距值f1之间满足:-1.0<f/f1<0。
  9. 摄像透镜系统,其特征在于,包括:
    镜筒,所述镜筒具有从物侧接收并传送入射光的第一部分,以及用于将光出射到像侧的第二部分,
    其中,所述第一部分中设置有第一透镜,所述第一部分的径向宽度D小于0.5mm;
    其中,所述第二部分垂直于所述第一部分,并且所述第二部分设置有具有至少三个透镜的透镜组;
    其中,所述至少三个透镜中最靠近像侧的透镜具有负光焦度。
  10. 根据权利要求9所述的摄像透镜系统,其特征在于,所述第一透镜具有负光焦度。
  11. 根据权利要求9所述的摄像透镜系统,其特征在于,所述第一部分从所述第二部分外延出的长度为H,并且满足0.8mm<H<2.0mm。
  12. 根据权利要求9所述的摄像透镜系统,其特征在于,所述第一部分和所述第二部分交叉的位置处设置有反射元件,从而使得从所述第一部分接收的入射光传向所述第二部分。
  13. 根据权利要求12所述的摄像透镜系统,其特征在于,所述至少三个透镜中的最靠近所述反射元件的透镜,即,第二透镜,具有正 光焦度,其有效焦距值f2与所述摄像透镜系统的有效焦距值f之间满足:0<f/f2<1。
  14. 根据权利要求13所述的摄像透镜系统,其特征在于,所述第一透镜的色散系数V1与所述第二透镜的色散系数V2之间满足:|V1-V2|<15。
  15. 根据权利要求9-14中任一项所述的摄像透镜系统,其特征在于,所述摄像透镜系统的有效焦距值f与所述最靠近像侧的透镜的有效焦距值fi之间满足:-1.0<f/fi<-0.5。
  16. 根据权利要求9-14中任一项所述的摄像透镜系统,其特征在于,所述摄像透镜系统的有效焦距值f与所述第一透镜的有效焦距值f1之间满足:-1.0<f/f1<0。
PCT/CN2018/110437 2018-01-10 2018-10-16 摄像透镜系统 WO2019137055A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201810024180.5 2018-01-10
CN201810024180.5A CN108037578B (zh) 2018-01-10 2018-01-10 摄像透镜系统

Publications (1)

Publication Number Publication Date
WO2019137055A1 true WO2019137055A1 (zh) 2019-07-18

Family

ID=62099072

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2018/110437 WO2019137055A1 (zh) 2018-01-10 2018-10-16 摄像透镜系统

Country Status (2)

Country Link
CN (1) CN108037578B (zh)
WO (1) WO2019137055A1 (zh)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US11307385B2 (en) 2019-03-26 2022-04-19 Largan Precision Co., Ltd Optical imaging system, image capturing unit and electronic device
US11841550B2 (en) 2020-05-20 2023-12-12 Largan Precision Co., Ltd. Imaging optical lens assembly, image capturing unit and electronic device

Families Citing this family (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN108037578B (zh) * 2018-01-10 2019-10-18 浙江舜宇光学有限公司 摄像透镜系统
WO2021115440A1 (zh) * 2019-12-13 2021-06-17 宁波舜宇光电信息有限公司 潜望式摄像模组及其制造方法
CN112995445A (zh) * 2019-12-13 2021-06-18 宁波舜宇光电信息有限公司 潜望式摄像模组
CN112995443B (zh) * 2019-12-13 2022-09-02 宁波舜宇光电信息有限公司 潜望式摄像模组及其制造方法
TW202204958A (zh) * 2020-07-24 2022-02-01 大陸商信泰光學(深圳)有限公司 影像擷取裝置及其變焦控制方法

Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2005077616A (ja) * 2003-08-29 2005-03-24 Ricoh Co Ltd 撮影レンズ、レンズ鏡胴及びカメラ
CN101013192A (zh) * 2006-02-03 2007-08-08 松下电器产业株式会社 变焦透镜系统、透镜镜筒、成像装置以及拍摄设备
CN101288026A (zh) * 2005-10-31 2008-10-15 松下电器产业株式会社 照相机
CN102243349A (zh) * 2010-05-10 2011-11-16 鸿富锦精密工业(深圳)有限公司 折光镜片、镜头模组及具有该镜头模组的成像装置
CN102809795A (zh) * 2011-04-08 2012-12-05 株式会社尼康 透镜镜筒、摄影装置及遮光罩
CN103389556A (zh) * 2012-05-07 2013-11-13 奥林巴斯映像株式会社 镜头装置
CN103809261A (zh) * 2012-11-13 2014-05-21 大立光电股份有限公司 塑料镜筒及其制造方法
CN108037578A (zh) * 2018-01-10 2018-05-15 浙江舜宇光学有限公司 摄像透镜系统
CN207799216U (zh) * 2018-01-10 2018-08-31 浙江舜宇光学有限公司 摄像透镜系统

Patent Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2005077616A (ja) * 2003-08-29 2005-03-24 Ricoh Co Ltd 撮影レンズ、レンズ鏡胴及びカメラ
CN101288026A (zh) * 2005-10-31 2008-10-15 松下电器产业株式会社 照相机
CN101013192A (zh) * 2006-02-03 2007-08-08 松下电器产业株式会社 变焦透镜系统、透镜镜筒、成像装置以及拍摄设备
CN102243349A (zh) * 2010-05-10 2011-11-16 鸿富锦精密工业(深圳)有限公司 折光镜片、镜头模组及具有该镜头模组的成像装置
CN102809795A (zh) * 2011-04-08 2012-12-05 株式会社尼康 透镜镜筒、摄影装置及遮光罩
CN103389556A (zh) * 2012-05-07 2013-11-13 奥林巴斯映像株式会社 镜头装置
CN103809261A (zh) * 2012-11-13 2014-05-21 大立光电股份有限公司 塑料镜筒及其制造方法
CN108037578A (zh) * 2018-01-10 2018-05-15 浙江舜宇光学有限公司 摄像透镜系统
CN207799216U (zh) * 2018-01-10 2018-08-31 浙江舜宇光学有限公司 摄像透镜系统

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US11307385B2 (en) 2019-03-26 2022-04-19 Largan Precision Co., Ltd Optical imaging system, image capturing unit and electronic device
US11841550B2 (en) 2020-05-20 2023-12-12 Largan Precision Co., Ltd. Imaging optical lens assembly, image capturing unit and electronic device

Also Published As

Publication number Publication date
CN108037578B (zh) 2019-10-18
CN108037578A (zh) 2018-05-15

Similar Documents

Publication Publication Date Title
WO2019137055A1 (zh) 摄像透镜系统
WO2019210740A1 (zh) 光学成像镜头
WO2019210739A1 (zh) 光学成像镜头
WO2019169889A1 (zh) 投影镜头
WO2020134026A1 (zh) 光学成像系统
WO2020151251A1 (zh) 光学透镜组
WO2019056817A1 (zh) 光学成像系统
WO2019169856A1 (zh) 摄像镜头组
WO2020134130A1 (zh) 光学成像镜头
WO2019192160A1 (zh) 光学成像镜头
WO2018058754A1 (zh) 摄像镜头及装配有该摄像镜头的摄像装置
WO2021036554A1 (zh) 光学成像镜头
WO2019218628A1 (zh) 光学成像镜头
WO2019033756A1 (zh) 光学成像镜头
WO2019037466A1 (zh) 摄像镜头
WO2018223651A1 (zh) 摄像镜头
WO2018209855A1 (zh) 光学成像系统
WO2020107936A1 (zh) 光学成像系统
WO2018218889A1 (zh) 光学成像系统
WO2019233159A1 (zh) 光学成像镜头
WO2019210701A1 (zh) 光学成像系统
WO2021042954A1 (zh) 摄像镜头组
WO2019184367A1 (zh) 光学系统
WO2019007045A1 (zh) 光学成像镜头
WO2018209890A1 (zh) 成像镜头

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 18899811

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 18899811

Country of ref document: EP

Kind code of ref document: A1